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Hospital, Fudan University, Shanghai, China, 4Department of Neurosurgery, Shanghai Sixth People’s
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Objective: This study aims to develop a predictive model for cavernous sinus

dural invasion in pituitary adenomas by retrospectively analyzing clinical and

imaging data. It explores the associations between clinical and radiomics features

and cavernous sinus dural invasion.

Methods: Clinical data and coronal T2-weighted MRI images were collected from

patients diagnosed with pituitary adenomas at our institution between December

2012 and December 2022. Tumor regions of interest (ROIs) were segmented using

3D Slicer, and radiomics features were extracted. Statistically significant radiomics

features were identified using Lasso regression and univariate analysis. Clinical

features were screened using univariate and multivariate logistic regression

analyses. These selected features were incorporated into ten machine learning

algorithms to construct three predictive models: a clinical feature model, a

radiomics feature model, and a combined clinical and radiomics feature model.

Model performancewas evaluated to determine the best-performingmodel, which

was further interpreted.

Results: A total of 252 patients with histopathologically confirmed pituitary

adenomas were included. The analysis identified Knosp grade, tumor left-right

diameter, pedunculated satellite tumor, and clival invasion as significant clinical

predictors, along with radiomics features including original.4, original.10, log-

sigma-5-0-mm-3D.29, log-sigma-5-0-mm-3D.91, wavelet-LLH.37, wavelet-

LHL.37, and wavelet-HLL.8. The combined clinical and radiomics model

outperformed models based solely on clinical or radiomics features. Among

the ten machine learning algorithms, the LightGBM model demonstrated the
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best predictive performance, achieving an area under the curve (AUC) of 0.86

and an accuracy (ACC) of 0.76.

Conclusions: A machine learning model integrating clinical and radiomics

features can effectively predict cavernous sinus dural invasion in pituitary

adenomas preoperatively, providing a reliable basis for diagnosing tumor

invasiveness and developing surgical plans. The LightGBM algorithm exhibited

the highest predictive efficacy. Furthermore, the pedunculated satellite tumor

feature emerged as a novel imaging marker for cavernous sinus dural invasion,

offering new insights into the study of invasive pituitary adenomas.
KEYWORDS

pituitary adenoma, dural invasion, medial wall of cavernous sinus, machine learning,
3D slicer
1 Introduction

Pituitary adenomas are benign tumors originating from the

anterior pituitary gland, accounting for approximately 15–20% of all

intracranial tumors (1, 2). These tumors typically grow expansively,

invading surrounding tissues and exerting mass effects that lead to

neurological symptoms (3). The sellar region, surrounded by

transitional dura mater, is particularly vulnerable to such invasion

(4). As pituitary adenomas grow invasively, tumor tissue can compress

and breach the adjacent dura mater, potentially extending into

structures such as the suprasellar region and cavernous sinus (5).

Early studies identified dural invasion as a key criterion for determining

tumor invasiveness (6, 7), making the assessment of dural invasion a

primary focus in the study of pituitary adenomas’ aggressiveness.

The cavernous sinus consists of five walls, with the medial wall, a

single-layered dura separating it from the pituitary gland, being

particularly significant in the context of invasion. Anatomical

defects in some individuals may contribute to cavernous sinus

invasion (8). Medial wall invasion of the cavernous sinus has long

been considered a hallmark of aggressive pituitary adenomas.

Radiological detection of medial wall involvement is an important

preoperative method for evaluating cavernous sinus dural invasion.

However, despite high-resolution T2-weighted imaging, the medial

wall of the cavernous sinus remains difficult to visualize clearly (9).

The 3D-SPACE sequence has emerged as one of the most effective

MRI techniques for evaluating the dura mater due to its unique

imaging properties (10). However, its long acquisition time and high

cost limit its widespread clinical application. Therefore, accurate

assessment of cavernous sinus dural invasion using standard MRI

sequences remains a critical area of investigation. The “pituitary

adenoma dural invasion channel theory” has been proposed, along

with novel markers such as “pedunculated satellite tumors” and

“interdural tumor,” to facilitate the preoperative assessment of

cavernous sinus dural invasion in pituitary adenomas (11, 12). Their

study indicated that intraoperative complete resection of the invaded

medial wall of the cavernous sinus significantly affects the recurrence
02
of pituitary adenomas. However, routine resection of the medial wall

of the cavernous sinus during surgery may substantially increase the

risk of intraoperative hemorrhage, thereby compromising surgical

quality and postoperative recovery. Therefore, accurate preoperative

prediction of medial wall invasion of the cavernous sinus can provide

valuable guidance for neurosurgeons in determining whether to

perform resection of the medial wall. Beyond cavernous sinus dural

invasion, surgical complexity in pituitary surgery is also influenced by

tumor consistency. Recent studies have introduced radiological

surrogates of consistency—most notably the T2-weighted signal

intensity ratio (T2SIR)—and shown that firmer tumors (lower

T2SIR) are associated with reduced odds of gross-total resection and

greater operative difficulty in non-functioning pituitary adenomas (13,

14). These advances contextualize the present work, which specifically

targets preoperative identification of cavernous sinus dural invasion

using conventional T2-weighted imaging and radiomics.

Building on this foundational research, our study focuses on MRI

T2-weighted imaging to investigate cavernous sinus dural invasion in

pituitary adenomas. Radiomics involves the analysis and processing of

medical images, such as CT, MRI, and PET scans, to extract radiomic

features used for screening, diagnosis, follow-up, and prognosis (15,

16). The integration of radiomics with machine learning has become a

critical approach in clinical research. In this study, multiple machine

learning algorithms were applied to analyze and extract radiomic

features from coronal T2-weighted images of pituitary adenomas. A

preoperative predictive model for cavernous sinus dural invasion in

pituitary adenomas was developed to support the assessment of tumor

invasiveness and inform surgical planning (17, 18).
2 Method

2.1 Study subjects

Clinical and imaging data were consecutively collected from

patients who underwent transsphenoidal pituitary adenoma
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resection under microscopy at the Department of Neurosurgery in

our hospital between December 2012 and December 2022. A total

of 252 cases were included in the analysis after applying strict

inclusion and exclusion criteria. Although consecutive sampling

was used over a 10-year period, all cases were obtained from a single

tertiary medical center, which may limit the generalizability of our

findings. Selection bias could not be entirely excluded, as only

patients with complete imaging and surgical data were included.

However, consecutive case inclusion helps to reduce subjective

selection and reflects real-world clinical practice. This study was

approved by the Ethics Committee of the 900th Hospital of the

People’s Liberation Army Joint Logistic Support Force in Fuzhou,

Fujian, China (Approval Number: Ethics Review No. 2024-006). All

procedures followed the principles outlined in the Declaration of

Helsinki. Written informed consent for the reuse of general data

was obtained from all participants during their hospital stay.

2.1.1 Inclusion criteria
The inclusion criteria were as follows: 1) Complete imaging

and clinical data; 2) Underwent transsphenoidal pituitary

adenoma resection at our hospital; 3) Postoperative pathology

and immunohistochemistry confirmed the diagnosis of

pituitary adenoma.

2.1.2 Exclusion criteria
The exclusion criteria were as follows: 1) Patients who received

preoperative or postoperative cranial radiotherapy; 2) Patients with

a history of sellar region surgery or medication for pituitary

conditions; 3) Incomplete clinical or imaging data; 4) Coexisting

brain trauma, meningitis, brain abscess, or cerebrovascular diseases;

5) Coexisting intracranial multiple tumors or malignancies. After

rigorous screening, 252 cases were included in the analysis,

comprising 132 males and 120 females.
Frontiers in Oncology 03
2.2 Variable selection

In our study, demographic information and disease-specific

characteristics were collected based on a review of the literature.

Data were extracted from patients’ electronic medical records.

Potential risk factors for cavernous sinus dural invasion of

pituitary adenomas were identified based on published data,

clinical expertise, and practical considerations for future

clinical implementation.

Clinical data (19, 20) included gender, age, height, weight, BMI,

and obesity classification (21) (categorized as 1 for lean, 2 for

underweight, 3 for overweight, and 4 for obese). Imaging data (22)

included tumor height, tumor anteroposterior diameter, tumor left-

right diameter, tumor volume, Knosp classification (categorized as 1

for grades 0–1, 2 for grades 2–3a, and 3 for grades 3b–4),

pedunculated satellite tumor (Figure 1A), tumor cystic change,

tumor apoplexy, sphenoid sinus invasion (Figure 1B), and clival

invasion (Figure 1C).

Radiomics features were extracted using 3D Slicer by two

radiologists and one neurosurgical attending physician who

independently outlined the regions of interest (ROI) on coronal

T2-weighted images(Figure 2). To assess inter-observer variability,

30 randomly selected cases were segmented by all three observers,

and the Dice similarity coefficient (DSC) was calculated to evaluate

agreement. Consensus was reached for the final segmentation

through discussion. A variety of radiomic features—including

first-order statistics, texture features (GLCM, GLDM, GLRLM,

GLSZM, NGTDM), and shape descriptors—were extracted.

Feature selection was based on variance, correlation, and SHAP

importance scores. Wavelet-based features were retained due to

their ability to capture directional and high-frequency texture

patterns relevant to tumor invasion. The dataset was divided into

training (70%) and testing (30%) sets using stratified sampling to
FIGURE 1

Imaging markers on different sequences. (A) Pituitary adenoma invading the left cavernous sinus is visible on an MRI T2-weighted image.
A pedunculated satellite tumor (indicated by the red arrow) protrudes from the main tumor. The satellite tumor is clearly demarcated from the
primary tumor, encapsulated, and exhibits characteristics of benign growth. (B) A sagittal CT image shows the posterior wall of the sphenoid sinus
invaded by the pituitary tumor (indicated by the yellow arrow). The tumor breaches the posterior wall and extends into the sphenoid sinus cavity. (C)
An axial CT image reveals the pituitary tumor invading the clivus (indicated by the yellow arrow). The clivus shows irregular, indistinct edges, with
thinning of the bony structure.
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ensure balanced representation of invasive and non-invasive cases.

The gold standard for cavernous sinus dural invasion in this study

was determined by intraoperative identification of defects in the

medial wall of the cavernous sinus (Figure 3).
2.3 Data preprocessing and model
construction

The dataset of 252 patients was randomly divided into a

training set (70%) and a test set (30%). Prior to model

construction, clinical data were analyzed. Chi-square tests (for

categorical variables) and nonparametric tests (for continuous

variables) were applied to assess the significance of each variable

(P < 0.05), identifying initial clinical predictors associated with
Frontiers in Oncology 04
cavernous sinus dural invasion. These selected clinical variables

were further evaluated using univariate logistic regression analysis

to confirm their statistical correlation with cavernous sinus dural

invasion. For radiomics features, data standardization and

dimensionality reduction were first performed. The Lasso

regression algorithm was then applied to identify representative

radiomics features. Subsequently, the selected features underwent

univariate logistic regression analysis to filter statistically significant

radiomics predictors. After feature selection, ten representative

supervised machine learning algorithms were employed to

construct predictive models: Decision Tree (DT), Random Forest

(RF), Logistic Regression (LR), K-Nearest Neighbor (KNN),

Support Vector Machine (SVM), Naive Bayes (NB), Light

Gradient Boosting Machine (LightGBM), Adaptive Boosting

(AdaBoost), Extreme Gradient Boosting (XGBoost), and K-Means
FIGURE 3

Intraoperative findings of dural invasion. (A) During microscopic transsphenoidal resection of a pituitary adenoma, the pituitary fossa (black arrow),
cavernous sinus (green arrow), and medial wall of the cavernous sinus (yellow arrow) are clearly visible, showing well-defined structures. (B)
Intraoperative observation reveals that the medial wall of the cavernous sinus has been disrupted by the tumor, leaving only a thin collagen fiber
mesh. The integrity of the dura mater is significantly compromised.
FIGURE 2

Delineation of the pituitary adenoma ROI using 3D slicer. (A) On T2-weighted imaging, a large pituitary adenoma is seen invading the suprasellar
region and cavernous sinus, with cystic changes within the tumor. (B) The 3D Slicer tool was used to outline the full-layer ROI of the pituitary
adenoma, showing the complete boundaries of the tumor. (C) After ROI delineation, a three-dimensional reconstruction was performed to visualize
the tumor’s spatial structure.
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Clustering (K-Means). To evaluate model stability and predictive

power, 10-fold cross-validation was conducted. Specifically, the

dataset was randomly divided into ten subsets, with nine subsets

used as the training set and one as the validation set in each

iteration, repeated ten times. The predictive outcomes from the

cross-validation process were compared to assess model reliability.

Upon model construction, the test set was used to evaluate the

performance of each model. Metrics including accuracy (ACC), true

positive rate (TPR), false positive rate (FPR), positive predictive

value (PPV), F1 score (FSC), sensitivity (SEN), specificity (SPE),

and negative predictive value (NPV) were calculated and compared.

Receiver operating characteristic (ROC) curves were plotted, and

the area under the curve (AUC) was calculated to assess the

classification performance of each model. Additionally, the

goodness-of-fit of the models was evaluated using the Hosmer-

Lemeshow test, and calibration curves were plotted to verify model

calibration. Decision curve analysis (DCA) was conducted to assess

the clinical utility of the models. Model selection was based on

predictive performance and stability criteria, as detailed in the

Results section. A performance evaluation chart was created to

summarize the overall performance of each model. A

comprehensive report was also generated to provide further

guidance for clinical application and research purposes.
2.4 Statistical analysis

This study analyzed existing data using Python version 3.1.2.

Categorical variables were presented as percentages and analyzed

using the Chi-square test or Fisher’s exact test. Continuous variables

were processed based on their distribution characteristics. Variables

following a normal distribution were expressed as mean ± standard

deviation (Mean ± SD) and compared using the independent sample t-

test. Variables not following a normal distribution were presented as

median and interquartile range (Median [IQR]) and analyzed using

nonparametric tests. A two-sided P-value of <0.05 was considered

statistically significant. As this is an exploratory study, multiple

comparison corrections were not performed to avoid excessively

reducing the statistical significance level. The aforementioned

methods ensure the scientific rigor and reliability of the analysis results.
3 Results

3.1 Screening of clinical feature variables

A total of 252 pituitary adenoma patients were included in this

study, comprising 132 males and 120 females. The univariate

analysis (Table 1) revealed significant differences in multiple

clinical characteristics between the cavernous sinus invasion (CSI)

group and the non-invasion group (P < 0.05). Specifically, eight

variables showed significant differences: tumor anteroposterior

diameter, tumor left-right diameter, tumor height, tumor volume,

Knosp grade, pedunculated satellite tumor, sphenoid sinus

invasion, and clivus invasion (Figure 4).
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Further multivariate logistic regression analysis, with a selection

threshold of P < 0.1, was performed to evaluate the independence

and impact of each variable whereas controlling for potential

confounding factors (23) (Figure 5). The analysis confirmed that

Knosp grade, tumor left-right diameter, pedunculated satellite

tumor, and clivus invasion were independent influencing factors.

These variables were subsequently included in the feature set for

constructing machine learning models to predict the risk of

cavernous sinus invasion (Figure 6).
3.2 Prediction models based on clinical
features

Prediction models were constructed using clinical features and

ten different machine learning algorithms. ROC curves were plotted

for both the training and testing datasets, and the AUC was

calculated to evaluate model performance (Figure 7). Calibration

curves were also analyzed to assess the goodness-of-fit and

generalization ability of the models, verifying their stability and

consistency across datasets. The results (Table 2) show that

prediction models based on clinical features effectively predict

cavernous sinus dural invasion in pituitary adenomas, providing a

foundational reference for subsequent integrated radiomic

feature modeling.

Among the evaluated models, GNB demonstrated the most

favorable calibration and discrimination characteristics. It achieved

the highest test AUC (0.81), indicating excellent discriminatory

power, and recorded the lowest Brier score (0.18), reflecting

superior accuracy in probability estimation. Furthermore, the

Hosmer-Lemeshow test yielded a non-significant p-value

(p=0.40), suggesting good agreement between predicted and

observed outcomes. The model also showed balanced

classification performance, with a sensitivity of 0.82 and an F1-

score of 0.74. Given its strong discriminative ability, optimal

calibration, and simplicity in implementation, GNB was selected

as the preferred predictive model in this study.
3.3 Machine learning models based on
radiomic features

Through manual extraction of pituitary adenoma imaging

features from T2 coronal images using 3D Slicer, a total of 1073

imaging features were obtained, covering morphological, texture,

and advanced radiomic characteristics. Lasso regression was applied

to select 9 statistically significant features, which were further

filtered using univariate regression analysis. 7 imaging features,

including original.4, original.10, log-sigma-5-0-mm-3D.29, log-

sigma-5-0-mm-3D.91, wavelet-LLH.37, wavelet-LHL.37, and

wavelet-HLL.8, were included for study and model construction

(Figure 8).The seven radiomic features used in the final model

describe different characteristics of the tumor, such as the overall

brightness and contrast (first-order features), the texture and

patterns inside the tumor (texture features), and information
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TABLE 1 Baseline characteristics of variables associated with cavernous sinus invasion following transnasal endoscopic pituitary adenoma resection.

Variable
Total Not Invasion

P-Value
252 124 128

Gender

Male 132 (52.4) 66 (53.2) 66 (51.6) 0.89

Female 120 (47.6) 58 (46.8) 62 (48.4)

Age, median [Q1,Q3] 50.5 [40.0,59.0] 50.0 [35.8,60.0] 51.0 [43.0,57.2] 0.363

Knosp Grade

0-1 64 (25.4) 49 (39.5) 15 (11.7) <0.001

2-3a 103 (40.9) 56 (45.2) 47 (36.7)

3b-4 85 (33.7) 19 (15.3) 66 (51.6)

Tumor heigh, median [Q1,Q3] 26.0 [18.6,34.1] 23.6 [15.5,31.9] 28.0 [21.6,36.7] <0.001

Tumor anterior posterior diameter line, median [Q1,Q3] 19.8 [15.1,24.7] 18.2 [12.6,23.1] 21.0 [17.7,26.0] <0.001

Left-right diameter of tumor, median [Q1,Q3] 26.3 [21.0,30.7] 23.4 [18.6,27.5] 29.3 [25.4,33.8] <0.001

Pedunculated satellite tumor

No 208 (82.5) 114 (91.9) 94 (73.4) <0.001

Yes 44 (17.5) 10 (8.1) 34 (26.6)

Tumor volume, median [Q1,Q3] 13.5 [6.4,25.9] 9.5 [4.6,18.8] 16.7 [9.6,31.7] <0.001

Cystic degeneration

No 221 (87.7) 110 (88.7) 111 (86.7) 0.772

Yes 31 (12.3) 14 (11.3) 17 (13.3)

Tumor stroke

No 203 (80.6) 95 (76.6) 108 (84.4) 0.162

Yes 49 (19.4) 29 (23.4) 20 (15.6)

Clival invasion

No 134 (53.2) 85 (68.5) 49 (38.3) <0.001

Yes 118 (46.8) 39 (31.5) 79 (61.7)

Invasion of the sphenoid sinus

No 108 (42.9) 69 (55.6) 39 (30.5) <0.001

Yes 144 (57.1) 55 (44.4) 89 (69.5)

Height, median [Q1,Q3] 163.0 [158.0,170.0] 163.5 [158.0,170.0] 163.0 [158.0,170.0] 0.539

Weight, median [Q1,Q3] 65.0 [57.0,72.0] 65.0 [57.5,75.0] 64.0 [57.0,71.8] 0.318

BMI, median [Q1,Q3] 23.8 [22.0,26.1] 23.9 [22.0,26.5] 23.6 [21.9,25.7] 0.276

Obesity Degree

Normal 129 (51.2) 60 (48.4) 69 (53.9) 0.285

Slim 11 (4.4) 3 (2.4) 8 (6.2)

Overweight 76 (30.2) 42 (33.9) 34 (26.6)

Obesity 36 (14.3) 19 (15.3) 17 (13.3)
F
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FIGURE 4

Forest plot of univariate analysis. This figure presents the effects and statistical significance of each variable identified in the univariate analysis. The
variables are categorized into clinical baseline information, imaging characteristics, tumor size, and cavernous sinus dural invasion markers. On the
left, the regression estimates and their 95% confidence intervals for each variable are displayed, clearly illustrating the independent impact of the
variables on cavernous sinus dural invasion. On the right, a Pearson correlation coefficient forest plot evaluates inter-variable correlations. Statistical
significance is indicated by P-values, with P < 0.05 denoting significant differences. Variables such as Knosp grade, tumor height, tumor
anteroposterior diameter, tumor lateral diameter, pedunculated satellite tumor, tumor volume, clival invasion, and sphenoid sinus invasion showed
significant associations. ***This indicates that the result is statistically significant (p < 0.05)
FIGURE 5

Nomogram for multivariate analysis of cavernous sinus dural invasion. A nomogram was developed based on the results of multivariate analysis to
assess the risk of cavernous sinus dural invasion. This nomogram integrates various independent risk factors, providing a comprehensive risk
evaluation for cavernous sinus dural invasion. The total score and corresponding risk evaluation curve quantitatively illustrate the influence of each
factor on cavernous sinus dural invasion, facilitating individualized prediction and aiding in clinical decision-making.
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from filtered images that highlight edges or fine details (LoG and

wavelet features). These features help to capture both the

appearance and internal structure of the tumor on imaging.

Based on the selected radiomic features, predictive models were

established using ten different machine learning algorithms. ROC

curves were plotted for both the training and testing sets, and AUC

was calculated to evaluate model performance. Additionally,

calibration curves were analyzed to assess model fitting and

generalization ability (Figure 9).

The results indicate that the models based on radiomic features

exhibited good classification ability in both the training and testing

sets. The performance of these models was generally superior to

models based solely on clinical features, particularly in key metrics

such as AUC, sensitivity, and specificity. This highlights the

significant value of radiomic features in predicting cavernous

sinus dural invasion in pituitary adenomas and provides

strong support for subsequent integrated clinical-radiomic

modeling (Table 3).

Among the ten models evaluated, LightGBM demonstrated the

best overall calibration, as reflected by the lowest Brier score (0.17)

and a non-significant Hosmer-Lemeshow test (p = 0.63), indicating

good agreement between predicted and observed outcomes. The

model also showed strong discriminative ability with a test AUC of

0.82, along with balanced sensitivity (0.77) and F1-score (0.72).

Although its false positive rate was slightly higher compared to

some other models, LightGBM’s combination of calibration and

discrimination makes it the preferred model for this study.
Frontiers in Oncology 08
3.4 Machine learning models constructed
based on clinical features combined with
radiomic features

The correlation between the clinical and radiomic features

selected earlier was assessed, and a correlation heatmap

(Figure 10) was plotted to illustrate the interrelationships among

the variables. Ten different machine learning algorithms were then

used to construct prediction models, and their performance in

predicting cavernous sinus invasion in pituitary adenomas was

evaluated (Figure 11). ROC curves were generated to assess the

classification performance of the models, and DCA curves were

employed to evaluate their potential clinical applicability.

Among the ten machine learning algorithms evaluated (Table 4),

the model constructed using the LightGBM algorithm exhibited the

best overall performance. It achieved the highest AUC values in both

the training (AUC = 0.90) and testing (AUC = 0.86) sets, with a

prediction accuracy of 0.76, and performed favorably across other

performance metrics. When comparing the optimal models

established using three different feature sets, the model integrating

both clinical and radiomic features demonstrated the best predictive

performance and showed superior capability in the preoperative

prediction of medial wall invasion of the cavernous sinus.

SHapley Additive exPlanations (SHAP) analysis (Figure 12) was

conducted to evaluate feature importance and trend changes in the

LightGBM model. The results showed that cavernous sinus

invasion, tumor lateral diameter, Knosp grade, pedunculated
FIGURE 6

ROC curves of different features. ROC curves were generated for the selected clinical features to evaluate their association with cavernous sinus
dural invasion in pituitary adenomas. The results demonstrated that all selected features exhibited varying degrees of predictive performance in
univariate analysis, further supporting their significant correlation with cavernous sinus dural invasion.
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satellite tumor, and the radiomic feature original.10 were

significantly correlated with cavernous sinus invasion in the

LightGBM model. Furthermore, cavernous sinus invasion,

presence of a satellite tumor, higher Knosp grade, and larger

tumor lateral diameter were positively correlated with the

diagnostic outcome of cavernous sinus invasion.

In addition to clinical variables, several radiomic features

showed significant contributions to the prediction of cavernous

sinus invasion in the LightGBM model. Features such as original.4

and original.10 reflect intensity distribution and texture regularity,

respectively, and were positively associated with the predicted

probability of invasion. Texture-related features extracted from

filtered images, including log-sigma-5-0-mm-3D.29 and log-

sigma-5-0-mm-3D.91, describe heterogeneity and complexity

within the tumor and also showed a positive association.

Moreover, wavelet-transformed features such as wavelet-LHL.37,

wavelet-LLH.37, and wavelet-HLL.8 contributed additional

information related to fine textural patterns and asymmetry, and
Frontiers in Oncology 09
were similarly associated with higher invasion probability. These

results suggest that tumors with greater internal heterogeneity and

complex texture patterns tend to be more invasive on imaging.
4 Discussion

This study demonstrated that integrating radiomic and clinical

features significantly improves the preoperative prediction of

cavernous sinus dural invasion in pituitary adenomas. The

combined LightGBM model achieved the best predictive

performance, confirming the complementary value of quantitative

imaging features and clinical parameters. These findings support the

growing application of radiomics in neurosurgery, providing a non-

invasive approach for assessing tumor invasiveness and aiding

surgical planning.CSI in pituitary adenomas is characterized by the

destruction and infiltration of the medial wall of the cavernous sinus,

with intraoperative observation of medial wall damage serving as a
FIGURE 7

Training set ROC, testing set ROC, and DCA curves for machine learning models based on clinical features. This figure illustrates the Receiver
Operating Characteristic (ROC) curves of machine learning models based on clinical features for both the training and testing datasets, along with
the corresponding Decision Curve Analysis (DCA) results. The findings indicate that the models exhibit good classification performance on both
datasets. Additionally, the DCA curves suggest that the models have potential clinical utility.
TABLE 2 Performance comparison and consistency testing of ten machine learning models based on clinical features.

Model
Train
AUC

Test
AUC

ACC
TPR
(SEN)

FPR PPV SPE NPV FSC
Brier
Score

Hosmer-
Lemeshow
statistic

Hosmer-
Lemeshow
p-value

DT 0.77 0.74 65.79 0.87 0.57 0.62 0.43 0.76 0.72 0.20 1.93 0.98

KNN 0.79 0.74 72.37 0.87 0.43 0.68 0.57 0.81 0.76 0.21 12.65 0.12

RF 0.83 0.80 71.05 0.79 0.38 0.69 0.62 0.74 0.74 0.19 6.69 0.57

SVC 0.84 0.80 69.74 0.82 0.43 0.67 0.57 0.75 0.74 0.20 5.98 0.65

XGBoost 0.77 0.79 0.72 0.77 0.32 0.71 0.68 0.74 0.74 0.22 12.71 0.12

LR 0.78 0.78 0.74 0.85 0.38 0.70 0.62 0.79 0.77 0.20 11.90 0.16

GNB 0.77 0.81 0.71 0.82 0.41 0.68 0.59 0.76 0.74 0.18 8.35 0.40

LightGBM 0.79 0.80 0.70 0.77 0.38 0.68 0.62 0.72 0.72 0.19 9.06 0.34

AdaBoost 0.82 0.72 0.64 0.66 0.37 0.64 0.63 0.65 0.65 0.23 4.63 0.80

Kmean 0.80 0.78 0.67 0.61 0.26 0.70 0.74 0.65 0.65 0.20 8.24 0.41
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key diagnostic criterion. Although some recent studies have

questioned the clinical significance of cavernous sinus dural

invasion (5), the prevailing view still recognizes cavernous sinus

dural invasion as a critical marker of pituitary adenoma

aggressiveness (24). For patients with cavernous sinus dural

invasion, the presence of tumor tissue embedded within the dura

significantly increases the risk of recurrence. Therefore, accurately

assessing cavernous sinus dural invasion preoperatively and tailoring

surgical strategies accordingly is crucial for reducing recurrence rates

in pituitary adenomas. Despite the high resolution of 3D SPACE
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imaging, it remains challenging to definitively evaluate medial wall

disruption or its adherence to the internal carotid artery wall (9).

Consequently, Knosp grading is often used clinically to assess

cavernous sinus invasion in pituitary adenomas (25, 26). However,

a meta-analysis revealed that Knosp grading is not entirely reliable for

this purpose (27). Niu and colleagues reported that 85.4% of Knosp

grade 2 pituitary adenomas and 34.3% of Knosp grade 3 adenomas

lacked evidence of CSI during surgery (28), suggesting that Knosp

grading may not fully reflect the actual incidence of cavernous sinus

dural invasion. To address this limitation, Hong et al. (29) proposed
FIGURE 8

Selection of radiomic features. (A, B). Lasso regression was used to select radiomic features with statistical significance. (C, D). The ROC curve for
each selected feature.
FIGURE 9

ROC, test set ROC, and DCA curves for the machine learning model based on radiomic features. This figure illustrates the ROC curves for the
machine learning model constructed based on radiomic features in both the training and test sets, along with the corresponding Decision Curve
Analysis (DCA) results. The results show that the model based on radiomic features demonstrates good classification ability in both the training and
test sets, and the DCA curve indicates its potential clinical applicability.
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TABLE 3 Performance comparison and consistency test results of ten machine learning models built on radiomic features.

Model
Train
AUC

Test
AUC

ACC
TPR
(SEN)

FPR PPV SPE NPV FSC
Brier
score

Hosmer-
Lemeshow
statistic

Hosmer-
Lemeshow
p-value

DT 0.80 0.72 61.84 0.90 0.68 0.58 0.32 0.75 0.71 0.23 inf 0.00

KNN 0.82 0.76 69.74 0.74 0.35 0.69 0.65 0.71 0.72 0.20 5.05 0.75

RF 0.82 0.83 71.05 0.74 0.32 0.71 0.68 0.71 0.73 0.18 7.48 0.49

SVC 0.80 0.80 77.63 0.82 0.27 0.76 0.73 0.79 0.79 0.20 10.17 0.25

XGBoost 0.74 0.85 0.74 0.69 0.22 0.77 0.78 0.71 0.73 0.17 9.67 0.29

LR 0.82 0.79 0.67 0.79 0.46 0.65 0.54 0.71 0.71 0.19 9.89 0.27

GNB 0.74 0.81 0.76 0.82 0.46 0.65 0.54 0.74 0.73 0.24 103.54 0.00

LightGBM 0.87 0.82 0.72 0.79 0.35 0.70 0.65 0.75 0.75 0.17 6.20 0.63

AdaBoost 0.85 0.73 0.67 0.60 0.24 0.76 0.76 0.60 0.67 0.21 3.24 0.92

Kmean 0.77 0.82 0.72 0.79 0.35 0.70 0.65 0.75 0.75 0.20 11.83 0.16
F
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FIGURE 10

Correlation heatmap of clinical features and radiomic features. This heatmap illustrates the correlation between the selected clinical and radiomic
features and cavernous sinus invasion. The correlation coefficients are calculated, with the color intensity in the heatmap reflecting the strength of
the correlation. Red indicates a positive correlation, whereas blue indicates a negative correlation.
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the concept of invasion pathways based on the distinct structures of

the dura surrounding the pituitary gland. They proposed novel

imaging markers, such as pedunculated satellite tumors and

interdural tumors, as indicators of cavernous sinus dural invasion,

offering new perspectives and evaluation criteria for the study of

cavernous sinus dural invasion in pituitary adenomas.

The results of this study show that pedunculated satellite

tumors, clival invasion, Knosp grading, and tumor transverse

diameter are significant predictors of meningeal invasion in

pituitary adenomas. Pedunculated satellite tumors, as an

important imaging marker for cavernous sinus meningeal

invasion, hold considerable predictive weight in machine learning

models, making them a key reference for preoperative evaluation.

However, only some pituitary adenomas form pedunculated

satellite tumors during invasion, whereas most tumors directly

breach the cavernous sinus inner wall, which explains the

moderate statistical performance of pedunculated satellite tumors.

The invasion of the clivus is closely associated with medial wall
Frontiers in Oncology 12
invasion of the cavernous sinus (30). This phenomenon may be

explained from a biomechanical perspective. The growth direction

of pituitary adenomas is influenced by multiple factors, including

the stability of the surrounding dura mater and bony structures.

Generally, pituitary adenomas tend to invade the diaphragma sellae

and cavernous sinus preferentially (3). Once the medial wall of the

cavernous sinus and adjacent bony structures are compromised, the

clivus—owing to its relatively thin anatomical composition—often

becomes the next target of tumor invasion. Therefore, the presence

of clival invasion on preoperative imaging may indicate that the

tumor has already breached the medial wall of the cavernous sinus

(26, 31).Tumor transverse diameter reflects cavernous sinus

invasion and is associated with inner wall damage (32, 33).

Radiomics, which extracts high-dimensional features from

imaging data, provides additional information on tumor invasion

and biological behavior (16). This study found that on CE-T2 MR

images, features such as wavelet-LLH.37 and wavelet-LHL.37

exhibited significantly reduced mean MMC values in tumors with
FIGURE 11

ROC curves, test set ROC curves, and DCA curves for the machine learning models constructed using clinical and radiomic features. This figure
presents the ROC curves for the machine learning model based on clinical and radiomic features for both the training and testing datasets, along
with the corresponding DCA results. The findings indicate that the model built on clinical and radiomic features exhibits strong classification ability in
both datasets, and the DCA curve demonstrates its potential clinical utility.
TABLE 4 Performance and consistency test results of machine learning models built using clinical and radiomic features.

Model
Train
AUC

Test
AUC

ACC TPR FPR PPV SPE SEN NPV FSC
Brier
score

Hosmer-
Lemeshow
statistic

Hosmer-
Lemeshow
p-value

DT 0.79 78.00 71.05 0.87 0.46 0.67 0.54 0.87 0.80 0.76 0.19 inf 0.00

KNN 0.77 0.83 71.05 0.67 0.24 0.74 0.76 0.67 0.68 0.70 0.18 4.67 0.79

RF 0.89 0.85 76.32 0.77 0.24 0.77 0.76 0.77 0.76 0.77 0.17 6.22 0.62

SVC 0.86 0.84 78.95 0.82 0.24 0.78 0.76 0.82 0.80 0.80 0.20 13.55 0.09

XGBoost 0.86 0.84 0.74 0.87 0.41 0.69 0.59 0.87 0.81 0.77 0.17 5.74 0.68

LR 0.78 0.85 0.74 0.74 0.27 0.74 0.73 0.74 0.73 0.74 0.16 8.65 0.37

GNB 0.76 0.84 0.79 0.87 0.30 0.76 0.70 0.87 0.84 0.81 0.19 140.56 0.00

LightGBM 0.90 0.86 0.76 0.85 0.32 0.73 0.68 0.85 0.81 0.79 0.16 10.02 0.26

AdaBoost 0.88 0.85 0.74 0.74 0.27 0.74 0.73 0.74 0.73 0.74 0.17 6.31 0.61

Kmean 0.77 0.86 0.82 0.85 0.22 0.80 0.78 0.85 0.83 0.83 0.19 16.26 0.04
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meningeal invasion, indicating higher tumor heterogeneity and

invasiveness. The sphericity value also proved important in

predicting invasiveness, with larger values correlating with less

invasiveness. Quantifying imaging features enhances preoperative

evaluation by revealing tumor heterogeneity and biological

characteristics. The radiomic texture features identified in this

study, particularly wavelet-LLH.37 and wavelet-LHL.37, may

reflect differences in tumor consistency. Prior research has linked

MRI-based texture parameters with intraoperative tumor hardness

and surgical difficulty. These findings suggest that texture-based

radiomic features could provide a non-invasive surrogate for

assessing tumor consistency, with potential implications for

preoperative planning and intraoperative strategy (14, 34).

This study has several limitations. First, its retrospective single-

center design may introduce selection bias and limit generalizability.

The relatively small sample size could also increase the risk of

overfitting, despite cross-validation. Moreover, the use of a single
Frontiers in Oncology 13
imaging sequence (T2-weighted MRI) may restrict the

comprehensiveness of radiomic feature extraction. Future studies

should validate the proposedmodel in larger, multicenter cohorts and

explore the integration of multi-sequence MRI or multi-omics data to

enhance robustness and clinical applicability.
5 Conclusion

By integrating clinical data with radiomics features, the machine

learning model based on the LightGBM algorithm demonstrated

exceptional performance in preoperatively predicting the

invasiveness of pituitary adenomas into the dura mater. The

model achieved an AUC of 0.86 and an ACC of 0.76, highlighting

its significant predictive advantages. Additionally, the presence of

pedunculated satellite tumors, as a novel radiological marker for

pituitary adenomas, played a critical role in predicting invasiveness,
FIGURE 12

SHAP score analysis - bar and scatter plots. This figure presents the SHAP (SHapley Additive exPlanations) analysis results for the LightGBM model.
The bar plot shows the contribution of each feature to the model’s prediction outcomes, ranking the features by importance. The scatter plot
reveals the association between feature values and SHAP values, indicating how variations in feature values influence the prediction results. Features
such as sphenoid sinus invasion, tumor transverse diameter, Knosp grade, and presence of pedunculated satellite tumors emerged as significant
predictors, with their values showing positive correlations with the likelihood of cavernous sinus dural invasion.
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offering new insights for the preoperative identification of invasive

pituitary adenomas.
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