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BAG3 in human tumors
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Previous studies identified BAG3 as a stress-induced protein with pro-survival

functions in various tumors. Based on this assumption, we analyzed the

expression and secretion of BAG3 in 24 cancer cell lines representing ten types

of cancer and compared these results with samples from primary tumors. BAG3

was ubiquitously expressed and secreted by all cell lines. Serum levels of BAG3

were significantly elevated in patients with liver, pancreatic, and ovarian cancers

versus healthy controls. Immunohistochemical analysis confirmed widespread

high BAG3 expression across multiple tumor types, often correlating with tumor

grade. These data support BAG3 as a key regulator of tumor survival and a

promising biomarker and therapeutic target.
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Introduction

Bcl-2-associated athanogene 3 (BAG3) (1) is a multifunctional protein whose

expression is induced by stressful stimuli, mainly through the activation of Heat Shock

Factor (HSF) 1 (2), while is constitutive in human muscle cells, including cardiomyocytes

(3–6), in brain and peripheral nervous system cells (6) and in some primary tumors (7–20).

BAG3 interacts with the heat shock protein (Hsp)70 through its BAG domain, and with

other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val)

motifs, thereby regulating various intracellular pathways, including autophagy and

mitophagy, apoptosis, mechanotransduction, excitation-contracting coupling,

mitochondrial functions, cytoskeleton organization and motility, inflammasome

modulation and structural stabilization of the sarcomere (6, 21–28). Stressful stimuli can

induce the release of BAG3 through unconventional secretory pathways in certain cell

types, such as cardiomyocytes and fibroblasts. BAG3 has indeed been found in the blood of

patients with various cardiac or fibrotic diseases, including heart failure (29–32) and

systemic sclerosis (33–35). Furthermore, BAG3 is detectable in the blood of patients

affected by pancreatic adenocarcinoma (12, 15, 36).
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The pro-survival activity of BAG3 (7, 8, 22–24) suggests that

constitutive expression of this protein is a common characteristic of

neoplastic cells, a hypothesis supported by analyses of multiple

primary tumor types (7–20). In this study, BAG3 expression data

integrated from numerous prior publications were reassessed,

underscoring its widespread and robust association with tumor

biology. Furthermore, the present work demonstrates that BAG3 is

actively secreted by diverse human cancer cell lines, thereby

extending previous knowledge that primarily focused on

intracellular expression. Importantly, elevated serum levels of

BAG3 were detected in patients with liver, pancreatic, and

ovarian carcinomas compared to healthy controls, substantiating

BAG3’s potential as a circulating biomarker reflective of tumor

burden. These findings collectively reinforce the utility of BAG3 not

only as a tissue-level marker but also as a secreted protein detectable

in blood, opening new avenues for non-invasive cancer diagnostics

and targeted therapeutic strategies.
Methods

Cell cultures

The human pancreatic cancer cell line HPAAPC (Cytion,

Freiburg, Germany) was grown in a 1:1 mix of DMEM and

Ham’s F12 medium with 5% FBS, 1% penicillin/streptomycin

(P/S), 0.5 mM sodium pyruvate, 0.002 mg/mL insulin, 0.005 mg/

mL transferrin, 40 ng/mL hydrocortisone, and 10 ng/mL mouse

epidermal growth factor. The anaplastic thyroid carcinoma cell line

8505C (ECACC, Salisbury, UK) was cultured in EMEM with 10%

FBS, 2 mM glutamine, and 1% non-essential amino acids (NEAA).

Fibrosarcoma HT-1080 cells (ATCC) were grown in EMEM with

10% FBS. Liver cancer lines SK-Hep-1 and HepG2 (ATCC)

were cultured in EMEM with 10% FBS and 1% P/S, while SNU-

475, SNU-423, and SNU-387 (ATCC) were grown in RPMI-1640

with 10% FBS and 1% P/S. The gastric adenocarcinoma MKN-45

line (DSMZ, Germany) was cultured in RPMI-1640 with 20% FBS

and 1% P/S. Head and neck cancer cell lines A-253, Detroit 562,

SCC-9, and FaDu (ATCC) were cultured in different media: A-253

in McCoy’s 5A with 10% FBS and 1% P/S; Detroit 562 and FaDu in

EMEM with 10% FBS and 1% P/S; SCC-9 in 1:1 DMEM and Ham’s

F12 with 10% FBS, 1% P/S, 0.5 mM sodium pyruvate, and 400 ng/

mL hydrocortisone. Melanoma lines A375, SK-Mel-24, SK-Mel-28,

C8161, and UACC25 (ATCC) were cultured as follows: SK-Mel-24

and SK-Mel-28 in EMEM with 15% FBS and 1% P/S; C8161 in 1:1

DMEM and Ham’s F12 with 10% FBS; UACC25 in RPMI-1640

with 10% FBS and 1% P/S. Ovarian cancer lines PEA-1 and PEA-2

(ECACC) were grown in RPMI-1640 with 10% FBS, 2 mM

glutamine, 2 mM sodium pyruvate, and 1% P/S. Breast cancer

lines MCF-7 and MDA-MB-231 (ATCC) were cultured with MCF-

7 in EMEM plus 10% FBS, 2 mM glutamine, 1% NEAA, and 1% P/S,

and MDA-MB-231 in DMEM with 10% FBS and 1% P/S. All

cell lines were maintained at 37°C in a humidified atmosphere

containing 5% CO2.
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Isolation of cell culture supernatants

Tumor cells were plated in complete medium at a density of 1x106

cells/ml. The day after, were washed twice with 1X PBS and incubated

for 16 hours in serum-free DMEM. The conditioned medium was

collected and subjected to sequential centrifugation steps at 4°C to

eliminate dead cells and cellular debris. The cleared supernatant was

precipitated overnight at -20°C using cold acetone using a volume ratio

ratio 1:3. After incubation, the samples were centrifuged again at 10,

000 x g for 30 minutes, and the supernatant was discarded. The protein

pellet was then analyzed by Western Blot.
Western blot

Intracellular proteins were obtained by using the TNT buffer

(20mM HEPES (pH 7.5), 150mM NaCl, 0.1% Triton) containing a

protease inhibitor cocktail (Sigma‐Aldrich), and subjected to 3 cycles

of freezing/thawing. Lysates were then centrifuged for 20 min at

15, 000g, and the cleared supernatants were stored at -80°C. Protein

concentration was determined by Bradford assay (Bio‐Rad), and

20 mg of total protein were separated on 10% SDS‐PAGE gels and

electrophoretically transferred onto a nitrocellulose membrane.

Nitrocellulose blots were blocked with 10% nonfat dry milk in

TBST buffer (20mM Tris‐HCl at pH 7.4, 500mM NaCl, and 0.01%

Tween), and incubated with primary antibodies in TBST containing

5% nonfat dry milk overnight at 4°C. An anti-BAG3 polyclonal

antibody obtained by immunizing rabbits with the full- lenght

recombinant BAG3 protein, anti-GAPDH monoclonal antibody

(sc-32, 233, Santa Cruz Biotechnology), anti-Calregulin polyclonal

antibody (sc-11398, Santa Cruz Biotechnology), anti-beta

actin monoclonal antibody (sc-47778, Santa Cruz Biotechnology),

anti-beta Tubulin monoclonal antibody (sc-166729, Santa Cruz

Biotechnology), and anti-TRAP-1 monoclonal antibody (sc-73604,

Santa Cruz Biotechnology), were used at a 1:5000 dilution.

Immunoreactivity was detected using an ImageQuant ™ LAS 4000

(GE Healthcare).
Serum samples

Aliquots of serum samples were purchased at BIOIVT (West

Sussex, United Kingdom) or at ReproCELL USA, Inc. (Maryland,

USA) and stored at -80°C. The data on sera from healthy subjects

analyzed in this study have been previously published (34).
BAG3 determination by the ELISA test

The BAG3 protein content in serum was measured using an

enzyme-linked immunosorbent assay (ELISA). 96-well microplates

(MediSorp™, cat. no. 467320, Thermo Scientific, Waltham, MA,

USA) were coated with a proprietary monoclonal anti-BAG3

coating mAb and then blocked for non-specific binding sites.
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BAG3 standard protein or serum samples were then added to the

wells. BAG3 content in sera samples was then determined using a

second recombinant anti-BAG3 HRP-conjugated antibody as

previously described (32).
Statistical analysis

Results were analyzed by GraphPad Prism software version

8.0.1 (Boston, MA, USA) and G*power software version 3.1.9.4. For

variables non-normally distributed, p-values were assessed by a

non-parametric Mann-Whitney U test to compare BAG3 serum

level in individual patient populations with different carcinomas to

healthy subjects. The statistical power analysis was conducted

assuming these input parameters: statistical test: Mann-Whitney

test; tail(s): one; parent distribution: min ARE; alpha error prob.:

0.05; effect size: calculated from the mean and standard deviation

values obtained from the ELISA assay.
Results

BAG3 presence in the media from tumor
cells and in patients’ serum

The results shown in Figure 1A demonstrate that the BAG3

protein was found in both cell extracts (IN) and culture

supernatants (OUT) from a variety of human cancer cell lines,

indicating active secretion into the extracellular environment. In

particular, Western blot analyses revealed that pancreatic cancer

cell lines displayed BAG3 signals in both cell lysates and

supernatants, confirming previous findings that indicated BAG3

secretion by pancreatic ductal adenocarcinoma cells (37). Other

tumor cell lines, including anaplastic thyroid carcinoma (8505C),

fibrosarcoma (HT-1080), hepatocellular carcinoma (SK-Hep-1,

SNU-475, SNU-423, SNU-387, HepG2), gastric adenocarcinoma

(MKN-45), head and neck cancer (A-253, Detroit 562, SCC-9,

FaDu), melanoma (A375, SK-Mel-24, SK-Mel-28, C8161,

UACC257), ovarian cancer (PEA-1, PEA-2), small cell lung

cancer (NCI-H69, NCI-H446), and breast cancer (MCF-7, MDA-

MB-231), also displayed intracellular BAG3 expression and BAG3

release, although secretion levels varied among different lines.

Additionally, we measured BAG3 protein levels in serum

samples from patients with various carcinomas (Figure 1B). The

median BAG3 concentrations in these patients were higher than in

healthy subjects. Specifically, median values were 88 pg/ml in liver

carcinoma patients (p value vs healthy subjects = 0.0002; power (1-

?) = 0.86), 65 pg/ml in pancreatic carcinoma patients (p value vs

healthy subjects = 0.0005; power (1-?) = 0.65), and 33 pg/ml in

ovarian carcinoma patients (p value vs healthy subjects = 0.0084;

power (1-?) = 0.35), while the median level in healthy subjects was

under 15 pg/ml, which corresponds to the assay’s lower limit of

detection. No significant association was observed between BAG3

levels and patients’ age or sex within the studied populations. These

baseline characteristics data are summarized in Table 1.
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High BAG3 expression across a spectrum
of human cancers

BAG3 protein expression was previously analyzed in our lab in

various human tumors, showing high positivity rates consistent

with its role as an anti-apoptotic factor. As summarized in Figure 2

and in Supplementary Table 1, high levels of cytoplasmic BAG3

positivity were detected in various malignancies, often exceeding

90%. Specifically, endometrial tumors, PDAC (pancreatic ductal

adenocarcinoma), and prostate carcinomas all showed positivity in

100% of the 515 cases analyzed. Equally high rates were observed in

thyroid tumors (96% of 56 cases) and brain tumors (91% of 151

cases). While thyroid tumors showed consistently high BAG3

expression in all subtypes (papillary 96%, follicular 93%, and

anaplastic 100%), expression in brain tumors varied by grade,

with grade I glial tumors showing 77%, while grade II and III

astrocytomas and glioblastoma multiforme all showed values above

89%. In addition, lung tumors (79% of 66 cases) showed 100%

positivity in squamous cell carcinoma, adenocarcinoma, and large

cell carcinoma, dropping to 61% in SCLC (Small Cell Lung Cancer).

Head and neck squamous cell carcinoma (HNSCC) also showed

high rates (86% overall, with oral cavity 80%, oropharynx 88%, and

larynx 89%). The lowest overall positivity rate was found in

melanomas (65% of 165 cases), where positivity was high in

cutaneous melanomas (70%) and melanomas at other sites (67%),

but significantly lower in ocular melanomas (23%). These results,

derived from our previous publications (11, 13, 15, 17, 20, 38–42),

underscore the widespread and elevated expression of the anti-

apoptotic BAG3 protein in diverse cancers.
Discussion

Our data reveal that BAG3 is both expressed and secreted by 24

tumor cell lines from diverse origins, highlighting the need for

further investigation into its role in tumor growth in vitro. These

findings confirm that BAG3’s function goes beyond its well-known

intracellular activities to include secretion by cancer cells, which

aligns with its involvement in regulating survival, proliferation, and

intercellular signaling within the tumor microenvironment.

Moreover, elevated serum BAG3 levels in carcinoma patients

compared to healthy controls further support its potential as a

biomarker for disease presence and activity.

This study reinforces and broadens existing evidence that the

anti-apoptotic protein BAG3 exhibits high expression across a

broad range of human malignancies, frequently exceeding 90%

positivity. Specific tumor types such as endometrial, pancreatic

ductal adenocarcinoma, and prostate cancers show near-universal

BAG3 expression. Significant expression is also observed in certain

thyroid, brain, lung, and head and neck cancer subtypes,

accompanied by notable intertumoral heterogeneity, especially in

melanomas and small cell lung cancers. These data substantiate

BAG3’s function as a pivotal survival factor in tumor biology.

Notably, aggressive tumor subtypes, including anaplastic thyroid

carcinoma and glioblastoma—which are characterized by therapy
frontiersin.org

https://doi.org/10.3389/fonc.2025.1725674
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Manzo et al. 10.3389/fonc.2025.1725674
FIGURE 1

Detection of BAG3 in conditioned media from different cell types and in serum samples from patients with oncological diseases. (A) Human tumor
cells were seeded at a density of 1x106 cells/mL. Twenty-four hours later, the cells were incubated for 16 hours in serum-free DMEM at 37°C in a 5%
CO2 atmosphere. Total protein extracts from the cells (IN) and proteins from supernatants (OUT) were analyzed by Western blotting using a
proprietary anti-BAG3 polyclonal antibody. Antibodies against GAPDH, b-actin, b-tubulin, calregulin, and TRAP1 were used as intracellular protein
controls (IPC). O.D. BAG3a: optical density of BAG3 protein normalized to cell number. (B) Serum from patients with ovarian carcinoma (N=10),
pancreatic carcinoma (N=10), and liver carcinoma (N=10) was tested for BAG3 protein levels through an ELISA assay. The graph shows the BAG3
values of patients’ sera compared to healthy subjects (N=191).
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TABLE 1 Healthy subjects and patients’ characteristics.

Healthy subjects Patients

Liver cancer Ovarian cancer Pancreatic cancer

Total N 191 10 10 10

Age Median (IQR) 49.0 (35.0 to 59.0) 62.5 (57.2 to 70.0) 55.5 (37.5 to 59.2) 54.0 (52.2 to 63.0)

Gender % F 59.2 10.0 100.0 40.0

M 40.8 90.0 0.0 60.0
F
rontiers in Oncology 0
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FIGURE 2

BAG3 positivity rates across human cancers and specific subtypes. The figure illustrates the percentage of BAG3-positive cases identified across a
panel of human malignancies. The data show the overall positivity rate for each primary cancer type (A) and the specific rates for their respective
histological subtypes (B).
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resistance and poor prognosis—demonstrate elevated BAG3

positivity, suggesting BAG3-driven mechanisms contribute to

their aggressive phenotype. Lower BAG3 levels in ocular

melanomas and small cell lung cancer may indicate distinct

cellular origins or regulatory processes. While BAG3 positivity

correlates with tumor grade in some contexts, BAG3-negative

tumors likely depend on alternative molecular alterations or

signaling inputs from the microenvironment to maintain viability.

Nevertheless, the widespread secretion of BAG3 by tumors

emphasizes its critical role in shaping the tumor microenvironment.

Indeed, extracellular BAG3, through interaction with the IFITM2

receptor on macrophages and fibroblasts, fosters a pro-tumorigenic

milieu that supports tumor growth, invasion, and immune evasion (37,

43, 44). Therapeutically, targeting extracellular BAG3 with monoclonal

neutralizing antibodies in murine pancreatic adenocarcinoma models

reduced fibrosis and macrophage infiltration, resulting in inhibited

tumor progression (37, 45). Moreover, combining extracellular BAG3

blockade with immune checkpoint inhibitors (such as anti-SIRP-a or

anti-PD-1 antibodies) (46, 47) yields synergistic enhancement of anti-

tumor immune responses beyond immune checkpoint inhibition

alone. These findings highlight BAG3’s potential as both a biomarker

of tumor aggressiveness and a promising therapeutic target to disrupt

malignant cell-microenvironment crosstalk.

The limited sample sizes for each tumor type, especially for ovarian

carcinoma, where the statistical power was low, restrict the strength of

our conclusions regarding serum BAG3 levels. Notably, ovarian

carcinoma cells, particularly the chemoresistant line (PEA-2), display

a distinct pattern of BAG3 secretion compared to other cancers. While

our current study did not explicitly investigate the influence of

metabolic changes on BAG3 secretion, the established reliance of

ovarian cancer on oxidative metabolism suggests a potential

metabolic link that warrants further exploration. Additionally, the

cross-sectional nature of the serum analysis and the proximity of

healthy subject BAG3 levels to the assay’s detection limit suggest the

need for larger, longitudinal studies to validate BAG3’s utility as a

reliable circulating biomarker in oncology.

Collectively, BAG3 expression and secretion are characteristic

of many neoplasms, and understanding their precise functional

roles in diverse tumor types can provide insights into tumor

survival mechanisms and inform the development of innovative

therapeutic strategies.
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