

OPEN ACCESS

EDITED AND REVIEWED BY Alessandro Isidori, AORMN Hospital, Italy

*CORRESPONDENCE
Zizhen Xu

xuzizhen@126.com

RECEIVED 09 September 2025 ACCEPTED 13 October 2025 PUBLISHED 30 October 2025

CITATION

Liu P, Ma J and Xu Z (2025) Editorial: Metabolic dysregulation in hematological malignancies: emerging insights and therapeutic implications. *Front. Oncol.* 15:1701952. doi: 10.3389/fonc.2025.1701952

COPYRIGHT

© 2025 Liu, Ma and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Metabolic dysregulation in hematological malignancies: emerging insights and therapeutic implications

Pengcheng Liu¹, Jiao Ma² and Zizhen Xu^{1*}

¹Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ²Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

KEYWORDS

leukemia, lymphoma, hematological malignancies, metabolic dysregulation, prognosis, target therapy

Editorial on the Research Topic

Metabolic dysregulation in hematological malignancies: emerging insights and therapeutic implications

There is growing evidence that highlights the critical role of metabolic reprogramming in the development and progression of hematological malignancies. Cancer cells alter metabolic pathways—such as enhanced glucose uptake (the Warburg effect), glutamine metabolism, and fatty acid synthesis—to fuel rapid proliferation and adapt to the tumor microenvironment. These changes not only supply energy and biomolecules but also promote drug resistance and disease progression. Understanding these metabolic aberrations may unveil novel therapeutic targets for more precise and effective treatments.

This Research Topic published five articles covering the broad spectrum of basic and clinical research on macromolecular metabolism in Hematological Malignancies.

Mitochondrial gene signature in DLBCL prognosis

Wang et al. developed a prognostic model based on nine mitochondria-related genes that effectively stratifies patients with Diffuse Large B-cell Lymphoma (DLBCL). The model demonstrated strong predictive accuracy (AUC >0.6, exceeding 0.7 in some cohorts), enabling personalized treatment approaches. Functional studies on PCK2, a gene in the model, revealed that its knockdown suppressed DLBCL cell proliferation under low glucose conditions, suggesting its potential as a therapeutic target.

Lipid metabolism in multiple myeloma

In a review by Wang et al., MM cells were shown to depend heavily on *de novo* fatty acid synthesis and bone marrow adipocytes for lipid supply. Malignancies tend to manipulate lipid metabolism to facilitate their growth and alter the surrounding

Liu et al. 10.3389/fonc.2025.1701952

environmen (1), and in this case, Disrupted lipid metabolism was found to foster an immunosuppressive microenvironment involving lipid-rich tumor-associated macrophages, though the precise mechanisms remainunclear.

Chiral metabolome analysis in pediatric BCP-ALL

Collins et al. identified a distinct chiral metabolic phenotype in patients with IgH-aberration-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Notably, D-amino acids were detected in leukemic cells for the first time, and chiral metabolic signatures correlated with treatment resistance. These signatures could serve as potential diagnostic and prognostic biomarkers, and the interplay between chiral metabolomes and their corresponding chiral enzymes and drugs could be future focus (2).

Nutritional status and MM outcomes

Jin et al. conducted a meta-analysis (9 studies, 1,176 patients) linking high Controlling Nutritional Status (CONUT) scores with worse overall survival in MM (HR = 1.87, *p* < 0.001), although no significant association was found with progression-free survival. Their findings underscore the importance of nutritional assessment in MM management.

Hyperuricemia and hyperuricosuria in lymphoma/MPN

Kunlayawutipong et al. reported high prevalence rates of hyperuricemia (43.6%) and hyperuricosuria (39.4%) in patients with lymphoma and myeloproliferative neoplasms (MPNs). Key risk factors included: Lymphoma: Reduced kidney function (eGFR <90) and elevated LDH (≥250 U/L) for hyperuricemia; high LDH for hyperuricosuria. MPN: Hemoglobin <10 g/dL and LDH ≥640 U/L predicted hyperuricosuria. These insights could guide uric acid-lowering therapies to prevent complications.

Conclusion

Metabolic research is uncovering pivotal biomarkers and therapeutic vulnerabilities in hematologic malignancies (1, 3). From mitochondrial gene signatures to lipid metabolism and nutritional influences, these advances pave the way for innovative, targeted treatments. We hope this synthesis of recent findings provides valuable insights for researchers and clinicians alike.

Author contributions

PL: Writing – original draft, Writing – review & editing. JM: Conceptualization, Investigation, Software, Writing – review & editing. ZX: Writing – original draft, Writing – review & editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. *Mol Cancer*. (2024) 23:203. doi: 10.1186/s12943-024-02119-3
- 2. Peng SJ, Zhu YY, Luo CY, et al. Chiral drugs: Sources, absolute configuration identification, pharmacological applications, and future research trends. *LabMed Dis.* (2024) 1(1):100008. doi: 10.1016/j.lmd.2024.100008
- 3. Yu Z, Zhou X, Wang X. Metabolic reprogramming in hematologic malignancies: advances and clinical perspectives. *Cancer Res.* (2022) 82:2955–63. doi: 10.1158/0008-5472.CAN-22-0917