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AI-driven radiogenomics
in gynecologic oncology:
from radiological digital
biopsy to a new paradigm
in precision therapy
Qiqi Kong and Yunqing Ban*

Department of Radiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
Tumor heterogeneity is a core challenge in gynecologic oncology, driving

therapeutic resistance and limiting the efficacy of single-point biopsies.

Artificial intelligence (AI) and radiomics are emerging as a “digital biopsy” to

non-invasively decode tumor biology from medical radiological modalities

images(including MRI, CT, and PET). This review synthesizes the state of AI in

predicting key molecular features across gynecologic cancers, including

homologous recombination deficiency (HRD) in ovarian cancer, microsatellite

instability (MSI) and PI3K activation in endometrial cancer, and, as an illustrative

case, HPV integration and DNA methylation in cervical cancer. We further

explore how advanced architectures like Vision Transformers (ViTs) and Graph

Neural Networks (GNNs) can delineate the tumor microenvironment and predict

therapeutic response. Finally, we discuss critical hurdles to clinical translation—

such as model generalizability, the need for causal AI, and the data bottleneck—

while examining future paradigms like foundation models and patient-specific

“digital twins.” This review highlights AI’s revolutionary potential to link imaging

phenotype with molecular genotype, advancing a new era of precision medicine

in gynecologic oncology.
KEYWORDS

artificial intelligence, digital biopsy, foundation models, gynecologic oncology,
radiogenomics, tumor heterogeneity
1 Introduction

One of the central challenges in clinical oncology stems from the fundamental nature of

cancer: evolution (1, 2). A tumor is not a homogenous mass of cells but a complex,

dynamically evolving ecosystem populated by subclones with diverse genotypes and

phenotypes (3, 4). This profound intratumor heterogeneity (ITH) is a significant

contributing factor to therapeutic resistance, disease relapse, and metastasis (5–7).

Consider a clinical scenario: a 58-year-old woman with endometrial cancer whose
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single-site biopsy reveals a G2 endometrioid adenocarcinoma, p53

wild-type (8). This sample, however, may represent only a fraction

of the tumor landscape, missing a distant, more aggressive p53-

mutant subclone, thereby leading to suboptimal treatment decisions

and a poor outcome (8–10). This scenario precisely exposes the

fundamental limitation of the current “gold standard” reliance on

single-point, invasive biopsies: inherent spatial sampling bias (8,

10). A particularly striking example is cervical cancer, where the

HPV genome integrates into the host chromosome.—a key event in

malignant progression—can be highly heterogeneous across the

tumor, making it difficult to assess comprehensively with a small

tissue sample (10).

Gynecologic cancers, primarily ovarian, endometrial, and

cervical cancers, are a major threat to women’s health globally

(11, 12). Thanks to large-scale sequencing initiatives like The

Cancer Genome Atlas (TCGA), our understanding of their

molecular landscapes has expanded exponentially (10, 13, 14).

These studies have directly linked specific molecular features to

clinical decisions. For instance, in high-grade serous ovarian cancer

(HGSOC), Homologous Recombination Deficiency (HRD) status is

a critical biomarker for Poly(ADP-ribose) polymerase inhibitors

(PARPi) therapy (12, 15, 16). In endometrial cancer, a molecular

classification system profoundly changes prognostic stratification

and treatment strategies (17–19). Notably, mismatch repair

deficiency (dMMR), or its surrogate high microsatellite instability

(MSI-H), is a “pan-cancer” biomarker for immune checkpoint

inhibitors (ICIs) (20–22). However, obtaining this molecular

information remains a challenge. Tissue biopsies see the “trees”

but miss the “forest,” while liquid biopsies lack spatial information

(23, 24). This dilemma has created a critical unmet need for tools

that can non-invasively characterize the entire tumor.

It is against this backdrop that the convergence of radiomics

and artificial intelligence (AI) has emerged (25, 26). The core

scientific hypothesis is that a tumor’s molecular genotype drives

microscopic biological changes that manifest on macroscopic

medical images as unique, quantifiable imaging phenotypes (25,

27, 28). This “digital biopsy” approach aims to decode the tumor’s

biology directly from voxels, bridging the gap between genotype and

phenotype. This concept forms the basis of the field of radiomics,

which aims to bridge medical imaging and personalized medicine

(26). We will explore how AI decodes key molecular markers, with a

special focus on using cervical cancer to illustrate how AI can

predict specific molecular events like HPV integration and DNA

methylation, thereby showcasing the full potential of the digital

biopsy paradigm (29, 30). The subsequent sections will delve into

specific molecular markers, including the aforementioned HPV-

driven events and DNA methylation patterns, to build a robust case

for this transformative (31).
1.1 Search strategy and selection criteria

To enhance transparency in our narrative review, we conducted

a structured literature search across PubMed, Scopus, Web of

Science, and Google Scholar from January 2020 to October 2025.
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Search terms included combinations such as “AI gynecologic

oncology,” “radiogenomics ovarian cancer,” “digital biopsy

cervical cancer,” and “molecular imaging endometrial cancer.”

Inclusion criteria focused on peer-reviewed articles applying AI/

deep learning to radiological imaging (CT, MRI, PET) or digital

pathology for molecular profiling in ovarian, endometrial, or

cervical cancers, with at least retrospective validation (≥100

patients preferred), performance metrics (e.g., AUC ≥0.70), and

explicit mechanistic links to drivers like HRD or MSI. From 487

initial records, duplicates were removed (n=50 excluded), titles/

abstracts screened (n=171 excluded), and full-texts assessed (n=87),

yielding 179 key studies for synthesis. The process is illustrated

in Figure 1.
2 The AI toolkit: from feature
engineering to application-driven
architectures

Transforming medical images into quantitative biological

probes relies on a powerful AI toolkit, moving from hypothesis-

driven feature engineering to application-driven deep learning

architectures (32–34). Utilizing the advanced AI architectures

discussed below, researchers are now able to probe the molecular

underpinnings of gynecologic cancers with unprecedented, non-

invasive depth.
2.1 The classical radiomics workflow

The traditional radiomics pipeline is a multi-step process,

involving standardized image acquisition, reproducible

segmentation, high-throughput extraction of IBSI-compliant

features (shape, texture, wavelet) (35). In gynecologic oncology,

these features serve as quantitative proxies for heterogeneity; for

instance, high-order texture features (e.g., GLCM entropy) may

reflect the chaotic micro-architecture of high-grade serous ovarian

cancer (27, 64). Finally, robust feature selection (e.g., LASSO) to

train machine learning models (36) (Figure 2).
2.2 Deep learning: the end-to-end
autonomous learning paradigm

Deep learning (DL) represents a fundamental shift (37), using

deep neural networks (DNNs) to learn relevant features

automatically from raw pixels (38, 39).
2.2.1 Convolutional neural networks
As the cornerstone of image analysis (40), architectures like U-

Net are now standard for cervical tumor segmentation on MRI (41),

while ResNet and DenseNet (42, 43) variants effectively distinguish

benign from malignant adnexal masses by learning hierarchical

feature representations (174).
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2.2.2 Vision transformers
ViTs treat an image as a sequence of patches and use a self-

attention mechanism to model long-range, global dependencies (44,

45). This global context modeling is particularly powerful for analyzing

the tumor invasive front, a complex micro-anatomical structure whose

features are strong predictors of cancer progression (46, 47). By

assessing the entire tumor boundary simultaneously, ViTs are

uniquely positioned to identify subtle patterns of invasion in cervical

cancer that are missed by the limited receptive fields of CNNs (47, 48).

2.2.3 Graph neural networks
GNNs model data as a graph of nodes and edges (49) making

them ideal for capturing relationships (50). This is uniquely suited

for modeling the tumor microenvironment (TME) (51). For

instance, in endometrial cancer, individual cells (cancer, immune,

stromal) can be modeled as ‘nodes’ and their spatial adjacencies as
Frontiers in Oncology 03
‘edges.’ This topology-aware approach allows the GNN to quantify

the interplay between tumor-infiltrating lymphocytes and cancer

cells—such as the Crohn’s-like lymphocytic response—which is a

key predictor of MSI status and immunotherapy response (52).
2.3 The paradigm shift towards foundation
models

The data bottleneck remains a primary challenge (38). A

paradigm shift is underway from task-specific models to

Foundation Models (53). Pre-trained on vast, unlabeled datasets

using self-supervised learning, these models learn rich, generalizable

representations of medical images (54–56). They can then be fine-

tuned for specific tasks (e.g., HRD prediction) with very few labeled

examples (“few-shot learning”), representing a promising solution
FIGURE 1

Flow diagram of the study selection process based on the PRISMA 2020 guidelines..
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to the data scarcity problem in medical imaging. complexity of a

tumor cannot be fully captured by a single data source (56, 57).

Multi-modal AI aims to build more comprehensive models by

fusing data from imaging, digital pathology, and genomics (e.g.,

PIK3CA, KRAS mutations) (58, 59). This enables a more holistic

view of the tumor’s biological state, leading to more precise

predictions (59, 60).
3 Decoding key molecular signatures:
from broad correlations to a
mechanistic digital biopsy

The transformative potential of AI lies in its ability to non-

invasively predict clinically critical molecular features (Table 1).
3.1 Ovarian cancer: deconstructing the
“genomic chaos” of HRD biological
rationale

The core causal chain is as follows: The molecular event of

Homologous Recombination Deficiency (HRD) (61) leads to the
Frontiers in Oncology 04
genomic consequence of an inability to precisely repair DNA

double-strand breaks. This results in the accumulation of large-scale

structural variants known as “genomic scars” (loss of heterozygosity

[LOH], telomeric allelic imbalance [TAI], and large-scale state

transitions [LST]) (62–64). This profound genomic instability serves

as an engine for rapid clonal evolution, leading to the key

histopathological correlate of significant cellular pleomorphism, areas

of necrosis (as some clones outgrow their blood supply), and

disorganized, leaky neovasculature (64). This structural chaos directly

translates into a measurable imaging phenotype. On CT/MRI, this is

observed as irregular tumor morphology, central non-enhancing

regions (necrosis), and heterogeneous, avid contrast enhancement

(disorganized vasculature) (65). Therefore, radiomic features

quantifying texture heterogeneity (e.g., entropy) and shape

irregularity (e.g., low sphericity) are direct surrogates for the

underlying biological state of HRD. Current Research & Critical

Assessment: Numerous studies have built models to predict HRD or

BRCA status based on these principles (66, 67). However, a key

challenge is distinguishing the imaging phenotype of BRCA-mutated

HRD from non-BRCA HRD, which may have different biological

underpinnings (68). Furthermore, predicting ubiquitous mutations like

TP53 remains a complex task, though it is often linked to features of

necrosis and architectural disarray (69).
FIGURE 2

The paradigm shift to “digital biopsy” and the biological causal chain underlying imaging phenotypes. (A) Limitations of Physical Biopsy: The current
“gold standard” relies on single-point sampling, which is prone to spatial bias and often underestimates tumor aggressiveness. (B) AI-Driven Digital
Biopsy: A non-invasive approach that captures comprehensive intratumor heterogeneity across the entire tumor volume. (C) Decoding the
Biological Causal Chain: This panel links molecular events to imaging signatures: HRD induces genomic chaos and necrosis, manifesting as high
texture entropy and irregular morphology; dMMR/MSI-H triggers immune infiltration (e.g., Crohn’s-like lymphoid reaction), resulting in distinct
peritumoral texture features; and HPV integration drives structural disorganization, reflected as a heterogeneous “salt-and-pepper” texture on ADC
maps.
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3.2 Endometrial cancer: linking MSI to
histopathological immune signatures
biological rationale

The molecular event of Mismatch Repair Deficiency (dMMR)

leads to high microsatellite instability (MSI-H) (17). The

immunological consequence is the accumulation of frameshift

mutations, creating a high neoantigen load and rendering the

tumor highly immunogenic (70). This elicits the key

histopathological correlate of dense infiltration by cytotoxic T-

lymphocytes and other immune cells, often organized into a

distinct “Crohn’s-like lymphocytic response” at the tumor’s
Frontiers in Oncology 05
invasive margin (71). This physical immune barrier alters the

tumor-stroma interface and tissue density. This leads to the

imaging phenotype hypothesis that this dense peritumoral immune

reaction is visible on MRI, manifesting as unique peritumoral signals

(e.g., enhancement or T2 signal changes) (72). The altered internal

cellular composition (mix of tumor and immune cells) also changes

diffusion properties (ADC values) and texture compared to the

typically “immune-desert” microsatellite stable (MSS) tumors

(73).AI models have shown high accuracy in predicting MSI status

fromMRI (74, 75), and multi-modal models incorporating PET have

further improved performance (76). These findings are analogous to

successes in predicting MSI from digital pathology slides (77).
TABLE 1 Application cases, mechanistic links, predictive accuracies, and clinical values for AI molecular imaging in gynecologic cancers.

Core
molecular
event/

biological
process

Key
genomic/
epigenetic
drivers

Affected
cancer&
freq.

Key
histopathological

correlate

AI-driven
imaging

phenotype
hypothesis

Clinical
readiness

Predictive
accuracy

Clinical value

Homologous
Recombination
Deficiency,
(HRD)

BRCA1/2
mutations, etc.
(15, 61)

Ovarian
(HGSOC,
~50%) (12)

High clonal diversity,
pleomorphism, necrosis,
disorganized
neovasculature (64).

Genomic chaos
manifests as
increased textural
heterogeneity and
irregular
morphology on
CT/MRI (66)

Level 2:
Retrospective
Validation

AUC 0.81
(DeepHRD model
on H&E slides in
TCGA cohort)
(175)

Correlates with better OS
after platinum therapy
(HR 0.46); identifies 3.1-
fold more HRD cases for
PARP inhibitors,
improving targeted
treatment response
(175).

Mismatch
Repair
Deficiency
(dMMR)/MSI-
H

MLH1, MSH2
silencing, etc.
(22)

Endometrial
(~25-30%)
(14)

Dense lymphocyte
infiltration, often with a
“Crohn’s-like”
peritumoral response (88)

High lymphocyte
infiltration alters
tissue density,
creating distinct
peritumoral and
internal textures
on MRI (74, 75).

Level 2:
Retrospective
Validation

Accuracy 94%
(G1G2
endometrioid)
and 84% (G3);
sensitivity up to
100% (deep
learning on H&E
slides) (176)

Predicts immunotherapy
response (e.g.,
pembrolizumab; rates
44-57% in MSI-H EC),
enhancing PFS/OS in
advanced cases (176).

PI3K/AKT/
mTOR
Pathway
Dysregulation

PIK3CA, PTEN
alterations (89)

Endometrial
(~80%),
Cervical
(~50%) (10,
14)

Increased cellular
proliferation, metabolic
reprogramming (Warburg
effect), and angiogenesis

Increased glucose
metabolism (high
PET SUV) and
vascularity (high
DCE-MRI
perfusion) are
detectable.

Level 2:
Retrospective
Validation

Sensitivity 73-
84%, specificity
91-95% (ICC for
Akt/mTOR in
cytology; limited
direct AI imaging
data) (177)

Links to targeted
therapies (e.g., mTOR
inhibitors); upregulation
correlates with aggressive
EC progression and
poorer OS (177).

HPV
Integration &
E6/E7 High
Expression

Disruption of
HPV E2 gene
(79, 90)

Cervical
(>99%) (10)

Chromosomal instability
and architectural disarray
driven by oncoprotein
expression (10).

Viral-driven
genomic
instability creates
more chaotic
textural (entropy)
and diffusion
(ADC) patterns
on MRI.

Level 1:
Preclinical
Hypothesis

Higher sensitivity/
specificity than
Pap cytology
(automated dual-
stain AI reduces
colposcopy
referrals by
~33%) (178)

Improves early detection
in HPV-positive cases,
leading to better PFS/OS
through timely
intervention (178).

Specific DNA
Methylation
(e.g., CADM1)

Epigenetic
silencing of
tumor
suppressors (83,
84)

Cervical
(High-grade
lesions) (80)

Reduced cell-cell
adhesion and altered
apoptosis rates, leading to
looser tissue structure.

Micro-
architectural
changes alter
water mobility,
detectable as
shifts in ADC
values and T2WI
texture.

Level 1:
Preclinical
Hypothesis

Sensitivity 83.3%,
specificity 95.5%
(combined
CADM1/MAL in
liquid biopsy; no
direct AI imaging
reported) (179)

Serves as biomarker for
early high-grade lesion
detection; correlates with
progression risk and
potential PFS benefits via
monitoring (179).
Clinical Readiness Levels: Level 1: Preclinical Hypothesis (Theoretical basis with preliminary in vitro/in vivo evidence); Level 2: Retrospective Validation (Validated in retrospective cohorts);
Level 3: Prospective Validation (Validated in prospective studies or clinical trial subgroups); Level 4: Clinical Integration (Incorporated into clinical guidelines or routine decision support) (91).
PFS, progression-free survival; OS, overall survival.
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3.3 Cervical cancer: a flagship case for a
mechanistic digital biopsy

As a disease with a clear viral etiology and a well-defined

molecular progression, cervical cancer serves as the perfect model

system to demonstrate the profound potential of the digital biopsy

paradigm (10, 78).

3.3.1 AI for predicting HPV integration (a “digital
karyotype”) mechanistic link

The concept of “digital karyotyping” suggests that genomic

instability manifests as distinct morphological phenotypes. In cervical

cancer, HPV integration induces ‘genomic scars’ and chromosomal

instability (10), which may lead to cellular pleomorphism and

architectural disarray. We hypothesize that these microscopic

changes alter water diffusion, allowing DWI-derived texture features

to potentially serve as a macroscopic ‘digital karyotype’ of tumor

aggressiveness (9, 81).The molecular event of HPV integration into

the host genome frequently occurs at common fragile sites, leading to

the genomic consequence of significant chromosomal instability and

amplification of adjacent oncogenes likeMYC (10, 79). This “genomic

chaos” is a direct biological driver of ITH (9). The histopathological

correlate is disordered tissue architecture and marked cellular

pleomorphism (4). This structural disarray disrupts the uniform

environment for water molecule diffusion, creating complex

interfaces between cell populations, which translates to a measurable

imaging phenotype of increased high-order texture features (higher

entropy, lower uniformity in GLCM) and a more heterogeneous ADC

map on MRI (80, 81).

The core hypothesis is that an AI model can learn these textural

and diffusion signatures to non-invasively predict HPV integration

status, providing a powerful risk stratification tool beyond simple

HPV DNA detection (82).

3.3.2 AI for predicting DNA methylation (a “digital
methylome”) mechanistic link

The molecular event of hypermethylation and believes that the

epigenetic state of the host tumor suppressor genes is one of the most

important drivers of cervical cancer (83, 84). In recent years, the role

of DNAmethylation as an important indicator for the early detection

of cervical cancer has been confirmed. For instance, methylation

panels targeting key genes such as ZSCAN1 and ST6GALNAC5 (e.g.,

the WID-qCIN test), have been validated in large-scale, real-world

studies as a highly effective triage tool, highlighting their growing

importance (85). The cellular consequence of silencing these genes

includes reduced cell-cell adhesion and evasion of apoptosis, allowing

damaged cells to survive. Concurrently, a core protein-level

biomarker is the overexpression of p16INK4a. The underlying

mechanism is directly linked to the E7 oncoprotein of high-risk

HPV types: the E7 protein interacts with and degrades the

retinoblastoma protein (pRb), which lifts the negative feedback

inhibition on the cyclin-dependent kinase inhibitor p16INK4a,

leading to its massive intracellular accumulation. This serves as a
Frontiers in Oncology 06
hallmark event of HPV-driven cellular transformation (86). The

histopathological correlate is a less cohesive, more disorganized

tissue structure with an altered ratio of viable to apoptotic cells,

changing the density of the xtracellular matrix. This directly impacts

the imaging phenotype: these microstructural changes alter the

mobility of water molecules. A looser structure may increase the

extracellular water space, leading to higher ADC values, while

uncontrolled proliferation could do the opposite. The heterogeneity

of these processes across the tumor is captured by texture features on

ADC maps and T2-weighted images.

The feasibility of predicting DNA methylation from MRI is no

longer purely hypothetical. High-impact studies in other cancers

(e.g., glioblastoma) have already demonstrated a strong correlation

between global DNA methylation levels and specific radiomic

features (87). The hypothesis is that a similar “digital methylome”

model can be built for cervical cancer, elevating the digital biopsy

from the genetic to the epigenetic level.

However, decoding these tumor cell-intrinsic molecular

features is only the beginning of the story. A core concept in

modern oncology is that a tumor is not merely a collection of

malignant cells, but a complex and dynamically evolving

community of cancer cells, immune cells, stromal cells, and

vasculature (4). Therefore, to truly understand and ultimately

control the tumor, we must achieve a “leap in scale”: from

decoding the biology of the “single cancer cell” to delineating the

complex biological behavior of the “entire tumor ecosystem.
4 Delineating the tumor
microenvironment and guiding
therapy

Building upon the decoding of cell-intrinsic molecular features

from imaging in the previous section, this section elevates the

perspective to a more macroscopic biological scale: the tumor

microenvironment (TME). Beyond cell-intrinsic features, AI can

characterize the broader TME.
4.1 Characterizing “cold” and “hot” immune
landscapes

Tumors are broadly categorized into “hot” (inflamed) and

“cold” (immune-desert) phenotypes, a critical distinction for

immunotherapy (92, 93). For example, MSI-high endometrial

cancers typically present as “hot” tumors with dense CD8+ T-cell

infiltration, whereas many ovarian cancers exhibit a “cold”,

immunosuppressive stroma.The rationale is that this immune

infiltration alters tissue density and vascularity, creating a

detectable radiomic signature—such as specific texture patterns at

the tumor-stroma interface. AI models have successfully predicted

ICI response in other cancers from CT scans (94). Similar work in

gynecologic cancers is emerging (95).
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4.2 Assessing tumor hypoxia and guiding
“dose-painting” radiotherapy

Hypoxia drives treatment resistance (96, 97). Functional

imaging can visualize hypoxic regions (98), and AI can generate

voxel-level hypoxia maps. This is crucial for “dose-painting”

radiotherapy, where radiation doses are adaptively escalated to

the most resistant subregions (99, 100).
4.3 Delta-radiomics: gaining insight into
early treatment response

RECIST 1.1 criteria are often a late indicator of response (101).

Delta-radiomics analyzes the change (D) in radiomic features

between baseline and early on-treatment scans (102, 103).

Effective therapy induces rapid cellular changes that alter imaging

textures long before tumor shrinkage (104, 105). This has shown

great promise for early response assessment in ovarian and cervical

cancer (105, 106).
4.4 AI in predicting radiotherapy toxicity:
protecting the patient

While “dose-painting” focuses on escalating therapeutic effects, an

equally critical clinical challenge is the mitigation of therapeutic harm.

In gynecologic oncology, particularly for cervical and endometrial

cancers, radiotherapy is a cornerstone of treatment, but it carries a

significant risk of acute and late toxicity to surrounding organs at risk

(OARs), such as the bladder and rectum, leading to conditions like

radiation cystitis and proctitis that severely impact patient quality of life

(107). Predicting which patients are at high risk for severe toxicity is a

key unmet need for treatment individualization.

AI and machine learning models offer a powerful new solution

(108, 109). By integrating multi-dimensional data, these models can

build complex, non-linear predictive tools to identify high-risk

patients before treatment initiation (110). The input features for

these models are diverse, typically including: 1) Clinical features like

patient age, BMI, comorbidities (e.g., Charlson Comorbidity Index),

and performance status (KPS); 2) Dosimetric features extracted

from dose-volume histograms (DVHs), such as the minimum dose

to 2cc (D2cc of the rectum or bladder; and 3) Radiomic features

from pre-treatment CT or MRI scans that quantify tissue texture

and morphology of the OARs (111).

Current research has demonstrated the promise of this approach,

with models based on Support Vector Machines (SVM), Random

Forests, and other architectures achieving encouraging performance

(often with an AUC > 0.7, considered clinically useful) in predicting

grade 3 or higher toxicities (108, 112). However, echoing the

challenges discussed in the next section, these models often suffer

from a lack of generalizability and external validation, underscoring

the critical need for standardized data collection and multi-

institutional collaborative studies to translate this potential into a

reliable clinical tool (108, 110, 113).
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5 The path to clinical translation: from
algorithms to clinical practice

Despite immense promise, translating AI models into clinical

practice faces significant hurdles (114) (Figure 3).
5.1 Generalizability and reproducibility:
“from my data to your data”

Many models fail to generalize due to “dataset shift” (115, 116).

While “underspecification” is a correct term (117), a more

mechanistic explanation for these failures is the phenomenon of

“Shortcut Learning” (118). Shortcut learning describes a model’s

tendency not to learn the intended, biologically relevant causal

features of a disease, but to instead seize upon spurious, non-

generalizable correlations that happen to be associated with the

label in the training data. For example, a model might learn to

associate the presence of a surgical clip, text annotations on an

image, or the unique noise profile of a specific scanner with a

particular diagnosis, rather than the actual tumor morphology

(119). When deployed on new data from a different institution

lacking these “shortcuts,” the model’s performance collapses,

revealing it never learned the underlying biology at all. This is a

primary threat to model credibility. Rigorous, independent, multi-

center external validation is the non-negotiable minimum standard

(120). The significant variability in MRI and PET parameters across

institutions is a particularly acute bottleneck.
5.2 Beyond explainability: the need for
causal AI and interpretable-by-design
models

Clinicians are rightfully hesitant to trust “black box” algorithms

(121, 122). While Explainable AI (XAI) techniques like Grad-CAM

(123) and SHAP (124) provide post-hoc correlations, their value in

high-stakes clinical decisions is fundamentally limited because they

reveal correlation, not causation. These methods show what a

model is looking at, but cannot guarantee why it is looking there

(125). Critically, if a model has learned via a “shortcut,” XAI

heatmaps may misleadingly highlight a confounding artifact,

providing a false sense of security and an incorrect explanation to

the clinician (126, 127).

The next frontier is therefore Causal AI, which represents a

paradigm shift from asking “what” to asking “why” (128). The goal

of Causal AI is to learn a model that reflects the true biological

cause-and-effect chain. For instance, a causal model for HRD

prediction would not merely correlate image texture with the

label, but would learn to identify the specific imaging

manifestations of disorganized neovasculature and necrosis that

are caused by HRD-driven genomic instability. Such a model,

grounded in causality, is inherently more robust to confounders

and more trustworthy. Furthermore, this aligns with a growing

movement towards interpretable-by-design (“white box”) models,
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which, as argued by proponents like Cynthia Rudin, offer a more

reliable path to clinical trust than attempting to explain a “black

box” post-hoc (126, 129).
5.3 The data bottleneck and the need for a
gold standard validation

The biggest bottleneck remains the availability of high-quality,

curated, multi-modal data governed by FAIR principles (130, 131).

Moreover, for the digital biopsy paradigm to be validated, a new

“gold standard” is required (132). Spatial Transcriptomics (ST) is

the definitive technology for this (133, 134). By co-registering pre-

operative imaging with post-operative ST data from the same

tumor, one can directly verify whether a radiomic feature for

“immune hot” truly corresponds to a region with high T-cell gene

expression (134–136). ST is not just a research tool; it is the

necessary ground truth for validating the biological basis of any

digital biopsy model before clinical consideration (137).

This vision is no longer hypothetical but is being actively

implemented in pioneering clinical trials. A perfect exemplar is

the NCT06324175 (CO-MOULD) trial for high-grade serous

ovarian cancer. This study directly tackles the core challenge of

radiogenomic validation: achieving perfect spatial co-registration
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between in vivo imaging and ex vivo tissue analysis. The trial

employs an innovative methodology: based on a patient’s pre-

operative CT/MRI scans, a patient-specific 3D-printed mould of

the tumor is created. After surgical resection, this mould acts as a

precise cutting guide, allowing pathologists to slice the tumor along

anatomical planes that perfectly correspond to the original imaging

slices (e.g., axial plane) (138).

The significance of this technique is profound. It enables, for the

first time, a direct, spatially-matched validation of whether a

radiomic feature observed in a specific tumor “habitat” on an

MRI scan truly corresponds to a specific gene expression profile

(via ST) or histological pattern at that exact physical location. This

represents a revolutionary leap from macro-level, whole-tumor

correlation studies to micro-level, spatially-resolved ground-truth

validation, setting a new, rigorous standard for the entire digital

biopsy field (138).
5.4 Federated learning: collaborative
innovation while protecting privacy

For rare diseases, federated learning provides an elegant

solution (139). Enables multiple centers to collaboratively train a

global model while never accessing private patient data (140, 141).
FIGURE 3

Comparison of classical radiomics versus deep learning paradigms and strategies for clinical translation. (A) Classical Radiomics Workflow: A
hypothesis-driven pipeline involving tumor segmentation, extraction of handcrafted features (e.g., GLCM, wavelet), and feature selection (LASSO) to
train machine learning classifiers. (B) Deep Learning Paradigm: An end-to-end autonomous learning approach comprising: (B1) CNNs for capturing
local textures; (B2) Vision Transformers (ViTs) for encoding global context via self-attention; and (B3) Graph Neural Networks (GNNs) for modeling
cellular topology and neighbor relationships. (C) Challenges and Solutions: The diagram outlines steps to bridge clinical gaps. Federated Learning
addresses generalization issues (AUC drops). The CO-MOULD framework serves as a central engine for precise HRD stratification. Finally, Causal AI is
integrated to filter misleading confounders, guiding targeted therapies like ICI and PARP inhibitors.
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Key challenge is to address data heterogeneity (non-IID data) across

centers, a problem being addressed by emerging techniques like

federated personalization (142–144).
5.5 Clinical integration and regulatory
approval

An AI tool must integrate seamlessly into clinical workflows

(145). As “Software as a Medical Device” (SaMD), diagnostic AI

tools require rigorous regulatory approval from bodies like the FDA

(146) (Table 2).
6 Conclusion and future perspectives

Artificial intelligence is no longer a distant concept but an

increasingly imminent clinical reality in gynecologic oncology

(147–149). We are on the cusp of a paradigm shift: medical

imaging is evolving from a qualitative, anatomical tool into a

powerful, quantitative probe capable of non-invasively decoding

the core biology of a patient’s cancer (150). We have moved beyond

simple prognosis to inferring specific, actionable molecular targets

directly from pixels.

The road ahead is paved with immense opportunity. The next

wave of innovation will stem from foundation models (53, 151).

These models are usually pre-trained on large, unlabeled data sets

using self-supervised learning algorithms., such as contrastive

learning (e.g., ConVIRT, MedCLIP), which learns rich visual

representations by aligning paired images and their corresponding

text reports (152). However, their development in medicine faces
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unique challenges, including: 1) the scarcity of large-scale, diverse,

and publicly available clinical imaging datasets; 2) the immense

computational resources required to train on 3D volumetric data

like CT and MRI; and 3) significant regulatory and ethical hurdles

related to fairness, bias, and patient privacy (153). The deep fusion of

imaging with spatial omics and liquid biopsies, and widespread

implementation of privacy-preserving federated learning will also

drive innovation (154).

The ultimate vision is the creation of patient-specific “digital

twins”—in silico models that integrate all longitudinal data to

simulate disease progression and predict individual responses to

therapies, enabling truly dynamic, personalized treatment plan

selection in a risk-free environment (155–157). However, the path

to this vision is fraught with immense challenges. These include the

profound complexity of integrating multi-scale longitudinal data

(from genomics to imaging), the difficulty of biologically validating

that the virtual model accurately reflects in vivo processes, and

formidable computational, ethical, and regulatory barriers (158).

Despite these hurdles, preliminary successes are emerging. For

instance, technologies like FarrSight®-Twin have demonstrated

the ability to accurately replicate the results of real-world clinical

trials in silico for cancers including ovarian cancer, suggesting that,

while challenging, the digital twin is steadily moving from a purely

conceptual future to a scientific reality.

Turning this vision into reality requires unprecedented

collaboration. We must insist on the highest standards of

scientific rigor, champion high-quality data sharing, and demand

algorithmic transparency and causality (159, 160). Only then can we

fully harness the power of AI to deconstruct the complexity of

gynecologic cancers, pixel by pixel, and deliver on the ultimate

promise of precision medicine for every patient (161–163).
TABLE 2 Emerging AI paradigms and their link to specific biological problems.

AI
paradigm

Core principle &
rationale

Potential application linked
to molecular events

(from Table 1)

Advantages over
current models

Key challenges

Foundation
Models

Self-supervised pre-training on
large unlabeled data, followed by
few-shot fine-tuning (53, 54)..

Create a single, powerful model for
gynecologic imaging that can be rapidly
adapted to predict multiple rare
molecular events.

Dramatically improves data
efficiency and generalizability,
overcoming the primary
bottleneck of data scarcity.

High initial pre-training costs;
ensuring fairness and avoiding bias
from massive, uncurated datasets.

Vision
Transformers
(ViTs)

Takes image and models it as
sequence of patches, using self-
attention to model long-range,
global dependencies (164, 165)..

Analyze tumor invasive front: Predict
local invasion in cervical cancer by
modeling long-range cell-stroma
interactions (46).

Superior in capturing global
context compared to CNNs’
limited receptive fields.

High computational cost; adapting to
smaller medical datasets is a research
focus (164, 166).

Graph Neural
Networks
(GNNs)

Models data as a graph (nodes &
edges) to capture entity features
and their relationships (49).

Model the TME: Predict ICI response
by modeling spatial relationships
between cancer and immune cells
(links to dMMR/MSI & HPV) (51).

Explicitly models relationships
and spatial heterogeneity, ideal
for TME analysis (167).

Defining nodes/edges to accurately
represent the TME is a non-trivial
biological and computational
challenge (167).

Causal AI
Aims to learn causal relationships
(why) rather than just correlations
(what) (125).

Develop robust biomarkers: Build
models that predict HRD based on
causal biological drivers, making them
insensitive to scanner type (168).

Moves beyond correlation to
causation, leading to more
robust, generalizable, and
trustworthy models.

Causal inference from observational
data is extremely challenging;
requires strong domain assumptions
and new methodologies (169).

Digital Twins

Patient-specific computational
models integrating all data to
simulate disease and treatment
response (155).

Personalized therapy simulation: In
silico testing of PARPi vs. chemo for a
patient with a specific HRD score and
tumor phenotype (157, 170).

The ultimate paradigm for
personalized medicine:
optimizing therapy in a risk-
free virtual environment
(171).

Immense data integration and
computational challenges; requires
extensive biological validation;
currently a long-term vision (172,
173).
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7 Clinical implications of the digital
biopsy paradigm

Clinical integration is envisioned as a multi-step workflow.

Representative models like DeepHRD (175) have demonstrated the

feasibility of predicting molecular status from histology, a concept

now expanding to radiology. A potential workflow includes: 1)

Diagnostic Triage (e.g., distinguishing benign/malignant ovarian

cysts via CT (174)); 2) Risk Stratification (e.g., predicting cervical

cancer prognosis via MRI (81)); and 3) Therapeutic Prediction (e.g.,

using “digital twins” to simulate PARP inhibitor response (170)),

thereby guiding precision management.
Fron
Guiding precision therapy: The paradigm provides imaging-

based evidence to select targeted therapies, such as

identifying HRD status to inform the use of PARP

inhibitors in ovarian cancer or predicting MSI-H status

for immune checkpoint inhibitors in endometrial cancer.

Optimizing risk stratification: It offers a more nuanced view of

disease progression beyond simple HPV DNA detection in

cervical cancer by non-invasively predicting molecular

events like viral integration.

Characterizing the tumor microenvironment: AI can delineate

“hot” vs. “cold” immune landscapes to predict

immunotherapy response, providing insights that

transcend the tumor cell itself.

Personalizing radiotherapy: This technology enables “dose-

painting” by mapping tumor hypoxia and helps mitigate

harm by predicting patients at high risk for severe

radiotherapy-related toxicity.

Enabling early response assessment: Through “delta-

radiomics,” clinicians can assess therapeutic response

much earlier than traditional criteria, allowing for timely

adjustments to treatment plans.
8 Key takeaways for future research
and clinical translation
Expanding AI from molecular profiling to diagnostic triage:

Beyond predicting molecular status, AI should be leveraged

for accurate differentiation between benign and malignant

gynecologic lesions. Emerging studies already demonstrate

exceptional performance (e.g., AUC 0.97 for tumoral vs.

non-tumoral ovarian lesions on contrast-enhanced CT,

with further subtyping of endometriosis-associated

ovarian cancer at AUC 0.85) (174). Integrating this

diagnostic capacity into clinical workflows will enable

fertility-sparing decisions, reduce overtreatment, and

optimize follow-up strategies, thereby extending the value

of AI-driven imaging across the entire patient journey.

Prioritizing rigorous validation: The foremost challenge is

model generalizability. Future research must prioritize
tiers in Oncology 10
rigorous, independent, multi-center external validation to

combat “shortcut learning” and ensure that AI models are

robust and reliable across different patient populations and

imaging equipment.

Moving from correlation to causation: For AI to be trusted in

high-stakes clinical decisions, the field must evolve from

explainable AI (XAI), which only reveals correlations, to

Causal AI. Developing models that learn the underlying

biological cause-and-effect chains is essential for creating

trustworthy and robust clinical tools.

Establishing a new gold standard: The clinical translation of

digital biopsies requires an accepted “ground truth” for

validation. Spatial transcriptomics, especially when

combined with innovative co-registration techniques like

the 3D-printed moulds used in the CO-MOULD trial,

represents the necessary standard to biologically validate

imaging-based predictions.

Harnessing next-generation AI: Foundation models, pre-

trained on vast datasets, hold immense promise for

overcoming data scarcity in medicine. However, their

development requires addressing significant challenges

related to data availability, computational cost, and ethical

considerations such as fairness and bias.

Embracing collaborative and privacy-preserving models:

Federated learning offers a critical solution to the data

bottleneck. Fostering such collaborations is key to

developing large-scale, diverse training datasets by

allowing multiple institutions to train powerful models

without compromising patient privacy.

Pursuing the “digital twin” as the ultimate goal: While a long-

term vision, the patient-specific “digital twin” represents

the pinnacle of personalized medicine, enabling in silico

clinical trials to optimize therapy. Realizing this vision will

require unprecedented interdisciplinary collaboration to

overcome immense data integration, biological validation,

and computational challenges.
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