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pituitary adenomas
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Hospital, Fudan University, Shanghai, China, “Department of Neurosurgery, Shanghai Sixth People’s
Hospital Fujian, Jinjiang, China, *Department of Neurosurgery, Fuzhou Changle District People’s
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Objective: This study aims to develop a predictive model for cavernous sinus
dural invasion in pituitary adenomas by retrospectively analyzing clinical and
imaging data. It explores the associations between clinical and radiomics features
and cavernous sinus dural invasion.

Methods: Clinical data and coronal T2-weighted MRI images were collected from
patients diagnosed with pituitary adenomas at our institution between December
2012 and December 2022. Tumor regions of interest (ROls) were segmented using
3D Slicer, and radiomics features were extracted. Statistically significant radiomics
features were identified using Lasso regression and univariate analysis. Clinical
features were screened using univariate and multivariate logistic regression
analyses. These selected features were incorporated into ten machine learning
algorithms to construct three predictive models: a clinical feature model, a
radiomics feature model, and a combined clinical and radiomics feature model.
Model performance was evaluated to determine the best-performing model, which
was further interpreted.

Results: A total of 252 patients with histopathologically confirmed pituitary
adenomas were included. The analysis identified Knosp grade, tumor left-right
diameter, pedunculated satellite tumor, and clival invasion as significant clinical
predictors, along with radiomics features including original.4, original.10, log-
sigma-5-0-mm-3D.29, log-sigma-5-0-mm-3D.91, wavelet-LLH.37, wavelet-
LHL.37, and wavelet-HLL.8. The combined clinical and radiomics model
outperformed models based solely on clinical or radiomics features. Among
the ten machine learning algorithms, the LightGBM model demonstrated the
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best predictive performance, achieving an area under the curve (AUC) of 0.86
and an accuracy (ACC) of 0.76.

Conclusions: A machine learning model integrating clinical and radiomics
features can effectively predict cavernous sinus dural invasion in pituitary
adenomas preoperatively, providing a reliable basis for diagnosing tumor
invasiveness and developing surgical plans. The LightGBM algorithm exhibited
the highest predictive efficacy. Furthermore, the pedunculated satellite tumor
feature emerged as a novel imaging marker for cavernous sinus dural invasion,
offering new insights into the study of invasive pituitary adenomas.

pituitary adenoma, dural invasion, medial wall of cavernous sinus, machine learning,

3D slicer

1 Introduction

Pituitary adenomas are benign tumors originating from the
anterior pituitary gland, accounting for approximately 15-20% of all
intracranial tumors (1, 2). These tumors typically grow expansively,
invading surrounding tissues and exerting mass effects that lead to
neurological symptoms (3). The sellar region, surrounded by
transitional dura mater, is particularly vulnerable to such invasion
(4). As pituitary adenomas grow invasively, tumor tissue can compress
and breach the adjacent dura mater, potentially extending into
structures such as the suprasellar region and cavernous sinus (5).
Early studies identified dural invasion as a key criterion for determining
tumor invasiveness (6, 7), making the assessment of dural invasion a
primary focus in the study of pituitary adenomas’” aggressiveness.

The cavernous sinus consists of five walls, with the medial wall, a
single-layered dura separating it from the pituitary gland, being
particularly significant in the context of invasion. Anatomical
defects in some individuals may contribute to cavernous sinus
invasion (8). Medial wall invasion of the cavernous sinus has long
been considered a hallmark of aggressive pituitary adenomas.
Radiological detection of medial wall involvement is an important
preoperative method for evaluating cavernous sinus dural invasion.
However, despite high-resolution T2-weighted imaging, the medial
wall of the cavernous sinus remains difficult to visualize clearly (9).
The 3D-SPACE sequence has emerged as one of the most effective
MRI techniques for evaluating the dura mater due to its unique
imaging properties (10). However, its long acquisition time and high
cost limit its widespread clinical application. Therefore, accurate
assessment of cavernous sinus dural invasion using standard MRI
sequences remains a critical area of investigation. The “pituitary
adenoma dural invasion channel theory” has been proposed, along
with novel markers such as “pedunculated satellite tumors” and
“interdural tumor,” to facilitate the preoperative assessment of
cavernous sinus dural invasion in pituitary adenomas (11, 12). Their
study indicated that intraoperative complete resection of the invaded
medial wall of the cavernous sinus significantly affects the recurrence
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of pituitary adenomas. However, routine resection of the medial wall
of the cavernous sinus during surgery may substantially increase the
risk of intraoperative hemorrhage, thereby compromising surgical
quality and postoperative recovery. Therefore, accurate preoperative
prediction of medial wall invasion of the cavernous sinus can provide
valuable guidance for neurosurgeons in determining whether to
perform resection of the medial wall. Beyond cavernous sinus dural
invasion, surgical complexity in pituitary surgery is also influenced by
tumor consistency. Recent studies have introduced radiological
surrogates of consistency—most notably the T2-weighted signal
intensity ratio (T2SIR)—and shown that firmer tumors (lower
T2SIR) are associated with reduced odds of gross-total resection and
greater operative difficulty in non-functioning pituitary adenomas (13,
14). These advances contextualize the present work, which specifically
targets preoperative identification of cavernous sinus dural invasion
using conventional T2-weighted imaging and radiomics.

Building on this foundational research, our study focuses on MRI
T2-weighted imaging to investigate cavernous sinus dural invasion in
pituitary adenomas. Radiomics involves the analysis and processing of
medical images, such as CT, MRI, and PET scans, to extract radiomic
features used for screening, diagnosis, follow-up, and prognosis (15,
16). The integration of radiomics with machine learning has become a
critical approach in clinical research. In this study, multiple machine
learning algorithms were applied to analyze and extract radiomic
features from coronal T2-weighted images of pituitary adenomas. A
preoperative predictive model for cavernous sinus dural invasion in
pituitary adenomas was developed to support the assessment of tumor
invasiveness and inform surgical planning (17, 18).

2 Method
2.1 Study subjects

Clinical and imaging data were consecutively collected from
patients who underwent transsphenoidal pituitary adenoma
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resection under microscopy at the Department of Neurosurgery in
our hospital between December 2012 and December 2022. A total
of 252 cases were included in the analysis after applying strict
inclusion and exclusion criteria. Although consecutive sampling
was used over a 10-year period, all cases were obtained from a single
tertiary medical center, which may limit the generalizability of our
findings. Selection bias could not be entirely excluded, as only
patients with complete imaging and surgical data were included.
However, consecutive case inclusion helps to reduce subjective
selection and reflects real-world clinical practice. This study was
approved by the Ethics Committee of the 900th Hospital of the
People’s Liberation Army Joint Logistic Support Force in Fuzhou,
Fujian, China (Approval Number: Ethics Review No. 2024-006). All
procedures followed the principles outlined in the Declaration of
Helsinki. Written informed consent for the reuse of general data
was obtained from all participants during their hospital stay.

2.1.1 Inclusion criteria

The inclusion criteria were as follows: 1) Complete imaging
and clinical data; 2) Underwent transsphenoidal pituitary
adenoma resection at our hospital; 3) Postoperative pathology
and immunohistochemistry confirmed the diagnosis of
pituitary adenoma.

2.1.2 Exclusion criteria

The exclusion criteria were as follows: 1) Patients who received
preoperative or postoperative cranial radiotherapy; 2) Patients with
a history of sellar region surgery or medication for pituitary
conditions; 3) Incomplete clinical or imaging data; 4) Coexisting
brain trauma, meningitis, brain abscess, or cerebrovascular diseases;
5) Coexisting intracranial multiple tumors or malignancies. After
rigorous screening, 252 cases were included in the analysis,
comprising 132 males and 120 females.

FIGURE 1

10.3389/fonc.2025.1706895

2.2 Variable selection

In our study, demographic information and disease-specific
characteristics were collected based on a review of the literature.
Data were extracted from patients’ electronic medical records.
Potential risk factors for cavernous sinus dural invasion of
pituitary adenomas were identified based on published data,
clinical expertise, and practical considerations for future
clinical implementation.

Clinical data (19, 20) included gender, age, height, weight, BMI,
and obesity classification (21) (categorized as 1 for lean, 2 for
underweight, 3 for overweight, and 4 for obese). Imaging data (22)
included tumor height, tumor anteroposterior diameter, tumor left-
right diameter, tumor volume, Knosp classification (categorized as 1
for grades 0-1, 2 for grades 2-3a, and 3 for grades 3b-4),
pedunculated satellite tumor (Figure 1A), tumor cystic change,
tumor apoplexy, sphenoid sinus invasion (Figure 1B), and clival
invasion (Figure 1C).

Radiomics features were extracted using 3D Slicer by two
radiologists and one neurosurgical attending physician who
independently outlined the regions of interest (ROI) on coronal
T2-weighted images(Figure 2). To assess inter-observer variability,
30 randomly selected cases were segmented by all three observers,
and the Dice similarity coefficient (DSC) was calculated to evaluate
agreement. Consensus was reached for the final segmentation
through discussion. A variety of radiomic features—including
first-order statistics, texture features (GLCM, GLDM, GLRLM,
GLSZM, NGTDM), and shape descriptors—were extracted.
Feature selection was based on variance, correlation, and SHAP
importance scores. Wavelet-based features were retained due to
their ability to capture directional and high-frequency texture
patterns relevant to tumor invasion. The dataset was divided into
training (70%) and testing (30%) sets using stratified sampling to

Imaging markers on different sequences. (A) Pituitary adenoma invading the left cavernous sinus is visible on an MRI T2-weighted image.

A pedunculated satellite tumor (indicated by the red arrow) protrudes from the main tumor. The satellite tumor is clearly demarcated from the
primary tumor, encapsulated, and exhibits characteristics of benign growth. (B) A sagittal CT image shows the posterior wall of the sphenoid sinus
invaded by the pituitary tumor (indicated by the yellow arrow). The tumor breaches the posterior wall and extends into the sphenoid sinus cavity. (C)
An axial CT image reveals the pituitary tumor invading the clivus (indicated by the yellow arrow). The clivus shows irregular, indistinct edges, with

thinning of the bony structure.
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FIGURE 2

Delineation of the pituitary adenoma ROI using 3D slicer. (A) On T2-weighted imaging, a large pituitary adenoma is seen invading the suprasellar
region and cavernous sinus, with cystic changes within the tumor. (B) The 3D Slicer tool was used to outline the full-layer ROI of the pituitary
adenoma, showing the complete boundaries of the tumor. (C) After ROI delineation, a three-dimensional reconstruction was performed to visualize

the tumor’s spatial structure.

ensure balanced representation of invasive and non-invasive cases.
The gold standard for cavernous sinus dural invasion in this study
was determined by intraoperative identification of defects in the
medial wall of the cavernous sinus (Figure 3).

2.3 Data preprocessing and model
construction

The dataset of 252 patients was randomly divided into a
training set (70%) and a test set (30%). Prior to model
construction, clinical data were analyzed. Chi-square tests (for
categorical variables) and nonparametric tests (for continuous
variables) were applied to assess the significance of each variable
(P < 0.05), identifying initial clinical predictors associated with

cavernous sinus dural invasion. These selected clinical variables
were further evaluated using univariate logistic regression analysis
to confirm their statistical correlation with cavernous sinus dural
invasion. For radiomics features, data standardization and
dimensionality reduction were first performed. The Lasso
regression algorithm was then applied to identify representative
radiomics features. Subsequently, the selected features underwent
univariate logistic regression analysis to filter statistically significant
radiomics predictors. After feature selection, ten representative
supervised machine learning algorithms were employed to
construct predictive models: Decision Tree (DT), Random Forest
(RF), Logistic Regression (LR), K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Naive Bayes (NB), Light
Gradient Boosting Machine (LightGBM), Adaptive Boosting
(AdaBoost), Extreme Gradient Boosting (XGBoost), and K-Means

FIGURE 3

Intraoperative findings of dural invasion. (A) During microscopic transsphenoidal resection of a pituitary adenoma, the pituitary fossa (black arrow),
cavernous sinus (green arrow), and medial wall of the cavernous sinus (yellow arrow) are clearly visible, showing well-defined structures. (B)
Intraoperative observation reveals that the medial wall of the cavernous sinus has been disrupted by the tumor, leaving only a thin collagen fiber

mesh. The integrity of the dura mater is significantly compromised.
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Clustering (K-Means). To evaluate model stability and predictive
power, 10-fold cross-validation was conducted. Specifically, the
dataset was randomly divided into ten subsets, with nine subsets
used as the training set and one as the validation set in each
iteration, repeated ten times. The predictive outcomes from the
cross-validation process were compared to assess model reliability.
Upon model construction, the test set was used to evaluate the
performance of each model. Metrics including accuracy (ACC), true
positive rate (TPR), false positive rate (FPR), positive predictive
value (PPV), F1 score (FSC), sensitivity (SEN), specificity (SPE),
and negative predictive value (NPV) were calculated and compared.
Receiver operating characteristic (ROC) curves were plotted, and
the area under the curve (AUC) was calculated to assess the
classification performance of each model. Additionally, the
goodness-of-fit of the models was evaluated using the Hosmer-
Lemeshow test, and calibration curves were plotted to verify model
calibration. Decision curve analysis (DCA) was conducted to assess
the clinical utility of the models. Model selection was based on
predictive performance and stability criteria, as detailed in the
Results section. A performance evaluation chart was created to
summarize the overall performance of each model. A
comprehensive report was also generated to provide further
guidance for clinical application and research purposes.

2.4 Statistical analysis

This study analyzed existing data using Python version 3.1.2.
Categorical variables were presented as percentages and analyzed
using the Chi-square test or Fisher’s exact test. Continuous variables
were processed based on their distribution characteristics. Variables
following a normal distribution were expressed as mean + standard
deviation (Mean + SD) and compared using the independent sample t-
test. Variables not following a normal distribution were presented as
median and interquartile range (Median [IQR]) and analyzed using
nonparametric tests. A two-sided P-value of <0.05 was considered
statistically significant. As this is an exploratory study, multiple
comparison corrections were not performed to avoid excessively
reducing the statistical significance level. The aforementioned
methods ensure the scientific rigor and reliability of the analysis results.

3 Results
3.1 Screening of clinical feature variables

A total of 252 pituitary adenoma patients were included in this
study, comprising 132 males and 120 females. The univariate
analysis (Table 1) revealed significant differences in multiple
clinical characteristics between the cavernous sinus invasion (CSI)
group and the non-invasion group (P < 0.05). Specifically, eight
variables showed significant differences: tumor anteroposterior
diameter, tumor left-right diameter, tumor height, tumor volume,
Knosp grade, pedunculated satellite tumor, sphenoid sinus
invasion, and clivus invasion (Figure 4).
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Further multivariate logistic regression analysis, with a selection
threshold of P < 0.1, was performed to evaluate the independence
and impact of each variable whereas controlling for potential
confounding factors (23) (Figure 5). The analysis confirmed that
Knosp grade, tumor left-right diameter, pedunculated satellite
tumor, and clivus invasion were independent influencing factors.
These variables were subsequently included in the feature set for
constructing machine learning models to predict the risk of
cavernous sinus invasion (Figure 6).

3.2 Prediction models based on clinical
features

Prediction models were constructed using clinical features and
ten different machine learning algorithms. ROC curves were plotted
for both the training and testing datasets, and the AUC was
calculated to evaluate model performance (Figure 7). Calibration
curves were also analyzed to assess the goodness-of-fit and
generalization ability of the models, verifying their stability and
consistency across datasets. The results (Table 2) show that
prediction models based on clinical features effectively predict
cavernous sinus dural invasion in pituitary adenomas, providing a
foundational reference for subsequent integrated radiomic
feature modeling.

Among the evaluated models, GNB demonstrated the most
favorable calibration and discrimination characteristics. It achieved
the highest test AUC (0.81), indicating excellent discriminatory
power, and recorded the lowest Brier score (0.18), reflecting
superior accuracy in probability estimation. Furthermore, the
Hosmer-Lemeshow test yielded a non-significant p-value
(p=0.40), suggesting good agreement between predicted and
observed outcomes. The model also showed balanced
classification performance, with a sensitivity of 0.82 and an FI-
score of 0.74. Given its strong discriminative ability, optimal
calibration, and simplicity in implementation, GNB was selected
as the preferred predictive model in this study.

3.3 Machine learning models based on
radiomic features

Through manual extraction of pituitary adenoma imaging
features from T2 coronal images using 3D Slicer, a total of 1073
imaging features were obtained, covering morphological, texture,
and advanced radiomic characteristics. Lasso regression was applied
to select 9 statistically significant features, which were further
filtered using univariate regression analysis. 7 imaging features,
including original.4, original.10, log-sigma-5-0-mm-3D.29, log-
sigma-5-0-mm-3D.91, wavelet-LLH.37, wavelet-LHL.37, and
wavelet-HLL.8, were included for study and model construction
(Figure 8).The seven radiomic features used in the final model
describe different characteristics of the tumor, such as the overall
brightness and contrast (first-order features), the texture and
patterns inside the tumor (texture features), and information
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TABLE 1 Baseline characteristics of variables associated with cavernous sinus invasion following transnasal endoscopic pituitary adenoma resection.

Invasion
128
Gender
Male 132 (52.4) 66 (53.2) 66 (51.6) 0.89
Female 120 (47.6) 58 (46.8) 62 (48.4)
Age, median [Q1,Q3] 50.5 [40.0,59.0] 50.0 [35.8,60.0] 51.0 [43.0,57.2] 0.363
Knosp Grade
0-1 64 (25.4) 49 (39.5) 15 (11.7) <0.001
2-3a 103 (40.9) 56 (45.2) 47 (36.7)
3b-4 85 (33.7) 19 (15.3) 66 (51.6)
Tumor heigh, median [Q1,Q3] 26.0 [18.6,34.1] 23.6 [15.5,31.9] 28.0 [21.6,36.7] <0.001
Tumor anterior posterior diameter line, median [Q1,Q3] 19.8 [15.1,24.7] 18.2 [12.6,23.1] 21.0 [17.7,26.0] <0.001
Left-right diameter of tumor, median [Q1,Q3] 26.3 [21.0,30.7] 23.4 [18.6,27.5] 29.3 [25.4,33.8] <0.001
‘ Pedunculated satellite tumor
No 208 (82.5) 114 (91.9) 94 (73.4) <0.001
Yes 44 (17.5) 10 (8.1) 34 (26.6)
Tumor volume, median [Q1,Q3] 13.5 [6.4,25.9] 9.5 [4.6,18.8] 16.7 [9.6,31.7] <0.001
‘ Cystic degeneration
No 221 (87.7) 110 (88.7) 111 (86.7) 0.772
Yes 31 (12.3) 14 (11.3) 17 (13.3)
‘ Tumor stroke
No 203 (80.6) 95 (76.6) 108 (84.4) 0.162
Yes 49 (19.4) 29 (23.4) 20 (15.6)
‘ Clival invasion
No 134 (53.2) 85 (68.5) 49 (38.3) <0.001
Yes 118 (46.8) 39 (31.5) 79 (61.7)
‘ Invasion of the sphenoid sinus
No 108 (42.9) 69 (55.6) 39 (30.5) <0.001
Yes 144 (57.1) 55 (44.4) 89 (69.5)
Height, median [Q1,Q3] 163.0 [158.0,170.0] 163.5 [158.0,170.0] 163.0 [158.0,170.0] 0.539
Weight, median [Q1,Q3] 65.0 [57.0,72.0] 65.0 [57.5,75.0] 64.0 [57.0,71.8] 0.318
BMI, median [Q1,Q3] 23.8 [22.0,26.1] 23.9 [22.0,26.5] 23.6 [21.9,25.7] 0.276
Obesity Degree
Normal 129 (51.2) 60 (48.4) 69 (53.9) 0.285
Slim 11 (4.4) 3(2.4) 8 (6.2)
Overweight 76 (30.2) 42 (33.9) 34 (26.6)
Obesity 36 (14.3) 19 (15.3) 17 (13.3)
Frontiers in Oncology 06 frontiersin.org
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Variable Power Est. (95% Conf. Int.) P-value
Clinical basic data I
Age .19 9.07(-0.86 to 0.19) +¢— 0.28
Gender 9.06  9.02(-0.11 to 0.14) — 8.79
Height .19 -8.07(-0.19 to 0.06) e 6.28
Obesity degree .21 -0.07(-0.19 to 8.85) —0—:— 8.25
Weight 9.22 -0.08(-0.20 to 0.85) —— 0.23
Bmi 0.24 -0.08(-0.20 to 0.65) e L 6.21
Imaging features :
Knosp grade 1.0 9.42( 0.31 to 0.52) | —— 0,0%*x*
Cystic degeneration 0.08 0.03(-0.89 to 0.15) —le— B.63
Tumor stroke 8.34 -0.10(-0.22 to 0.03) —0—|r 0.12
Tumor size I
Left-right diameter of tumor 1. 0.42( 8.32 to 0.52) ' —— 0.0%**
Tumor volume 1. 0.28( 0.16 to 0.39) : —— 0. @%**
Tumor anterior posterior diameter line ©.99 0.27( 8.15 to 0.38) | —— D.@***
Tumor heigh 9.98 0.25( 0.13 to 0.37) ' —— B.@%**
Markers of dural invasion :
Clival invasion 1.0 0.30( 8.19 to 0.41) | —— 0.9+
Invasion of the sphenoid sinus 9.98 0.25( 0.14 to 0.37) ' —— 0.@%**
Pedunculated satellite tumor 9.98 0.24( 0.12 to 0.36) : —— B.@%**

04 -02 00 02
Pearson correlation coefficient

FIGURE 4

Forest plot of univariate analysis. This figure presents the effects and statistical significance of each variable identified in the univariate analysis. The
variables are categorized into clinical baseline information, imaging characteristics, tumor size, and cavernous sinus dural invasion markers. On the
left, the regression estimates and their 95% confidence intervals for each variable are displayed, clearly illustrating the independent impact of the
variables on cavernous sinus dural invasion. On the right, a Pearson correlation coefficient forest plot evaluates inter-variable correlations. Statistical
significance is indicated by P-values, with P < 0.05 denoting significant differences. Variables such as Knosp grade, tumor height, tumor
anteroposterior diameter, tumor lateral diameter, pedunculated satellite tumor, tumor volume, clival invasion, and sphenoid sinus invasion showed
significant associations. ***This indicates that the result is statistically significant (p < 0.05)

Point

T T R e T T T R e e e e e |
10 15 20 25 30 35 40 45 50

Knosp

Clival invasion

Left-right diameter of tumor

Pedunculated satellite tumor

Overall point

T T T T T T T T T 1
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Positive Risk

FIGURE 5

Nomogram for multivariate analysis of cavernous sinus dural invasion. A nomogram was developed based on the results of multivariate analysis to
assess the risk of cavernous sinus dural invasion. This nomogram integrates various independent risk factors, providing a comprehensive risk
evaluation for cavernous sinus dural invasion. The total score and corresponding risk evaluation curve quantitatively illustrate the influence of each
factor on cavernous sinus dural invasion, facilitating individualized prediction and aiding in clinical decision-making.
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FIGURE 6

ROC curves of different features. ROC curves were generated for the selected clinical features to evaluate their association with cavernous sinus
dural invasion in pituitary adenomas. The results demonstrated that all selected features exhibited varying degrees of predictive performance in
univariate analysis, further supporting their significant correlation with cavernous sinus dural invasion.

from filtered images that highlight edges or fine details (LoG and
wavelet features). These features help to capture both the
appearance and internal structure of the tumor on imaging.

Based on the selected radiomic features, predictive models were
established using ten different machine learning algorithms. ROC
curves were plotted for both the training and testing sets, and AUC
was calculated to evaluate model performance. Additionally,
calibration curves were analyzed to assess model fitting and
generalization ability (Figure 9).

The results indicate that the models based on radiomic features
exhibited good classification ability in both the training and testing
sets. The performance of these models was generally superior to
models based solely on clinical features, particularly in key metrics
such as AUC, sensitivity, and specificity. This highlights the
significant value of radiomic features in predicting cavernous
sinus dural invasion in pituitary adenomas and provides
strong support for subsequent integrated clinical-radiomic
modeling (Table 3).

Among the ten models evaluated, LightGBM demonstrated the
best overall calibration, as reflected by the lowest Brier score (0.17)
and a non-significant Hosmer-Lemeshow test (p = 0.63), indicating
good agreement between predicted and observed outcomes. The
model also showed strong discriminative ability with a test AUC of
0.82, along with balanced sensitivity (0.77) and Fl-score (0.72).
Although its false positive rate was slightly higher compared to
some other models, LightGBM’s combination of calibration and
discrimination makes it the preferred model for this study.

Frontiers in Oncology

3.4 Machine learning models constructed
based on clinical features combined with
radiomic features

The correlation between the clinical and radiomic features
selected earlier was assessed, and a correlation heatmap
(Figure 10) was plotted to illustrate the interrelationships among
the variables. Ten different machine learning algorithms were then
used to construct prediction models, and their performance in
predicting cavernous sinus invasion in pituitary adenomas was
evaluated (Figure 11). ROC curves were generated to assess the
classification performance of the models, and DCA curves were
employed to evaluate their potential clinical applicability.

Among the ten machine learning algorithms evaluated (Table 4),
the model constructed using the LightGBM algorithm exhibited the
best overall performance. It achieved the highest AUC values in both
the training (AUC = 0.90) and testing (AUC = 0.86) sets, with a
prediction accuracy of 0.76, and performed favorably across other
performance metrics. When comparing the optimal models
established using three different feature sets, the model integrating
both clinical and radiomic features demonstrated the best predictive
performance and showed superior capability in the preoperative
prediction of medial wall invasion of the cavernous sinus.

SHapley Additive exPlanations (SHAP) analysis (Figure 12) was
conducted to evaluate feature importance and trend changes in the
LightGBM model. The results showed that cavernous sinus
invasion, tumor lateral diameter, Knosp grade, pedunculated
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Training set ROC, testing set ROC, and DCA curves for machine learning models based on clinical features. This figure illustrates the Receiver
Operating Characteristic (ROC) curves of machine learning models based on clinical features for both the training and testing datasets, along with
the corresponding Decision Curve Analysis (DCA) results. The findings indicate that the models exhibit good classification performance on both
datasets. Additionally, the DCA curves suggest that the models have potential clinical utility.
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satellite tumor, and the radiomic feature original.10 were
significantly correlated with cavernous sinus invasion in the
LightGBM model. Furthermore, cavernous sinus invasion,
presence of a satellite tumor, higher Knosp grade, and larger
tumor lateral diameter were positively correlated with the
diagnostic outcome of cavernous sinus invasion.

In addition to clinical variables, several radiomic features
showed significant contributions to the prediction of cavernous
sinus invasion in the LightGBM model. Features such as original.4
and original.10 reflect intensity distribution and texture regularity,
respectively, and were positively associated with the predicted
probability of invasion. Texture-related features extracted from
filtered images, including log-sigma-5-0-mm-3D.29 and log-
sigma-5-0-mm-3D.91, describe heterogeneity and complexity
within the tumor and also showed a positive association.
Moreover, wavelet-transformed features such as wavelet-LHL.37,
wavelet-LLH.37, and wavelet-HLL.8 contributed additional
information related to fine textural patterns and asymmetry, and

were similarly associated with higher invasion probability. These
results suggest that tumors with greater internal heterogeneity and
complex texture patterns tend to be more invasive on imaging.

4 Discussion

This study demonstrated that integrating radiomic and clinical
features significantly improves the preoperative prediction of
cavernous sinus dural invasion in pituitary adenomas. The
combined LightGBM model achieved the best predictive
performance, confirming the complementary value of quantitative
imaging features and clinical parameters. These findings support the
growing application of radiomics in neurosurgery, providing a non-
invasive approach for assessing tumor invasiveness and aiding
surgical planning.CSI in pituitary adenomas is characterized by the
destruction and infiltration of the medial wall of the cavernous sinus,
with intraoperative observation of medial wall damage serving as a

TABLE 2 Performance comparison and consistency testing of ten machine learning models based on clinical features.

. Hosmer- Hosmer-
Train Test
ACC PPV SPE NPV FSC Lemeshow Lemeshow
AUC AUC i
statistic p-value
DT 0.77 0.74 6579 | 0.87 057 | 062 | 043 | 076 072 020 1.93 0.98
KNN 0.79 0.74 7237 | 0.87 043 | 068 057 | 081 076 021 12.65 0.12
RF 0.83 0.80 7105 | 0.79 038 | 069 | 062 | 074 074 | 0.19 6.69 0.57
SVC 0.84 0.80 69.74 | 0.82 043 | 067 | 057 | 075 074 | 020 5.98 0.65
XGBoost | 0.77 0.79 0.72 0.77 032 | 071 0.68 | 0.74 074 022 12.71 0.12
LR 0.78 0.78 0.74 0.85 038 | 070 | 062 | 0.79 077 | 020 11.90 0.16
GNB 0.77 0.81 0.71 0.82 041 | 068 059 | 0.76 074 | 018 8.35 0.40
LightGBM | 0.79 0.80 0.70 0.77 038 | 068 062 | 072 072 0.19 9.06 0.34
AdaBoost | 0.82 0.72 0.64 0.66 037 | 064 063 | 065 0.65 | 023 4.63 0.80
Kmean 0.80 0.78 0.67 0.61 026 | 070 | 074 | 065 0.65 | 0.0 8.24 0.41
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key diagnostic criterion. Although some recent studies have
questioned the clinical significance of cavernous sinus dural
invasion (5), the prevailing view still recognizes cavernous sinus
dural invasion as a critical marker of pituitary adenoma
aggressiveness (24). For patients with cavernous sinus dural
invasion, the presence of tumor tissue embedded within the dura
significantly increases the risk of recurrence. Therefore, accurately
assessing cavernous sinus dural invasion preoperatively and tailoring
surgical strategies accordingly is crucial for reducing recurrence rates
in pituitary adenomas. Despite the high resolution of 3D SPACE
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imaging, it remains challenging to definitively evaluate medial wall
disruption or its adherence to the internal carotid artery wall (9).
Consequently, Knosp grading is often used clinically to assess
cavernous sinus invasion in pituitary adenomas (25, 26). However,
a meta-analysis revealed that Knosp grading is not entirely reliable for
this purpose (27). Niu and colleagues reported that 85.4% of Knosp
grade 2 pituitary adenomas and 34.3% of Knosp grade 3 adenomas
lacked evidence of CSI during surgery (28), suggesting that Knosp
grading may not fully reflect the actual incidence of cavernous sinus
dural invasion. To address this limitation, Hong et al. (29) proposed
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ROC, test set ROC, and DCA curves for the machine learning model based on radiomic features. This figure illustrates the ROC curves for the
machine learning model constructed based on radiomic features in both the training and test sets, along with the corresponding Decision Curve
Analysis (DCA) results. The results show that the model based on radiomic features demonstrates good classification ability in both the training and

test sets, and the DCA curve indicates its potential clinical applicability.
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TABLE 3 Performance comparison and consistency test results of ten machine learning models built on radiomic features.

. Hosmer- Hosmer-
;"S'é‘ Xﬁsct ACC (ggﬁ) FPR PPV SPE Lemeshow Lemeshow

statistic p-value
DT 0.80 0.72 61.84 0.90 068 | 058 032 075 071 0.23 inf 0.00
KNN 0.82 0.76 69.74 0.74 035 | 069 065 071 072 0.20 5.05 0.75
RE 0.82 0.83 71.05 0.74 032 | 071 068 071 073 0.18 7.48 0.49
SVC 0.80 0.80 77.63 0.82 027 | 076 073 | 079 | 0.79 0.20 10.17 0.25
XGBoost 0.74 0.85 0.74 0.69 022 | 077 078 071 073 0.17 9.67 0.29
LR 0.82 0.79 0.67 0.79 046 | 065 = 054 071 | 071 0.19 9.89 0.27
GNB 0.74 0.81 0.76 0.82 046 | 065 = 054 = 074 073 0.24 103.54 0.00
LightGBM 0.87 0.82 0.72 0.79 035 | 070 065 @ 075 075 0.17 6.20 0.63
AdaBoost 0.85 073 0.67 0.60 024 | 076 076 | 060 = 067 0.21 3.24 0.92
Kmean 0.77 0.82 0.72 0.79 035 | 070 065 @ 075 075 0.20 11.83 0.16

Correlation Matrix Heatmap

invasion

original.4 - 0.41 -042  -0.64 -0.67

original.10

log-sigma-5-0-mm-3D.29 - 0.33 .00 -0.76 -0.65 -0.65

log-sigma-5-0-mm-3D.91
wavelet-LLH.37

-02

let-LHL.37 X 0.50  W0/]
wavele >0 -0.0
wavelet-HLL.8 - 0.25
Knosp - 0.42

Left-right diameter of tumor - 0.42

Pedunculated satellite tumor - 0.24

Clival invasion - 0.30

=3
N
S
19
@
=3
)

Knosp -

invasion -
original.4
original.10
log-sigma-5-0-mm-3D.29 -
log-sigma-5-0-mm-3D.91
wavelet-LLH.37
wavelet-LHL.37
wavelet-HLL.8 -
Clival invasion

Left-right diameter of tumor
Pedunculated satellite tumor -

FIGURE 10

Correlation heatmap of clinical features and radiomic features. This heatmap illustrates the correlation between the selected clinical and radiomic
features and cavernous sinus invasion. The correlation coefficients are calculated, with the color intensity in the heatmap reflecting the strength of
the correlation. Red indicates a positive correlation, whereas blue indicates a negative correlation.
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ROC curves, test set ROC curves, and DCA curves for the machine learning models constructed using clinical and radiomic features. This figure
presents the ROC curves for the machine learning model based on clinical and radiomic features for both the training and testing datasets, along
with the corresponding DCA results. The findings indicate that the model built on clinical and radiomic features exhibits strong classification ability in

both datasets, and the DCA curve demonstrates its potential clinical utility.

the concept of invasion pathways based on the distinct structures of
the dura surrounding the pituitary gland. They proposed novel
imaging markers, such as pedunculated satellite tumors and
interdural tumors, as indicators of cavernous sinus dural invasion,
offering new perspectives and evaluation criteria for the study of
cavernous sinus dural invasion in pituitary adenomas.

The results of this study show that pedunculated satellite
tumors, clival invasion, Knosp grading, and tumor transverse
diameter are significant predictors of meningeal invasion in
pituitary adenomas. Pedunculated satellite tumors, as an
important imaging marker for cavernous sinus meningeal
invasion, hold considerable predictive weight in machine learning
models, making them a key reference for preoperative evaluation.
However, only some pituitary adenomas form pedunculated
satellite tumors during invasion, whereas most tumors directly
breach the cavernous sinus inner wall, which explains the
moderate statistical performance of pedunculated satellite tumors.
The invasion of the clivus is closely associated with medial wall

ROC Curves for Multiple Machine Learning Models on Test Set
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invasion of the cavernous sinus (30). This phenomenon may be
explained from a biomechanical perspective. The growth direction
of pituitary adenomas is influenced by multiple factors, including
the stability of the surrounding dura mater and bony structures.
Generally, pituitary adenomas tend to invade the diaphragma sellae
and cavernous sinus preferentially (3). Once the medial wall of the
cavernous sinus and adjacent bony structures are compromised, the
clivus—owing to its relatively thin anatomical composition—often
becomes the next target of tumor invasion. Therefore, the presence
of clival invasion on preoperative imaging may indicate that the
tumor has already breached the medial wall of the cavernous sinus
(26, 31).Tumor transverse diameter reflects cavernous sinus
invasion and is associated with inner wall damage (32, 33).
Radiomics, which extracts high-dimensional features from
imaging data, provides additional information on tumor invasion
and biological behavior (16). This study found that on CE-T2 MR
images, features such as wavelet-LLH.37 and wavelet-LHL.37
exhibited significantly reduced mean MMC values in tumors with

TABLE 4 Performance and consistency test results of machine learning models built using clinical and radiomic features.

Test Hosmer- Hosmer-
AUC ACC TPR FPR PPV SPE SEN Lerr?es:how Lemeshow
statistic p-value

DT 0.79 78.00 7105 | 087 046 067 054 | 087 | 0.80 076 | 0.19 inf 0.00

KNN 0.77 0.83 7105 | 067 024 074 076 | 067 | 0.68 070 | 0.18 4.67 0.79

RE 0.89 0.85 7632 | 077 024 077 076 | 077 | 076 077 | 017 6.22 0.62

NYe 0.86 0.84 7895 | 082 024 078 076 | 082 | 0.80 080 | 020 13.55 0.09

XGBoost | 0.86 0.84 0.74 087 | 041 069 | 059 | 087 | 081 077 | 017 5.74 0.68

LR 0.78 0.85 0.74 074 | 027 074 | 073 | 074 | 073 074 | 0.16 8.65 0.37

GNB 0.76 0.84 0.79 087 | 030 076 | 070 | 0.87 | 0.84 081 | 0.19 140.56 0.00

LightGBM | 0.90 0.86 0.76 085 | 032 073 | 068 | 085 | 081 079 | 0.16 10.02 0.26

AdaBoost | 0.88 0.85 0.74 074 | 027 074 073 | 074 | 073 074 | 0.17 6.31 0.61

Kmean 0.77 0.86 0.82 085 | 022 080 078 | 085 | 0.83 083 | 0.19 16.26 0.04
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FIGURE 12

SHAP score analysis - bar and scatter plots. This figure presents the SHAP (SHapley Additive exPlanations) analysis results for the LightGBM model.
The bar plot shows the contribution of each feature to the model's prediction outcomes, ranking the features by importance. The scatter plot
reveals the association between feature values and SHAP values, indicating how variations in feature values influence the prediction results. Features
such as sphenoid sinus invasion, tumor transverse diameter, Knosp grade, and presence of pedunculated satellite tumors emerged as significant
predictors, with their values showing positive correlations with the likelihood of cavernous sinus dural invasion.

meningeal invasion, indicating higher tumor heterogeneity and
invasiveness. The sphericity value also proved important in
predicting invasiveness, with larger values correlating with less
invasiveness. Quantifying imaging features enhances preoperative
evaluation by revealing tumor heterogeneity and biological
characteristics. The radiomic texture features identified in this
study, particularly wavelet-LLH.37 and wavelet-LHL.37, may
reflect differences in tumor consistency. Prior research has linked
MRI-based texture parameters with intraoperative tumor hardness
and surgical difficulty. These findings suggest that texture-based
radiomic features could provide a non-invasive surrogate for
assessing tumor consistency, with potential implications for
preoperative planning and intraoperative strategy (14, 34).

This study has several limitations. First, its retrospective single-
center design may introduce selection bias and limit generalizability.
The relatively small sample size could also increase the risk of
overfitting, despite cross-validation. Moreover, the use of a single

Frontiers in Oncology 13

imaging sequence (T2-weighted MRI) may restrict the
comprehensiveness of radiomic feature extraction. Future studies
should validate the proposed model in larger, multicenter cohorts and
explore the integration of multi-sequence MRI or multi-omics data to
enhance robustness and clinical applicability.

5 Conclusion

By integrating clinical data with radiomics features, the machine
learning model based on the LightGBM algorithm demonstrated
exceptional performance in preoperatively predicting the
invasiveness of pituitary adenomas into the dura mater. The
model achieved an AUC of 0.86 and an ACC of 0.76, highlighting
its significant predictive advantages. Additionally, the presence of
pedunculated satellite tumors, as a novel radiological marker for
pituitary adenomas, played a critical role in predicting invasiveness,
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offering new insights for the preoperative identification of invasive
pituitary adenomas.
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