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Background: This study aims to explore the value of radiomic features from
different regions of part-solid nodules (PSNs) for predicting spread through air
spaces (STAS) in lung adenocarcinoma.

Methods: This retrospective analysis included 333 patients with PSNs lung
adenocarcinoma pathologically confirmed in three hospitals. Data from one
institution were utilized for training set (n=223), while the remaining two served
as the external test set (n=110). The computed tomography radiomic features
were extracted from different areas of the nodule (ground-glass, solid, gross, and
perinodular). Three machine learning classifiers (support vector machine, light
gradient boosting machine [LightGBM], logistic regression) were used to build
predictive models. Model performance was assessed using accuracy and area
under the curve (AUC). The Delong test was used to determine differences in
AUC values between models. The clinical benefits of models were assessed using
decision curve analysis (DCA).

Results: In the external test set, the radiomics model developed using combined
features from ground-glass, solid, and perinodular regions with LightGBM
classifier achieved an AUC of 0.840 (95% confidence interval [Cl]: 0.758-
0.921), which was better than the clinical model (AUC = 0.622, 95% CI: 0.494-
0.750, P < 0.001) and other radiomics models. DCA indicated that this model has
achieved a higher net benefit.

Conclusion: The radiomics model developed using radiomic features of distinct
solid and ground-glass components of PSNs and the perinodular region can
contribute to identifying the STAS status in lung adenocarcinoma.

KEYWORDS

lung adenocarcinoma, spread through air spaces, part-solid nodules, tomography, X-
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Introduction

Lung cancer ranks among the most prevalent cancers globally,
having the highest incidence rate (1). In most countries,
adenocarcinoma emerges as the predominant pathological type,
accounting for nearly 50% of all lung cancers (2). The detection
rates for pulmonary nodules and early lung cancer have increased
with the extensive application of low-dose chest computed
tomography (CT) (3, 4). Pulmonary nodules can be classified
according to CT findings into pure ground glass nodules, solid
nodules, and part-solid nodules (PSNs).

Spread through air spaces (STAS) was recognized as an invasion
mode of lung adenocarcinoma by the World Health Organization
(WHO) in 2015. STAS refers to the spreading of micropapillary
clusters, solid nests, or single cells beyond the edge of the tumor into
the air space in the surrounding lung parenchyma (5). Lung
adenocarcinoma with STAS shows a poor prognosis, with
reduced overall survival and disease-free survival rates (6, 7). In
recent years, sublobar resection has been widely used as a minimally
invasive surgical method to treat early lung cancer (8, 9). However,
lung cancer patients who exhibit STAS after sublobar resection have
an increased risk of recurrence (10, 11). STAS serves as an
important prognostic factor after sublobar resection for early lung
adenocarcinoma, and such tumors may not be suitable for sublobar
resection (12, 13). Unfortunately, STAS can only be determined by
surgical methods at present, and there are still uncertainties
regarding the accuracy of intraoperative frozen sections (14, 15).
Therefore, it is very important to determine the status of STAS
before operation because it helps clinicians choose the most
appropriate surgical approach.

Previous research (16-18) showed that STAS mostly occurs in
solid or part-solid nodules, whereas it is rarely observed in pure
ground glass nodules. Compared with pure ground glass nodules,
PSNs exhibit a high positive of STAS, along with a high invasiveness
and a less favorable prognosis. Meanwhile, lung adenocarcinoma
presenting as PSN is a special clinical subtype that can show
different clinicopathological features from solid tumors (19).
Consequently, special attention should be paid to PSNs.

Radiomics analysis using quantitative features extracted from
medical images allows precise and detailed evaluation of lesions,
including the presence of tumor heterogeneity (20). Several studies
(21-24) have used radiomics method to assess STAS status in lung
adenocarcinoma, and these have achieved good diagnostic
performance. However, their study failed to offer a detailed
analysis of lung adenocarcinoma with PSNs. Additionally,
because of unclear internal mechanisms that limit transparency
and credibility, the application of such models in clinical practice
may be restricted (25). Shapley Additive exPlanations (SHAP) is a
unified structure based on additive feature mapping techniques that
consider the predictions of complex models (26). It can explain the
importance of features and assist in comprehending the function of
each feature in making predictions for both the entire dataset and
specific samples (27). By combining radiomics and SHAP, it is
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possible to build a model that explains the prediction in an
understandable way (28, 29).

This study aimed to construct and evaluate radiomics signatures
derived from various areas of the nodule (ground-glass, solid, gross,
and perinodular) for predicting STAS status in lung
adenocarcinoma with PSNs. Moreover, we used the SHAP
method to illustrate the decision-making process of the models
and gain insights into the connections between radiomic features
and STAS.

Methods
Patients

The Ethics Committee of our institution authorized this
retrospective study (No. QYFY WZLL 29455) and waived the need
for informed consent. Patients with lung adenocarcinoma who had
undergone surgical resection in three hospitals between December
2019 and April 2024 were retrospectively collected. The inclusion
criteria included. (1) pathology-confirmed invasive lung
adenocarcinoma; (2) thin-slice CT examination (slice thickness <
1.25 mm) performed within 1 month before operation; (3) tumor
that was PSN with a maximum diameter < 3 cm; and (4)
clinicopathological data were complete. The exclusion criteria
included: (1) patients with multiple lesions; (2) patients who received
preoperative anti-tumor treatment (immunotherapy, chemotherapy, or
radiotherapy); (3)patients who had previously been diagnosed with
other malignant tumors; and (4) patients with low-quality image.

In total, 333 patients were collected (Figure 1). Patients were
separated into a training group (n=223, center 1) and an external
test group (n=110, centers 2 and 3).

Histopathologic evaluation

Two pathologists, unaware of the clinical outcomes for the
patients, independently evaluated the tumor slides. Where any
discrepancies, a consensus was achieved through discussion.
According to the WHO classification, STAS refers to the
existence of tumor cells in the lung air spaces beyond the margin
of the main tumor. It has three main forms: (1) single cells, multiple
separate and non-continuous single cells occupy the air spaces; (2)
solid nests, where the solid component of the tumor fills the air
spaces; and (3) micropapillary clusters, micro-nipple structures
without central fibrovascular cores fill the air spaces (10, 30).

Image acquisition

Supplementary Table S1 outlines the parameters used for CT
scanning. Unenhanced CT was acquired using a slice thickness of <
1.25 mm.
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* Solid nodules or pure ground-glass nodules (n=463)
* The maximum diameter of nodule > 3cm (n=152)

* Anti-tumor therapy before surgery (n=32)
* Patients had a history of other malignant tumors (n=21)

Excluded patients (n=805)

Cui et al.
Patients with available STAS status pathological confirmed with
lung adenocarcinoma (n=1138)
* Patients with multiple lesions (n=137)
Included patients (n=333)
Training cohort External test cohort
(center 1, n=223) (centers 2 and 3, n=110)
FIGURE 1

The process used to select patients is shown in the flowchart. STAS, spread through air spaces.

Clinical data collection and CT image
evaluation

The clinical characteristics and CT findings of patients were
analyzed, including gender, age, smoking history, consolidation/
tumor ratio (CTR), maximum solid component diameter (Dsolid),
maximum tumor diameter (Dmax), clinical T stage,
carcinoembryonic antigen (CEA) level, nodule location,
boundary, spiculation, lobulation, vascular convergence, pleural
indentation, air bronchogram, and vacuole. Two experienced
radiologists evaluated the CT images of the lesions. They did not
know the pathological results of the lesions before evaluation and
reached a consensus through discussion when there were
differences in their evaluation results.

Image segmentation and extraction of
radiomic features

An experienced radiologist manually delineated the regions of
interest (ROIs) using 3D-slicer software (version 5.2.1, https://
www.slicer.org). The gross nodule region (GNR), solid region
(SR), ground-glass opacity region (GGR), and perinodular region
(PR) were delineated as shown in Figure 2, and three-dimensional
ROIs of the different nodule regions were generated. The
segmentation steps were as follows: (1) the GNR was delineated
around the edge of the nodule using the lung window (window
level, -700 HU; window width, 1200 HU), excluding large bronchi
and vessels as much as possible; (2) the SR was identified within the
GNR by applying a thresholding method (> —-50HU); (3) the GGR
was obtained by subtracting the SR from the GNR; and (4) the PR
was defined as extending 5 mm from the edge of the nodule to the
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periphery, excluding nearby soft tissues such as the mediastinum or
chest wall (31).

Thirty lesions were randomly selected and delineated two weeks
later by the same radiologist and another radiologist to allow intra-
and inter-observer correlation coefficients (ICCs) to be computed.
The radiologists were blinded to clinical and pathological data
during the segmentation process.

Pyradiomics software (version 3.1.0) was used to extract radiomic
features from the ROIs. To mitigate the impact of different CT spatial
resolutions, all images were resampled to a voxel size of 1 X 1 x 1 mm.
Finally, each ROI yielded a total of 1316 features, including a suite of
texture features, 14 shape-based features, and 252 first-order features.
The texture features consisted of 70 neighboring grey tone difference
matrix (NGTDM) features, 196 grey-level dependence matrix
(GLDM) features, 224 grey-level size zone matrix (GLSZM)
features, 336 gray-level co-occurrence matrix (GLCM) features, and
224 grey-level run-length matrix (GLRLM) features.

Selection of radiomic features and model
construction

Features with ICCs > 0.75 were chosen for further analyses. All
features were processed with Z-score normalization, and the combat
compensation technique was employed to adjust those radiomic
features that were influenced by batch effects resulting from
different devices (32). The Spearman rank test was used to evaluate
the correlation between features, and when the linear correlation
coefficient was > 0.80, features were considered redundant and
removed. Least absolute shrinkage and selection operator (LASSO)
regression was then used to identify the features with the most
predictive value. A total of 3 machine learning classifiers were used
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FIGURE 2

Image illustrates segmentation of different region of interest. (A) the gross nodule region, (B) the solid region, (C) the ground-glass opacity region,

(D) the perinodular region.

to construct models for the radiomic features from different regions
of the nodule (GNR, SR, GGR, PR). These three classifiers were:
support vector machine (SVM), light gradient boosting machine
(LightGBM), logistic regression (LR). The classifiers were trained
on the training set using a 10-fold cross-validation method.

Clinical model construction

Univariate logistic regression analysis was used to identify
variables associated with STAS status. Variables with P < 0.05
were further analyzed using multivariate logistic regression analysis.
Variables yielding P < 0.05 in the multivariate analysis were deemed
independent predictors of STAS. Using these significant variables, a
clinical model was developed.

Interpretability of the model using SHAP

SHAP technology was used to clarify and analyze the
radiomic features applied to the radiomics models. This
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approach allows the significance of each feature in a machine
learning model to be represented and provides a comprehensive
explanation of how each feature affects the output result, either
raising or lowering it.

The SHAP summary plot can effectively visualize and interpret
the significance of features in relation to the predictions of a model,
with features being listed top-down on the basis of their importance.
Compared with the bottom features, the top features exhibit greater
contributions to the model and possess higher predictive power.
The SHAP values were computed for the chosen radiomic features
contained in the radiomics model showing the best performance.
The SHAP value of a specific feature from an individual patient is
represented by a dot, and these dots are stacked vertically and
arranged horizontally to illustrate the density of identical SHAP
values. Subsequently, each point is assigned a color based on the
feature’s value. The SHAP force plot enables the evaluation of a
single patient to be interpreted. The percentage contribution of a
specific feature to the SHAP value is represented by the length of the
arrow. Positive (red) or negative (blue) contributions are indicated
by the color of the arrow. Figure 3 illustrates the workflow of
the study.
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FIGURE 3
Flowchart of the study.

Statistical analysis

Data were analyzed using SPSS software (version 26.0, IBM)
and R software (version 4.3.1, www.r-project.org). Python (3.9.7,
www.python.org) was used to build the machine learning models.
The Kolmogorov-Smirnov test was used to test continuous data for
normality. Comparative data analysis was conducted using the
Mann-Whitney U test for non-normally distributed continuous
data, independent samples ¢-tests was used for normally distributed
continuous data, and Fisher’s exact test or the chi-square test were
used for categorical variables.

The ability of the models to predict STAS status was assessed using
the receiver operating characteristics (ROC) curve and the area under
the curve (AUC), with a 95% confidence interval (CI) provided. The
AUC values were compared between the best-performing model and
the other models using the DeLong test. The clinical utility of the
models was assessed using decision curve analysis (DCA). A value of P
< 0.05 was considered statistically significant.

Results
Clinical and CT characteristics

Table 1 provides details on the clinical and CT features of the
patients. Among 333 patients with lung adenocarcinoma, 152 cases
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were STAS-positive, and 181 were STAS-negative. There were 210
women and 123 men, ranging in age from 29 to 83 years.

Statistically significant differences were observed in smoking
history, CEA, T stage, CTR, Dsolid, Dmax, lobulation, spiculation,
air bronchogram, and vascular convergence between the STAS-
positive and STAS-negative groups.

Construction of the clinical model

When applied to the training set, the univariate logistic regression
analysis demonstrated that risk factors predicting STAS in lung
adenocarcinoma included CEA, T stage, Dsolid, Dmax, CTR,
boundary, lobulation, spiculation, and vascular convergence
(Table 2). Multivariate logistic regression analysis demonstrated
that CTR was an independent predictor of STAS, and then the
clinical model was built. Finally, the clinical model achieved an AUC
value of 0.681 (95% CI: 0.611-0.752) for the training set and 0.622
(95% CI: 0.494-0.750) for the external test set (Table 3).

Construction of radiomics signatures and
evaluation of their performance

For individual ROIs (GNR, GGR, SR and PR), features with ICCs >
0.75 were retained, and further feature selection was carried out in the
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TABLE 1 Clinical and CT characteristics of patients.

STAS . STAS positive
Variable negative P value
(n=181) (n=152)

Age (y) 59.00 (53.00, 66.00) :3:23)(53'25’ 0.321
Sex 0.182

Female 120 (66.3%) 90 (59.2%)

Male 61 (33.7%) 62 (40.8%)
Smoking history 0.021
Never 153 (84.5%) 113 (74.3%)
Former or current 28 (15.5%) 39 (25.7%)
Nodule location 0.342
RUL 58 (32.0%) 43 (28.3%)
RML 18 (9.9%) 9 (5.9%)
RLL 26 (14.4%) 33 (21.7%)
LUL 42 (23.2%) 36 (23.7%)
LLL 37 (20.4%) 31 (20.4%)
CEA 0.001
Normal 166 (91.7%) 120 (78.9%)
Abnormal 15 (8.3%) 32 (21.1%)
T stage <0.001
Tla 84 (46.4%) 31 (20.4%)
T1b 89 (49.2%) 93 (61.2%)
Tlc 8 (4.4%) 28 (18.4%)
Dmax (mm) 16.00 (12.00, 20.00) z:gg)(ls.oo, <0.001
Dsolid (mm) 8.00 (5.00, 11.00) izzgg)(lo.oo, <0.001
CTR 0.55 (0.39, 0.72) 0.73 (0.56, 0.87) <0.001
Boundary 0.256
Clear 79 (43.6%) 57 (37.5%)
Unclear 102 (56.4%) 95 (62.5%)
Lobulation <0.001
No 70 (38.7%) 21 (13.8%)
Yes 111 (61.3%) 131 (86.2%)
Spiculation <0.001
No 107 (59.1%) 40 (26.3%)
Yes 74 (40.9%) 112 (73.7%)
Pleural indentation 0.098
No 59 (32.6%) 37 (24.3%)
Yes 122 (67.4%) 115 (75.7%)

(Continued)
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TABLE 1 Continued

STAS o
] STAS positive
. negatlve P value

Variable

(n=181) (n=152)
Air bronchogram 0.016
No 78 (43.1%) 46 (30.3%)
Yes 103 (56.9%) 106 (69.7%)
Vacuole 0.294
No 95 (52.5%) 71 (46.7%)
Yes 86 (47.5%) 81 (53.3%)
Vascular <0.001
convergence
No 83 (45.9%) 36 (23.7%)
Yes 98 (54.1%) 116 (76.3%)

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe;
LLL, left lower lobe; CEA, carcinoembryonic antigen; CTR, consolidation/tumor ratio; STAS,
spread through air spaces; Dmax, maximum tumor diameter; Dsolid, maximum solid
component diameter.

training group using Spearman correlation coefficients and the LASSO
algorithm (Figures 4A, B). We identified 3, 4, 8, and 15 radiomic
features with the highest predictive value for GNR, GGR, SR, and PR,
respectively. We used the aforementioned 3 machine learning
classifiers to establish radiomics signatures for the four ROIs. For
both the training and external test groups, the LightGBM classifier
model based on SR features (SR model) produced the highest
predictive performance, with accuracy values of 0.834 and 0.755,
respectively, and AUC values of 0.926 (95% CI: 0.894-0.958) and
0.831 (95% CI: 0.741-0.920) (Table 3). Supplementary Table S2
provides details on the performance of three machine learning
classifiers using radiomic features from individual ROIs.

For analysis of multiple ROIs (GGR+SR, GNR+PR and GGR+SR
+PR), we combined the features of the selected ROIs before performing
correlation analysis and applying the aforementioned screening
methods, choosing 8, 7, and 16 radiomic features to construct the
respective multiple ROI-based radiomics signatures. The LightGBM
classifier model utilizing combined features from GGR, SR, and PR
(GGR+SR+PR model) produced the greatest predictive performance
(training group: AUC = 0.959, 95% CI: 0.936-0.982, Accuracy = 0.901;
external test group: AUC = 0.840, 95% CI: 0.758-0.921, Accuracy =
0.836) (Table 3). This was the best-performing model and
outperformed the SR model. The sixteen radiomic features that
formed the best radiomics signature included nine SR features, three
GGR features, and four PR features (Figure 4C). Supplementary Table
S3 provides details on the performance of three machine learning
classifiers using radiomic features from multiple ROIs.

Model performance comparison

The GGR+SR+PR model did not demonstrate a significant
difference in AUC value from the GGR+SR model (P = 0.646) or SR
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TABLE 2 Analysis by logistic regression of clinical and CT characteristics.

10.3389/fonc.2025.1700843

Variable Univariate logistic analysis Multivariate logistic analysis
OR (95% CI) P value OR (95% CI) P value

Age 1.013 (0.987-1.041) 0.330

Sex 1.256 (0.722-2.183) 0.420

Smoking history 1.281 (0.659-2.492) 0.465

Nodule location 0.998 (0.838-1.838) 0.983

CEA 2471 (1.194-5.115) 0.015 2.078 (0.907-4.765) 0.084
T stage 3.689 (2.288-5.946) <0.001 2.075 (0.685-6.290) 0.197
Dmax 1.080 (1.031-1.131) 0.001 1.151 (0.961-1.380) 0.127
Dsolid 1.151 (1.090-1.215) <0.001 0.803 (0.616-1.047) 0.105
CTR 29.502 (7.111-122.395) <0.001 316.283 (1.296-77210.826) 0.040
Boundary 1.955 (1.142-3.346) 0.015 1.197 (0.637-2.248) 0.577
Lobulation 4.143 (1.673-10.258) 0.002 1.100 (0.375-3.223) 0.863
Spiculation 3.393 (1.908-6.033) <0.001 1.819 (0.914-3.619) 0.088
Pleural indentation 1.691 (0.901-3.172) 0.102

Air bronchogram 1.258 (0.719-2.202) 0.421

Vacuole 1.093 (0.645-1.853) 0.742

Vascular convergence 3.114 (1.758-5.517) <0.001 1.736 (0.837-3.599) 0.138

OR, odds ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CTR, consolidation/tumor ratio; Dmax, maximum tumor diameter; Dsolid, maximum solid component diameter.

model (P = 0.752) in the external test group. The AUC value of the
GGR+SR+PR model was significantly superior to that of all other
models, as detailed in Table 3. The DCA presented in Figure 4D shows
that the GGR+SR+PR model achieved greater net benefit within more
threshold probabilities than did the clinical model.

Model interpretability with SHAP

In Figure 5, it can be observed that wavelet-HHL_glcm_Idn
from SR played a vital role in the best radiomics model’s
differentiation of STAS status. The color map indicates a positive
correlation between the SHAP value of this feature and the model’s

output. For the individual sample predictions, we randomly chose
two patients to make the force plot (Figure 6). Each forecast began
with a base value of 0.247, representing the average SHAP value of
all predictions. In Figure 6A, the SHAP value of the patient is 1.65,
which exceeds the base value and results in a prediction of positive
for STAS. Conversely, in Figure 6B, the patient’s SHAP value was
—1.37, suggesting a prediction of STAS negative.

Discussion

In this study, we constructed several radiomics signatures using
separate regions of nodules (ground-glass, solid, gross, and

TABLE 3 Diagnostic value of clinical model and each best machine learning model based on different nodule regions.

Training cohort

External test cohort

AUC (95% ClI) Accuracy P value AUC (95% ClI) Accuracy P value
Clinical model 0.681 (0.611-0.752) 0.664 <0.001 0.622 (0.494-0.750) 0.718 <0.001
GNR 0.765 (0.703-0.827) 0.713 <0.001 0.674 (0.561-0.787) 0.691 <0.001
SR 0.926 (0.894-0.958) 0.834 <0.001 0.831 (0.741-0.920) 0.755 0.752
GGR 0.738 (0.671-0.805) 0.704 <0.001 0.659 (0.540-0.779) 0.691 <0.001
PR 0.917 (0.880-0.953) 0.865 0.250 0.648 (0.523-0.773) 0.682 0.003
GGR+SR 0.936 (0.907-0.966) 0.857 0.007 0.832 (0.743-0.920) 0.836 0.646
GNR+PR 0.801 (0.744-0.859) 0.749 <0.001 0.714 (0.603-0.825) 0.600 <0.001
GGR+SR+PR 0.959 (0.936-0.982) 0.901 Reference 0.840 (0.758-0.921) 0.836 Reference

AUC, area under the receiver operating characteristic curve; CI, confidence interval; GNR, gross nodule region; SR, solid region; GGR, ground-glass opacity region; PR, perinodular region. The
logistic regression classifier produced the best predictive performance in the GNR and GNR+PR models. The support vector machine classifier produced the best predictive performance in the
GGR model. The light gradient boosting machine classifier produced the best predictive performance in the SR, PR, GGR+SR and GGR+SR+PR models.
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(A) The plot of coefficient profile. (B) The plot of cross-validation. (C) Feature weight histogram in best-performing model. (D) Decision curve

analysis.

perinodular) individually and in combination, and explored the
potential of these radiomic features for predicting STAS status in
lung adenocarcinoma. The GGR+SR+PR model exhibited the
highest performance, achieving AUCs of 0.959 and 0.840,
respectively, in the training and external test groups, indicating its

Frontiers in Oncology 08

potential as a valuable preoperative tool for clinical
decision making.

STAS represents a crucial risk factor affecting patient survival
and postoperative recurrence (6). The preoperative accurate
prediction of the STAS status in lung adenocarcinoma is
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conducive to the selection of surgical approaches. Multiple studies
have demonstrated that the solid tumor component is associated
with STAS status (16, 33). In our study, the CTR emerged as an
independent predictor of STAS, indicating that tumors positive for
STAS tend to have a greater proportion of solid components,
aligning with their observed findings. Additionally, the present
research showed that CEA levels were frequently elevated in
patients with STAS-positive lung adenocarcinoma, which is
consistent with previous study finding (23). This suggests that
this tumor marker may serve as an important indicator for STAS
in lung adenocarcinoma. However, this factor was not an
independent risk factor for STAS in our study.

Previous studies have used radiomics to assess STAS. Jiang et al.
(21) built a CT-based radiomics signature using the random-forest
classifier that predicted STAS with a specificity of 0.588, sensitivity
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SHAP value (impact on model output)

of 0.880, and AUC of 0.754, demonstrating good diagnostic
capability. However, this study was a single-center study. Chen
et al. (34) extracted radiomic features from 233 stage I lung
adenocarcinoma and constructed a CT-based predictive model for
STAS that achieved AUCs of 0.63 and 0.69 in the internal and
external validation cohorts, respectively. However, this model
showed moderate predictive performance. Moreover, these studies
only extracted radiomic features from the gross tumor region. In
our study, we extracted radiomic features from different regions of
nodules, and found that the radiomics model based on combined
features from GGR, SR, and PR showed good discrimination ability
(AUC = 0.840) and was the best-performance model. By analyzing
these radiomic features, we observed that the predictive
performance of the GGR+SR model (AUC = 0.832) outperformed
the GNR model (AUC = 0.674) when applied to the external test
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cohort. This result may indicate that the combined features of GGR
and SR had additional value compared with the GNR features alone.
Additionally, we also found that the predictive performance of the
SR model (AUC = 0.831) was superior to that of the GGR model
(AUC = 0.659) and GNR model (AUC = 0.674). Radiomics can
reflect the heterogeneity of tumors, this result demonstrates that
radiomic features from SR were useful in predicting STAS,
reflecting the relationship between STAS and the solid
components of the tumor. STAS is mainly distributed around the
primary tumor lesion, and studies (23, 35) have demonstrated that
radiomic features extracted from the peritumoral area were feasible
for predicting STAS status. In our study, the prediction
performance of the model was improved when combined
radiomic features from SR, GGR and PR, indicating PR features
had a certain predictive value.

Effective and dependable machine learning classifiers aid in
enhancing the successful use of radiomics within clinical practice
(36). To enhance the robustness of our research, we chose 3
machine learning classifiers. The primary benefit of LightGBM is
the substantial speed-up in the training process, which leads to the
creation of more effective models (37, 38). Our best-performing
radiomics signature contained a high proportion of SR features (9/
16), and these had significant predictive weight, suggesting that the
solid regions contain important information reflecting the STAS
status. This further illustrates the association between STAS and
solid components. The SHAP analysis provides explanations and
visualizations for the LighGBM model through SHAP summary
plots and SHAP force plots. In this study, we found that the wavelet-
HHL_glcm_Idn feature based on SR was the top feature that
contributed the most to the best radiomics signature. Wavelet
features can reflect heterogeneity within the tumor and better
represent the image information (39). A previous study showed
that wavelet features are capable of effectively predicting the STAS
status in lung adenocarcinoma (40).

Our research is subject to several limitations. First, this study
was based on retrospective analysis, which inherently has selection
bias. Second, employing a manual and semi-automatic method for
segmenting the ROI introduces a level of subjectivity that could
influence the findings. Third, the sample size is relatively small and
is need a larger prospective study to validate our findings. Fourth,
this study only analyzed the perinodular area extending 5 mm from
the edge of the nodule to the periphery, and a wider range of
perinodular area needs to be further explored in the future. Finally,
this study utilized only non-enhanced CT images, and future work
should integrate contrast-enhanced CT to further explore the value
of radiomics for predicting STAS.

Conclusion

In conclusion, CT radiomic features based on SR can contribute
to identifying the STAS status in lung adenocarcinoma. Combined
radiomic features from ground-glass, solid, and perinodular areas of
PSNs enhances the prediction ability of the model.
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