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Background: The MRI imaging traits of pediatric posterior cranial fossa

neoplasms overlap highly, leading to difficulties in preoperative diagnosis. Their

treatment strategies differ significantly, and traditional deep learningmodels have

limitations in multi - sequence MRI fusion and clinical interpretability, so new

solutions are urgently needed.

Objectives: This study aims to develop a 2.5D multi - sequence MRI deep

learning framework (ResSwinT) that integrates Residual Network and Swin

Transformer, to achieve automatic classification of three main Pediatric

posterior fossa tumors—Pilocytic astrocytoma (PA), Medulloblastoma (MB), and

Ependymoma (EP), and enhance the interpretability of the model through the

SHAPmethod, so as to provide amore reliable auxiliary decision-making basis for

clinical practice.

Methods: This study retrospectively collected 309 pediatric patients confirmed

by pathology, including 109 PA, 130 MB and 70 EP. The MRI data of these patients

included five sequences: T1WI, T1C, T2WI,FLAIR, and ADC. After preprocessing

steps such as N4 bias field correction, resampling, sequence registration, and

intensity normalization, samples were constructed using a 2.5D image

construction strategy, and the ResSwinT model is designed. Its performance

was compared with seven deep learning models such as Residual Network 18

and VGG16, and SHAP analysis was used to analyze trait contributions.

Results: The proposed ResSwinT model outperforms existing commonly used

deep learning models in all classification tasks, particularly showing outstanding

performance in terms of area under the curve(AUC) and overall accuracy(ACC).

For the PA vs Non-PA task: ACC 89.5%, AUC 0.975; for the MB vs Non-MB task:

ACC 93.7%, AUC 0.978; for the EP vs Non-EP task: Acc 87.5%, AUC 0.937.

SHapley Additive exPlanations(SHAP) analysis shows that the model pays high
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attention to the gross tumor volume and its surrounding structures, and its

decision-making basis is highly consistent with key imaging biomarkers,

verifying the interpretability and clinical relevance of the model.

Conclusions: ResSwinT achieves high-precision classification of pediatric

posterior fossa tumor through 2.5D multi-sequence fusion and cross-attention

mechanism. SHAP attribution analysis reveals the biological basis of the model’s

decision-making, providing clinicians with an interpretable AI-assisted diagnostic

tool, and is expected to optimize individualized treatment strategies.
KEYWORDS

pediatric posterior fossa tumor, 2.5D MRI, deep learning, cross-attention,
interpretable AI
1 Introduction

Brain neoplasm is the most common solid tumor in children,

with 45% to 60% occurring in the posterior cranial fossa (PF).

Pilocytic astrocytoma (PA), Medulloblastoma (MB), and

Ependymoma (EP) are the three most important types in the PF,

and their diagnosis and treatment strategies are all different: PA

only requires local resection, MB requires whole-brain radiation

oncology, and EP surgery needs to avoid the brainstem (1, 2).

However, the magnetic resonance imaging (MRI) traits overlap

highly (e.g., both MB and EP are prone to calcium deposition and

cystic degeneration), resulting in insufficient preoperative

diagnostic accuracy. As the gold standard, pathological diagnosis

has invasive risks, delays, and sample bias, and these limitations

directly affect the formulation of surgical plans and patient

prognosis (3, 4). Although traditional deep learning models

have made progress in tumor classification, there are still

significant limitations in multi-sequence MRI fusion and

clinical interpretability.

Multi-sequence MRI reveals neoplasms traits from different

dimensions. T1 weighted image (T1WI) can well display the

anatomical structure of the brain, while T1 contrast + (T1C)

shortens the relaxation time of T1WI by injection of gadolinium-

based contrast media to better detect lesions with damaged blood-

brain barrier. T2 weighted image (T2WI) is more sensitive to lesion

information. Fluid-attenuated inversion recovery (FLAIR) sequence

is easy to identify non-enhanced neoplasms and peritumoral

oedema, while the ADC map obtained after processing the

diffusion-weighted imaging sequence is a cellular marker and has

been proven to be negatively correlated with cell proliferation.

Therefore, these five MRI sequences all reveal different traits of

human tissues from different angles and play a crucial role in early

diagnosis and treatment (5–8).

In tumor analysis using multi-sequence MRI, precise tumor

segmentation is a fundamental step for subsequent quantitative

analysis. Its quality directly affects the reliability of feature

extraction and ultimately determines the overall performance of
02
the classification model. Currently, semi-automatic segmentation

strategies have achieved good results in ensuring annotation quality.

Meanwhile, emerging deep learning techniques offer new

possibilities for more efficient segmentation annotation. Several

studies (9, 10) have confirmed the feasibility of fully automatic

segmentation in eliminating manual intervention. Other methods

directly predict the entire image through an attention mechanism,

thus avoiding an explicit segmentation process (11).

Although machine learning technology based on radiomics has

shown clear clinical value in fields such as neurosurgical disease

management and genetic gene analyses. However, previous machine

learning models applied to the research of pediatric posterior cranial

fossa neoplasms still have limitations in terms of accuracy and

reproducibility; at the same time, existing deep learning methods

also face challenges such as insufficient model interpretability (12–

16). Although 2D Convolutional Neural Network (CNN) can extract

local texture Traits, it loses the spatial continuity information of

Neoplasms, resulting in insufficient recognition rate for Neoplasms

with complex morphology. Although 3D models retain spatial

information, they contain more noise, require processing massive

voxel data, and have a cubic increase in computational complexity,

making it difficult to deploy them in routine clinical practice (17).The

2.5D strategy proposed by Zhang (18) et al. improves classification

accuracy while maintaining computational efficiency by introducing

axial continuity information. Takao’s study showed that the 2.5D

model utilizes continuity information between adjacent slices,

effectively reducing the false positive rate, and the final model

performance with a sensitivity of 88.7% and a positive predictive

value of 58.9% is superior to the traditional 2D model, demonstrating

the feasibility of applying 2.5D data in the field of deep learning (19,

20). Secondly, early Transformer models rely on global attention

mechanisms and are insufficiently sensitive to key local details such as

cystic changes in medical images. Swin Transformer optimizes long-

range trait extraction through a shifted window mechanism,

providing a new idea for solving the above problems. Although

existing studies have attempted to integrate CNN with Transformer

(e.g., ViT+Residual Network), there is a lack of local-global trait
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fusion mechanisms for medical images, and interpretability analysis

has not been associated with multi-sequence MRI (21, 22). In

addition, the accuracy of Ependymoma classification is low due to

small sample size and trait confusion, so more robust trait extraction

methods are urgently needed.

This study proposes a ResSwinT model based on 2.5D MRI,

which realizes the mutual enhancement of local traits of Residual

Network and global traits of Swin Transformer through cross-

attention mechanism, and combines SHapley Additive exPlanations

(SHAP) attribution analysis to reveal the anatomical basis for model

decision-making, filling the technical gap between multi-sequence

MRI fusion and clinical interpretability, and achieving automatic

classification of 3 types of pediatric posterior cranial fossa brain

neoplasms: Pilocytic astrocytoma, Medulloblastoma, and

Ependymoma. This paper has the following contributions:
Fron
1. Propose a cross-attention module based on CNN and

Transformer to realize dynamic fusion of local-

global features.

2. Prove the role of 2.5D MRI sequences in classifying

common types of neoplasms in the posterior cranial fossa

of children.

3. Perform interpretability analysis on deep learning models

to provide clinical decision-making basis.
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2 Materials and methods

2.1 Data set

The dataset of this study was approved by the local ethics

committee, and informed consent was waived. The patient selection

process is shown in Figure 1. Inclusion criteria: 1. Pediatric patients

aged less than 18 years; 2. Patients who completed preoperative

MRI investigation and confirmed by pathology; 3. MRI sequences

including T1WI, T1C, T2WI, FLAIR and ADC. Exclusion criteria:

1. Poor quality image with obvious artifacts. 2. Cerebrum

containing metal implants. After screening, 309 cases were finally

included in this study.

All imaging data were collected using a 3.0 T MRI scanner, and

MRI imaging was performed using a standardized scan protocol.

The field of view of the five acquired sequences (T1WI, T1C, T2WI,

FLAIR, and ADC) was 220–240 mm, with a slice thickness of 6.5–

7.0 mm; the in-plane resolution was concentrated at approximately

0.4–0.8 mm for T1/T1C/T2/FLAIR (approximately 0.6–1.45 mm

for DWI). MRI scanners from different manufacturers achieved

consistency in the above acquisition parameters, thus ensuring the

comparability of imaging data across devices. The dataset was

divided into training set, validation set, and test set in a ratio

of 7:1.5:1.5.
FIGURE 1

Diagram of the patient inclusion and exclusion process.
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2.2 Data preprocessing

To overcome the impact of different scanning devices on the

robustness and reproducibility of image Traits, the preprocessing

steps in this study include N4 bias field correction, resampling,

multi-sequence registration, intensity normalization, etc. (23). First,

N4 bias field correction is applied to the images to eliminate

magnetic field inhomogeneity (3). Then, the T1C sequence is

resampled to a resolution of 0.5 mm×0.5 mm×5 mm using 3D

Slicer (version 5.6.2), and then the remaining sequences are

registered to the T1C sequence using the General Registration

(Elastix) method to ensure consistent spatial resolution across all

MRI sequences. After that, intensity normalization is performed

using the WhiteStripe Normalization processing method of CaPTK

(version 1.9.0) to ensure consistent tissue contrast between different

scanners (24, 25).

In the gross tumor volume annotation phase, to ensure

annotation quality while improving efficiency and controlling

subjective differences, this study adopted a semi-automatic

segmentation strategy: two radiologists with more than 5 years of

experience independently delineated the gross tumor volume using

semi-automatic segmentation functions in professional tools such

as 3D Slicer, specifically including enhanced tumor (ET, referring to

the part that shows enhancement in the T1C sequence compared to

T1WI) and non-enhanced tumor (NET, referring to the part of the

abnormal signal area within the tumor that does not belong to the

enhanced or cystic component, such as the area showing

abnormalities in T1WI/T2WI/FLAIR but not enhanced in T1C).

All segmentation results were cross-reviewed and discussed for

consensus to achieve annotation consistency and minimize the

potentia l impact of inter-rater differences on model

reproducibility (26). The multi-sequence MRI and the delineated

gross tumor volume are shown in Figure 2.
2.3 Model construction

The workflow of this study is shown in Figure 3. After image

acquisition and preprocessing, model construction is performed.

The model consists of a parallel dual-brace structure integrating

Residual Network and Swin Transformer with 2.5D MRI, and the

two branches are respectively used to extract local detail traits and

global context traits in medical images. Then, comparison and
Frontiers in Oncology 04
evaluation of deep learning models are conducted, and finally SHAP

visualization is used to increase the interpretability of model results.

2.3.1 2.5D data construction strategy
To balance 3D spatial information and computational

efficiency, this study constructed a 2.5D image dataset, that is, a

total of five slices from the upper and lower parts of the maximum

lesion slice in the data sample form a 2.5D data sample, and the final

input is a 5-channel 2.5D image, which effectively retains the spatial

continuity trait of the neoplasm. By using the improved ResSwinT

as the deep learning model, five 2.5D MRI sequence data including

T1WI, T1C, T2WI, FLAIR, and ADC were used as inputs to predict

neoplasm categories.

2.3.2 ResSwinT model architecture
The model adopts a dual-branch parallel architecture (Figure 4),

integrating the local feature extraction capability of CNN and the

global modeling capability of Transformer. The Residual Network

branch uses a residual network architecture to capture local Anatomy

and topography traits in medical images. This branch first passes

through a designed Stem layer, which uses 3*7*7 convolution kernels

for moderate downsampling in the spatial dimension while

maintaining high resolution in the depth dimension. The

subsequent four-level residual structure adopts a progressive

downsampling strategy, with each level containing two improved

3D residual blocks. The residual connection design ensures stable

Transmission of gradients and solves the problem of deep network

training. Moreover, it gradually transitions from basic features such

as edges and textures to complex high-level features, laying the

foundation for subsequent global feature fusion. The hierarchical

structure and window-based self-attention mechanism of the Swin

Transformer branch capture long-range dependence relationships

between traits at different scales, deeply explore the value of global

traits in medical image classification, and can especially capture

potential connections between distant locations in different regions

of multimodal images, thereby enhancing the model’s understanding

of overall image traits. Six alternately stacked Swin Transformer

blocks form the backbone, where regular window attention focuses

on local region computation, and the shifted window mechanism

achieves cross-window information interaction through three-

dimensional cyclic displacement (27, 28).

To address the challenge of dual-branch feature alignment and

fusion, this work employs a 2.5D cross-attention mechanism. This
FIGURE 2

Image data and neoplasm mask.
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module establishes a bidirectional feature interaction channel: one

direction utilizes the Residual Network features as queries and the

Swin Transformer features as keys and values, thereby enriching

local details with global contextual guidance; conversely, the other

direction employs Swin Transformer features as queries and

Residual Network features as keys and values, effectively injecting

fine-grained local information into the global representation.

The fusion process comprises four key stages: First, feature map

sizes are unified via three-dimensional adaptive pooling to resolve

spatial resolution discrepancies. Next, bidirectional attention weight

matrices are computed to capture complex inter-feature

relationships. Then, heterogeneous features are fused through a

shared value transformation layer. Finally, a learnable weighting

coefficient g is introduced to adaptively control the fusion intensity,
Frontiers in Oncology 05
allowing the model to dynamically balance the contributions from

both branches.

Essentially, this module implements a mutual enhancement

mechanism: Residual Network features gain discriminative power

through the global semantics provided by the Swin branch, while

Swin Transformer features acquire improved boundary perception

via the local details from the Residual Network branch.

2.3.3 Training configuration
This study adopted a standardized training protocol to ensure

the consistency and reproducibility of the experimental process. All

models were trained under a unified hyperparameter configuration,

such as a batch size set to 16, a maximum number of training

epochs set to 200, and an early stopping mechanism (with a
FIGURE 4

Model architecture diagram.
FIGURE 3

Workflow of this study.
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patience value set to 10 training epochs). The learning rate

scheduling strategy employed the cosine annealing with warm

restarts algorithm, providing a consistent dynamic adjustment

scheme of learning rate for all models.

To preserve the original traits of medical imaging data and their

clinical relevance, any data augmentation techniques were strictly

avoided during the training process. In view of the inherent

characteristics of different model architectures, we achieved an

optimal balance between learning efficiency and classification

accuracy for each model through meticulous parameter refinement

while maintaining the consistency of training conditions.
2.4 Performance evaluation

To verify the superiority of the ResSwinT model, this study

designed comparative experiments. The comparative models

include seven mainstream SOTA deep learning models (Residual

Network18, VGG16, EfficientNetB0, ResNeXt, DenseNet121, Vit,

Swin Transformer) and their performance on three binary

classification tasks (PA vs NanPA, MB vs NanMB, EP vs NanEP).

All models were evaluated under the conditions of the same test set

and 2.5D multi-sequence input. The performance evaluation

metrics mainly include the following: Area Under the Curve

(AUC), which reflects the model’s ability to distinguish between

positive and negative samples, obtained by plotting the ROC curve

and calculating the area under the curve. Accuracy(ACC) measures

the proportion of the model’s overall correct predictions, that is, the

proportion of correctly predicted positive and negative samples to

the total samples.F1-score is used as a comprehensive evaluation

index to balance precision and recall, and has advantages for

imbalanced data. Precision measures the proportion of samples

predicted as positive by the model that are actually positive; high

precision means the model is more reliable in predicting positive

samples. Sensitivity(also known as recall) measures the model’s
Frontiers in Oncology 06
ability to find all positive samples; high recall means the model can

effectively identify positive samples. Specificity measures the

model’s ability to correctly identify negative samples.
2.5 Statistical analysis and interpretability

SPSS statistical software (version 31.0) was used for data

analysis in this study. Continuous variables were described as

Mean ± Standard Deviation, and analysis of variance was used for

comparison between groups. Categorical variables (such as gender,

neoplasm grade, neoplasm location) were described as Frequencies

and Percentages, and the Chi-square test was used for comparison

between groups. Statistical significance was defined as a two-tailed

p-value < 0.05. SHAP values were used in interpretability analysis to

quantify the contribution of each MRI sequence to the prediction,

and fused SHAP plots were generated to comprehensively display

the model’s attention regions, revealing the key role of neoplasm

and its boundary structures in the decision-making process.
3 Results

3.1 Analysis of clinical features of patients

The traits of three groups of patients, including PA (n=109),

MB (n=130), and EP (n=70), were compared (Table 1). According

to the definition of the WHO classification (29), these tumor types

have different inherent biological invasiveness: the PA cohort

consists entirely of CNS WHO grade 1 tumors, the MB cohort

consists of CNS WHO grade 4 tumors, and the EP cohort includes

tumors classified by their type (CNS WHO grade 2 or 3). In

addition to these defining features, statistical analysis revealed

significant differences in patient age (p=0.006) and the most

critical tumor location based on image diagnosis (p<0.001). The

above statistical differences indicate that it is feasible to achieve
TABLE 1 Analysis of clinical characteristics of patients.

Variables PA(n=109) MB(n=130) EP(n=70) t/Z/c² value p-value

Age (mean ± standard
deviation)

8.0 ± 4.2 8.8 ± 4.1 9.6 ± 5.0 5.21 0.006

Gender 1.91 0.384

Male 65 81 38

Female 44 45 32

Tumor grade 210.5 <0.001

Low-grade 109 0 12

High-grade 0 130 58

Tumor location 88.4 <0.001

Fourth ventricle 20 85 45

Cerebellum 70 30 6

Others 19 11 19
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automated differential diagnosis of these three types of tumors

based on MRI images.
3.2 Comparison of performance with other
SOTA models

To verify the effectiveness of the proposed model on our dataset,

we conducted three groups of experiments (PA.vs.NanPA、

MB.vs.NanMB、EP.vs.NanEP) to evaluate the performance of all

methods. The ResSwinT model showed superior performance in all

three classification tasks, and the results are shown in Tables 2–4

and Figure 5.

As shown in Tables 2, 3, and 4, our model outperforms all

commonly used models in terms of ACC and AUC in the three

tasks, demonstrating its superior classification ability.

In the PA vs NanPA task, the ResSwinT model ranked first in

accuracy (89.5%), AUC (97.5%), recall (80.1%), and F1-score

(82.7%), while maintaining high specificity (94.2%), indicating

that the ResSwinT model is more balanced in identifying positive

and negative samples. In the MB vs NanMB task, although Swin

Transformer performed the best in recall (95.1%) and F1-score

(90.3%), the ResSwinT model outperformed Swin Transformer in

accuracy (93.7% vs 91.3%), AUC (97.8% vs 95.4%), and specificity

(93.9% vs 88.4%), reflecting better overall performance. In the EP vs

NanEP task, due to the imbalance between recall and precision, the

F1-score (50.0%) of the ResSwinT model was lower than that of

models such as Vit (73.7%) and VGG16 (66.7%).However, in

scenarios requiring high specificity (such as avoiding incorrect

diagnosis of non-EP as EP), the ResSwinT model has

significant advantages.

It is worth further pointing out that, to comprehensively assess

mock-up efficiency, we compared the quantity of arguments and

floating point operations of each mock-up. As shown in Table 5,

although ResSwinT has a higher quantity of arguments (56.21M)

than most CNN mock-ups, its computational complexity (94.99G

FLOPs) is significantly lower than that of VGG16 (555.51G) and

Swin Transformer (249.49G). This outcome indicates that the

performance boosts achieved by ResSwinT do not stem from
Frontiers in Oncology 07
simple spread of argument quantity, but rather benefit from its

efficient schema Design that fuses local and global traits.

Experimental results show that the ResSwinT model performs

excellently in all three classification tasks, and consistently

outperforms all commonly used models especially in ACC and

AUC. In the PA and MB tasks, the ResSwinT model is also

competitive in indicators such as recall and F1 score; in the EP

task, although the relatively low recall leads to a low F1 score, the

extremely high specificity indicates that this model has unique

advantages in reduction of false positives. Therefore, the proposed

ResSwinT model has superior performance in the classification of

pediatric posterior cranial fossa neoplasms.
3.3 SHAP analysis

To enhance model interpretability, this study employs SHAP to

perform attribution analysis on ResSwinT’s prediction outcomes. In

neuroimaging diagnostic practice, the lesion slice at the maximum

cross-section typically contains the richest diagnostic information,

including tumors’ characteristic internal structures, boundary

features, and their anatomical relationships with surrounding

critical structures. Based on this clinical rationale, the central slice

data of the largest lesion plane was selected as input, mitigating the

dilution effect of non-diagnostic regions—potentially introduced by

equidistant slicing—on key features (30, 31).The specific results are

shown in Figure 6, which presents three types of visualization

images: original MRI images, fused SHAP hot maps, and

individual SHAP hot maps of the five modalities. The original

images are used to intuitively present the imaging traits of the

neoplasm; the fused SHAP hot maps are generated by the method of

maximum absolute value while retaining the sign, showing the

regions that the model focuses on the most as a whole, where red

regions indicate positive contributions to the classification result

and blue regions indicate negative contributions; the modality-

specific SHAP hot maps reveal the independent roles of different

MRI sequences in classification discrimination.

In cases of PA, the SHAP hot map shows that the model has

obvious attention to the cystic hyperintense regions of NET in T2
TABLE 2 PA.vs.NanPA Performance comparison of various models under classification tasks.

Task Model Auc Accuracy Recall Precision F1 Specificity

PA. vs.
NanPA

ResNet18 0.826 0.764 0.390 0.840 0.528 0.959

VGG16 0.911 0.840 0.878 0.698 0.776 0.824

EfficientNetB0 0.731 0.788 0.514 0.803 0.579 0.942

ResNeXt 0.768 0.778 0.550 0.856 0.537 0.966

DenseNet121 0.894 0.814 0.544 0.869 0.657 0.960

Vit 0.934 0.873 0.759 0.840 0.791 0.934

Swin 0.929 0.864 0.720 0.860 0.775 0.941

Ours 0.975 0.895 0.801 0.870 0.827 0.942
Bold values means the highest value for each metric in the tables.
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and FLAIR sequences, and this region presents strong highlighting

in the fusion map. This is consistent with the common cystic

degeneration trait of PA, suggesting that the model mainly relies

on the signal characteristics of cystic and surrounding oedema

when identifying PA. In MB cases, the fused SHAP heatmap focuses

on the ET part of the neoplasm, where the low ADC regions of the

ADC sequence are particularly prominent; meanwhile, the T2

sequence also emphasizes the signal of ET; at the same time, the

T2 sequence also emphasizes the signal of CET. This indicates that

the model mainly refers to the restricted diffusion regions caused by

high cell density when distinguishing MB, and combines the solid

manifestations on T2 for judgment, which is highly consistent with

the pathological characteristics of MB. In EP cases, the model

showed strong attention to the heterogeneous enhancement areas

of ET in the T1C sequence, and the fused SHAP hot map also

highlighted the enhancement areas and their distribution along the

ependyma. In addition, some NET boundary areas of T2 and FLAIR

were also marked by SHAP, suggesting that the model not only

depends on the enhancement pattern of ET but also refers to the

spatial relationship between NET and cerebral ventricle structure

when identifying EP.

In conclusion, through the layer-by-layer analysis of original

images, fused hot maps, and modality-specific hot maps, the model

discrimination basis for different neoplasms can be clarified: PA

mainly depends on the cystic signal and boundary trait of T2/

FLAIR, MB mainly depends on the diffusion restriction trait of
Frontiers in Oncology 08
ADC/T2, and EP mainly depends on the heterogeneous

enhancement manifestation of T1C. This result not only verifies

that the discrimination logic of the model is highly consistent with

clinical experience, but also reveals the multimodal discrimination

mechanism of the model in easily confused cases, thereby

significantly improving the interpretability and clinical

application value of the model.
4 Discussion

Preoperative MRI diagnosis of pediatric posterior fossa tumor

faces challenges due to overlapping imaging traits. Although deep

neural networks serve as a solution, early studies are limited by

sample size and the number of MRI sequences, resulting in limited

classification accuracy and failure to fully unleash the technical

potential. Subsequent CNNs (such as ResNeXt and EfficientNet)

have achieved an accuracy exceeding 90% in a large sample set of

617 cases by virtue of their advantage in local trait extraction. While

Transformers (such as ViT and Swin Transformer) optimize global

trait modeling through self-attention mechanisms, problems such as

difficulty in trait alignment, low data utilization efficiency, insufficient

exploration of clinical value, and deletion of interpretability still exist

when the two types of models are combined (32–35).

The ResSwinT model proposed in this study utilizes the

advantages that CNN is good at extracting local anatomical traits
TABLE 4 EP.vs.NanEP Performance comparison of various models under classification tasks.

Model Auc Accuracy Recall Precision F1 Specificity

EP.vs.
NanEP

ResNet18 0.835 0.719 0.549 0.835 0.660 0.882

VGG16 0.865 0.781 0.750 0.695 0.667 0.865

EfficientNetB0 0.818 0756 0.550 0.679 0.595 0.803

ResNeXt 0.762 0.750 0.418 0.856 0.539 0.889

DenseNet121 0.791 0.769 0.515 0.844 0.656 0.833

Vit 0.845 0.844 0.761 0.778 0.737 0.910

Swin 0.846 0.813 0.600 0.667 0.400 0.941

Ours 0.937 0.875 0.625 0.758 0.500 0.976
Bold values means the highest value for each metric in the tables.
TABLE 3 MB.vs.NanMB Performance comparison of various models under classification tasks.

Model Auc Accuracy Recall Precision F1 Specificity

MB.vs.
NanMB

ResNet18 0.851 0.725 0.501 0.843 0.623 0.921

VGG16 0.968 0.895 0.900 0.872 0.888 0.887

EfficientNetB0 0.765 0.726 0.524 0.679 0.595 0.804

ResNeXt 0.802 0.777 0.500 0.848 0.540 0.910

DenseNet121 0.960 0.892 0.858 0.901 0.876 0.923

Vit 0.964 0.906 0.816 0.850 0.800 0.936

Swin 0.954 0.913 0.951 0.862 0.903 0.884

Ours 0.978 0.937 0.800 0.846 0.856 0.939
Bold values means the highest value for each metric in the tables.
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and Transformer is strong at capturing global context, and the

cross-attention module realizes alignment through bidirectional

trait interaction: using Residual Network local traits as queries

and Swin traits as keys and values to obtain global guidance, while

using Swin global traits as queries and Residual Network traits as

keys and values to inject local details. This mechanism improves the

AUC of the MB vs NonMB task to 0.978, which is 2.4 percentage

points higher than that of Swin Transformer, with an accuracy rate

of 93.7%, verifying the gain of trait alignment on classification

performance. For example, the hierarchical feature Fusion schema

can be further explored, and interaction mechanisms can be

embedded in multiple network layers, thereby achieving more

robust and refined classification performance in complex scenes

(36–39).

To address the limitation of low data utilization efficiency, this

study proposes an improved 2.5D policy to balance spatial

information retention and computational efficiency. Existing

studies show that 2D models have limited performance in EP

taxonomy due to the lack of axial information. For example,

Zhou et al. achieved an AUC of only 0.84, and Quon et al.’s

integration scheme achieved an AUC of 0.87 for differentiating

MB from EP (40, 41). Although 3D models can completely retain

spatial structures, the sharp increase in voxel volume leads to a

significant elevation in computational complexity, limiting the

feasibility of clinical application. The 2.5D scheme in this study

achieves data dimensionality reduction while maintaining axial

continuity, and achieves performance breakthrough by combining

the cross-attention module. The experiment results show that in the

EP vs Non-EP classification task, this policy can reach an AUC of

0.937, with inferencing efficiency approximately three times higher

than that of 3D models (about 30 seconds per case) and a specificity

of 97.6%.This design effectively mitigates the contradiction between

spatial info loss and computational complexity, provides an efficient
Frontiers in Oncology 09
and high-quality data foundation for cross-attention trait fetching,

and highlights the mock-up’s performance advantages in pediatric

posterior fossa tumor taxonomy.

The ResSwinT model in this study balances the performance

across the three major subgroups of pediatric posterior fossa tumor,

overcoming the limitation of existing models where some

subgroups perform well while others perform poorly. For

example, the RF model by Novak et al. has an overall

classification accuracy of 86.3%, but the recall rate for EP is only

62.5%; the model by Quon et al. has an overall accuracy as high as

92%, but the AUC for distinguishing EP from MB is only 0.87 (12,

41). In contrast, the accuracy of all subgroups in this study exceeds

87%, with an average AUC of 0.963. From the perspective of clinical

application scenarios, this model can meet different diagnostic and

treatment needs. For instance, the high accuracy for PA supports

the determination of preoperative local resection plans, the AUC of

up to 0.978 for MB facilitates the formulation of radiation oncology

decisions, and the high specificity for EP can ensure Surgery safety

to a certain extent, forming clinical diagnostic support for all

subgroups. In addition to diagnostic efficacy, the computational

efficiency of this model fully meets the requirements for immediate

preoperative auxiliary diagnosis.

Meanwhile, the black-box trait of deep learning is a major

obstacle to clinical implementation. This study constructs the

association between the model and neoplasms pathological traits

through SHAP analysis, making the diagnostic results traceable. In

PA, the cystic hyperintense areas on T2/FLAIR are focused on; in

MB, the diffusion-restricted areas reflecting high cell density on

ADC/T2 sequences are emphasized; and in EP classification, the

heterogeneous enhancement areas on T1C are highlighted. The

results are highly consistent with clinical pathological cognition. For

example, Dong et al.’s paper pointed out that ADC values are

negatively correlated with neoplasms cell density (42). The high
TABLE 5 Complexity comparison of different models.

Model ResNet18 VGG16 EfficientNetB0 ResNeXt DenseNet121 Vit Swin Ours

Params(M) 33.19 63.06 4.07 14.95 11.27 3.24 27.49 56.21

FLOPs (G) 34.40 555.51 3.17 20.98 69.72 30.54 249.49 94.99
FIGURE 5

ROC comparison graphs of various models under different classification tasks.
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attention paid to ADC sequences by the model in this study further

verifies this pathological-imaging association, enabling clinicians to

assist in judgment through the model’s focused regions instead of

simply relying on probability output, which significantly improves

clinical trust. Therefore, the fusion and interpretation of multi-

sequence magnetic resonance imaging not only verifies the value of

multi-sequence data integration in practice, but also provides a

feasible path for building a reliable image-assisted diagnosis

tool (43).

Overall, the ResSwinT model based on 2.5D multi-sequence

MRI proposed in this study provides a new solution for the accurate

diagnosis of pediatric posterior cranial fossa neoplasms. Although

this study has the limitation of a single-center retrospective design

(44), which may affect the generalization ability of the model in a

wider population, we have maximized the robustness of the model

through methods such as including different models of scanners

from six major mainstream manufacturers and adopting strict

image pretreatment procedures in the study design. Importantly,

this study has successfully achieved the effective integration of CNN

and Transformer architectures in 2.5D multi-sequence MRI in this

field, and verified the consistency between its decision-making

mechanism and clinical cognition through interpretability

analysis (45). These achievements not only provide an important

methodological reference for AI-assisted diagnosis of pediatric

posterior cranial fossa neoplasms but also lay a solid foundation

for future multicenter validation studies. Promoting multicenter

external validation and exploring the integration of radiomics and

genomics will be the key directions of our subsequent work (13, 37).
5 Conclusion

This study proposes a deep learning model ResSwinT based on

2.5D multimodal MRI for the automatic classification of pediatric
Frontiers in Oncology 10
posterior fossa tumor (PA, MB, EP). Experimental results show that

ResSwinT outperforms various classical and advanced deep learning

models in multiple metrics such as classification accuracy and AUC,

especially showing excellent performance in the classification tasks of

PA and MB. By introducing a cross-attention mechanism, the model

effectively fuses the local traits of Residual Network and the global

traits of Swin Transformer, significantly improving the ability to

identify subtle differences between different tumor types. Although

there are still certain challenges in the EP classification task, this study

verifies the feasibility and potential of the 2.5D strategy and MRI

multi-sequence fusion. Meanwhile, through SHAP analysis, this

study preliminarily revealed the contribution of key traits in the

model decision-making process, further enhancing the

interpretability of the model.
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