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Background: This study aims to explore the value of radiomic features from

different regions of part-solid nodules (PSNs) for predicting spread through air

spaces (STAS) in lung adenocarcinoma.

Methods: This retrospective analysis included 333 patients with PSNs lung

adenocarcinoma pathologically confirmed in three hospitals. Data from one

institution were utilized for training set (n=223), while the remaining two served

as the external test set (n=110). The computed tomography radiomic features

were extracted from different areas of the nodule (ground-glass, solid, gross, and

perinodular). Three machine learning classifiers (support vector machine, light

gradient boosting machine [LightGBM], logistic regression) were used to build

predictive models. Model performance was assessed using accuracy and area

under the curve (AUC). The DeLong test was used to determine differences in

AUC values betweenmodels. The clinical benefits of models were assessed using

decision curve analysis (DCA).

Results: In the external test set, the radiomics model developed using combined

features from ground-glass, solid, and perinodular regions with LightGBM

classifier achieved an AUC of 0.840 (95% confidence interval [CI]: 0.758–

0.921), which was better than the clinical model (AUC = 0.622, 95% CI: 0.494–

0.750, P < 0.001) and other radiomics models. DCA indicated that this model has

achieved a higher net benefit.

Conclusion: The radiomics model developed using radiomic features of distinct

solid and ground-glass components of PSNs and the perinodular region can

contribute to identifying the STAS status in lung adenocarcinoma.
KEYWORDS

lung adenocarcinoma, spread through air spaces, part-solid nodules, tomography, X-
ray computed, radiomics
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Introduction

Lung cancer ranks among the most prevalent cancers globally,

having the highest incidence rate (1). In most countries,

adenocarcinoma emerges as the predominant pathological type,

accounting for nearly 50% of all lung cancers (2). The detection

rates for pulmonary nodules and early lung cancer have increased

with the extensive application of low-dose chest computed

tomography (CT) (3, 4). Pulmonary nodules can be classified

according to CT findings into pure ground glass nodules, solid

nodules, and part-solid nodules (PSNs).

Spread through air spaces (STAS) was recognized as an invasion

mode of lung adenocarcinoma by the World Health Organization

(WHO) in 2015. STAS refers to the spreading of micropapillary

clusters, solid nests, or single cells beyond the edge of the tumor into

the air space in the surrounding lung parenchyma (5). Lung

adenocarcinoma with STAS shows a poor prognosis, with

reduced overall survival and disease-free survival rates (6, 7). In

recent years, sublobar resection has been widely used as a minimally

invasive surgical method to treat early lung cancer (8, 9). However,

lung cancer patients who exhibit STAS after sublobar resection have

an increased risk of recurrence (10, 11). STAS serves as an

important prognostic factor after sublobar resection for early lung

adenocarcinoma, and such tumors may not be suitable for sublobar

resection (12, 13). Unfortunately, STAS can only be determined by

surgical methods at present, and there are still uncertainties

regarding the accuracy of intraoperative frozen sections (14, 15).

Therefore, it is very important to determine the status of STAS

before operation because it helps clinicians choose the most

appropriate surgical approach.

Previous research (16–18) showed that STAS mostly occurs in

solid or part-solid nodules, whereas it is rarely observed in pure

ground glass nodules. Compared with pure ground glass nodules,

PSNs exhibit a high positive of STAS, along with a high invasiveness

and a less favorable prognosis. Meanwhile, lung adenocarcinoma

presenting as PSN is a special clinical subtype that can show

different clinicopathological features from solid tumors (19).

Consequently, special attention should be paid to PSNs.

Radiomics analysis using quantitative features extracted from

medical images allows precise and detailed evaluation of lesions,

including the presence of tumor heterogeneity (20). Several studies

(21–24) have used radiomics method to assess STAS status in lung

adenocarcinoma, and these have achieved good diagnostic

performance. However, their study failed to offer a detailed

analysis of lung adenocarcinoma with PSNs. Additionally,

because of unclear internal mechanisms that limit transparency

and credibility, the application of such models in clinical practice

may be restricted (25). Shapley Additive exPlanations (SHAP) is a

unified structure based on additive feature mapping techniques that

consider the predictions of complex models (26). It can explain the

importance of features and assist in comprehending the function of

each feature in making predictions for both the entire dataset and

specific samples (27). By combining radiomics and SHAP, it is
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possible to build a model that explains the prediction in an

understandable way (28, 29).

This study aimed to construct and evaluate radiomics signatures

derived from various areas of the nodule (ground-glass, solid, gross,

and perinodular) for predicting STAS status in lung

adenocarcinoma with PSNs. Moreover, we used the SHAP

method to illustrate the decision-making process of the models

and gain insights into the connections between radiomic features

and STAS.
Methods

Patients

The Ethics Committee of our institution authorized this

retrospective study (No. QYFY WZLL 29455) and waived the need

for informed consent. Patients with lung adenocarcinoma who had

undergone surgical resection in three hospitals between December

2019 and April 2024 were retrospectively collected. The inclusion

criteria included. (1) pathology-confirmed invasive lung

adenocarcinoma; (2) thin-slice CT examination (slice thickness ≤

1.25 mm) performed within 1 month before operation; (3) tumor

that was PSN with a maximum diameter ≤ 3 cm; and (4)

clinicopathological data were complete. The exclusion criteria

included: (1) patients with multiple lesions; (2) patients who received

preoperative anti-tumor treatment (immunotherapy, chemotherapy, or

radiotherapy); (3)patients who had previously been diagnosed with

other malignant tumors; and (4) patients with low-quality image.

In total, 333 patients were collected (Figure 1). Patients were

separated into a training group (n=223, center 1) and an external

test group (n=110, centers 2 and 3).
Histopathologic evaluation

Two pathologists, unaware of the clinical outcomes for the

patients, independently evaluated the tumor slides. Where any

discrepancies, a consensus was achieved through discussion.

According to the WHO classification, STAS refers to the

existence of tumor cells in the lung air spaces beyond the margin

of the main tumor. It has three main forms: (1) single cells, multiple

separate and non-continuous single cells occupy the air spaces; (2)

solid nests, where the solid component of the tumor fills the air

spaces; and (3) micropapillary clusters, micro-nipple structures

without central fibrovascular cores fill the air spaces (10, 30).
Image acquisition

Supplementary Table S1 outlines the parameters used for CT

scanning. Unenhanced CT was acquired using a slice thickness of ≤

1.25 mm.
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Clinical data collection and CT image
evaluation

The clinical characteristics and CT findings of patients were

analyzed, including gender, age, smoking history, consolidation/

tumor ratio (CTR), maximum solid component diameter (Dsolid),

maximum tumor diameter (Dmax) , c l inica l T stage ,

carcinoembryonic antigen (CEA) level, nodule location,

boundary, spiculation, lobulation, vascular convergence, pleural

indentation, air bronchogram, and vacuole. Two experienced

radiologists evaluated the CT images of the lesions. They did not

know the pathological results of the lesions before evaluation and

reached a consensus through discussion when there were

differences in their evaluation results.
Image segmentation and extraction of
radiomic features

An experienced radiologist manually delineated the regions of

interest (ROIs) using 3D-slicer software (version 5.2.1, https://

www.slicer.org). The gross nodule region (GNR), solid region

(SR), ground-glass opacity region (GGR), and perinodular region

(PR) were delineated as shown in Figure 2, and three-dimensional

ROIs of the different nodule regions were generated. The

segmentation steps were as follows: (1) the GNR was delineated

around the edge of the nodule using the lung window (window

level, -700 HU; window width, 1200 HU), excluding large bronchi

and vessels as much as possible; (2) the SR was identified within the

GNR by applying a thresholding method (> −50HU); (3) the GGR

was obtained by subtracting the SR from the GNR; and (4) the PR

was defined as extending 5 mm from the edge of the nodule to the
Frontiers in Oncology 03
periphery, excluding nearby soft tissues such as the mediastinum or

chest wall (31).

Thirty lesions were randomly selected and delineated two weeks

later by the same radiologist and another radiologist to allow intra-

and inter-observer correlation coefficients (ICCs) to be computed.

The radiologists were blinded to clinical and pathological data

during the segmentation process.

Pyradiomics software (version 3.1.0) was used to extract radiomic

features from the ROIs. To mitigate the impact of different CT spatial

resolutions, all images were resampled to a voxel size of 1 × 1 × 1mm.

Finally, each ROI yielded a total of 1316 features, including a suite of

texture features, 14 shape-based features, and 252 first-order features.

The texture features consisted of 70 neighboring grey tone difference

matrix (NGTDM) features, 196 grey-level dependence matrix

(GLDM) features, 224 grey-level size zone matrix (GLSZM)

features, 336 gray-level co-occurrence matrix (GLCM) features, and

224 grey-level run-length matrix (GLRLM) features.
Selection of radiomic features and model
construction

Features with ICCs > 0.75 were chosen for further analyses. All

features were processed with Z-score normalization, and the combat

compensation technique was employed to adjust those radiomic

features that were influenced by batch effects resulting from

different devices (32). The Spearman rank test was used to evaluate

the correlation between features, and when the linear correlation

coefficient was > 0.80, features were considered redundant and

removed. Least absolute shrinkage and selection operator (LASSO)

regression was then used to identify the features with the most

predictive value. A total of 3 machine learning classifiers were used
frontiersin.or
FIGURE 1

The process used to select patients is shown in the flowchart. STAS, spread through air spaces.
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to construct models for the radiomic features from different regions

of the nodule (GNR, SR, GGR, PR). These three classifiers were:

support vector machine (SVM), light gradient boosting machine

(LightGBM), logistic regression (LR). The classifiers were trained

on the training set using a 10-fold cross-validation method.
Clinical model construction

Univariate logistic regression analysis was used to identify

variables associated with STAS status. Variables with P < 0.05

were further analyzed using multivariate logistic regression analysis.

Variables yielding P < 0.05 in the multivariate analysis were deemed

independent predictors of STAS. Using these significant variables, a

clinical model was developed.
Interpretability of the model using SHAP

SHAP technology was used to clarify and analyze the

radiomic features applied to the radiomics models. This
Frontiers in Oncology 04
approach allows the significance of each feature in a machine

learning model to be represented and provides a comprehensive

explanation of how each feature affects the output result, either

raising or lowering it.

The SHAP summary plot can effectively visualize and interpret

the significance of features in relation to the predictions of a model,

with features being listed top-down on the basis of their importance.

Compared with the bottom features, the top features exhibit greater

contributions to the model and possess higher predictive power.

The SHAP values were computed for the chosen radiomic features

contained in the radiomics model showing the best performance.

The SHAP value of a specific feature from an individual patient is

represented by a dot, and these dots are stacked vertically and

arranged horizontally to illustrate the density of identical SHAP

values. Subsequently, each point is assigned a color based on the

feature’s value. The SHAP force plot enables the evaluation of a

single patient to be interpreted. The percentage contribution of a

specific feature to the SHAP value is represented by the length of the

arrow. Positive (red) or negative (blue) contributions are indicated

by the color of the arrow. Figure 3 illustrates the workflow of

the study.
FIGURE 2

Image illustrates segmentation of different region of interest. (A) the gross nodule region, (B) the solid region, (C) the ground-glass opacity region,
(D) the perinodular region.
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Statistical analysis

Data were analyzed using SPSS software (version 26.0, IBM)

and R software (version 4.3.1, www.r-project.org). Python (3.9.7,

www.python.org) was used to build the machine learning models.

The Kolmogorov-Smirnov test was used to test continuous data for

normality. Comparative data analysis was conducted using the

Mann-Whitney U test for non-normally distributed continuous

data, independent samples t-tests was used for normally distributed

continuous data, and Fisher’s exact test or the chi-square test were

used for categorical variables.

The ability of themodels to predict STAS status was assessed using

the receiver operating characteristics (ROC) curve and the area under

the curve (AUC), with a 95% confidence interval (CI) provided. The

AUC values were compared between the best-performing model and

the other models using the DeLong test. The clinical utility of the

models was assessed using decision curve analysis (DCA). A value of P

< 0.05 was considered statistically significant.
Results

Clinical and CT characteristics

Table 1 provides details on the clinical and CT features of the

patients. Among 333 patients with lung adenocarcinoma, 152 cases
Frontiers in Oncology 05
were STAS-positive, and 181 were STAS-negative. There were 210

women and 123 men, ranging in age from 29 to 83 years.

Statistically significant differences were observed in smoking

history, CEA, T stage, CTR, Dsolid, Dmax, lobulation, spiculation,

air bronchogram, and vascular convergence between the STAS-

positive and STAS-negative groups.
Construction of the clinical model

When applied to the training set, the univariate logistic regression

analysis demonstrated that risk factors predicting STAS in lung

adenocarcinoma included CEA, T stage, Dsolid, Dmax, CTR,

boundary, lobulation, spiculation, and vascular convergence

(Table 2). Multivariate logistic regression analysis demonstrated

that CTR was an independent predictor of STAS, and then the

clinical model was built. Finally, the clinical model achieved an AUC

value of 0.681 (95% CI: 0.611–0.752) for the training set and 0.622

(95% CI: 0.494–0.750) for the external test set (Table 3).
Construction of radiomics signatures and
evaluation of their performance

For individual ROIs (GNR, GGR, SR and PR), features with ICCs >

0.75 were retained, and further feature selection was carried out in the
FIGURE 3

Flowchart of the study.
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training group using Spearman correlation coefficients and the LASSO

algorithm (Figures 4A, B). We identified 3, 4, 8, and 15 radiomic

features with the highest predictive value for GNR, GGR, SR, and PR,

respectively. We used the aforementioned 3 machine learning

classifiers to establish radiomics signatures for the four ROIs. For

both the training and external test groups, the LightGBM classifier

model based on SR features (SR model) produced the highest

predictive performance, with accuracy values of 0.834 and 0.755,

respectively, and AUC values of 0.926 (95% CI: 0.894–0.958) and

0.831 (95% CI: 0.741–0.920) (Table 3). Supplementary Table S2

provides details on the performance of three machine learning

classifiers using radiomic features from individual ROIs.

For analysis of multiple ROIs (GGR+SR, GNR+PR and GGR+SR

+PR), we combined the features of the selected ROIs before performing

correlation analysis and applying the aforementioned screening

methods, choosing 8, 7, and 16 radiomic features to construct the

respective multiple ROI-based radiomics signatures. The LightGBM

classifier model utilizing combined features from GGR, SR, and PR

(GGR+SR+PR model) produced the greatest predictive performance

(training group: AUC = 0.959, 95% CI: 0.936–0.982, Accuracy = 0.901;

external test group: AUC = 0.840, 95% CI: 0.758–0.921, Accuracy =

0.836) (Table 3). This was the best-performing model and

outperformed the SR model. The sixteen radiomic features that

formed the best radiomics signature included nine SR features, three

GGR features, and four PR features (Figure 4C). Supplementary Table

S3 provides details on the performance of three machine learning

classifiers using radiomic features from multiple ROIs.
Model performance comparison

The GGR+SR+PR model did not demonstrate a significant

difference in AUC value from the GGR+SR model (P = 0.646) or SR
TABLE 1 Clinical and CT characteristics of patients.

Variable

STAS
negative

STAS positive
P value

(n=181) (n=152)

Age (y) 59.00 (53.00, 66.00)
59.00 (53.25,
67.00)

0.321

Sex 0.182

Female 120 (66.3%) 90 (59.2%)

Male 61 (33.7%) 62 (40.8%)

Smoking history 0.021

Never 153 (84.5%) 113 (74.3%)

Former or current 28 (15.5%) 39 (25.7%)

Nodule location 0.342

RUL 58 (32.0%) 43 (28.3%)

RML 18 (9.9%) 9 (5.9%)

RLL 26 (14.4%) 33 (21.7%)

LUL 42 (23.2%) 36 (23.7%)

LLL 37 (20.4%) 31 (20.4%)

CEA 0.001

Normal 166 (91.7%) 120 (78.9%)

Abnormal 15 (8.3%) 32 (21.1%)

T stage <0.001

T1a 84 (46.4%) 31 (20.4%)

T1b 89 (49.2%) 93 (61.2%)

T1c 8 (4.4%) 28 (18.4%)

Dmax (mm) 16.00 (12.00, 20.00)
19.50 (15.00,
25.00)

<0.001

Dsolid (mm) 8.00 (5.00, 11.00)
13.00 (10.00,
18.00)

<0.001

CTR 0.55 (0.39, 0.72) 0.73 (0.56, 0.87) <0.001

Boundary 0.256

Clear 79 (43.6%) 57 (37.5%)

Unclear 102 (56.4%) 95 (62.5%)

Lobulation <0.001

No 70 (38.7%) 21 (13.8%)

Yes 111 (61.3%) 131 (86.2%)

Spiculation <0.001

No 107 (59.1%) 40 (26.3%)

Yes 74 (40.9%) 112 (73.7%)

Pleural indentation 0.098

No 59 (32.6%) 37 (24.3%)

Yes 122 (67.4%) 115 (75.7%)

(Continued)
TABLE 1 Continued

Variable

STAS
negative

STAS positive
P value

(n=181) (n=152)

Air bronchogram 0.016

No 78 (43.1%) 46 (30.3%)

Yes 103 (56.9%) 106 (69.7%)

Vacuole 0.294

No 95 (52.5%) 71 (46.7%)

Yes 86 (47.5%) 81 (53.3%)

Vascular
convergence

<0.001

No 83 (45.9%) 36 (23.7%)

Yes 98 (54.1%) 116 (76.3%)
fro
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe;
LLL, left lower lobe; CEA, carcinoembryonic antigen; CTR, consolidation/tumor ratio; STAS,
spread through air spaces; Dmax, maximum tumor diameter; Dsolid, maximum solid
component diameter.
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model (P = 0.752) in the external test group. The AUC value of the

GGR+SR+PR model was significantly superior to that of all other

models, as detailed in Table 3. The DCA presented in Figure 4D shows

that the GGR+SR+PR model achieved greater net benefit within more

threshold probabilities than did the clinical model.
Model interpretability with SHAP

In Figure 5, it can be observed that wavelet-HHL_glcm_Idn

from SR played a vital role in the best radiomics model’s

differentiation of STAS status. The color map indicates a positive

correlation between the SHAP value of this feature and the model’s
Frontiers in Oncology 07
output. For the individual sample predictions, we randomly chose

two patients to make the force plot (Figure 6). Each forecast began

with a base value of 0.247, representing the average SHAP value of

all predictions. In Figure 6A, the SHAP value of the patient is 1.65,

which exceeds the base value and results in a prediction of positive

for STAS. Conversely, in Figure 6B, the patient’s SHAP value was

−1.37, suggesting a prediction of STAS negative.
Discussion

In this study, we constructed several radiomics signatures using

separate regions of nodules (ground-glass, solid, gross, and
TABLE 2 Analysis by logistic regression of clinical and CT characteristics.

Variable Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P value OR (95% CI) P value

Age 1.013 (0.987-1.041) 0.330

Sex 1.256 (0.722-2.183) 0.420

Smoking history 1.281 (0.659-2.492) 0.465

Nodule location 0.998 (0.838-1.838) 0.983

CEA 2.471 (1.194-5.115) 0.015 2.078 (0.907-4.765) 0.084

T stage 3.689 (2.288-5.946) <0.001 2.075 (0.685-6.290) 0.197

Dmax 1.080 (1.031-1.131) 0.001 1.151 (0.961-1.380) 0.127

Dsolid 1.151 (1.090-1.215) <0.001 0.803 (0.616-1.047) 0.105

CTR 29.502 (7.111-122.395) <0.001 316.283 (1.296-77210.826) 0.040

Boundary 1.955 (1.142-3.346) 0.015 1.197 (0.637-2.248) 0.577

Lobulation 4.143 (1.673-10.258) 0.002 1.100 (0.375-3.223) 0.863

Spiculation 3.393 (1.908-6.033) <0.001 1.819 (0.914-3.619) 0.088

Pleural indentation 1.691 (0.901-3.172) 0.102

Air bronchogram 1.258 (0.719-2.202) 0.421

Vacuole 1.093 (0.645-1.853) 0.742

Vascular convergence 3.114 (1.758-5.517) <0.001 1.736 (0.837-3.599) 0.138
OR, odds ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CTR, consolidation/tumor ratio; Dmax, maximum tumor diameter; Dsolid, maximum solid component diameter.
TABLE 3 Diagnostic value of clinical model and each best machine learning model based on different nodule regions.

Model Training cohort External test cohort

AUC (95% CI) Accuracy P value AUC (95% CI) Accuracy P value

Clinical model 0.681 (0.611-0.752) 0.664 <0.001 0.622 (0.494-0.750) 0.718 <0.001

GNR 0.765 (0.703-0.827) 0.713 <0.001 0.674 (0.561-0.787) 0.691 <0.001

SR 0.926 (0.894-0.958) 0.834 <0.001 0.831 (0.741-0.920) 0.755 0.752

GGR 0.738 (0.671-0.805) 0.704 <0.001 0.659 (0.540-0.779) 0.691 <0.001

PR 0.917 (0.880-0.953) 0.865 0.250 0.648 (0.523-0.773) 0.682 0.003

GGR+SR 0.936 (0.907-0.966) 0.857 0.007 0.832 (0.743-0.920) 0.836 0.646

GNR+PR 0.801 (0.744-0.859) 0.749 <0.001 0.714 (0.603-0.825) 0.600 <0.001

GGR+SR+PR 0.959 (0.936-0.982) 0.901 Reference 0.840 (0.758-0.921) 0.836 Reference
AUC, area under the receiver operating characteristic curve; CI, confidence interval; GNR, gross nodule region; SR, solid region; GGR, ground-glass opacity region; PR, perinodular region. The
logistic regression classifier produced the best predictive performance in the GNR and GNR+PR models. The support vector machine classifier produced the best predictive performance in the
GGR model. The light gradient boosting machine classifier produced the best predictive performance in the SR, PR, GGR+SR and GGR+SR+PR models.
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perinodular) individually and in combination, and explored the

potential of these radiomic features for predicting STAS status in

lung adenocarcinoma. The GGR+SR+PR model exhibited the

highest performance, achieving AUCs of 0.959 and 0.840,

respectively, in the training and external test groups, indicating its
Frontiers in Oncology 08
potential as a valuable preoperative tool for cl inical

decision making.

STAS represents a crucial risk factor affecting patient survival

and postoperative recurrence (6). The preoperative accurate

prediction of the STAS status in lung adenocarcinoma is
FIGURE 4

(A) The plot of coefficient profile. (B) The plot of cross-validation. (C) Feature weight histogram in best-performing model. (D) Decision curve
analysis.
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conducive to the selection of surgical approaches. Multiple studies

have demonstrated that the solid tumor component is associated

with STAS status (16, 33). In our study, the CTR emerged as an

independent predictor of STAS, indicating that tumors positive for

STAS tend to have a greater proportion of solid components,

aligning with their observed findings. Additionally, the present

research showed that CEA levels were frequently elevated in

patients with STAS-positive lung adenocarcinoma, which is

consistent with previous study finding (23). This suggests that

this tumor marker may serve as an important indicator for STAS

in lung adenocarcinoma. However, this factor was not an

independent risk factor for STAS in our study.

Previous studies have used radiomics to assess STAS. Jiang et al.

(21) built a CT-based radiomics signature using the random-forest

classifier that predicted STAS with a specificity of 0.588, sensitivity
Frontiers in Oncology 09
of 0.880, and AUC of 0.754, demonstrating good diagnostic

capability. However, this study was a single-center study. Chen

et al. (34) extracted radiomic features from 233 stage I lung

adenocarcinoma and constructed a CT-based predictive model for

STAS that achieved AUCs of 0.63 and 0.69 in the internal and

external validation cohorts, respectively. However, this model

showed moderate predictive performance. Moreover, these studies

only extracted radiomic features from the gross tumor region. In

our study, we extracted radiomic features from different regions of

nodules, and found that the radiomics model based on combined

features from GGR, SR, and PR showed good discrimination ability

(AUC = 0.840) and was the best-performance model. By analyzing

these radiomic features, we observed that the predictive

performance of the GGR+SR model (AUC = 0.832) outperformed

the GNR model (AUC = 0.674) when applied to the external test
FIGURE 6

SHAP force plot illustrates the reasoning process behind two representative cases. (A) The STAS status was positive of patient A. (B) The STAS status
was negative of patient B. The base value is the predicted value when no input is provided to the model, while the bold numbers represent the
probability predicted value (f(x)). Blue features represent decreased risk, while red features represent increased risk. The length of the arrow reflects
the degree of influence on the prediction. The longer the arrow, the greater the effect.
FIGURE 5

SHAP summary plot of best-performing model.
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cohort. This result may indicate that the combined features of GGR

and SR had additional value compared with the GNR features alone.

Additionally, we also found that the predictive performance of the

SR model (AUC = 0.831) was superior to that of the GGR model

(AUC = 0.659) and GNR model (AUC = 0.674). Radiomics can

reflect the heterogeneity of tumors, this result demonstrates that

radiomic features from SR were useful in predicting STAS,

reflecting the relationship between STAS and the solid

components of the tumor. STAS is mainly distributed around the

primary tumor lesion, and studies (23, 35) have demonstrated that

radiomic features extracted from the peritumoral area were feasible

for predicting STAS status. In our study, the prediction

performance of the model was improved when combined

radiomic features from SR, GGR and PR, indicating PR features

had a certain predictive value.

Effective and dependable machine learning classifiers aid in

enhancing the successful use of radiomics within clinical practice

(36). To enhance the robustness of our research, we chose 3

machine learning classifiers. The primary benefit of LightGBM is

the substantial speed-up in the training process, which leads to the

creation of more effective models (37, 38). Our best-performing

radiomics signature contained a high proportion of SR features (9/

16), and these had significant predictive weight, suggesting that the

solid regions contain important information reflecting the STAS

status. This further illustrates the association between STAS and

solid components. The SHAP analysis provides explanations and

visualizations for the LighGBM model through SHAP summary

plots and SHAP force plots. In this study, we found that the wavelet-

HHL_glcm_Idn feature based on SR was the top feature that

contributed the most to the best radiomics signature. Wavelet

features can reflect heterogeneity within the tumor and better

represent the image information (39). A previous study showed

that wavelet features are capable of effectively predicting the STAS

status in lung adenocarcinoma (40).

Our research is subject to several limitations. First, this study

was based on retrospective analysis, which inherently has selection

bias. Second, employing a manual and semi-automatic method for

segmenting the ROI introduces a level of subjectivity that could

influence the findings. Third, the sample size is relatively small and

is need a larger prospective study to validate our findings. Fourth,

this study only analyzed the perinodular area extending 5 mm from

the edge of the nodule to the periphery, and a wider range of

perinodular area needs to be further explored in the future. Finally,

this study utilized only non-enhanced CT images, and future work

should integrate contrast-enhanced CT to further explore the value

of radiomics for predicting STAS.
Conclusion

In conclusion, CT radiomic features based on SR can contribute

to identifying the STAS status in lung adenocarcinoma. Combined

radiomic features from ground-glass, solid, and perinodular areas of

PSNs enhances the prediction ability of the model.
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