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Background: The MRI imaging traits of pediatric posterior cranial fossa
neoplasms overlap highly, leading to difficulties in preoperative diagnosis. Their
treatment strategies differ significantly, and traditional deep learning models have
limitations in multi - sequence MRI fusion and clinical interpretability, so new
solutions are urgently needed.

Objectives: This study aims to develop a 2.5D multi - sequence MRI deep
learning framework (ResSwinT) that integrates Residual Network and Swin
Transformer, to achieve automatic classification of three main Pediatric
posterior fossa tumors—Pilocytic astrocytoma (PA), Medulloblastoma (MB), and
Ependymoma (EP), and enhance the interpretability of the model through the
SHAP method, so as to provide a more reliable auxiliary decision-making basis for
clinical practice.

Methods: This study retrospectively collected 309 pediatric patients confirmed
by pathology, including 109 PA, 130 MB and 70 EP. The MRI data of these patients
included five sequences: T1IWI, T1C, T2WI,FLAIR, and ADC. After preprocessing
steps such as N4 bias field correction, resampling, sequence registration, and
intensity normalization, samples were constructed using a 2.5D image
construction strategy, and the ResSwinT model is designed. Its performance
was compared with seven deep learning models such as Residual Network 18
and VGG16, and SHAP analysis was used to analyze trait contributions.

Results: The proposed ResSwinT model outperforms existing commonly used
deep learning models in all classification tasks, particularly showing outstanding
performance in terms of area under the curve(AUC) and overall accuracy(ACC).
For the PA vs Non-PA task: ACC 89.5%, AUC 0.975; for the MB vs Non-MB task:
ACC 93.7%, AUC 0.978; for the EP vs Non-EP task: Acc 87.5%, AUC 0.937.
SHapley Additive exPlanations(SHAP) analysis shows that the model pays high
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attention to the gross tumor volume and its surrounding structures, and its
decision-making basis is highly consistent with key imaging biomarkers,
verifying the interpretability and clinical relevance of the model.

Conclusions: ResSwinT achieves high-precision classification of pediatric
posterior fossa tumor through 2.5D multi-sequence fusion and cross-attention
mechanism. SHAP attribution analysis reveals the biological basis of the model's
decision-making, providing clinicians with an interpretable Al-assisted diagnostic
tool, and is expected to optimize individualized treatment strategies.

pediatric posterior fossa tumor, 2.5D MRI, deep learning, cross-attention,

interpretable Al

1 Introduction

Brain neoplasm is the most common solid tumor in children,
with 45% to 60% occurring in the posterior cranial fossa (PF).
Pilocytic astrocytoma (PA), Medulloblastoma (MB), and
Ependymoma (EP) are the three most important types in the PF,
and their diagnosis and treatment strategies are all different: PA
only requires local resection, MB requires whole-brain radiation
oncology, and EP surgery needs to avoid the brainstem (I, 2).
However, the magnetic resonance imaging (MRI) traits overlap
highly (e.g., both MB and EP are prone to calcium deposition and
cystic degeneration), resulting in insufficient preoperative
diagnostic accuracy. As the gold standard, pathological diagnosis
has invasive risks, delays, and sample bias, and these limitations
directly affect the formulation of surgical plans and patient
prognosis (3, 4). Although traditional deep learning models
have made progress in tumor classification, there are still
significant limitations in multi-sequence MRI fusion and
clinical interpretability.

Multi-sequence MRI reveals neoplasms traits from different
dimensions. T1 weighted image (T1IWI) can well display the
anatomical structure of the brain, while T1 contrast + (T1C)
shortens the relaxation time of TIWI by injection of gadolinium-
based contrast media to better detect lesions with damaged blood-
brain barrier. T2 weighted image (T2WI) is more sensitive to lesion
information. Fluid-attenuated inversion recovery (FLAIR) sequence
is easy to identify non-enhanced neoplasms and peritumoral
oedema, while the ADC map obtained after processing the
diffusion-weighted imaging sequence is a cellular marker and has
been proven to be negatively correlated with cell proliferation.
Therefore, these five MRI sequences all reveal different traits of
human tissues from different angles and play a crucial role in early
diagnosis and treatment (5-8).

In tumor analysis using multi-sequence MRI, precise tumor
segmentation is a fundamental step for subsequent quantitative
analysis. Its quality directly affects the reliability of feature
extraction and ultimately determines the overall performance of
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the classification model. Currently, semi-automatic segmentation
strategies have achieved good results in ensuring annotation quality.
Meanwhile, emerging deep learning techniques offer new
possibilities for more efficient segmentation annotation. Several
studies (9, 10) have confirmed the feasibility of fully automatic
segmentation in eliminating manual intervention. Other methods
directly predict the entire image through an attention mechanism,
thus avoiding an explicit segmentation process (11).

Although machine learning technology based on radiomics has
shown clear clinical value in fields such as neurosurgical disease
management and genetic gene analyses. However, previous machine
learning models applied to the research of pediatric posterior cranial
fossa neoplasms still have limitations in terms of accuracy and
reproducibility; at the same time, existing deep learning methods
also face challenges such as insufficient model interpretability (12—
16). Although 2D Convolutional Neural Network (CNN) can extract
local texture Traits, it loses the spatial continuity information of
Neoplasms, resulting in insufficient recognition rate for Neoplasms
with complex morphology. Although 3D models retain spatial
information, they contain more noise, require processing massive
voxel data, and have a cubic increase in computational complexity,
making it difficult to deploy them in routine clinical practice (17).The
2.5D strategy proposed by Zhang (18) et al. improves classification
accuracy while maintaining computational efficiency by introducing
axial continuity information. Takao’s study showed that the 2.5D
model utilizes continuity information between adjacent slices,
effectively reducing the false positive rate, and the final model
performance with a sensitivity of 88.7% and a positive predictive
value of 58.9% is superior to the traditional 2D model, demonstrating
the feasibility of applying 2.5D data in the field of deep learning (19,
20). Secondly, early Transformer models rely on global attention
mechanisms and are insufficiently sensitive to key local details such as
cystic changes in medical images. Swin Transformer optimizes long-
range trait extraction through a shifted window mechanism,
providing a new idea for solving the above problems. Although
existing studies have attempted to integrate CNN with Transformer
(e.g, ViT+Residual Network), there is a lack of local-global trait
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fusion mechanisms for medical images, and interpretability analysis
has not been associated with multi-sequence MRI (21, 22). In
addition, the accuracy of Ependymoma classification is low due to
small sample size and trait confusion, so more robust trait extraction
methods are urgently needed.

This study proposes a ResSwinT model based on 2.5D MRI,
which realizes the mutual enhancement of local traits of Residual
Network and global traits of Swin Transformer through cross-
attention mechanism, and combines SHapley Additive exPlanations
(SHAP) attribution analysis to reveal the anatomical basis for model
decision-making, filling the technical gap between multi-sequence
MRI fusion and clinical interpretability, and achieving automatic
classification of 3 types of pediatric posterior cranial fossa brain
neoplasms: Pilocytic astrocytoma, Medulloblastoma, and
Ependymoma. This paper has the following contributions:

1. Propose a cross-attention module based on CNN and
Transformer to realize dynamic fusion of local-
global features.

2. Prove the role of 2.5D MRI sequences in classifying
common types of neoplasms in the posterior cranial fossa
of children.

3. Perform interpretability analysis on deep learning models
to provide clinical decision-making basis.

Patients who visited the First
Affiliated Hospital of Zhengzhou
University from 2012 to 2021
n=359

10.3389/fonc.2025.1700694

2 Materials and methods

2.1 Data set

The dataset of this study was approved by the local ethics
committee, and informed consent was waived. The patient selection
process is shown in Figure 1. Inclusion criteria: 1. Pediatric patients
aged less than 18 years; 2. Patients who completed preoperative
MRI investigation and confirmed by pathology; 3. MRI sequences
including TIWI, T1C, T2WI, FLAIR and ADC. Exclusion criteria:
1. Poor quality image with obvious artifacts. 2. Cerebrum
containing metal implants. After screening, 309 cases were finally
included in this study.

All imaging data were collected using a 3.0 T MRI scanner, and
MRI imaging was performed using a standardized scan protocol.
The field of view of the five acquired sequences (TIWI, T1C, T2W],
FLAIR, and ADC) was 220-240 mm, with a slice thickness of 6.5
7.0 mm; the in-plane resolution was concentrated at approximately
0.4-0.8 mm for T1/T1C/T2/FLAIR (approximately 0.6-1.45 mm
for DWI). MRI scanners from different manufacturers achieved
consistency in the above acquisition parameters, thus ensuring the
comparability of imaging data across devices. The dataset was
divided into training set, validation set, and test set in a ratio
of 7:1.5:1.5.

Age > 18

\d

Patients under 18 years old
n=344

n=11

Not having undergone MRI or

\d

Patients who underwent MRI and
pathological examination
n =329

y

pathological examination
n=15

Poor-quality images with
> obvious artifacts

n=38

_| The brain has metal implants

Y

309 patients were included

FIGURE 1
Diagram of the patient inclusion and exclusion process.
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2.2 Data preprocessing

To overcome the impact of different scanning devices on the
robustness and reproducibility of image Traits, the preprocessing
steps in this study include N4 bias field correction, resampling,
multi-sequence registration, intensity normalization, etc. (23). First,
N4 bias field correction is applied to the images to eliminate
magnetic field inhomogeneity (3). Then, the T1C sequence is
resampled to a resolution of 0.5 mmx0.5 mmx5 mm using 3D
Slicer (version 5.6.2), and then the remaining sequences are
registered to the T1C sequence using the General Registration
(Elastix) method to ensure consistent spatial resolution across all
MRI sequences. After that, intensity normalization is performed
using the WhiteStripe Normalization processing method of CaPTK
(version 1.9.0) to ensure consistent tissue contrast between different
scanners (24, 25).

In the gross tumor volume annotation phase, to ensure
annotation quality while improving efficiency and controlling
subjective differences, this study adopted a semi-automatic
segmentation strategy: two radiologists with more than 5 years of
experience independently delineated the gross tumor volume using
semi-automatic segmentation functions in professional tools such
as 3D Slicer, specifically including enhanced tumor (ET, referring to
the part that shows enhancement in the T1C sequence compared to
TIWI) and non-enhanced tumor (NET, referring to the part of the
abnormal signal area within the tumor that does not belong to the
enhanced or cystic component, such as the area showing
abnormalities in TIWI/T2WI/FLAIR but not enhanced in T1C).
All segmentation results were cross-reviewed and discussed for
consensus to achieve annotation consistency and minimize the
potential impact of inter-rater differences on model
reproducibility (26). The multi-sequence MRI and the delineated

gross tumor volume are shown in Figure 2.

2.3 Model construction

The workflow of this study is shown in Figure 3. After image
acquisition and preprocessing, model construction is performed.
The model consists of a parallel dual-brace structure integrating
Residual Network and Swin Transformer with 2.5D MRI, and the
two branches are respectively used to extract local detail traits and
global context traits in medical images. Then, comparison and

10.3389/fonc.2025.1700694

evaluation of deep learning models are conducted, and finally SHAP
visualization is used to increase the interpretability of model results.

2.3.1 2.5D data construction strategy

To balance 3D spatial information and computational
efficiency, this study constructed a 2.5D image dataset, that is, a
total of five slices from the upper and lower parts of the maximum
lesion slice in the data sample form a 2.5D data sample, and the final
input is a 5-channel 2.5D image, which effectively retains the spatial
continuity trait of the neoplasm. By using the improved ResSwinT
as the deep learning model, five 2.5D MRI sequence data including
T1WI, T1C, T2WI, FLAIR, and ADC were used as inputs to predict
neoplasm categories.

2.3.2 ResSwinT model architecture

The model adopts a dual-branch parallel architecture (Figure 4),
integrating the local feature extraction capability of CNN and the
global modeling capability of Transformer. The Residual Network
branch uses a residual network architecture to capture local Anatomy
and topography traits in medical images. This branch first passes
through a designed Stem layer, which uses 3*7*7 convolution kernels
for moderate downsampling in the spatial dimension while
maintaining high resolution in the depth dimension. The
subsequent four-level residual structure adopts a progressive
downsampling strategy, with each level containing two improved
3D residual blocks. The residual connection design ensures stable
Transmission of gradients and solves the problem of deep network
training. Moreover, it gradually transitions from basic features such
as edges and textures to complex high-level features, laying the
foundation for subsequent global feature fusion. The hierarchical
structure and window-based self-attention mechanism of the Swin
Transformer branch capture long-range dependence relationships
between traits at different scales, deeply explore the value of global
traits in medical image classification, and can especially capture
potential connections between distant locations in different regions
of multimodal images, thereby enhancing the model’s understanding
of overall image traits. Six alternately stacked Swin Transformer
blocks form the backbone, where regular window attention focuses
on local region computation, and the shifted window mechanism
achieves cross-window information interaction through three-
dimensional cyclic displacement (27, 28).

To address the challenge of dual-branch feature alignment and
fusion, this work employs a 2.5D cross-attention mechanism. This

FIGURE 2
Image data and neoplasm mask.
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Workflow of this study.

module establishes a bidirectional feature interaction channel: one
direction utilizes the Residual Network features as queries and the
Swin Transformer features as keys and values, thereby enriching
local details with global contextual guidance; conversely, the other
direction employs Swin Transformer features as queries and
Residual Network features as keys and values, effectively injecting
fine-grained local information into the global representation.

The fusion process comprises four key stages: First, feature map
sizes are unified via three-dimensional adaptive pooling to resolve
spatial resolution discrepancies. Next, bidirectional attention weight
matrices are computed to capture complex inter-feature
relationships. Then, heterogeneous features are fused through a
shared value transformation layer. Finally, a learnable weighting
coefficient v is introduced to adaptively control the fusion intensity,

allowing the model to dynamically balance the contributions from
both branches.

Essentially, this module implements a mutual enhancement
mechanism: Residual Network features gain discriminative power
through the global semantics provided by the Swin branch, while
Swin Transformer features acquire improved boundary perception
via the local details from the Residual Network branch.

2.3.3 Training configuration

This study adopted a standardized training protocol to ensure
the consistency and reproducibility of the experimental process. All
models were trained under a unified hyperparameter configuration,
such as a batch size set to 16, a maximum number of training
epochs set to 200, and an early stopping mechanism (with a
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FIGURE 4
Model architecture diagram.
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patience value set to 10 training epochs). The learning rate
scheduling strategy employed the cosine annealing with warm
restarts algorithm, providing a consistent dynamic adjustment
scheme of learning rate for all models.

To preserve the original traits of medical imaging data and their
clinical relevance, any data augmentation techniques were strictly
avoided during the training process. In view of the inherent
characteristics of different model architectures, we achieved an
optimal balance between learning efficiency and classification
accuracy for each model through meticulous parameter refinement
while maintaining the consistency of training conditions.

2.4 Performance evaluation

To verify the superiority of the ResSwinT model, this study
designed comparative experiments. The comparative models
include seven mainstream SOTA deep learning models (Residual
Network18, VGG16, EfficientNetB0, ResNeXt, DenseNet121, Vit,
Swin Transformer) and their performance on three binary
classification tasks (PA vs NanPA, MB vs NanMB, EP vs NanEP).
All models were evaluated under the conditions of the same test set
and 2.5D multi-sequence input. The performance evaluation
metrics mainly include the following: Area Under the Curve
(AUC), which reflects the model’s ability to distinguish between
positive and negative samples, obtained by plotting the ROC curve
and calculating the area under the curve. Accuracy(ACC) measures
the proportion of the model’s overall correct predictions, that is, the
proportion of correctly predicted positive and negative samples to
the total samples.F1-score is used as a comprehensive evaluation
index to balance precision and recall, and has advantages for
imbalanced data. Precision measures the proportion of samples
predicted as positive by the model that are actually positive; high
precision means the model is more reliable in predicting positive
samples. Sensitivity(also known as recall) measures the model’s

TABLE 1 Analysis of clinical characteristics of patients.

Variables PA(n=109) MB(n=130)
Age (mean + standard
deviation) 8.0+42 8.8 +4.1
Gender
Male 65 81
Female 44 45
Tumor grade
Low-grade 109 0
High-grade 0 130
Tumor location
Fourth ventricle 20 85
Cerebellum 70 30
Others 19 11
Frontiers in Oncology
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ability to find all positive samples; high recall means the model can
effectively identify positive samples. Specificity measures the
model’s ability to correctly identify negative samples.

2.5 Statistical analysis and interpretability

SPSS statistical software (version 31.0) was used for data
analysis in this study. Continuous variables were described as
Mean + Standard Deviation, and analysis of variance was used for
comparison between groups. Categorical variables (such as gender,
neoplasm grade, neoplasm location) were described as Frequencies
and Percentages, and the Chi-square test was used for comparison
between groups. Statistical significance was defined as a two-tailed
p-value < 0.05. SHAP values were used in interpretability analysis to
quantify the contribution of each MRI sequence to the prediction,
and fused SHAP plots were generated to comprehensively display
the model’s attention regions, revealing the key role of neoplasm
and its boundary structures in the decision-making process.

3 Results
3.1 Analysis of clinical features of patients

The traits of three groups of patients, including PA (n=109),
MB (n=130), and EP (n=70), were compared (Table 1). According
to the definition of the WHO classification (29), these tumor types
have different inherent biological invasiveness: the PA cohort
consists entirely of CNS WHO grade 1 tumors, the MB cohort
consists of CNS WHO grade 4 tumors, and the EP cohort includes
tumors classified by their type (CNS WHO grade 2 or 3). In
addition to these defining features, statistical analysis revealed
significant differences in patient age (p=0.006) and the most
critical tumor location based on image diagnosis (p<0.001). The
above statistical differences indicate that it is feasible to achieve

EP(n=70) t/Z/y? value p-value

9.6 % 5.0 521 0.006
191 0.384

38

3
2105 <0.001

12

58
88.4 <0.001

15

6

19
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automated differential diagnosis of these three types of tumors
based on MRI images.

3.2 Comparison of performance with other
SOTA models

To verify the effectiveness of the proposed model on our dataset,
we conducted three groups of experiments (PA.vs.NanPA,
MB.vs.NanMB, EP.vs.NanEP) to evaluate the performance of all
methods. The ResSwinT model showed superior performance in all
three classification tasks, and the results are shown in Tables 2-4
and Figure 5.

As shown in Tables 2, 3, and 4, our model outperforms all
commonly used models in terms of ACC and AUC in the three
tasks, demonstrating its superior classification ability.

In the PA vs NanPA task, the ResSwinT model ranked first in
accuracy (89.5%), AUC (97.5%), recall (80.1%), and Fl-score
(82.7%), while maintaining high specificity (94.2%), indicating
that the ResSwinT model is more balanced in identifying positive
and negative samples. In the MB vs NanMB task, although Swin
Transformer performed the best in recall (95.1%) and Fl-score
(90.3%), the ResSwinT model outperformed Swin Transformer in
accuracy (93.7% vs 91.3%), AUC (97.8% vs 95.4%), and specificity
(93.9% vs 88.4%), reflecting better overall performance. In the EP vs
NanEP task, due to the imbalance between recall and precision, the
Fl-score (50.0%) of the ResSwinT model was lower than that of
models such as Vit (73.7%) and VGG16 (66.7%).However, in
scenarios requiring high specificity (such as avoiding incorrect
diagnosis of non-EP as EP), the ResSwinT model has
significant advantages.

It is worth further pointing out that, to comprehensively assess
mock-up efficiency, we compared the quantity of arguments and
floating point operations of each mock-up. As shown in Table 5,
although ResSwinT has a higher quantity of arguments (56.21M)
than most CNN mock-ups, its computational complexity (94.99G
FLOPs) is significantly lower than that of VGG16 (555.51G) and
Swin Transformer (249.49G). This outcome indicates that the
performance boosts achieved by ResSwinT do not stem from

10.3389/fonc.2025.1700694

simple spread of argument quantity, but rather benefit from its
efficient schema Design that fuses local and global traits.

Experimental results show that the ResSwinT model performs
excellently in all three classification tasks, and consistently
outperforms all commonly used models especially in ACC and
AUC. In the PA and MB tasks, the ResSwinT model is also
competitive in indicators such as recall and F1 score; in the EP
task, although the relatively low recall leads to a low F1 score, the
extremely high specificity indicates that this model has unique
advantages in reduction of false positives. Therefore, the proposed
ResSwinT model has superior performance in the classification of
pediatric posterior cranial fossa neoplasms.

3.3 SHAP analysis

To enhance model interpretability, this study employs SHAP to
perform attribution analysis on ResSwinT’s prediction outcomes. In
neuroimaging diagnostic practice, the lesion slice at the maximum
cross-section typically contains the richest diagnostic information,
including tumors’ characteristic internal structures, boundary
features, and their anatomical relationships with surrounding
critical structures. Based on this clinical rationale, the central slice
data of the largest lesion plane was selected as input, mitigating the
dilution effect of non-diagnostic regions—potentially introduced by
equidistant slicing—on key features (30, 31).The specific results are
shown in Figure 6, which presents three types of visualization
images: original MRI images, fused SHAP hot maps, and
individual SHAP hot maps of the five modalities. The original
images are used to intuitively present the imaging traits of the
neoplasm; the fused SHAP hot maps are generated by the method of
maximum absolute value while retaining the sign, showing the
regions that the model focuses on the most as a whole, where red
regions indicate positive contributions to the classification result
and blue regions indicate negative contributions; the modality-
specific SHAP hot maps reveal the independent roles of different
MRI sequences in classification discrimination.

In cases of PA, the SHAP hot map shows that the model has
obvious attention to the cystic hyperintense regions of NET in T2

TABLE 2 PA.vs.NanPA Performance comparison of various models under classification tasks.

Task Model Auc Accuracy Recall Precision F1 Specificity
ResNet18 0.826 0.764 0.390 0.840 0.528 0.959
VGGl6 0911 0.840 0.878 0.698 0.776 0.824
EfficientNetB0O 0.731 0.788 0.514 0.803 0.579 0.942
PA. vs. ResNeXt 0.768 0.778 0.550 0.856 0.537 0.966
NanPA DenseNet121 0.894 0.814 0.544 0.869 0.657 0.960
Vit 0.934 0.873 0.759 0.840 0.791 0.934
Swin 0.929 0.864 0.720 0.860 0.775 0.941
Ours 0.975 0.895 0.801 0.870 0.827 0.942
Bold values means the highest value for each metric in the tables.
Frontiers in Oncology 07 frontiersin.org
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TABLE 3 MB.vs.NanMB Performance comparison of various models under classification tasks.

Model Ule Accuracy Recall Precision F1 Specificity
ResNet18 0.851 0.725 0.501 0.843 0.623 0.921
VGG16 0.968 0.895 0.900 0.872 0.888 0.887
EfficientNetB0 0.765 0.726 0.524 0.679 0595 0.804
MBLvs, ResNeXt 0.802 0.777 0.500 0.848 0.540 0.910
NanMB DenseNet121 0.960 0.892 0.858 0.901 0.876 0.923
Vit 0.964 0.906 0.816 0.850 0.800 0.936
Swin 0.954 0913 0.951 0.862 0.903 0.884
Ours 0.978 0.937 0.800 0.846 0.856 0.939

Bold values means the highest value for each metric in the tables.

and FLAIR sequences, and this region presents strong highlighting ~ADC/T2, and EP mainly depends on the heterogeneous
in the fusion map. This is consistent with the common cystic =~ enhancement manifestation of T1C. This result not only verifies
degeneration trait of PA, suggesting that the model mainly relies  that the discrimination logic of the model is highly consistent with
on the signal characteristics of cystic and surrounding oedema  clinical experience, but also reveals the multimodal discrimination
when identifying PA. In MB cases, the fused SHAP heatmap focuses ~ mechanism of the model in easily confused cases, thereby
on the ET part of the neoplasm, where the low ADC regions of the  significantly improving the interpretability and clinical
ADC sequence are particularly prominent; meanwhile, the T2  application value of the model.
sequence also emphasizes the signal of ET; at the same time, the
T2 sequence also emphasizes the signal of CET. This indicates that
the model mainly refers to the restricted diffusion regions caused by 4 Discussion
high cell density when distinguishing MB, and combines the solid
manifestations on T2 for judgment, which is highly consistent with Preoperative MRI diagnosis of pediatric posterior fossa tumor
the pathological characteristics of MB. In EP cases, the model  faces challenges due to overlapping imaging traits. Although deep
showed strong attention to the heterogeneous enhancement areas  neural networks serve as a solution, early studies are limited by
of ET in the T1C sequence, and the fused SHAP hot map also  sample size and the number of MRI sequences, resulting in limited
highlighted the enhancement areas and their distribution along the  classification accuracy and failure to fully unleash the technical
ependyma. In addition, some NET boundary areas of T2 and FLAIR ~ potential. Subsequent CNNs (such as ResNeXt and EfficientNet)
were also marked by SHAP, suggesting that the model not only  have achieved an accuracy exceeding 90% in a large sample set of
depends on the enhancement pattern of ET but also refers to the 617 cases by virtue of their advantage in local trait extraction. While
spatial relationship between NET and cerebral ventricle structure  Transformers (such as ViT and Swin Transformer) optimize global
when identifying EP. trait modeling through self-attention mechanisms, problems such as
In conclusion, through the layer-by-layer analysis of original  difficulty in trait alignment, low data utilization efficiency, insufficient
images, fused hot maps, and modality-specific hot maps, the model  exploration of clinical value, and deletion of interpretability still exist
discrimination basis for different neoplasms can be clarified: PA  when the two types of models are combined (32-35).
mainly depends on the cystic signal and boundary trait of T2/ The ResSwinT model proposed in this study utilizes the
FLAIR, MB mainly depends on the diffusion restriction trait of  advantages that CNN is good at extracting local anatomical traits

TABLE 4 EP.vs.NanEP Performance comparison of various models under classification tasks.

Model Auc Accuracy Recall Precision F1 Specificity
ResNet18 0.835 0.719 0.549 0.835 0.660 0.882
VGG16 0.865 0.781 0.750 0.695 0.667 0.865
EfficientNetB0 | 0818 0756 0.550 0.679 0.595 0.803
P, ResNeXt 0.762 0.750 0418 0.856 0.539 0.889
NanEP DenseNet121 0.791 0.769 0.515 0.844 0.656 0.833
Vit 0.845 0.844 0.761 0.778 0.737 0.910
Swin 0.846 0.813 0.600 0.667 0.400 0.941
Ours 0.937 0.875 0.625 0.758 0.500 0976

Bold values means the highest value for each metric in the tables.
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ROC comparison graphs of various models under different classification tasks.

and Transformer is strong at capturing global context, and the
cross-attention module realizes alignment through bidirectional
trait interaction: using Residual Network local traits as queries
and Swin traits as keys and values to obtain global guidance, while
using Swin global traits as queries and Residual Network traits as
keys and values to inject local details. This mechanism improves the
AUC of the MB vs NonMB task to 0.978, which is 2.4 percentage
points higher than that of Swin Transformer, with an accuracy rate
of 93.7%, verifying the gain of trait alignment on classification
performance. For example, the hierarchical feature Fusion schema
can be further explored, and interaction mechanisms can be
embedded in multiple network layers, thereby achieving more
robust and refined classification performance in complex scenes
(36-39).

To address the limitation of low data utilization efficiency, this
study proposes an improved 2.5D policy to balance spatial
information retention and computational efficiency. Existing
studies show that 2D models have limited performance in EP
taxonomy due to the lack of axial information. For example,
Zhou et al. achieved an AUC of only 0.84, and Quon et al’s
integration scheme achieved an AUC of 0.87 for differentiating
MB from EP (40, 41). Although 3D models can completely retain
spatial structures, the sharp increase in voxel volume leads to a
significant elevation in computational complexity, limiting the
feasibility of clinical application. The 2.5D scheme in this study
achieves data dimensionality reduction while maintaining axial
continuity, and achieves performance breakthrough by combining
the cross-attention module. The experiment results show that in the
EP vs Non-EP classification task, this policy can reach an AUC of
0.937, with inferencing efficiency approximately three times higher
than that of 3D models (about 30 seconds per case) and a specificity
of 97.6%.This design effectively mitigates the contradiction between
spatial info loss and computational complexity, provides an efficient

TABLE 5 Complexity comparison of different models.

and high-quality data foundation for cross-attention trait fetching,
and highlights the mock-up’s performance advantages in pediatric
posterior fossa tumor taxonomy.

The ResSwinT model in this study balances the performance
across the three major subgroups of pediatric posterior fossa tumor,
overcoming the limitation of existing models where some
subgroups perform well while others perform poorly. For
example, the RF model by Novak et al. has an overall
classification accuracy of 86.3%, but the recall rate for EP is only
62.5%; the model by Quon et al. has an overall accuracy as high as
92%, but the AUC for distinguishing EP from MB is only 0.87 (12,
41). In contrast, the accuracy of all subgroups in this study exceeds
87%, with an average AUC of 0.963. From the perspective of clinical
application scenarios, this model can meet different diagnostic and
treatment needs. For instance, the high accuracy for PA supports
the determination of preoperative local resection plans, the AUC of
up to 0.978 for MB facilitates the formulation of radiation oncology
decisions, and the high specificity for EP can ensure Surgery safety
to a certain extent, forming clinical diagnostic support for all
subgroups. In addition to diagnostic efficacy, the computational
efficiency of this model fully meets the requirements for immediate
preoperative auxiliary diagnosis.

Meanwhile, the black-box trait of deep learning is a major
obstacle to clinical implementation. This study constructs the
association between the model and neoplasms pathological traits
through SHAP analysis, making the diagnostic results traceable. In
PA, the cystic hyperintense areas on T2/FLAIR are focused on; in
MB, the diffusion-restricted areas reflecting high cell density on
ADC/T2 sequences are emphasized; and in EP classification, the
heterogeneous enhancement areas on T1C are highlighted. The
results are highly consistent with clinical pathological cognition. For
example, Dong et al’s paper pointed out that ADC values are
negatively correlated with neoplasms cell density (42). The high

Model ResNet18 VGG16 EfficientNetBO ResNeXt DenseNet121 Vit
Params(M) ‘ 33.19 63.06 4.07 14.95 ‘ 1127 324 ‘ 27.49 56.21
FLOPs (G) ‘ 34.40 55551 3.17 20.98 ‘ 69.72 30.54 ‘ 249.49 94.99
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Shap analysis diagram.

attention paid to ADC sequences by the model in this study further
verifies this pathological-imaging association, enabling clinicians to
assist in judgment through the model’s focused regions instead of
simply relying on probability output, which significantly improves
clinical trust. Therefore, the fusion and interpretation of multi-
sequence magnetic resonance imaging not only verifies the value of
multi-sequence data integration in practice, but also provides a
feasible path for building a reliable image-assisted diagnosis
tool (43).

Overall, the ResSwinT model based on 2.5D multi-sequence
MRI proposed in this study provides a new solution for the accurate
diagnosis of pediatric posterior cranial fossa neoplasms. Although
this study has the limitation of a single-center retrospective design
(44), which may affect the generalization ability of the model in a
wider population, we have maximized the robustness of the model
through methods such as including different models of scanners
from six major mainstream manufacturers and adopting strict
image pretreatment procedures in the study design. Importantly,
this study has successfully achieved the effective integration of CNN
and Transformer architectures in 2.5D multi-sequence MRI in this
field, and verified the consistency between its decision-making
mechanism and clinical cognition through interpretability
analysis (45). These achievements not only provide an important
methodological reference for Al-assisted diagnosis of pediatric
posterior cranial fossa neoplasms but also lay a solid foundation
for future multicenter validation studies. Promoting multicenter
external validation and exploring the integration of radiomics and
genomics will be the key directions of our subsequent work (13, 37).

5 Conclusion

This study proposes a deep learning model ResSwinT based on
2.5D multimodal MRI for the automatic classification of pediatric

Frontiers in Oncology

posterior fossa tumor (PA, MB, EP). Experimental results show that
ResSwinT outperforms various classical and advanced deep learning
models in multiple metrics such as classification accuracy and AUC,
especially showing excellent performance in the classification tasks of
PA and MB. By introducing a cross-attention mechanism, the model
effectively fuses the local traits of Residual Network and the global
traits of Swin Transformer, significantly improving the ability to
identify subtle differences between different tumor types. Although
there are still certain challenges in the EP classification task, this study
verifies the feasibility and potential of the 2.5D strategy and MRI
multi-sequence fusion. Meanwhile, through SHAP analysis, this
study preliminarily revealed the contribution of key traits in the
model decision-making process, further enhancing the
interpretability of the model.
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