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Introduction: Glutathione (GSH), the most abundant antioxidant in cells, acts as
free radical scavenger and detoxifying agent. Elevation of GSH metabolism
protects tumor from damage of oxidant and even promotes tumor
progression. However, the clinical value of GSH metabolism in thyroid cancer
(THCA) remained largely unknown.

Methods: The expression and prognostic value of GSH metabolism-related
enzymes were first investigated using a large The Cancer Genome Atlas
(TCGA) cohort of 510 THCA patients. To expand the prognostic application, a
risk stratification model based on these enzymes was developed using the LASSO
Cox regression algorithm. Patients were categorized into high- and low-risk
groups based on the median risk score, and the model's predictive performance
for disease-freesurvival (DFS) was validated. Further correlation analysis, pan-
cancer analysis (using TCGA and GTEx data), and detailed analysis across
pathological types and TNM stages were performed to identify and
characterize key molecules, such as RRM2. Finally, the biological role of RRM2
was validated in vitro (CCK-8 and colony-formation assays) and in vivo
(subcutaneous tumor formation in nude mice). Furthermore, the molecular
mechanism underlying RRM2’s tumor-promoting function was preliminarily
investigated through mRNA sequencing and subsequent experiments.

Results: The majority of GSH metabolism—-related enzymes were significantly
upregulated in THCA tumor tissues and their expression was negatively
associated with DFS. The LASSO Cox model stratified patients into high-risk
and low-risk groups with significantly different DFS. High-risk status was also
positively correlated with increased infiltration of naive B cells, activated memory
CD4+ T cells, helper T cells and regulatory T cells. RRM2, screened as a key
molecule, exhibited high expression in THCA tissues, especially in more
aggressive subtypes (classic and tall-cell variants of papillary THCA) and N
stages. Paired-sample IHC confirmed higher RRM2 in PTC versus adjacent
tissue. High RRM2 expression was significantly and negatively correlated with
DFS. Functionally, RRM2 overexpression promoted TPC-1 cell proliferation and
colony formation (CCK-8 and colony assays) while knockdown suppressed
growth. Subcutaneous tumor formation experiments recapitulated these
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findings. Mechanistically, RRM2's oncogenic effects may be mediated through
cell cycle regulation and activation of the PI3K/Akt signaling pathway.
Discussion: GSH metabolism—related enzymes are upregulated in THCA and
associate with a worse prognosis and an immune landscape suggestive of
antigenic stimulation coupled with immunosuppression. RRM2 is a tumor-
promoting gene that correlates with aggressive clinicopathologic features and
functionally drives thyroid tumor growth in vitro and in vivo. These data support
further investigation of GSH metabolism and RRM2 as prognostic biomarkers and
potential therapeutic targets in thyroid cancer.

glutathione metabolism, thyroid cancer, RRM2, prognostic risk stratification modeling,

LASSO-penalized cox regression

1 Introduction

Thyroid cancer (THCA) is the most common malignant tumor
of the endocrine system and consists of several histologic types,
including papillary thyroid carcinoma (PTC), follicular thyroid
carcinoma (FTC), medullary thyroid carcinoma (MTC), and
Anaplastic Thyroid Carcinoma (ATC). Of these, PTC is the most
common histologic subtype, accounting for 80-90% of all THCA case
types (1). Currently, treatment decision for THCA mainly depends
on clinicopathological factors like age, histologic type, tumor stage
and so on, molecular risk stratification system is lacking (2).
Although the traditional TNM staging system can provide a
preliminary prognostic assessment, its limitations gradually emerge
when facing the biological heterogeneity of tumors as well as the
selection of individualized treatment strategies, making it difficult to
comprehensively reflect the molecular characteristics and biological
behaviors of tumors. In recent years, with the development of high-
throughput sequencing technology, the construction of accurate
prognostic models based on molecular markers has become an
important research direction to improve the clinical management
of THCA and guide treatment decisions.

Glutathione (GSH) is the most abundant antioxidant acting as
free radical scavenger and detoxifying agent in almost all human cells
(3). The biosynthesis of GSH including two important steps that
happen in the cytosol. The first and limiting step is the conjugation
of cysteine with glutamate to form the dipeptide y-glutamylcysteine,
which is catalyzed by y-glutamyl-cysteine ligase (GCL). In the second
reaction, glycine is added to the C-terminal of y-glutamylcysteine
catalyzed by glutathione synthetase (GSS). Under oxidative stress
like reactive oxygen species (ROS), GSH is converted into oxidized
state (GSSG) by GSH-dependent peroxidases, thus the GSH/GSSG
ratio within cells reflects cellular oxidative stress and increased ratio
indicates heavier oxidative stress (4).

Due to the high metabolic rate and/or the activation of ROS-
coupled signaling pathways, oxidative stress always elevates in
cancer cells (5, 6). Since intense oxidative stress leads to severe
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damage of biomolecules, triggering cell death, it is easily understood
that GSH metabolism might be upregulated in tumor cells to
protect them from damage of oxidant and even promote cancer
cell proliferation and metastasis. For example, the nuclear factor
erythroid 2-related factor 2 (NRF2), which controls the
transcription of GCL, is stabilized and activated in breast cancer,
promoting GSH biosynthesis and resistance to oxidative stress (7).
In addition, NRF2 was reported to promote cancer cell proliferation
by metabolic reprogramming and correlate with dismal survival
outcomes in esophageal cancer, non-small cell lung cancer and
pancreatic cancer (8-10). Prof. Martin O Bergo observed that N-
acetylcysteine (NAC) increased lymph node metastases of
malignant melanoma in vivo based on the GSH system (11).
Furthermore, expression of GSH peroxidase and thioredoxin
reductases were decreased in THCA tissue, indicating that the
imbalance of the oxidant/antioxidant system played an important
role in THCA (12). However, the clinical value of GSH metabolism
in THCA remains ambiguous.

Based on large thyroid cancer cohort form The Cancer Genome
Atlas (TCGA) database, we systematically analyzed molecular
characteristics of 24 GSH metabolism-related enzymes and revealed
two subgroups with distinct metabolic status and survival outcomes.
To quantity the GSH metabolism status and stratify THCA patients,
we further constructed a 9-gene based signature via LASSO-penalized
Cox regression model. Furthermore, clinicopathological and
microenvironment features were compared between the high- and
low-risk patients. The robust and powerful metabolic index risk
model could provide insightful suggestions to explore the
molecular functions and mechanisms of GSH metabolism and
might help guide clinical treatment decisions for THCA patients in
future. Based on the THCA prognostic risk model, we screened the
key molecule Ribonucleotide reductase M2 (RRM?2) subunit, which
has a potential pro-cancer role, to explore the functional role of
RRM?2 and its molecular mechanism in PTC, and to investigate the
effects of RRM2 on the proliferation, apoptosis, migration invasion,
cell cycle, and tumorigenicity of PTC cells in vivo.
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2 Materials and methods
2.1 Data acquisition

TCGA RNA sequence level 3 normalized data and
corresponding THCA clinical information were downloaded from
UCSC Xena (https://xenabrowser.net/datapages/) for further
analysis. The RNA-seq data of normal thyroid tissues were
downloaded from the Genotype Tissue Expression (GTEx)
database (http://commonfund.nih.gov/GTEx/). In addition, the
study downloaded and integrated RRM2 RNA expression data for
30 different cancer types and their corresponding paracancerous
tissues from the TCGA and GTEx databases.

2.2 Screening of the gsh metabolism
related enzymes

We extracted enzymes that play a pivotal role in the GSH
pathway and have the potential to be manipulated for the following
analysis. We extracted 50 genes involved in the GSH metabolism
according to Kyoto Encyclopedia of Genes and Genomes (KEGG)
database, among these genes, 24 of them are annotated as enzymes
based on the MetaCyc database. We further analyzed the functional
role of these enzymes in THCA.

2.3 Bioinformatics analysis

Unsupervised hierarchical clustering of THCA samples was
performed using R package “ConsensusClusterPlus v1.42.0”. The
R package “survival v3.1-7” (https://cran.r-project.org/web/
packages/survival/) was adopted to acquire the disease-free
survival (DFS) through Kaplan-Meier estimation. We calculated
the fold change and adjusted p-value using the DESeq2 v1.18.1 R
package for all genes between different groups, and genes with an
adjusted p-value less than 0.05 and |log2FoldChange| > 1 were
considered as differentially expressed genes (DEGs). CIBERSORT
v1.03 (13) was used to estimate the immune cell components in all
samples. The nomogram was produced by R package “rms v2.4.1”.

2.4 Generation of a 9-gene signature-
based model

To expand the application of the GSH metabolism related
enzymes on THCA risk stratification in different datasets, we
strived to establish a prognostic model to predict the THCA
patient DFS status based on the expression level of these
enzymes. We randomly selected 382 patients from the TCGA as
the training dataset, and the remaining were treated as the
validation dataset. The 24 putative GSH metabolism related
enzymes were included to construct the model via LASSO Cox
regression algorithm. The LASSO Cox regression algorithm was
performed by using R package “glmnet v2.0-18” with default
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parameters. After 10-fold cross-validation by 1,000-time
alteration, a risk signature including RRM1, GSR, GCLM, IDH2,
RRM2, ODCI, GGT5, OPLAH and GSTZ]I was finally adopted. And
the regression coefficients were determined by the value of A that
gives minimum mean partial likelihood deviance. The risk score
could be calculated as follows: Risk Score = k;xx;+kyxx5+. .. +kjxx;
(i = n). i represents for the selected enzyme, k for the regression
coefficient and x for the log2(FPKM + 1) expression level. We
further classified the samples into high- and low-risk group
according to the median value of the risk scores.

2.5 Cell culture

PTC cell lines TPC-1(cat. no. 20240110-11) and IHH4(cat. no.
20240112-03) were purchased from iCell Bioscience Inc. For
culture, all cells were incubated in RPMI 1640 medium (Gibco,
Thermo Fisher Scientific) supplemented with 10% fetal bovine
serum (TYCOTO; China Hangiang (Guangzhou) Biotechnology
Co.) Cells were kept in a humidified incubator (Thermo Fisher
Scientific) at 37°C and 5% CO,.

2.6 Antibodies

Anti-Human/Mouse RRM2 (Cat.no. ab172476)/Anti-Human
PI3K Kinase p850+p55 Antibody (Cat.no. ab278545)/Goat anti-
Rabbit IgG H&L (HRP, Cat. No. ab205718) and Goat anti-Mouse
IgG H&L (HRP, Cat. No. ab97023) were Purchased from Abcam.
Anti-Human Bax Antibody (Cat.no. 5023)/Anti-Human Bcl-2
Antibody (Cat.no. 3498)/Anti-Human MMP2 Antibody (Cat.no.
40994)/Anti-Human MMP9 Antibody (Cat.no. 13667)/Anti-
Human N-Cadherin Antibody (Cat.no. 13116)/Anti-Human
Vimentin Antibody (Cat.no. 5741)/Anti-Human Snail Antibody
(Cat.no. 3879)/Anti-Human Akt Antibody (Cat.no. 4691)/Anti-
Human Phospho-Akt Antibody (Cat.no. 4060)/Anti-Human PI3K
Kinase pl10o. Antibody (Cat.no. 4249)/Anti-Human PTEN
Antibody (Cat.no. 9188) were purchased from CST. Anti-Mouse
PCNA (Cat.no. RMA-0145) and Anti-Mouse Ki-67 (Cat.no. RMA-
0731) Antibodies were purchased from Maixin Bio-technology
Development Company, Fuzhou, China. Anti-Human GAPDH
Antibody (Cat.no. 10494)/Anti-Human Cyclin A2 Antibody
(Cat.no. 18202)/Anti-Human Cyclin E2 Antibody (Cat.no.
11935)/Anti-Human CDK2 Antibody (Cat.no. 10122)/Anti-
Human ¢-MYC Antibody (Cat.no. 10828)/Anti-Human Cyclin
D1 Antibody (Cat.no. 60186) were purchased from Proteintech.

2.7 RNA extraction and RT-gPCR

In this study, cancer tissues and paired paracancerous thyroid
epithelial tissues of 44 patients(age range 20-68 years) with PTC
were collected by surgery from the Department of Thyroid Surgery,
Union Hospital, Fujian Medical University (Fuzhou, Fujian, China).
All diagnoses were confirmed by histopathological examination,
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and the patients’ clinicopathological characteristics were extracted
from their medical records. Total RNA from THCA cell lines was
extracted using the TRIzol reagents (Invitrogen; Thermo Fisher
Scientific, Cat.no. 15596018). Subsequently, the prepared RNA was
used to synthesize the first strand cDNA in accordance with the
protocol of the All-In-One 5X RT MasterMix (abm, Cat.no. G592).
Then, qPCR was performed in triplicate using the PerfectStart®
Green qPCR SuperMix (+Universal Passive Reference Dye) kit
(Beijing TransGen Biotech Co,Cat.no. AQ602) according to the
manufacturers’ protocol. The PCR protocol was conducted using
the following conditions: 95°C for 30 sec, followed by 40 cycles of
amplification (95°C for 5 sec and 60°C for 30 sec). All reactions were
performed with a StepOnePlus Real-Time PCR System (Applied
Biosystems, Thermo Fisher Scientific, Cat# 4376592). The specific
primers for RRM2 amplification were used as follows: Sense, 5'-
TTGCCTGTGAAGCTCATTGG-3' and antisense, 5-CCTCTG
ATACTCGCCTACTCTC-3'. GAPDH primers were: Sense, 5'-
GGTCGTATTGGGCGCCTGGTC-3'; Antisense, 5'-TGACGGTG
CCATGGAATTTGCCA-3'. GAPDH was used as a reference
control to normalize the transcriptional levels of target gene and
data was calculated using the 27241 method.

2.8 Immunohistochemistry and
immunohistochemical score

Formalin—fixed, paraffin—embedded specimens were cut into 4
pm sections. Slides were deparaffinized in xylene, rehydrated
through a graded ethanol series, and subjected to antigen retrieval
in citrate buffer (pH 6.0) using microwave heating. Sections were
incubated overnight at 4°C with the following primary antibodies:
Anti-Human/Mouse RRM2 (Cat. No. ab172476) — applied at 1:100
for human tissue sections and 1:1,000 for mouse tissue sections —
and Anti-Mouse PCNA (Cat. No. RMA-0145) and Anti-Mouse Ki-
67 (Cat. No. RMA-0731), which were used exclusively on mouse
tissue sections (both PCNA and Ki-67 reagents were used as ready-
to-use per the manufacturer’s instructions). After primary antibody
incubation and washes, sections were processed with the Elivision
Plus THC detection system (ready-to-use; Cat. No. kit9903; Maixin
Biotech, Fuzhou, China). Per the manufacturer’s protocol, slides
were incubated with the kit amplifier/enhancer for 20 min at room
temperature (=25°C), followed by incubation with the HRP-
conjugated secondary reagent for 30 min at room temperature.
Immunoreactivity was visualized with 3,3’-diaminobenzidine
(DAB). Following DAB development, nuclei were counterstained
with hematoxylin, differentiated and blued in ammonia water, and
coverslips were mounted with neutral resin.

Immunostained slides were independently reviewed by senior
pathologists (=5 years’ experience) at the Department of Pathology,
Fujian Medical University Union Hospital, who were blinded to all
clinical information. Staining was scored semi—quantitatively based
on the percentage of positive cells (0 = 0%; 1 = 1-24%; 2 = 25-49%;
3 =50-74%; 4 = 75-100%) and staining intensity (0 = negative; 1 =
weak; 2 = moderate; 3 = strong). The final H-score was obtained by
multiplying the proportion score by the intensity score (14, 15).
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2.9 Western blotting

Total proteins were isolated from cells using a lysate prepared in the
ratio of RIPA: protease inhibitor: phosphatase inhibitor: PMSF =
100:1:1:1. Then the amount of protein was quantity using Enhanced
BCA Protein Assay Kit (BOSTER Biological Technology co, Cat. no.
ARO0197A). Equal amounts of protein (20 pug) were separated by 8%
~15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
then transferred to polyvinylidene difluoride membranes (Millipore,
Cat.no. IPVH00010). Prior to primary antibody incubation, membranes
were blocked with a protein-free rapid blocking solution (Cat. No.
AR0041; Wuhan Boster Biological Technology Co., Ltd.) for 20 min at
room temperature on a shaker (50-60 rpm). Following blocking,
membranes were incubated with primary antibodies overnight at 4°C.
The anti-GAPDH antibody (Anti-Human GAPDH, Cat. No. 10494;
Proteintech) was used as the internal loading control at a working
dilution of 1:6,000. After three washes with TBST, membranes were
incubated with HRP-conjugated secondary antibodies—Goat anti-
Rabbit IgG H&L (HRP, Cat. No. ab205718) and Goat anti-Mouse
IgG H&L (HRP, Cat. No. ab97023) (Abcam)—each at a 1:6,000 dilution
for 1 h at room temperature (20-25°C) on a shaker. The
immunostained proteins were visualized with Efficient
chemiluminescence kit (Beijing Dingguo Changsheng Biotech Co,
Cat. no. GE2301). Image ] software (National Institutes of Health,
USA; open-source software available at https://imagej.nih.gov/ij/) was
used to examine the gray values of each primary antibody and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

2.10 Overexpression and knockdown of
RRM2 gene in TPC-1 and IHH4 cells

For upregulating RRM2 expression in cells, we obtained a full-
length RRM2 sequence fragment using a PCR method and
subsequentlycloned it into vector LV18, verified by DNA
sequencing and transfected 293T cells (see Supplementary Materials
for details). The collected lentiviruses were used to infect TPC-1 and
IHH4 cells and the cells were screened with cell cultures containing 3
ug/mL puromycin. Finally, TPC-1 and THH4 cells were collected for
western blotting to assess the efficiency of RRM2 overexpression.

To knock down RRM2 protein expression, RRM2 shRNA was
developed to silence the RRM2 gene. Lenti-RRM2 shRNA vector was
constructed using RRM2 shRNA oligonucleotides with LV 2N (U6/
Puro) vector. Based on the manufacturer’s instructions (GenePharma,
Shanghai, China), lentiviral (Lenti-RRM2 shRNA or Lenti-shRNA)
(MOI = 15) was applied to transfect TPC-1 and IHH4 cells with 5 ng/
ml polybrene(Sigma, Cat# H9268) for 12 h. After selection of 3 pug/ml
puromycin(Beyotime, Cat# ST551), TPC-1 and IHH4 cells were
harvested for western blotting to assess RRM2 knockdown efficiency.

2.11 Cck-8 assay

Cells (1000 per well) were incubated into 96 well and cell vitality
was assessed by Cell Counting Kit-8 (Dojindo, Cat.no. CK04) at 24,
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48, 72 and 96 h according to the manufacturer’s instructions.
Absorbance was recorded at 450 nm with a multifunctional
enzyme marker (BioTek Instruments Inc., USA).

2.12 Colony-formation analysis

Cells (1000 per well) were plated in culture plates for 1 weeks at
37°C in a humidified environment with 5% CO, and stained with
crystal violet staining solution(1%) for 10~20 min. The stained
colonies were imaged using a camera and counted using
a microscope.

2.13 Subcutaneous tumor formation in
nude mice

Tumor-bearing mice were monitored daily, and humane
endpoints were strictly applied. Humane endpoints: Animals were
euthanized if tumor volume exceeded 2000 mm®, if tumors reached
10% of body weight, if body weight loss exceeded 20-25%, or if signs of
cachexia or severe distress were observed. Euthanasia was performed
under deep anesthesia induced by intraperitoneal injection of 1%
pentobarbital sodium at 0.1-0.2 mL per 10 g body weight (=100-200
mg/kg); deep anesthesia was confirmed by flaccidity and the absence of
a pain response to a hind-limb pinch, after which cervical dislocation
was carried out. All procedures were carried out in accordance with
Fujian Medical University animal care and welfare guidelines and
institutional animal welfare regulations, and were approved by the
Institutional Animal Care and Use Committee of Fujian Medical
University (Approval No. FJMU20240245).

Eighteen 4-5-week-old female BALB/c nude mice were purchased
and housed in an animal house (SPF grade), divided into 3 groups of
6 mice each, which were the TPC-1 cell-negative control group (n=6),
the experimental group injected with RRM2-KD cells (n=6), and the
experimental group injected with RRM2-OE cells (n=6). The mouse
cages were prepared in advance, washed with soapy water, sprayed
with 1% peroxyacetic acid on the inside, sealed and sterilized for 24 h,
and then ventilated and dried. Inside the cages were placed sterile
UV-sterilized mouse food, water and bedding, and 6 nude mice were
kept in each cage. The animal room simulated daylight for 12 h day
and night, and the condition of the mice was observed every day, and
the bedding was changed and the food and water were added in a
timely manner. When the cells were expanded to ~75-90%
confluence, the cells were washed twice with PBS to remove the
residual serum, digested and centrifuged and resuspended with sterile
PBS, the cells were counted and the cell concentration was adjusted to
1x107/ml, and the cell suspension was stored in EP tubes and kept on
ice. The nude mice were randomly divided into 3 groups, and each
group was marked with an ear piercing to distinguish them from the
others. 200 ul of cell suspension containing 2 x 10° cells was
inoculated subcutaneously on the right axillary region of the nude
mice in each of the 3 groups, and the wounds were gently pressed
with a sterile cotton ball to prevent the inoculum from flowing out
after the inoculation. After inoculation, the nude mice were put back
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into the cage without any special discomfort. BALB/c nude mice (4-5
weeks old) were inoculated subcutaneously; tumor measurements
with caliper began on day 10 post-inoculation and were thereafter
recorded every three days. Tumor length (long diameter) and width
(short diameter) were recorded with sterile vernier calipers. When the
test was stopped, the daily change in the volume size of the tumor was
calculated, and the formula for calculating the volume of the tumor
was V=long diameter x long diameter x short diameter/2.
Experiments were terminated on day 19 post-inoculation, at which
point tumors had reached sizes considered sufficient for downstream
assays (histology, protein/RNA extraction, and functional analyses).
Animals were euthanized and then cervical vertebrae were dislocated
under confirmed deep anesthesia, and tumors were harvested for
further study.

2.14 Cell cycle analysis

Cells (2 x 10°) were seeded in 6-well plates and cultured for 24h.
Cells were digested and collected in a new EP tube and fixed them
with cold ethanol at 4°C overnight. After this, 500 pl propidium
iodide (PI) and RNase A (Elabscience, Cat. no. E-CK-A351) (1:9)
were applied to incubate cells in the darkness. Approximately 1.5 x
10° cells per well were acquired for analysis. The results were
analyzed using a Flow Cytometry System (C6 plus). The
percentage of different cell cycles was calculated using FlowJo
v7.6.1 (BD Life Sciences, licensed copy distributed via Fujian
Medical University; local download: https://ggjszx.fimu.edu.cn/
news/systemview?id=244).

2.15 Cell apoptosis assay

Cell apoptosis was assessed by APC-Annexin V Binding
Apoptosis Assay Kit (Elabscience, Cat.no. E-CK-A218) following
the manufacturer’s protocols. Cells were washed re-suspended in
binding buffer containing propidium iodide (PI) and Annexin V-
APC. Approximately 3 x 10* cells per well were acquired for analysis.
Stained cells were analyzed by Flow Cytometry System (C6 plus).

2.16 Wound-healing assay

Cells (6% 10%) were seeded in 6-well plates and cultured to >90%
confluence. Wounds were scratched using a 200-pl plastic pipette
tip. After PBS wash 2~3 times, cells were maintained in serum-free
RPMI 1640 medium (Gibco, Thermo Fisher Scientific) for the
duration of the assay. Wounded areas were photographed by
phase-contrast microscopy at 24 h and 48 h, respectively.

2.17 Transwell assay

Cells were suspended in serum-free medium, counted, and the
cell concentration adjusted to 2.5 x 10° cells/mL. A volume of 200
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uL of this suspension (containing 5.0 x 10* cells) was then seeded
into the upper chamber with coated Matrigel (Corning,Cat.no.
354234) of a 24-well chamber (Corning, Cat.no. 3422). The 24-
well chamber was fitted with polycarbonate membranes (6.5 mm
diameter, 0.33 cm® growth area) containing 8.0 um pores. Six-
hundred-microliter media containing 10% FBS were added to the
lower chamber overnight. Migrated cells were fixed with 4%
paraformaldehyde and stained with crystal violet. Cells were
rinsed and counted from random fields. All rights reserved (x100
magnification). Each experiment was conducted triplicate.

2.18 RNA sequencing and transcriptome
analysis

2.18.1 RNA extraction and library preparation

Total RNA was extracted from cells using TRIzol reagent
(Invitrogen, Carlsbad, CA) according to the manufacturer’s
instructions. RNA integrity was evaluated on an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA). Indexed,
directional RNA-seq libraries were constructed with the
NEBNext® Ultra'" Directional RNA Library Prep Kit for
Mumina (New England Biolabs, Ipswich, MA). Briefly, poly(A)+
mRNA was isolated using oligo(dT) beads, fragmented, and reverse
transcribed into first-strand cDNA. Second-strand synthesis, end
repair, adaptor ligation, and PCR amplification were performed to
generate the final sequencing libraries. Libraries were sequenced on
an Illumina NovaSeq 6000 platform (Novogene Co., Ltd., Beijing,
China) using a paired—end 150 bp (PE150) strategy.

2.18.2 Data quality control

Raw sequencing reads were processed with fastp to remove
adapters and low—quality bases, yielding high—quality “clean” reads.
The cleaned data were assessed for base quality (Q20, Q30) and GC
content. All downstream analyses were based on these filtered reads.

2.18.3 Alignment to the reference genome

The latest reference genome assembly and corresponding gene
annotation files were downloaded from the genomic database. A
HISAT2 v2.0.5 index was built for the reference genome, and paired
—end clean reads were aligned using HISAT2 v2.0.5 with
default parameters.

2.18.4 Quantification of gene expression

Mapped reads were counted against gene features using
FeatureCounts (v1.5.0-p3). Gene expression levels were
normalized to fragments per kilobase of transcript per million
mapped reads (FPKM) by dividing the read counts by the gene
length and sequencing depth.

2.18.5 Differential expression analysis

Each cell line was assayed in biological triplicate. Differential
expression between two conditions was determined using DESeq2
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(v1.20.0). P values were adjusted for multiple testing using the
Benjamini-Hochberg procedure to control the false discovery rate
(FDR). Genes with an adjusted P < 0.05 were considered
significantly differentially expressed.

2.18.6 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of differentially
expressed genes were performed using ClusterProfiler (v3.8.1).
Terms with an adjusted P < 0.05 were deemed significantly enriched.

2.19 Statistics

R v4.2.1 (The R Foundation for Statistical Computing; available
at https://cran.r-project.org/) was used for all statistical analyses. To
assess whether datasets follow a Gaussian distribution, the Shapiro-
Wilk normality test was performed. If the data were Gaussian,
parametric tests were performed (two-tailed unpaired t-tests). If the
data were non-Gaussian, nonparametric tests were applied
(Wilcoxon rank test or Spearman correlation). The results were
considered statistically significant when P < 0.05, or a lower
threshold when indicated by the appropriate test. Survival
analysis was performed using the Kaplan-Meier method. A log-
rank test was used to evaluate the significance of the difference
between different Kaplan-Meier curves. The hazard ratio was
determined using a Cox proportional hazards model. The test
used and the statistical significance are reported in each figure
and table.

Unless otherwise stated, data are presented as mean * standard
deviation (SD). The number and type of replicates for each
experiment are as follows: RT-qPCR validation — n = 4
biological replicates for TPC-1 cells, n = 3 biological replicates for
IHH4 cells and clinical tissue. Western blot — n = 4 biological
replicates. CCK-8 assays — n = 5 technical replicates (wells) per
group. Colony-formation assays — n = 3 biological replicates
(independent experiments). Wound-healing and Transwell
invasion assays — n = 3 technical replicates per condition. Flow-
cytometric assays for cell-cycle distribution and apoptosis — n = 3
biological replicates.

3 Results

3.1 GSH metabolism related enzymes
highly expressed in THCA

In order to decipher the role of GSH metabolism related
enzymes in THCA, we collected expression data of 510 THCA
tumor samples from the TCGA and 58 normal thyroid samples
from the GTEx database. As supposed, most GSH metabolism
related enzymes like GGT5, GPXI, GPX2, GPX4, GSR, GSS,
GSTA1, GSTA2, GSTOI, IDH, IDH2, RRMI1, RRM2 and SRM
were highly expressed in THCA samples, while expression of
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GCLC, GCLM, GPX3, OPLAH, PGD and SMS were decreased in
tumor tissues (Figures 1A, B). The correlation heatmap of 24 genes

is shown in the Figure 1C. The significantly increased expression of

the GSH metabolism related enzymes demonstrated that it might

play an essential role in progression of THCA and might be able to

predict the survival outcomes of THCA patients. We wonder

whether the expression of GSH metabolism related enzymes

could predict the progression of THCA patients. Calculating the

Cox proportional hazard ratios (HRs), we found that high

expression of RRM2 and IDH2 were negative prognostic factors
of DFS, while high expression of GGT5 and ODCI were correlated
with better DFS (Figure 1D).
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3.2 Establishment of a 9-gene based risk
stratification model

To further expand the application of GSH metabolism related
enzymes on THCA risk stratification in different datasets, we strived to

establish a prognostic model to quantify the expression levels of key

enzymes in THCA tumor samples. We randomly selected 382 patients

from TCGA as the training dataset, and the remaining as the validation

dataset. The 24 putative GSH metabolism related enzymes were

included to construct the model via LASSO Cox regression

algorithm. After 1,000-time alteration and cross-validation, a risk
signature including RRMI, GSR, GCLM, IDH2, RRM2, ODCI,
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Expression pattern and prognostic relevance of GSH metabolism-related enzymes in THCA. (A, B) Heatmap (A) and box plot (B) showing the
expression pattern of GSH metabolism related enzymes between THCA and normal thyroid samples. For (B), gene expression values were log,-
transformed [log,(TPM + 1)] prior to analysis. For each gene, differences between tumor and normal samples were tested using two-sided Welch's
t-tests (unpaired, not assuming equal variances). P-values across the multiple gene/tissue comparisons were adjusted using the Holm procedure.
(C) Spearman correlation matrix of GSH metabolism—related enzyme expression across the THCA cohort (*p < 0.05, **p < 0.01, and ***p < 0.001).
(D) Forest plot depicting hazard ratios (with 95% confidence intervals) for each GSH metabolism-related enzyme in univariate survival analysis.
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GGT5, OPLAH and GSTZI was finally adopted. The exact parameters
of the model were shown in Figures 2A, B. For this model, the Risk
Score = 0.24xGSTZ1 + 0.34xGSR + 0.09xRRM1 + 0.65xRRM2-
0.33xIDH2-0.11xOPLAH-0.52xGCLM-0.18xGGT5-0.25xODCI.
And we found that the risk score in patients who suffered from
progression was significantly higher than that in those who did not in
the training dataset (Figure 2C). The receiver operating characteristic
(ROC) curve further confirmed the good prognostic prediction
performance of our model (AUC = 0.888) (Figure 2D). Categorizing
THCA patients into high and low groups based on the median of the

risk score, we observed that patients with low-risk score achieved better
DFS compared to those with high-risk score (P < 0.001, HR = 4.54,
95% CI:2.10-9.81) (Figure 2E). Univariate Cox proportional hazard
regression analysis indicated the high-risk score was a negative
prognostic factor of DFS for THCA (Figure 2F). We further applied
the risk score model in the validation dataset to confirm its accuracy
and stability. Similarly, high risk score was a negative prognostic factor
for DES (P < 0.001), and the AUC was 0.871 in predicting DFS status
in ROC analysis (Supplementary Figures SIA-D).
Since many clinicopathological factors like age, TNM stage

would also influence the survival outcomes of THCA, we

10.3389/fonc.2025.1700439

conducted subgroup analysis in the entire TCGA cohort to
further validate the robustness of the risk score model. Older
patients, male patients and patients diagnosed with late stage
tended to possess higher risk score (Supplementary Figure S2).
High risk score remained as the negative prognostic factor for DFS
in all subgroups (Supplementary Figure S3).

We further constructed a nomogram to predict 1-, 3-, and 5-years
DFS probability based on the risk score of the TCGA training dataset.
Risk score deviated very little from actual DFS probability in
nomogram analysis, such as 1-, 3- and 5-years DFS probability
(Figures 3A-D). All these results supported that our risk score
model could sensitively distinguish high-risk patients with dismal
DFS from low-risk patients, thus might further instruct
individualized treatment decisions.

3.3 Immune characteristics were distinct in
the high- and low-risk patients

Previous research reported that GSH was essential for energy
metabolism changes that were required for T cell effector functions
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FIGURE 2

Establishment of risk stratification model based on the GSH metabolism related enzymes. (A) Tuning parameter (lambda) selection in the LASSO
model. (B) Coefficient profile plot was produced against the log lambda sequence. (C) Boxplot shows difference of the risk score between patients
with progression and those without in the training dataset. We used the Wilcoxon rank-sum test (Mann—Whitney U, two-sided) to compare the two
independent groups. (D) Receiver operating characteristic (ROC) curves show the predictive efficiency of the risk stratification model in the training
dataset. (E) Kaplan—Meier curves of DFS for the high- and low-risk patients in the training dataset. (F) Risk plot for the THCA patients in the training
dataset. Each panel consists of three rows: top row showed the risk score distribution for the high- and low-risk score group; middle row represents
the THCA patients’ distribution and DFS status; the bottom row presents heatmap of expression of the 9-prognostic metabolism-related enzymes.
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(16). Thus, we explored the relationship between immune cells
infiltration and the GSH metabolism related risk score.
Decomposing 18 types of immune cells of THCA microenvironment
using CIBERSORT, we observed that the risk score was positively
correlated with proportion of naive B cells, activated memory CD4 T
cells, follicular helper T cells and regulatory T cells (Figure 4).

3.4 High expression of RRM2 is associated
with dismal survival outcomes and
promotes proliferation and metastasis in
THCA

By calculating the correlation between the risk scores of 510
thyroid cancer patients in the TCGA database and the RNA
expression data of the nine genes included in the model, the
results are shown in Table 1. The genes that have a high
correlation with the risk scores and a significant p-value are the
genes that best reflect the results of the prognostic model. From the
table, we can see that the genes that are more suitable to be selected
as experimental studies are, in order, RRM2 (cor = 0.6310 p =
2.2627x10™*%), ODC1 (cor = —0.4648 p = 1.1649x10™>"), GCLM (cor
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=-0.4208 p = 1.1843x10"7), GGTS5 (cor = -0.3876 p = 5.3263x10°
'%). Previous studies have shown that RRM2 plays a crucial role in
cell proliferation, invasion, migration, senescence, tumorigenesis,
and other important cellular processes (17). High expression of
RRM2 has been associated with depressing survival outcomes in a
variety of cancers, including breast cancer, gastric cancer, and
bladder cancer. Since RRM2 has also been found to be a risk
factor for DES in THCA, we further validated its effects on
THCA tumor cells in vitro and in vivo.

In this study, we performed a systematic differential expression
analysis of RRM2 across 30 cancer types by integrating TCGA
tumor data with both TCGA tumor-adjacent samples and non-
diseased tissues from the GTEx database (Figure 5A). The results of
the analysis were expressed as adjusted p-values (p.adj), and p.adj <
0.05 was considered statistically significant, full results are presented
in Supplementary Table 1. The findings indicated that RRM2
generally showed significantly high expression levels in most
cancer types, especially in malignant tumors of epithelial origin,
suggesting that it may play an important role in the development of
these cancers. Notably, in THCA, RRM2 also showed significant
high expression (p.adj=4.90x10*®), which may suggest a tumor-
promoting role for RRM2 in thyroid cancer.
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FIGURE 4
Correlation between different immune cell types and the risk score.

We performed a detailed analysis of RRM2 expression based on  Specifically, patients classified as N1 (indicating regional lymph node
TNM stages and pathological types using the TCGA data, with the = metastasis) showed higher RRM2 expression than those classified as
following key findings: Among the T stage, N stage, and M stage ~ NO. When cases were grouped by pathological subtype, RRM2
classifications, we found that RRM2 expression was significantly  expression was higher in classic and tall-cell variants of papillary
correlated only with the N stage (Supplementary Figures S4A-D).  thyroid carcinoma compared with the follicular variant.

TABLE 1 Correlation analysis of nine genes with risk score.

Lasso-coef Pvalue Padj (Benjamini-Hochberg) = Padj (Bonferroni)

GSTZ1 0.2391 -0.0245 0.64 0.72 1

GSR 03379 -0.01 0.85 0.85 1

RRM1 0.0882 0.1442 4.96x10-3 6.38x10-3 0.045

RRM2 0.6533 0.631 2.26x10-43 2.03x10-42 2.03x10-42

IDH2 -0.3255 0.1846 3.07x10-4 5.53x10-4 2.76x10-3

OPLAH -0.1085 -0.1473 4.11x10-3 6.17x10-3 0.037

GCLM -0.5243 -0.4208 1.18x10-17 3.54x10-17 1.06x10-16

GGT5 -0.1825 -0.3876 5.33x10-15 1.20x10-14 4.80x10-14

ODC1 -0.2536 -0.4648 1.16x10-21 5.22x10-21 1.04x10-20

Correlations between the calculated risk score and mRNA expression levels of the nine model genes (n = 510) were assessed using Spearman’s rank correlation coefficient (two-sided). Resulting
p-values were adjusted for multiple testing using both Benjamini-Hochberg false-discovery rate (FDR) correction and Bonferroni correction.
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FIGURE 5

Pan—cancer and PTC-specific expression analysis of RRM2. (A) Differential expression of RRM2 across 30 cancer types and their corresponding non-
tumor tissues (tumor-adjacent tissues from the TCGA cohorts and non-diseased specimens from healthy donors in the GTEx database) based on
TCGA and GTEx datasets, presented as log, (TPM + 1); red, tumor; blue, non-tumor; ***p.adj < 0.001, ns (not significant). (B) Comparison of overall
RRM2 mRNA expression levels in PTC and paired adjacent thyroid epithelial tissues (**p < 0.01). (C) Relative RRM2 mRNA expression in PTC tissues
versus matched adjacent tissues. (D) Comparison of overall RRM2 immunohistochemical expression in PTC and adjacent thyroid epithelial tissues
(***p < 0.01). (E) Representative RRM2 immunohistochemical staining in human PTC and adjacent tissues at 100x(scale bar, 200 pym) and 200x(scale

bar, 100 um) magnification.

3.5 Expression levels of RRM2 in papillary
thyroid carcinoma tissues and paired
paracancerous thyroid tissues and their
correlation with clinical features

The expression level of RRM2 gene mRNA in each pair of
tissues was detected by RT-qPCR. The results showed that the
expression of RRM2 was significantly higher in papillary thyroid
carcinoma tissues than in paracancerous thyroid epithelial tissues
(Figure 5B) (P<0.01), and this trend was verified in most samples
(Figure 5C). Immunohistochemistry (IHC) was selected for the
validation of RRM2 protein expression in this patient cohort. The
qPCR results were highly consistent with our subsequent THC
results. As shown in Figure 5D, the RRM2 immunohistochemical
score (H-SCORE) was significantly higher in PTC tissues than in
paired paracancerous tissues (P<0.01), and the percentage of cancer
tissues with higher RRM2 H-SCORE than paracancerous tissues
was 81.8% (36/44). Typical RRM2 protein immunohistochemical
results (Figure 5E) showed that in PTC tissues, deep staining of tan
particles was observed, which were mainly aggregated in the
cytoplasm. In contrast, paracarcinoma tissues were stained overall
lighter and no obvious tan particles were seen. According to the
American Joint Committee on Cancer/International Union Against
Cancer (AJCC) TNM Staging System, Eighth Edition (TNM-8)
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criteria (18), the 2 22 “T>1 of the RRM?2 gene in the PTC tissues was
used as the cut-off point for the expression level to classify the
samples into the high-expression group and the low-expression
group, and further analyses showed that, as shown in
Supplementary Table 2, we found that the RRM2 expression level
was correlated with tumor size (P = 0.0048), which may indicate
that RRM2 acts as a potential oncogenic factor in PTC. Meanwhile,
there was no significant correlation between its expression level and
sex, age, TNM stage and tumor stage (P>0.05).

Three RRM2 knockdown cell lines (RRM2-KD-323, RRM2-KD-
417, RRM2-KD-506) were successfully constructed using the
lentiviral LV2N (U6/Puro) system and transfected with MOI = 15
in TPC-1 and IHH4 cells. RT-qPCR assays, as shown in
Supplementary Figures S4E, F, compared with the wild-strain
control, all three strains RRM2 mRNA expression was
significantly reduced in all RRM2-KD cells (P<0.01). Among
them, the RRM2-KD-417 strain showed the highest knockdown
efficiency and was therefore selected as a representative strain for
subsequent experiments. The RRM2 overexpression cell line
(RRM2-OE) was successfully constructed by transfecting TPC-1
and IHH4 cells with MOI = 15 using lentiviral LV18 (CMV/Puro)
system. RT-qPCR assay showed (Supplementary Figures S4E, F)
that the expression level of RRM2 mRNA was significantly higher in
RRM2-OE cells than that in the wild-type control (P<0.01). The
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expression levels of RRM2 protein in TPC-1 and RRM2-KD-TPC-1,
TPC-1 and RRM2-OE-TPC-1, IHH4 and RRM2-KD-IHH4, IHH4
and RRM2-OE-THH4 cells were detected by Western blot,
respectively (Figures 6A, B; Supplementary Figures S4G, H).

CCK-8 assay and colony formation analysis showed that
overexpression of RRM2 promoted the proliferation of TPC-1 cell,
whereas inhibition of RRM2 expression reversed this process
(Figures 6C, D). The subcutaneous loaded tumors in nude mice are
shown in Figure 6E, Supplementary Figure S5, and the tumor growth
curves (Figure 6F, Supplementary Table 3) showed that the
experimental group RRM2-OE-TPC-1 had a steeper tumor growth
curve and faster volume growth than the control group TPC-1,
whereas the growth of tumors grown by the experimental group
RRM2-KD-TPC-1 inoculation was significantly slowed down, with a
downward shifting of the tumor volume growth curve (P<0.01).
Finally, the average tumor volume of the RRM2-OE-TPC-1 group at
the end of the experiment (1084.04 + 74.91 mm®) was significantly
larger than that of the control group (498.2 + 57.84 mm?, P<0.01),
while the average tumor volume of the RRM2-KD-TPC-1 group
(322,93 + 32.80 mm®) was significantly smaller than that of the
control group (P<0.01). The results of tumor weighing (Figure 6G)
showed that the tumor weight of the RRM2-OE-TPC-1 group was
significantly higher than that of the control group (P<0.05), whereas
there was no statistically significant difference between the RRM2-
KD-TPC-1 group and the control group. By immunohistochemical
analysis, Ki67 and PCNA expressions were significantly higher in the
experimental RRM2-OE-TPC-1 group compared with the control
group, while Ki67 and PCNA expressions were significantly lower in
the experimental RRM2-KD-TPC-1 group (Figure 6H).

Given that RRM2 could promote THCA proliferation ex vivo, we
further explored whether RRM2 could enhance the metastatic ability
of THCA. Wound healing confirmed the enhanced migration of
TPC-1 cells after RRM2 overexpression. Twenty-four hours after
scratching, RRM2-OE-TPC-1 cells migration by 13% (P<0.01), and
48 hours after scratching, RRM2-OE-TPC-1 cells in the experimental
group increased migration by 8.86% (P<0.01), as shown in
Figures 7A, B. In the Transwell invasion assay, a significant
increase in the number of membrane-penetrating TPC-1 cells was
observed in RRM2 overexpressing group as compared to the control
group, and a significant increase in the number of membrane-
penetrating cells in the IHH4 cell line, a trend consistent with
TPC-1 cells was observed (Figure 7C, Supplementary Figure S6).
In contrast, knockdown of RRM2 significantly inhibited the
migration and invasion ability of THCA cells compared with the
control group (Figure 7C, Supplementary Figure S6). The expression
levels of matrix metalloproteinases (MMP2, MMP9) and markers
related to epithelial mesenchymal transition (N-Cadherin, Vimentin,
Snail) line were examined by Western blot. In TPC-1 cells, RRM2
overexpression resulted in elevated protein expression levels of
MMP2, MMP9, N-Cadherin, Vimentin, and Snail (P<0.01)
(Figures 7D, E). In contrast, the expression levels of these proteins
were significantly decreased after RRM2 knockdown (P<0.01)
(Figures 7F, G). Overall, RRM2 promoted the growth of THCA
cells and enhanced their metastatic ability, which is consistent with
its negative prognostic effect on DFS in our dataset.
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In terms of apoptosis, the distribution of apoptosis in TPC-1
cells (control group), RRM2-KD-TPC-1 cells (knockdown group)
and RRM2-OE-TPC-1 cells (overexpression group) was examined
by flow cytometry (Figure 8A), and the results showed that
apoptosis rate was reduced after overexpression of RRM2 in the
TPC-1 cell line compared with the control group (P< 0.01), and
apoptosis rate was significantly increased after knockdown of RRM?2
(P<0.01). validation was consistent in IHH4 cell line
(Supplementary Figure S7). In addition, we further validated the
expression levels of apoptosis-related proteins, and the expression
of Bax was significantly down-regulated (P<0.01), while the
expression of Bcl-2 was significantly up-regulated (P<0.01) in
RRM2-OE-TPC-1 cells compared to controls (Figures 8B, C). The
results were opposite after knockdown of RRM2 (Figures 8D, E).

To investigate the effect of RRM2 overexpression on the
transcriptional level of papillary thyroid cancer cells, mRNA
sequencing analysis was performed on wild strain TPC-1 cells
and RRM2 overexpression strain (RRM2-OE-TPC-1 cells) in this
study. After normalizing the sequencing data, we screened a total of
2312 differentially expressed genes between control TPC-1 and
experimental RRM2-OE-TPC-1 (Figure 9A). These differential
genes were analyzed for GO and KEGG enrichment (Figures 9B,
C), and GO was enriched in several biological processes, including
DNA replication, regulation of signaling receptor activity, leukocyte
chemotaxis and migration, etc. KEGG suggested that the PI3K-Akt
signaling pathway and the cell cycle pathway were significantly
enriched in the differential genes, and that RRM2 might affect
thyroid cancer cell proliferation and survival.

Analysis of mRNA sequencing results from wild strain TPC-1
cells and RRM2 overexpression strain (RRM2-OE-TPC-1) showed
significant enrichment of differential genes in the cell cycle pathway,
as shown in Supplementary Table 4. To investigate the effect of
RRM?2 on the cell cycle of THCA, we examined the effects of RRM?2
knockdown (RRM2-KD) and overexpression (RRM2-OE) on cell
cycle distribution in the TPC-1 and IHH4 cell lines, respectively,
using flow cytometry. As shown in Figure 9D, in TPC-1 cells,
knockdown of RRM2 resulted in a significantly higher proportion of
cells in GO/G1 phase (P<0.01) and a significantly lower proportion
of cells in S phase (P<0.01). In contrast, RRM2 overexpression
resulted in a significant decrease in the proportion of G0/G1 phase
cells (P<0.01) and a significant increase in the proportion of S phase
cells (P < 0.05). In THH4 cells, we observed a similar trend
(Supplementary Figure S6). These results suggest that RRM2 may
affect the cycle progression of thyroid cancer cells mainly by
regulating the transition from GI1 to S phase. To further elucidate
the molecular mechanism of RRM2 regulation of cell cycle, we
examined the expression levels of cell cycle-related proteins (Cyclin
A2, Cyclin E2, ¢-MYC, Cyclin D1, CDK2) in TPC-1 cells by
Western blot. The expression levels of these proteins were
significantly increased in the RRM2 overexpression group
(RRM2-OE-TPC-1) (P<0.05). The expression levels of these
proteins in the RRM2 overexpression group (RRM2-OE-TPC-1)
were all significantly elevated (P < 0.05), with the most pronounced
elevation of Cyclin E2 and ¢-MYC, as shown in Figures 9E, F. On
the contrary, the protein expression levels of Cyclin A2, Cyclin E2,
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FIGURE 6 (Continued)

RRM2 regulates PTC cell proliferation and tumor growth in vitro and in vivo (*p < 0.05, ***p < 0.001, ****p < 0.0001 and ns (not significant)). (A, B)
Western blot analysis of RRMZ2 protein levels in TPC-1 following RRM2 knockdown (RRM2-KD) or overexpression (RRM2-OE), with GAPDH as
loading control. (C) CCK-8 assay showing the effect of altered RRM2 expression on TPC-1 cell proliferation over time (n = 3). (D) Effects of RRM2
on TPC-1 cell colony formation detected by the plate colony formation assay(n=3). (E) Comparison of excised tumor volumes at endpoint between
experimental and control groups (n = 6 per group), with tumor images shown from top to bottom (1): control (2), RRM2-KD (3), RRM2-OE. (F)
Tumor growth curves i n nude mice over the experimental period (n = 6 per group), data presented as mean + SEM; one-way ANOVA. (G)
Comparison of final tumor weight between experimental and control groups(p < 0.05) (n=6 for each group) (H) Immunohistochemical and
hematoxylin—eosin (HE) staining of tumors: upper panels at 100x (scale bar 200 pm) and lower panels at 200X (scale bar 100 um). (Ha) Ki-67
staining: dense, uniform brown nuclei in RRM2-OE versus sparse staining in RRM2-KD tumors. (Hb) PCNA staining: strong, uniform signal in RRM2
—OE versus near—absent in RRM2-KD. (Hc) RRM2 staining: intense brown granules in RRM2—-OE versus weak, non—-specific staining in RRM2-KD.
(Hd) HE staining confirming tumors’ histology with papillary structures, ground—glass nuclei, and adjacent skin, muscle, and adipose tissue.

¢-MYC, Cyclin D1, and CDK2 were all significantly reduced in the
RRM2 knockdown group (RRM2-KD-TPC-1) (P<0.05), with
particularly significant decreases in Cyclin A2, c-MYC and CDK2,
as shown in Figures 9G, H.

To explore the role of RRM2 in the PI3K/AKkt signaling pathway,
we examined the expression levels of PI3K pathway-related proteins
including Akt, phosphorylated Akt (pAkt), PI3K kinase p85ct, PI3K
kinase p110c, and PTEN in TPC-1, RRM2 knockdown (RRM2-KD-
TPC-1), and RRM2 overexpression (RRM2-OE-TPC-1) cells by
Western blot. The experimental results showed that RRM2
overexpression or knockdown had no significant effect on the
expression levels of Akt and PTEN proteins. However, the protein
expression levels of pAkt, p85c, and pll0o were significantly
higher (P < 0.01) in the RRM2 overexpression group (RRM2-OE-
TPC-1) compared with the control group, as shown in Figures 9], K.
In contrast, the protein expression levels of pAkt, p85a., and p110o.
in the RRM2 knockdown group (RRM2-KD-TPC-1) were
significantly reduced (P < 0.01), see Figures 9L, M.

4 Discussions

Based on large THCA cohort from TCGA, we found that the
GSH metabolism related enzymes were upregulated in tumor
samples and negatively correlated with DFS. Thus, we for the first
time built a risk stratification model based on the GSH metabolism
related enzymes via LASSO Cox regression algorithm. Patients with
high-risk score suffered from dismal DFS, exhibited a positive
correlation with the infiltration levels of naive B cells, activated
memory CD4+ T cells, helper T cells, and regulatory T cells. The
immune system responds to antigenic stimulation via dynamic
shifts in lymphocyte subpopulations: B cells mediate humoral
immunity, whereas CD4+ T cells serve as the “commanders” of
the adaptive response. An increase in naive B cells (or their
recruitment) together with expansion of activated memory CD4+
T cells may reflect ongoing antigenic stimulation (for example,
persistent tumor antigen exposure or chronic inflammation) and a
degree of immune activation. The functional impact of increased
helper T cells will depend on their polarization (Th1 versus Th2),
which has divergent implications for antitumor immunity.
Importantly, regulatory T cells (Tregs) play a vital
immunosuppressive role in tumor immunity; by inhibiting
effector T cell function and other antitumor immune
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mechanisms, Tregs facilitate immune evasion and tumor
progression (19, 20). The enhanced Treg infiltration in this
cohort indicates the development of tumor immunosuppression
among thyroid cancer patients falling into the high-risk GSH-
metabolism group. All these results indicated that the GSH
metabolism related enzymes might play a pivotal role in THCA
progression and was worth further researches.

Our risk model was developed and internally validated using
TCGA mRNA expression data by randomly splitting the dataset
into training and validation sets. We recognize that the current
study lacks external validation using an independent RNA
sequencing cohort. The primary reason for this limitation is the
difficulty in identifying publicly available, high-quality thyroid
cancer RNA sequencing datasets. These challenges stem from the
need for datasets that are both technically homogenous (RNA-seq
vs. microarray; differing normalization and batch effects) and
possess sufficient corresponding clinical data (particularly long-
term follow-up and survival status) to perform a reliable external
validation of the prognostic risk score.

We fully understand that this absence of external validation
limits the generalizability of our mRNA-based model. This
limitation is expected to be addressed by a dedicated two-phased
validation strategy in future work: Phase I Retrospective RNA
Validation: This involves prioritizing an intensive search for and
inclusion of any suitable independent external RNA-seq cohorts
with adequate clinical follow-up data. A crucial step will be to
perform a rigous retrospective validation after harmonized
preprocessing (including consistent expression units and rigorous
batch correction) to ensure the technical reliability of the analysis.
Phase II Prospective Clinical Validation: A more robust,
translational validation, focusing on the Asian population, is
being prepared through a prospective, multi-center study. This
phase will incorporate standardized sample processing and will
include the evaluation of the nine model genes using
Immunohistochemistry (IHC) scoring at the protein level, which
is critical for direct clinical application. This phased approach is
designed to systematically transition from computational mRNA-
based findings to a clinically applicable protein-level diagnostic tool.

Based on the risk score model of glutathione metabolism-
related enzyme genes in thyroid cancer, in a further correlation
analysis, we screened the target gene RRM2, whose high expression
was significantly and negatively correlated with disease-free survival
of patients, from nine candidate genes. As one of the subunits of the
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FIGURE 7

RRM2 promotes migration, invasion, and EMT marker expression in PTC cells (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001).

(A) Wound-healing assay showing scratch closure in control TPC-1, RRM2—-overexpressing (RRM2-OE), and RRM2-knockdown (RRM2-KD)
cells at 0, 24, and 48 h. (B) Quantification of migration rates based on wound-closure area; data are mean + SEM, one-way ANOVA.

(C) Transwell invasion assay for control, RRM2-OE, RRM2—-KD and TPC-1 cells; invaded cell counts are presented as mean + SD (n = 3). (D, E)
Western blot analysis of invasion-related proteins MMP2 and MMP9, and EMT markers N-Cadherin, Vimentin, and Snail in control versus
RRM2-OE TPC-1 cells; GAPDH as loading control; data are mean + SEM, Student'’s t—test. (F, G) Western blot analysis of the same panel of

MMP and EMT markers in control versus RRM2-KD TPC-1 cells; GAPDH

loading control; data are mean + SEM, Student’s t-test.
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RRM2 modulates apoptosis in TPC-1 cells (**p < 0.01 and ***p < 0.001). (A) Flow cytometric analysis of apoptosis in control, RRM2—overexpressing (RRM2
—OE), and RRM2-knockdown (RRM2-KD) TPC-1 cells, showing distribution of early and late apoptotic populations. (B, C) Western blot of pro— and anti
—apoptotic proteins Bax and Bcl-2 in control versus RRM2-OE TPC-1 cells; GAPDH as loading control; quantification presented as mean + SEM, Student's t
—test. (D, E) Western blot of Bax and Bcl-2 in control versus RRM2-KD TPC-1 cells; GAPDH loading control; quantification presented as mean + SEM,

Student’s t—test.

nucleotide reductase enzyme, RRM2 plays a key role in the process
of DNA synthesis and repair. RRM2 is aberrantly expressed in
human tumors such as breast cancer (21, 22), gastric cancer (23),
adrenocortical cancer (24), pancreatic cancer (25) and bladder
cancer (26). Inhibition of RRM2 can reduce RRase activity, inhibit
cancer cell growth, promote cancer cell apoptosis, prevent tumor
metastasis and reverse drug resistance. In breast cancer cells, it has
been shown that SNHG16/miR-30a/RRM2 and TTN-AS1/miR-524-
5p/RRM2 regulatory axes are involved in malignant proliferation
and evasion of apoptosis in tumor cells, respectively (21, 22). In
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Huang’s study on non-small cell lung cancer (27), the results
showed that AFAP1-AS1 up-regulated RRM2 by inhibiting miR-
139-5p expression, which in turn promoted the proliferation and
chemotherapy tolerance of NSCLC cells. In addition, RRM2 may
exert its regulatory role by activating EGFR/AKT. In 2020, a related
study (28) demonstrated that overexpression of miR-140-3p
inhibited the proliferation of human cervical cancer cells by
targeting down-regulation of RRM2 inducing cell cycle arrest and
early apoptosis, while decreasing BCL-2 protein levels and inducing
a significant increase in BAX and caspase-3 protein levels. In
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FIGURE 9 (Continued)

RRMZ2 overexpression induces transcriptomic changes, influences cell cycle progression, and modulates PI3K/Akt signaling in TPC-1 cells (*p < 0.05,
**p < 0.01, ***p < 0.001 and ns (not significant)). (A) Volcano plot of differentially expressed genes (DEGs) in RRM2-OE versus control TPC-1 cells;
red, significantly upregulated; blue, significantly downregulated (P < 0.05, |log,FC| > 1); gray, non-significant. (B) Gene Ontology (GO) enrichment
analysis of DEGs, showing the top enriched biological processes, molecular functions, and cellular components; enrichment significance is plotted
as —logjp(adjusted P-value). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, highlighting tumor-
related pathways such as PI3K-Akt and p53 signaling; enrichment significance is plotted as —log;q(adjusted P-value). (D) Flow cytometric analysis of
cell cycle distribution in control, RRM2-overexpressing (RRM2-OE), and RRM2-knockdown (RRM2-KD) TPC-1 cells; data are mean + SD. (E, F)
Western blot of cell cycle regulators Cyclin A2, Cyclin E2, c-MYC, Cyclin D1, and CDK2 in control versus RRM2-OE TPC-1 cells; GAPDH as loading
control; quantification shown as mean + SEM, Student's t-test. (G, H) Western blot of the same panel of cell cycle proteins in control versus RRM2
—KD TPC-1 cells; GAPDH loading control; data are mean + SEM, Student's t—test. (J, K) Western blot analysis of PI3K/Akt pathway proteins Akt,
phosphorylated Akt (p—Akt), PI3K p85a., PI3K p110a, and PTEN in control versus RRM2—-OE TPC-1 cells; GAPDH loading control; data are mean +
SEM, Student’s t—test. (L, M) Western blot analysis of the same PI3K/Akt signaling proteins in control versus RRM2-KD TPC-1 cells; GAPDH as

loading control; data are mean + SEM, Student'’s t—test.

another THCA transcriptome data (29), it was also mentioned that
it is closely associated as a core gene with the regulation of cell cycle
and E2F-mediated DNA replication pathway. To further
understand the role played by the RRM2 gene in the whole
biological behavior of tumors, we performed a pan-cancer
analysis by the combination of TCGA and GTEx data, which
showed that RRM2 was generally highly expressed in tumors of
epithelial origin, such as THCA, esophageal carcinoma, and breast
carcinoma, suggesting that its pro-carcinogenic mechanism is
conserved by the cancer species. We performed a detailed analysis
of RRM2 expression based on TNM stages and pathological types
using the TCGA data, When cases were grouped by pathological
subtype, RRM?2 expression was higher in classic and tall-cell
variants of papillary thyroid carcinoma compared with the
follicular variant. These observations are concordant with recent
immunohistochemical data. For example, Ibrahim et al. reported
negative RRM2 staining in non-neoplastic thyroid tissue and non-
invasive follicular thyroid neoplasm, whereas strong RRM2
positivity was observed in PTC and invasive encapsulated
follicular-variant PTC (30). Together, our findings and those of
Ibrahim et al. support the hypothesis that RRM2 is associated with
more aggressive thyroid tumors and may therefore have potential
utility as a biomarker to distinguish higher-risk or more invasive
disease phenotypes. The correspondence between higher RRM?2
expression and N stage further reinforces this notion. The
expression level of RRM2 in PTC tissues was much higher than
that in paracancerous thyroid epithelial tissues, and the expression
level of RRM2 was correlated with the size of the tumor (P<0.01). 44
cases of PTC tissues and paired paracancerous tissues diagnosed by
pathology were selected, and the expression level of RRM2 in PTC
tissues was much higher than that in paracancerous thyroid
epithelial tissues, and the expression level of RRM2 was correlated
with the size of the tumor (P<0.01). As mentioned above, RRM2
plays an important role in the development of various cancers, but
its effect on the biological behavior of THCA is still unclear and
needs to be further explored.

In vitro, both CCK-8 assay and colony-formation assay showed
that RRM?2 overexpression significantly increased the proliferation
rate and clone formation ability of TPC-1 cells, while knockdown of
RRM?2 significantly inhibited cell growth. Further in vivo nude
mouse tumor formation experiments provided strong support for
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our in vitro observations. The experimental results showed that the
tumor volume and weight of the RRM2 overexpression group were
significantly higher than those of the control group, and
immunohistochemistry showed up-regulation of the expression of
proliferation markers (e.g., Ki67, PCNA), which was in line with the
previous observation that RRM2 promotes cell proliferation in
tumors such as breast and lung cancers, and further corroborated
the promotional role of RRM2 in tumorigenesis and development.

It has been pointed out in the literature (31, 32) that RRM2 is
involved in DNA synthesis and repair, and its high expression is
often closely associated with cell cycle acceleration and high
proliferation of tumor cells. In this study, we found by mRNA
sequencing that a variety of genes involved in cell cycle regulation,
DNA replication and mitosis were significantly up-regulated in
RRM2 overexpressing cells (RRM2-OE-TPC-1) in the experimental
group, as shown in the Supplementary Table 4. This overall change
in gene expression suggests that the intracellular network regulating
cell cycle progression and DNA replication under RRM?2
overexpression conditions undergoes systematic remodeling,
which may lead to abnormal acceleration of the cell cycle and
sustained activation of proliferative signals.

Meanwhile, the results of Western blot assay showed that the
protein expression levels of Cyclin A2, Cyclin E2, c-MYC, Cyclin DI
and CDK2 were significantly increased in the RRM?2 overexpression
group, and Cyclin DI, Cyclin E1/E2 and Cyclin A2 are important
regulators driving the cell cycle process, and their high expression is
often associated with the acceleration of G1/S phase transition.
Cyclin D1 promotes the entry of cells from the G1 phase into the S
phase in the early cell cycle (33), while Cyclin E and Cyclin A play
key roles in the G1/S transition and S phase progression,
respectively. The upregulation of these proteins in the Western
blot data was highly consistent with the mRNA data, supporting the
experimental group’s RRM2-OE-TPC-1 cells were in a state of
continuous activation at various key nodes of the cell cycle, thus
promoting rapid cell proliferation. In this regulatory network, the
upregulation of c-MYC, as an important oncogenic transcription
factor, not only directly promotes the expression of cell cycle
proteins, but also participates in the regulation of cell metabolism,
apoptosis, and proliferation, and other aspects of biological
processes. c-MYC was elevated suggesting that RRM2-OE-TPC-1
cells may achieve the synergistic activation of multiple proliferative
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signaling pathways with the help of this transcription factor,
accelerating tumor progression (34). In addition, the increased
expression level of CDK2, which forms a complex with Cyclin E
and Cyclin A and is a key kinase regulating the G1/S transition and
S-phase progression, further corroborates the phenomenon of cell
cycle deregulation.

Other genes detected in mRNA sequencing, such as CDC20,
CDC25A, BUBI, BUBIB, and MAD2LI, are closely related to cell
cycle checkpoints and fine regulation of chromosome segregation.
Their abnormally high expression may predict increased
chromosomal instability and abnormalities during cell division,
thus providing a molecular basis for tumor aggressiveness and
malignant transformation. Meanwhile, the upregulation of MDM?2
suggests that the p53 signaling pathway may be inhibited, which to a
certain extent reduces the ability of cells to repair DNA damage and
may prompt cells to evade apoptotic mechanisms, further
accelerating tumor progression.

The results of Wound-healing assay and Transwell invasion
assays showed that RRM2 overexpression significantly enhanced
the migration and invasion ability of TPC-1 cells, while knockdown
of RRM2 produced the opposite effect. Further Western blot
analysis showed that RRM2 regulated the expression levels of
MMP2, MMP9 and EMT-related proteins (N-Cadherin,
Vimentin, Snail), suggesting that RRM2 may promote tumor cell
invasion and metastasis by promoting matrix degradation and
inducing epithelial mesenchymal transition.

TPC-1, RRM2-OE-TPC-1 mRNA sequencing and KEGG
pathway analysis showed that the PI3K-Akt signaling pathway was
significantly enriched in the differential genes. Western blot results
further demonstrated that the expression level of RRM2 was
positively correlated with the levels of pAkt, PI3K p850. and p110c.
proteins. The total Akt expression level was unchanged, while the
expression level of phosphorylated Akt (pAkt) was up-regulated with
the overexpression of RRM2, suggesting that RRM2 could be involved
in the regulation of phosphorylation activation of Akt, which was
consistent with the findings in other cancer types. The significant
changes in PI3K kinases (subunits) p85ct and p110c and the absence
of significant changes in PTEN suggested that the RRM2 regulation
may activate Akt signaling through PI3K subunit stability regulation
rather than the classical PTEN-dependent pathway.

In conclusion, we observed significant upregulation of GSH
metabolism-related enzymes in THCA. For the first time, we
established a risk stratification model based on GSH metabolism-
related enzymes, and subsequently identified high-risk patient
groups with poorer prognosis. Additionally, we identified RRM2
as the key molecular candidate. In this study, we constructed a cell
model of PTC with knockdown and overexpression of RRM2, and
explored the specific functions of RRM2 in the proliferation,
migration, and invasion of PTC cells through a series of
experiments. In the case of its impact on the tumor invasive
biological behavioral phenotype, mRNA sequencing was applied
to study the effect of its transcriptional level to further explore the
downstream effector molecules or pathways of RRM2. Overall, the
results suggest that RRM2 acts as a pro-oncogenic molecule and
may promote the progression of PTC by activating the PI3K/Akt
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signaling pathway, regulating key proteins of the cell cycle, and
inducing the EMT process, which is in high agreement with
previous findings in other malignant tumors. Nevertheless, the
present study still has some limitations, as the current study has
not yet externally validated our proposed risk stratification model,
its clinical application still needs to be validated in external cohorts,
including retrospective cohorts from other centers and future
prospective multicenter cohorts. In addition, mRNA sequencing
analysis suggested potential other signaling pathways such as p53
signaling pathway and IL -17 signaling pathway. In the future, we
will combine Western blot and immunofluorescence experiments to
purposefully elucidate the molecular mechanisms of PI3K, p53, and
other candidate pathways in the progression of RRM2-mediated
PTC, providing a more complete theoretical basis.
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