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Introduction: Glutathione (GSH), the most abundant antioxidant in cells, acts as

free radical scavenger and detoxifying agent. Elevation of GSH metabolism

protects tumor from damage of oxidant and even promotes tumor

progression. However, the clinical value of GSH metabolism in thyroid cancer

(THCA) remained largely unknown.

Methods: The expression and prognostic value of GSH metabolism-related

enzymes were first investigated using a large The Cancer Genome Atlas

(TCGA) cohort of 510 THCA patients. To expand the prognostic application, a

risk stratificationmodel based on these enzymes was developed using the LASSO

Cox regression algorithm. Patients were categorized into high- and low-risk

groups based on the median risk score, and the model’s predictive performance

for disease-freesurvival (DFS) was validated. Further correlation analysis, pan-

cancer analysis (using TCGA and GTEx data), and detailed analysis across

pathological types and TNM stages were performed to identify and

characterize key molecules, such as RRM2. Finally, the biological role of RRM2

was validated in vitro (CCK-8 and colony-formation assays) and in vivo

(subcutaneous tumor formation in nude mice). Furthermore, the molecular

mechanism underlying RRM2’s tumor-promoting function was preliminarily

investigated through mRNA sequencing and subsequent experiments.

Results: The majority of GSH metabolism–related enzymes were significantly

upregulated in THCA tumor tissues and their expression was negatively

associated with DFS. The LASSO Cox model stratified patients into high-risk

and low-risk groups with significantly different DFS. High-risk status was also

positively correlated with increased infiltration of naïve B cells, activated memory

CD4+ T cells, helper T cells and regulatory T cells. RRM2, screened as a key

molecule, exhibited high expression in THCA tissues, especially in more

aggressive subtypes (classic and tall-cell variants of papillary THCA) and N

stages. Paired-sample IHC confirmed higher RRM2 in PTC versus adjacent

tissue. High RRM2 expression was significantly and negatively correlated with

DFS. Functionally, RRM2 overexpression promoted TPC-1 cell proliferation and

colony formation (CCK-8 and colony assays) while knockdown suppressed

growth. Subcutaneous tumor formation experiments recapitulated these
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findings. Mechanistically, RRM2’s oncogenic effects may be mediated through

cell cycle regulation and activation of the PI3K/Akt signaling pathway.

Discussion: GSH metabolism–related enzymes are upregulated in THCA and

associate with a worse prognosis and an immune landscape suggestive of

antigenic stimulation coupled with immunosuppression. RRM2 is a tumor-

promoting gene that correlates with aggressive clinicopathologic features and

functionally drives thyroid tumor growth in vitro and in vivo. These data support

further investigation of GSHmetabolism and RRM2 as prognostic biomarkers and

potential therapeutic targets in thyroid cancer.
KEYWORDS

glutathione metabolism, thyroid cancer, RRM2, prognostic risk stratification modeling,
LASSO-penalized cox regression
1 Introduction

Thyroid cancer (THCA) is the most common malignant tumor

of the endocrine system and consists of several histologic types,

including papillary thyroid carcinoma (PTC), follicular thyroid

carcinoma (FTC), medullary thyroid carcinoma (MTC), and

Anaplastic Thyroid Carcinoma (ATC). Of these, PTC is the most

common histologic subtype, accounting for 80-90% of all THCA case

types (1). Currently, treatment decision for THCA mainly depends

on clinicopathological factors like age, histologic type, tumor stage

and so on, molecular risk stratification system is lacking (2).

Although the traditional TNM staging system can provide a

preliminary prognostic assessment, its limitations gradually emerge

when facing the biological heterogeneity of tumors as well as the

selection of individualized treatment strategies, making it difficult to

comprehensively reflect the molecular characteristics and biological

behaviors of tumors. In recent years, with the development of high-

throughput sequencing technology, the construction of accurate

prognostic models based on molecular markers has become an

important research direction to improve the clinical management

of THCA and guide treatment decisions.

Glutathione (GSH) is the most abundant antioxidant acting as

free radical scavenger and detoxifying agent in almost all human cells

(3). The biosynthesis of GSH including two important steps that

happen in the cytosol. The first and limiting step is the conjugation

of cysteine with glutamate to form the dipeptide g-glutamylcysteine,

which is catalyzed by g-glutamyl-cysteine ligase (GCL). In the second

reaction, glycine is added to the C-terminal of g-glutamylcysteine

catalyzed by glutathione synthetase (GSS). Under oxidative stress

like reactive oxygen species (ROS), GSH is converted into oxidized

state (GSSG) by GSH-dependent peroxidases, thus the GSH/GSSG

ratio within cells reflects cellular oxidative stress and increased ratio

indicates heavier oxidative stress (4).

Due to the high metabolic rate and/or the activation of ROS-

coupled signaling pathways, oxidative stress always elevates in

cancer cells (5, 6). Since intense oxidative stress leads to severe
02
damage of biomolecules, triggering cell death, it is easily understood

that GSH metabolism might be upregulated in tumor cells to

protect them from damage of oxidant and even promote cancer

cell proliferation and metastasis. For example, the nuclear factor

erythroid 2-related factor 2 (NRF2), which controls the

transcription of GCL, is stabilized and activated in breast cancer,

promoting GSH biosynthesis and resistance to oxidative stress (7).

In addition, NRF2 was reported to promote cancer cell proliferation

by metabolic reprogramming and correlate with dismal survival

outcomes in esophageal cancer, non-small cell lung cancer and

pancreatic cancer (8–10). Prof. Martin O Bergo observed that N-

acetylcysteine (NAC) increased lymph node metastases of

malignant melanoma in vivo based on the GSH system (11).

Furthermore, expression of GSH peroxidase and thioredoxin

reductases were decreased in THCA tissue, indicating that the

imbalance of the oxidant/antioxidant system played an important

role in THCA (12). However, the clinical value of GSH metabolism

in THCA remains ambiguous.

Based on large thyroid cancer cohort form The Cancer Genome

Atlas (TCGA) database, we systematically analyzed molecular

characteristics of 24 GSH metabolism-related enzymes and revealed

two subgroups with distinct metabolic status and survival outcomes.

To quantity the GSH metabolism status and stratify THCA patients,

we further constructed a 9-gene based signature via LASSO-penalized

Cox regression model. Furthermore, clinicopathological and

microenvironment features were compared between the high- and

low-risk patients. The robust and powerful metabolic index risk

model could provide insightful suggestions to explore the

molecular functions and mechanisms of GSH metabolism and

might help guide clinical treatment decisions for THCA patients in

future. Based on the THCA prognostic risk model, we screened the

key molecule Ribonucleotide reductase M2 (RRM2) subunit, which

has a potential pro-cancer role, to explore the functional role of

RRM2 and its molecular mechanism in PTC, and to investigate the

effects of RRM2 on the proliferation, apoptosis, migration invasion,

cell cycle, and tumorigenicity of PTC cells in vivo.
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2 Materials and methods

2.1 Data acquisition

TCGA RNA sequence level 3 normalized data and

corresponding THCA clinical information were downloaded from

UCSC Xena (https://xenabrowser.net/datapages/) for further

analysis. The RNA-seq data of normal thyroid tissues were

downloaded from the Genotype Tissue Expression (GTEx)

database (http://commonfund.nih.gov/GTEx/). In addition, the

study downloaded and integrated RRM2 RNA expression data for

30 different cancer types and their corresponding paracancerous

tissues from the TCGA and GTEx databases.
2.2 Screening of the gsh metabolism
related enzymes

We extracted enzymes that play a pivotal role in the GSH

pathway and have the potential to be manipulated for the following

analysis. We extracted 50 genes involved in the GSH metabolism

according to Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, among these genes, 24 of them are annotated as enzymes

based on the MetaCyc database. We further analyzed the functional

role of these enzymes in THCA.
2.3 Bioinformatics analysis

Unsupervised hierarchical clustering of THCA samples was

performed using R package “ConsensusClusterPlus v1.42.0”. The

R package “survival v3.1-7” (https://cran.r-project.org/web/

packages/survival/) was adopted to acquire the disease-free

survival (DFS) through Kaplan-Meier estimation. We calculated

the fold change and adjusted p-value using the DESeq2 v1.18.1 R

package for all genes between different groups, and genes with an

adjusted p-value less than 0.05 and |log2FoldChange| > 1 were

considered as differentially expressed genes (DEGs). CIBERSORT

v1.03 (13) was used to estimate the immune cell components in all

samples. The nomogram was produced by R package “rms v2.4.1”.
2.4 Generation of a 9-gene signature-
based model

To expand the application of the GSH metabolism related

enzymes on THCA risk stratification in different datasets, we

strived to establish a prognostic model to predict the THCA

patient DFS status based on the expression level of these

enzymes. We randomly selected 382 patients from the TCGA as

the training dataset, and the remaining were treated as the

validation dataset. The 24 putative GSH metabolism related

enzymes were included to construct the model via LASSO Cox

regression algorithm. The LASSO Cox regression algorithm was

performed by using R package “glmnet v2.0-18” with default
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parameters. After 10-fold cross-validation by 1,000-time

alteration, a risk signature including RRM1, GSR, GCLM, IDH2,

RRM2, ODC1, GGT5, OPLAH and GSTZ1 was finally adopted. And

the regression coefficients were determined by the value of l that

gives minimum mean partial likelihood deviance. The risk score

could be calculated as follows: Risk Score = k1×x1+k2×x2+…+ki×xi
(i = n). i represents for the selected enzyme, k for the regression

coefficient and x for the log2(FPKM + 1) expression level. We

further classified the samples into high- and low-risk group

according to the median value of the risk scores.
2.5 Cell culture

PTC cell lines TPC-1(cat. no. 20240110-11) and IHH4(cat. no.

20240112-03) were purchased from iCell Bioscience Inc. For

culture, all cells were incubated in RPMI 1640 medium (Gibco,

Thermo Fisher Scientific) supplemented with 10% fetal bovine

serum (TYCOTO; China Hanqiang (Guangzhou) Biotechnology

Co.) Cells were kept in a humidified incubator (Thermo Fisher

Scientific) at 37°C and 5% CO2.
2.6 Antibodies

Anti-Human/Mouse RRM2 (Cat.no. ab172476)/Anti-Human

PI3K Kinase p85a+p55 Antibody (Cat.no. ab278545)/Goat anti-

Rabbit IgG H&L (HRP, Cat. No. ab205718) and Goat anti-Mouse

IgG H&L (HRP, Cat. No. ab97023) were Purchased from Abcam.

Anti-Human Bax Antibody (Cat.no. 5023)/Anti-Human Bcl-2

Antibody (Cat.no. 3498)/Anti-Human MMP2 Antibody (Cat.no.

40994)/Anti-Human MMP9 Antibody (Cat.no. 13667)/Anti-

Human N-Cadherin Antibody (Cat.no. 13116)/Anti-Human

Vimentin Antibody (Cat.no. 5741)/Anti-Human Snail Antibody

(Cat.no. 3879)/Anti-Human Akt Antibody (Cat.no. 4691)/Anti-

Human Phospho-Akt Antibody (Cat.no. 4060)/Anti-Human PI3K

Kinase p110a Antibody (Cat.no. 4249)/Anti-Human PTEN

Antibody (Cat.no. 9188) were purchased from CST. Anti-Mouse

PCNA (Cat.no. RMA-0145) and Anti-Mouse Ki-67 (Cat.no. RMA-

0731) Antibodies were purchased from Maixin Bio-technology

Development Company, Fuzhou, China. Anti-Human GAPDH

Antibody (Cat.no. 10494)/Anti-Human Cyclin A2 Antibody

(Cat.no. 18202)/Anti-Human Cyclin E2 Antibody (Cat.no.

11935)/Anti-Human CDK2 Antibody (Cat.no. 10122)/Anti-

Human c-MYC Antibody (Cat.no. 10828)/Anti-Human Cyclin

D1 Antibody (Cat.no. 60186) were purchased from Proteintech.
2.7 RNA extraction and RT-qPCR

In this study, cancer tissues and paired paracancerous thyroid

epithelial tissues of 44 patients(age range 20–68 years) with PTC

were collected by surgery from the Department of Thyroid Surgery,

Union Hospital, Fujian Medical University (Fuzhou, Fujian, China).

All diagnoses were confirmed by histopathological examination,
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and the patients’ clinicopathological characteristics were extracted

from their medical records. Total RNA from THCA cell lines was

extracted using the TRIzol reagents (Invitrogen; Thermo Fisher

Scientific, Cat.no. 15596018). Subsequently, the prepared RNA was

used to synthesize the first strand cDNA in accordance with the

protocol of the All-In-One 5X RT MasterMix (abm, Cat.no. G592).

Then, qPCR was performed in triplicate using the PerfectStart®

Green qPCR SuperMix (+Universal Passive Reference Dye) kit

(Beijing TransGen Biotech Co,Cat.no. AQ602) according to the

manufacturers’ protocol. The PCR protocol was conducted using

the following conditions: 95°C for 30 sec, followed by 40 cycles of

amplification (95°C for 5 sec and 60°C for 30 sec). All reactions were

performed with a StepOnePlus Real-Time PCR System (Applied

Biosystems, Thermo Fisher Scientific, Cat# 4376592). The specific

primers for RRM2 amplification were used as follows: Sense, 5′-
TTGCCTGTGAAGCTCATTGG-3′ and antisense, 5′-CCTCTG
ATACTCGCCTACTCTC-3′. GAPDH primers were: Sense, 5′-
GGTCGTATTGGGCGCCTGGTC-3′; Antisense, 5′-TGACGGTG
CCATGGAATTTGCCA-3′. GAPDH was used as a reference

control to normalize the transcriptional levels of target gene and

data was calculated using the 2−DDCq method.
2.8 Immunohistochemistry and
immunohistochemical score

Formalin−fixed, paraffin−embedded specimens were cut into 4

mm sections. Slides were deparaffinized in xylene, rehydrated

through a graded ethanol series, and subjected to antigen retrieval

in citrate buffer (pH 6.0) using microwave heating. Sections were

incubated overnight at 4°C with the following primary antibodies:

Anti-Human/Mouse RRM2 (Cat. No. ab172476)— applied at 1:100

for human tissue sections and 1:1,000 for mouse tissue sections —

and Anti-Mouse PCNA (Cat. No. RMA-0145) and Anti-Mouse Ki-

67 (Cat. No. RMA-0731), which were used exclusively on mouse

tissue sections (both PCNA and Ki-67 reagents were used as ready-

to-use per the manufacturer’s instructions). After primary antibody

incubation and washes, sections were processed with the Elivision™

Plus IHC detection system (ready-to-use; Cat. No. kit9903; Maixin

Biotech, Fuzhou, China). Per the manufacturer’s protocol, slides

were incubated with the kit amplifier/enhancer for 20 min at room

temperature (≈25°C), followed by incubation with the HRP-

conjugated secondary reagent for 30 min at room temperature.

Immunoreactivity was visualized with 3,3′-diaminobenzidine

(DAB). Following DAB development, nuclei were counterstained

with hematoxylin, differentiated and blued in ammonia water, and

coverslips were mounted with neutral resin.

Immunostained slides were independently reviewed by senior

pathologists (≥5 years’ experience) at the Department of Pathology,

Fujian Medical University Union Hospital, who were blinded to all

clinical information. Staining was scored semi−quantitatively based

on the percentage of positive cells (0 = 0%; 1 = 1–24%; 2 = 25–49%;

3 = 50–74%; 4 = 75–100%) and staining intensity (0 = negative; 1 =

weak; 2 = moderate; 3 = strong). The final H−score was obtained by

multiplying the proportion score by the intensity score (14, 15).
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2.9 Western blotting

Total proteins were isolated from cells using a lysate prepared in the

ratio of RIPA: protease inhibitor: phosphatase inhibitor: PMSF =

100:1:1:1. Then the amount of protein was quantity using Enhanced

BCA Protein Assay Kit (BOSTER Biological Technology co, Cat. no.

AR0197A). Equal amounts of protein (20mg) were separated by 8%

~15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and

then transferred to polyvinylidene difluoride membranes (Millipore,

Cat.no. IPVH00010). Prior to primary antibody incubation, membranes

were blocked with a protein-free rapid blocking solution (Cat. No.

AR0041; Wuhan Boster Biological Technology Co., Ltd.) for 20 min at

room temperature on a shaker (50–60 rpm). Following blocking,

membranes were incubated with primary antibodies overnight at 4°C.

The anti-GAPDH antibody (Anti-Human GAPDH, Cat. No. 10494;

Proteintech) was used as the internal loading control at a working

dilution of 1:6,000. After three washes with TBST, membranes were

incubated with HRP-conjugated secondary antibodies—Goat anti-

Rabbit IgG H&L (HRP, Cat. No. ab205718) and Goat anti-Mouse

IgGH&L (HRP, Cat. No. ab97023) (Abcam)—each at a 1:6,000 dilution

for 1 h at room temperature (20–25°C) on a shaker. The

immunostained proteins were visualized with Efficient

chemiluminescence kit (Beijing Dingguo Changsheng Biotech Co,

Cat. no. GE2301). Image J software (National Institutes of Health,

USA; open-source software available at https://imagej.nih.gov/ij/) was

used to examine the gray values of each primary antibody and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
2.10 Overexpression and knockdown of
RRM2 gene in TPC-1 and IHH4 cells

For upregulating RRM2 expression in cells, we obtained a full-

length RRM2 sequence fragment using a PCR method and

subsequentlycloned it into vector LV18, verified by DNA

sequencing and transfected 293T cells (see Supplementary Materials

for details). The collected lentiviruses were used to infect TPC-1 and

IHH4 cells and the cells were screened with cell cultures containing 3

ug/mL puromycin. Finally, TPC-1 and IHH4 cells were collected for

western blotting to assess the efficiency of RRM2 overexpression.

To knock down RRM2 protein expression, RRM2 shRNA was

developed to silence the RRM2 gene. Lenti-RRM2 shRNA vector was

constructed using RRM2 shRNA oligonucleotides with LV 2N (U6/

Puro) vector. Based on the manufacturer’s instructions (GenePharma,

Shanghai, China), lentiviral (Lenti-RRM2 shRNA or Lenti-shRNA)

(MOI = 15) was applied to transfect TPC-1 and IHH4 cells with 5 mg/
ml polybrene(Sigma, Cat# H9268) for 12 h. After selection of 3 mg/ml

puromycin(Beyotime, Cat# ST551), TPC-1 and IHH4 cells were

harvested for western blotting to assess RRM2 knockdown efficiency.
2.11 Cck-8 assay

Cells (1000 per well) were incubated into 96 well and cell vitality

was assessed by Cell Counting Kit-8 (Dojindo, Cat.no. CK04) at 24,
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48, 72 and 96 h according to the manufacturer’s instructions.

Absorbance was recorded at 450 nm with a multifunctional

enzyme marker (BioTek Instruments Inc., USA).
2.12 Colony-formation analysis

Cells (1000 per well) were plated in culture plates for 1 weeks at

37°C in a humidified environment with 5% CO2 and stained with

crystal violet staining solution(1%) for 10~20 min. The stained

colonies were imaged using a camera and counted using

a microscope.
2.13 Subcutaneous tumor formation in
nude mice

Tumor-bearing mice were monitored daily, and humane

endpoints were strictly applied. Humane endpoints: Animals were

euthanized if tumor volume exceeded 2000 mm³, if tumors reached

10% of body weight, if body weight loss exceeded 20–25%, or if signs of

cachexia or severe distress were observed. Euthanasia was performed

under deep anesthesia induced by intraperitoneal injection of 1%

pentobarbital sodium at 0.1–0.2 mL per 10 g body weight (≈100–200

mg/kg); deep anesthesia was confirmed by flaccidity and the absence of

a pain response to a hind-limb pinch, after which cervical dislocation

was carried out. All procedures were carried out in accordance with

Fujian Medical University animal care and welfare guidelines and

institutional animal welfare regulations, and were approved by the

Institutional Animal Care and Use Committee of Fujian Medical

University (Approval No. FJMU20240245).

Eighteen 4-5-week-old female BALB/c nudemice were purchased

and housed in an animal house (SPF grade), divided into 3 groups of

6 mice each, which were the TPC-1 cell-negative control group (n=6),

the experimental group injected with RRM2-KD cells (n=6), and the

experimental group injected with RRM2-OE cells (n=6). The mouse

cages were prepared in advance, washed with soapy water, sprayed

with 1% peroxyacetic acid on the inside, sealed and sterilized for 24 h,

and then ventilated and dried. Inside the cages were placed sterile

UV-sterilized mouse food, water and bedding, and 6 nude mice were

kept in each cage. The animal room simulated daylight for 12 h day

and night, and the condition of the mice was observed every day, and

the bedding was changed and the food and water were added in a

timely manner. When the cells were expanded to ~75–90%

confluence, the cells were washed twice with PBS to remove the

residual serum, digested and centrifuged and resuspended with sterile

PBS, the cells were counted and the cell concentration was adjusted to

1×107/ml, and the cell suspension was stored in EP tubes and kept on

ice. The nude mice were randomly divided into 3 groups, and each

group was marked with an ear piercing to distinguish them from the

others. 200 ml of cell suspension containing 2 × 106 cells was

inoculated subcutaneously on the right axillary region of the nude

mice in each of the 3 groups, and the wounds were gently pressed

with a sterile cotton ball to prevent the inoculum from flowing out

after the inoculation. After inoculation, the nude mice were put back
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into the cage without any special discomfort. BALB/c nude mice (4–5

weeks old) were inoculated subcutaneously; tumor measurements

with caliper began on day 10 post-inoculation and were thereafter

recorded every three days. Tumor length (long diameter) and width

(short diameter) were recorded with sterile vernier calipers. When the

test was stopped, the daily change in the volume size of the tumor was

calculated, and the formula for calculating the volume of the tumor

was V=long diameter × long diameter × short diameter/2.

Experiments were terminated on day 19 post-inoculation, at which

point tumors had reached sizes considered sufficient for downstream

assays (histology, protein/RNA extraction, and functional analyses).

Animals were euthanized and then cervical vertebrae were dislocated

under confirmed deep anesthesia, and tumors were harvested for

further study.
2.14 Cell cycle analysis

Cells (2 × 105) were seeded in 6-well plates and cultured for 24h.

Cells were digested and collected in a new EP tube and fixed them

with cold ethanol at 4°C overnight. After this, 500 μl propidium

iodide (PI) and RNase A (Elabscience, Cat. no. E-CK-A351) (1:9)

were applied to incubate cells in the darkness. Approximately 1.5 ×

105 cells per well were acquired for analysis. The results were

analyzed using a Flow Cytometry System (C6 plus). The

percentage of different cell cycles was calculated using FlowJo

v7.6.1 (BD Life Sciences, licensed copy distributed via Fujian

Medical University; local download: https://ggjszx.fjmu.edu.cn/

news/systemview?id=244).
2.15 Cell apoptosis assay

Cell apoptosis was assessed by APC-Annexin V Binding

Apoptosis Assay Kit (Elabscience, Cat.no. E-CK-A218) following

the manufacturer’s protocols. Cells were washed re-suspended in

binding buffer containing propidium iodide (PI) and Annexin V-

APC. Approximately 3 × 104 cells per well were acquired for analysis.

Stained cells were analyzed by Flow Cytometry System (C6 plus).
2.16 Wound-healing assay

Cells (6× 105) were seeded in 6-well plates and cultured to >90%

confluence. Wounds were scratched using a 200-ml plastic pipette

tip. After PBS wash 2~3 times, cells were maintained in serum-free

RPMI 1640 medium (Gibco, Thermo Fisher Scientific) for the

duration of the assay. Wounded areas were photographed by

phase-contrast microscopy at 24 h and 48 h, respectively.
2.17 Transwell assay

Cells were suspended in serum-free medium, counted, and the

cell concentration adjusted to 2.5 × 105 cells/mL. A volume of 200
frontiersin.org
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μL of this suspension (containing 5.0 × 104 cells) was then seeded

into the upper chamber with coated Matrigel (Corning,Cat.no.

354234) of a 24-well chamber (Corning, Cat.no. 3422). The 24-

well chamber was fitted with polycarbonate membranes (6.5 mm

diameter, 0.33 cm² growth area) containing 8.0 μm pores. Six-

hundred-microliter media containing 10% FBS were added to the

lower chamber overnight. Migrated cells were fixed with 4%

paraformaldehyde and stained with crystal violet. Cells were

rinsed and counted from random fields. All rights reserved (×100

magnification). Each experiment was conducted triplicate.
2.18 RNA sequencing and transcriptome
analysis

2.18.1 RNA extraction and library preparation
Total RNA was extracted from cells using TRIzol reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. RNA integrity was evaluated on an Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA). Indexed,

directional RNA-seq libraries were constructed with the

NEBNext® Ultra™ Directional RNA Library Prep Kit for

Illumina (New England Biolabs, Ipswich, MA). Briefly, poly(A)+

mRNA was isolated using oligo(dT) beads, fragmented, and reverse

transcribed into first-strand cDNA. Second−strand synthesis, end

repair, adaptor ligation, and PCR amplification were performed to

generate the final sequencing libraries. Libraries were sequenced on

an Illumina NovaSeq 6000 platform (Novogene Co., Ltd., Beijing,

China) using a paired−end 150 bp (PE150) strategy.

2.18.2 Data quality control
Raw sequencing reads were processed with fastp to remove

adapters and low−quality bases, yielding high−quality “clean” reads.

The cleaned data were assessed for base quality (Q20, Q30) and GC

content. All downstream analyses were based on these filtered reads.

2.18.3 Alignment to the reference genome
The latest reference genome assembly and corresponding gene

annotation files were downloaded from the genomic database. A

HISAT2 v2.0.5 index was built for the reference genome, and paired

−end clean reads were aligned using HISAT2 v2.0.5 with

default parameters.

2.18.4 Quantification of gene expression
Mapped reads were counted against gene features using

FeatureCounts (v1.5.0−p3). Gene expression levels were

normalized to fragments per kilobase of transcript per million

mapped reads (FPKM) by dividing the read counts by the gene

length and sequencing depth.

2.18.5 Differential expression analysis
Each cell line was assayed in biological triplicate. Differential

expression between two conditions was determined using DESeq2
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(v1.20.0). P values were adjusted for multiple testing using the

Benjamini–Hochberg procedure to control the false discovery rate

(FDR). Genes with an adjusted P ≤ 0.05 were considered

significantly differentially expressed.

2.18.6 Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses of differentially

expressed genes were performed using ClusterProfiler (v3.8.1).

Terms with an adjusted P < 0.05 were deemed significantly enriched.
2.19 Statistics

R v4.2.1 (The R Foundation for Statistical Computing; available

at https://cran.r-project.org/) was used for all statistical analyses. To

assess whether datasets follow a Gaussian distribution, the Shapiro–

Wilk normality test was performed. If the data were Gaussian,

parametric tests were performed (two-tailed unpaired t-tests). If the

data were non-Gaussian, nonparametric tests were applied

(Wilcoxon rank test or Spearman correlation). The results were

considered statistically significant when P < 0.05, or a lower

threshold when indicated by the appropriate test. Survival

analysis was performed using the Kaplan-Meier method. A log-

rank test was used to evaluate the significance of the difference

between different Kaplan-Meier curves. The hazard ratio was

determined using a Cox proportional hazards model. The test

used and the statistical significance are reported in each figure

and table.

Unless otherwise stated, data are presented as mean ± standard

deviation (SD). The number and type of replicates for each

experiment are as follows: RT-qPCR validation — n = 4

biological replicates for TPC-1 cells, n = 3 biological replicates for

IHH4 cells and clinical tissue. Western blot — n = 4 biological

replicates. CCK-8 assays — n = 5 technical replicates (wells) per

group. Colony-formation assays — n = 3 biological replicates

(independent experiments). Wound-healing and Transwell

invasion assays — n = 3 technical replicates per condition. Flow-

cytometric assays for cell-cycle distribution and apoptosis — n = 3

biological replicates.
3 Results

3.1 GSH metabolism related enzymes
highly expressed in THCA

In order to decipher the role of GSH metabolism related

enzymes in THCA, we collected expression data of 510 THCA

tumor samples from the TCGA and 58 normal thyroid samples

from the GTEx database. As supposed, most GSH metabolism

related enzymes like GGT5, GPX1, GPX2, GPX4, GSR, GSS,

GSTA1, GSTA2, GSTO1, IDH, IDH2, RRM1, RRM2 and SRM

were highly expressed in THCA samples, while expression of
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GCLC, GCLM, GPX3, OPLAH, PGD and SMS were decreased in

tumor tissues (Figures 1A, B). The correlation heatmap of 24 genes

is shown in the Figure 1C. The significantly increased expression of

the GSH metabolism related enzymes demonstrated that it might

play an essential role in progression of THCA and might be able to

predict the survival outcomes of THCA patients. We wonder

whether the expression of GSH metabolism related enzymes

could predict the progression of THCA patients. Calculating the

Cox proportional hazard ratios (HRs), we found that high

expression of RRM2 and IDH2 were negative prognostic factors

of DFS, while high expression of GGT5 and ODC1 were correlated

with better DFS (Figure 1D).
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3.2 Establishment of a 9-gene based risk
stratification model

To further expand the application of GSH metabolism related

enzymes on THCA risk stratification in different datasets, we strived to

establish a prognostic model to quantify the expression levels of key

enzymes in THCA tumor samples. We randomly selected 382 patients

fromTCGA as the training dataset, and the remaining as the validation

dataset. The 24 putative GSH metabolism related enzymes were

included to construct the model via LASSO Cox regression

algorithm. After 1,000-time alteration and cross-validation, a risk

signature including RRM1, GSR, GCLM, IDH2, RRM2, ODC1,
FIGURE 1

Expression pattern and prognostic relevance of GSH metabolism–related enzymes in THCA. (A, B) Heatmap (A) and box plot (B) showing the
expression pattern of GSH metabolism related enzymes between THCA and normal thyroid samples. For (B), gene expression values were log2-
transformed [log2(TPM + 1)] prior to analysis. For each gene, differences between tumor and normal samples were tested using two-sided Welch’s
t-tests (unpaired, not assuming equal variances). P-values across the multiple gene/tissue comparisons were adjusted using the Holm procedure.
(C) Spearman correlation matrix of GSH metabolism–related enzyme expression across the THCA cohort (*p < 0.05, **p < 0.01, and ***p < 0.001).
(D) Forest plot depicting hazard ratios (with 95% confidence intervals) for each GSH metabolism–related enzyme in univariate survival analysis.
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GGT5, OPLAH and GSTZ1 was finally adopted. The exact parameters

of the model were shown in Figures 2A, B. For this model, the Risk

Score = 0.24×GSTZ1 + 0.34×GSR + 0.09×RRM1 + 0.65×RRM2-

0.33×IDH2-0.11×OPLAH-0.52×GCLM-0.18×GGT5-0.25×ODC1.

And we found that the risk score in patients who suffered from

progression was significantly higher than that in those who did not in

the training dataset (Figure 2C). The receiver operating characteristic

(ROC) curve further confirmed the good prognostic prediction

performance of our model (AUC = 0.888) (Figure 2D). Categorizing

THCA patients into high and low groups based on the median of the

risk score, we observed that patients with low-risk score achieved better

DFS compared to those with high-risk score (P < 0.001, HR = 4.54,

95% CI:2.10-9.81) (Figure 2E). Univariate Cox proportional hazard

regression analysis indicated the high-risk score was a negative

prognostic factor of DFS for THCA (Figure 2F). We further applied

the risk score model in the validation dataset to confirm its accuracy

and stability. Similarly, high risk score was a negative prognostic factor

for DFS (P < 0.001), and the AUC was 0.871 in predicting DFS status

in ROC analysis (Supplementary Figures S1A–D).

Since many clinicopathological factors like age, TNM stage

would also influence the survival outcomes of THCA, we
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conducted subgroup analysis in the entire TCGA cohort to

further validate the robustness of the risk score model. Older

patients, male patients and patients diagnosed with late stage

tended to possess higher risk score (Supplementary Figure S2).

High risk score remained as the negative prognostic factor for DFS

in all subgroups (Supplementary Figure S3).

We further constructed a nomogram to predict 1-, 3-, and 5-years

DFS probability based on the risk score of the TCGA training dataset.

Risk score deviated very little from actual DFS probability in

nomogram analysis, such as 1-, 3- and 5-years DFS probability

(Figures 3A–D). All these results supported that our risk score

model could sensitively distinguish high-risk patients with dismal

DFS from low-risk patients, thus might further instruct

individualized treatment decisions.
3.3 Immune characteristics were distinct in
the high- and low-risk patients

Previous research reported that GSH was essential for energy

metabolism changes that were required for T cell effector functions
FIGURE 2

Establishment of risk stratification model based on the GSH metabolism related enzymes. (A) Tuning parameter (lambda) selection in the LASSO
model. (B) Coefficient profile plot was produced against the log lambda sequence. (C) Boxplot shows difference of the risk score between patients
with progression and those without in the training dataset. We used the Wilcoxon rank-sum test (Mann–Whitney U, two-sided) to compare the two
independent groups. (D) Receiver operating characteristic (ROC) curves show the predictive efficiency of the risk stratification model in the training
dataset. (E) Kaplan–Meier curves of DFS for the high- and low-risk patients in the training dataset. (F) Risk plot for the THCA patients in the training
dataset. Each panel consists of three rows: top row showed the risk score distribution for the high- and low-risk score group; middle row represents
the THCA patients’ distribution and DFS status; the bottom row presents heatmap of expression of the 9-prognostic metabolism-related enzymes.
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(16). Thus, we explored the relationship between immune cells

infiltration and the GSH metabolism related risk score.

Decomposing 18 types of immune cells of THCA microenvironment

using CIBERSORT, we observed that the risk score was positively

correlated with proportion of naive B cells, activated memory CD4 T

cells, follicular helper T cells and regulatory T cells (Figure 4).
3.4 High expression of RRM2 is associated
with dismal survival outcomes and
promotes proliferation and metastasis in
THCA

By calculating the correlation between the risk scores of 510

thyroid cancer patients in the TCGA database and the RNA

expression data of the nine genes included in the model, the

results are shown in Table 1. The genes that have a high

correlation with the risk scores and a significant p-value are the

genes that best reflect the results of the prognostic model. From the

table, we can see that the genes that are more suitable to be selected

as experimental studies are, in order, RRM2 (cor = 0.6310 p =

2.2627×10-43), ODC1 (cor = –0.4648 p = 1.1649×10-21), GCLM (cor
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= -0.4208 p = 1.1843×10-17), GGT5 (cor = -0.3876 p = 5.3263×10-

15). Previous studies have shown that RRM2 plays a crucial role in

cell proliferation, invasion, migration, senescence, tumorigenesis,

and other important cellular processes (17). High expression of

RRM2 has been associated with depressing survival outcomes in a

variety of cancers, including breast cancer, gastric cancer, and

bladder cancer. Since RRM2 has also been found to be a risk

factor for DFS in THCA, we further validated its effects on

THCA tumor cells in vitro and in vivo.

In this study, we performed a systematic differential expression

analysis of RRM2 across 30 cancer types by integrating TCGA

tumor data with both TCGA tumor-adjacent samples and non-

diseased tissues from the GTEx database (Figure 5A). The results of

the analysis were expressed as adjusted p-values (p.adj), and p.adj <

0.05 was considered statistically significant, full results are presented

in Supplementary Table 1. The findings indicated that RRM2

generally showed significantly high expression levels in most

cancer types, especially in malignant tumors of epithelial origin,

suggesting that it may play an important role in the development of

these cancers. Notably, in THCA, RRM2 also showed significant

high expression (p.adj=4.90×1043), which may suggest a tumor-

promoting role for RRM2 in thyroid cancer.
FIGURE 3

Construction and validation of a prognostic nomogram for DFS in THCA. (A) Nomogram integrating age, sex, and risk score to predict 1−, 3−, and 5−year
DFS probabilities. (B–D) Calibration plots assessing the nomogram’s predictive accuracy for 1−year (B), 3−year (C), and 5−year (D) DFS probability.
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We performed a detailed analysis of RRM2 expression based on

TNM stages and pathological types using the TCGA data, with the

following key findings: Among the T stage, N stage, and M stage

classifications, we found that RRM2 expression was significantly

correlated only with the N stage (Supplementary Figures S4A–D).
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Specifically, patients classified as N1 (indicating regional lymph node

metastasis) showed higher RRM2 expression than those classified as

N0. When cases were grouped by pathological subtype, RRM2

expression was higher in classic and tall-cell variants of papillary

thyroid carcinoma compared with the follicular variant.
FIGURE 4

Correlation between different immune cell types and the risk score.
TABLE 1 Correlation analysis of nine genes with risk score.

ID Lasso-coef Corr Pvalue Padj (Benjamini-Hochberg) Padj (Bonferroni)

GSTZ1 0.2391 -0.0245 0.64 0.72 1

GSR 0.3379 -0.01 0.85 0.85 1

RRM1 0.0882 0.1442 4.96×10-3 6.38×10-3 0.045

RRM2 0.6533 0.631 2.26×10-43 2.03×10-42 2.03×10-42

IDH2 -0.3255 0.1846 3.07×10-4 5.53×10-4 2.76×10-3

OPLAH -0.1085 -0.1473 4.11×10-3 6.17×10-3 0.037

GCLM -0.5243 -0.4208 1.18×10-17 3.54×10-17 1.06×10-16

GGT5 -0.1825 -0.3876 5.33×10-15 1.20×10-14 4.80×10-14

ODC1 -0.2536 -0.4648 1.16×10-21 5.22×10-21 1.04×10-20
Correlations between the calculated risk score and mRNA expression levels of the nine model genes (n = 510) were assessed using Spearman’s rank correlation coefficient (two-sided). Resulting
p-values were adjusted for multiple testing using both Benjamini–Hochberg false-discovery rate (FDR) correction and Bonferroni correction.
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3.5 Expression levels of RRM2 in papillary
thyroid carcinoma tissues and paired
paracancerous thyroid tissues and their
correlation with clinical features

The expression level of RRM2 gene mRNA in each pair of

tissues was detected by RT-qPCR. The results showed that the

expression of RRM2 was significantly higher in papillary thyroid

carcinoma tissues than in paracancerous thyroid epithelial tissues

(Figure 5B) (P<0.01), and this trend was verified in most samples

(Figure 5C). Immunohistochemistry (IHC) was selected for the

validation of RRM2 protein expression in this patient cohort. The

qPCR results were highly consistent with our subsequent IHC

results. As shown in Figure 5D, the RRM2 immunohistochemical

score (H-SCORE) was significantly higher in PTC tissues than in

paired paracancerous tissues (P<0.01), and the percentage of cancer

tissues with higher RRM2 H-SCORE than paracancerous tissues

was 81.8% (36/44). Typical RRM2 protein immunohistochemical

results (Figure 5E) showed that in PTC tissues, deep staining of tan

particles was observed, which were mainly aggregated in the

cytoplasm. In contrast, paracarcinoma tissues were stained overall

lighter and no obvious tan particles were seen. According to the

American Joint Committee on Cancer/International Union Against

Cancer (AJCC) TNM Staging System, Eighth Edition (TNM-8)
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criteria (18), the 2 -DD CT>1 of the RRM2 gene in the PTC tissues was

used as the cut-off point for the expression level to classify the

samples into the high-expression group and the low-expression

group, and further analyses showed that, as shown in

Supplementary Table 2, we found that the RRM2 expression level

was correlated with tumor size (P = 0.0048), which may indicate

that RRM2 acts as a potential oncogenic factor in PTC. Meanwhile,

there was no significant correlation between its expression level and

sex, age, TNM stage and tumor stage (P>0.05).

Three RRM2 knockdown cell lines (RRM2-KD-323, RRM2-KD-

417, RRM2-KD-506) were successfully constructed using the

lentiviral LV2N (U6/Puro) system and transfected with MOI = 15

in TPC-1 and IHH4 cells. RT-qPCR assays, as shown in

Supplementary Figures S4E, F, compared with the wild-strain

control, all three strains RRM2 mRNA expression was

significantly reduced in all RRM2-KD cells (P<0.01). Among

them, the RRM2-KD-417 strain showed the highest knockdown

efficiency and was therefore selected as a representative strain for

subsequent experiments. The RRM2 overexpression cell line

(RRM2-OE) was successfully constructed by transfecting TPC-1

and IHH4 cells with MOI = 15 using lentiviral LV18 (CMV/Puro)

system. RT-qPCR assay showed (Supplementary Figures S4E, F)

that the expression level of RRM2mRNA was significantly higher in

RRM2-OE cells than that in the wild-type control (P<0.01). The
FIGURE 5

Pan−cancer and PTC–specific expression analysis of RRM2. (A) Differential expression of RRM2 across 30 cancer types and their corresponding non-
tumor tissues (tumor-adjacent tissues from the TCGA cohorts and non-diseased specimens from healthy donors in the GTEx database) based on
TCGA and GTEx datasets, presented as log2 (TPM + 1); red, tumor; blue, non-tumor; ***p.adj < 0.001, ns (not significant). (B) Comparison of overall
RRM2 mRNA expression levels in PTC and paired adjacent thyroid epithelial tissues (**p < 0.01). (C) Relative RRM2 mRNA expression in PTC tissues
versus matched adjacent tissues. (D) Comparison of overall RRM2 immunohistochemical expression in PTC and adjacent thyroid epithelial tissues
(***p < 0.01). (E) Representative RRM2 immunohistochemical staining in human PTC and adjacent tissues at 100×(scale bar, 200 µm) and 200×(scale
bar, 100 µm) magnification.
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expression levels of RRM2 protein in TPC-1 and RRM2-KD-TPC-1,

TPC-1 and RRM2-OE-TPC-1, IHH4 and RRM2-KD-IHH4, IHH4

and RRM2-OE-IHH4 cells were detected by Western blot,

respectively (Figures 6A, B; Supplementary Figures S4G, H).

CCK-8 assay and colony formation analysis showed that

overexpression of RRM2 promoted the proliferation of TPC-1 cell,

whereas inhibition of RRM2 expression reversed this process

(Figures 6C, D). The subcutaneous loaded tumors in nude mice are

shown in Figure 6E, Supplementary Figure S5, and the tumor growth

curves (Figure 6F, Supplementary Table 3) showed that the

experimental group RRM2-OE-TPC-1 had a steeper tumor growth

curve and faster volume growth than the control group TPC-1,

whereas the growth of tumors grown by the experimental group

RRM2-KD-TPC-1 inoculation was significantly slowed down, with a

downward shifting of the tumor volume growth curve (P<0.01).

Finally, the average tumor volume of the RRM2-OE-TPC-1 group at

the end of the experiment (1084.04 ± 74.91 mm³) was significantly

larger than that of the control group (498.2 ± 57.84 mm³, P<0.01),

while the average tumor volume of the RRM2-KD-TPC-1 group

(322.93 ± 32.80 mm³) was significantly smaller than that of the

control group (P<0.01). The results of tumor weighing (Figure 6G)

showed that the tumor weight of the RRM2-OE-TPC-1 group was

significantly higher than that of the control group (P<0.05), whereas

there was no statistically significant difference between the RRM2-

KD-TPC-1 group and the control group. By immunohistochemical

analysis, Ki67 and PCNA expressions were significantly higher in the

experimental RRM2-OE-TPC-1 group compared with the control

group, while Ki67 and PCNA expressions were significantly lower in

the experimental RRM2-KD-TPC-1 group (Figure 6H).

Given that RRM2 could promote THCA proliferation ex vivo, we

further explored whether RRM2 could enhance the metastatic ability

of THCA. Wound healing confirmed the enhanced migration of

TPC-1 cells after RRM2 overexpression. Twenty-four hours after

scratching, RRM2-OE-TPC-1 cells migration by 13% (P<0.01), and

48 hours after scratching, RRM2-OE-TPC-1 cells in the experimental

group increased migration by 8.86% (P<0.01), as shown in

Figures 7A, B. In the Transwell invasion assay, a significant

increase in the number of membrane-penetrating TPC-1 cells was

observed in RRM2 overexpressing group as compared to the control

group, and a significant increase in the number of membrane-

penetrating cells in the IHH4 cell line, a trend consistent with

TPC-1 cells was observed (Figure 7C, Supplementary Figure S6).

In contrast, knockdown of RRM2 significantly inhibited the

migration and invasion ability of THCA cells compared with the

control group (Figure 7C, Supplementary Figure S6). The expression

levels of matrix metalloproteinases (MMP2, MMP9) and markers

related to epithelial mesenchymal transition (N-Cadherin, Vimentin,

Snail) line were examined by Western blot. In TPC-1 cells, RRM2

overexpression resulted in elevated protein expression levels of

MMP2, MMP9, N-Cadherin, Vimentin, and Snail (P<0.01)

(Figures 7D, E). In contrast, the expression levels of these proteins

were significantly decreased after RRM2 knockdown (P<0.01)

(Figures 7F, G). Overall, RRM2 promoted the growth of THCA

cells and enhanced their metastatic ability, which is consistent with

its negative prognostic effect on DFS in our dataset.
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In terms of apoptosis, the distribution of apoptosis in TPC-1

cells (control group), RRM2-KD-TPC-1 cells (knockdown group)

and RRM2-OE-TPC-1 cells (overexpression group) was examined

by flow cytometry (Figure 8A), and the results showed that

apoptosis rate was reduced after overexpression of RRM2 in the

TPC-1 cell line compared with the control group (P< 0.01), and

apoptosis rate was significantly increased after knockdown of RRM2

(P<0.01). validation was consistent in IHH4 cell l ine

(Supplementary Figure S7). In addition, we further validated the

expression levels of apoptosis-related proteins, and the expression

of Bax was significantly down-regulated (P<0.01), while the

expression of Bcl-2 was significantly up-regulated (P<0.01) in

RRM2-OE-TPC-1 cells compared to controls (Figures 8B, C). The

results were opposite after knockdown of RRM2 (Figures 8D, E).

To investigate the effect of RRM2 overexpression on the

transcriptional level of papillary thyroid cancer cells, mRNA

sequencing analysis was performed on wild strain TPC-1 cells

and RRM2 overexpression strain (RRM2-OE-TPC-1 cells) in this

study. After normalizing the sequencing data, we screened a total of

2312 differentially expressed genes between control TPC-1 and

experimental RRM2-OE-TPC-1 (Figure 9A). These differential

genes were analyzed for GO and KEGG enrichment (Figures 9B,

C), and GO was enriched in several biological processes, including

DNA replication, regulation of signaling receptor activity, leukocyte

chemotaxis and migration, etc. KEGG suggested that the PI3K-Akt

signaling pathway and the cell cycle pathway were significantly

enriched in the differential genes, and that RRM2 might affect

thyroid cancer cell proliferation and survival.

Analysis of mRNA sequencing results from wild strain TPC-1

cells and RRM2 overexpression strain (RRM2-OE-TPC-1) showed

significant enrichment of differential genes in the cell cycle pathway,

as shown in Supplementary Table 4. To investigate the effect of

RRM2 on the cell cycle of THCA, we examined the effects of RRM2

knockdown (RRM2-KD) and overexpression (RRM2-OE) on cell

cycle distribution in the TPC-1 and IHH4 cell lines, respectively,

using flow cytometry. As shown in Figure 9D, in TPC-1 cells,

knockdown of RRM2 resulted in a significantly higher proportion of

cells in G0/G1 phase (P<0.01) and a significantly lower proportion

of cells in S phase (P<0.01). In contrast, RRM2 overexpression

resulted in a significant decrease in the proportion of G0/G1 phase

cells (P<0.01) and a significant increase in the proportion of S phase

cells (P < 0.05). In IHH4 cells, we observed a similar trend

(Supplementary Figure S6). These results suggest that RRM2 may

affect the cycle progression of thyroid cancer cells mainly by

regulating the transition from G1 to S phase. To further elucidate

the molecular mechanism of RRM2 regulation of cell cycle, we

examined the expression levels of cell cycle-related proteins (Cyclin

A2, Cyclin E2, c-MYC, Cyclin D1, CDK2) in TPC-1 cells by

Western blot. The expression levels of these proteins were

significantly increased in the RRM2 overexpression group

(RRM2-OE-TPC-1) (P<0.05). The expression levels of these

proteins in the RRM2 overexpression group (RRM2-OE-TPC-1)

were all significantly elevated (P < 0.05), with the most pronounced

elevation of Cyclin E2 and c-MYC, as shown in Figures 9E, F. On

the contrary, the protein expression levels of Cyclin A2, Cyclin E2,
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RRM2 regulates PTC cell proliferation and tumor growth in vitro and in vivo (*p < 0.05, ***p < 0.001, ****p < 0.0001 and ns (not significant)). (A, B)
Western blot analysis of RRM2 protein levels in TPC−1 following RRM2 knockdown (RRM2-KD) or overexpression (RRM2-OE), with GAPDH as
loading control. (C) CCK−8 assay showing the effect of altered RRM2 expression on TPC−1 cell proliferation over time (n = 3). (D) Effects of RRM2
on TPC-1 cell colony formation detected by the plate colony formation assay(n=3). (E) Comparison of excised tumor volumes at endpoint between
experimental and control groups (n = 6 per group), with tumor images shown from top to bottom (1): control (2), RRM2−KD (3), RRM2−OE. (F)
Tumor growth curves i n nude mice over the experimental period (n = 6 per group), data presented as mean ± SEM; one−way ANOVA. (G)
Comparison of final tumor weight between experimental and control groups(p < 0.05) (n=6 for each group) (H) Immunohistochemical and
hematoxylin−eosin (HE) staining of tumors: upper panels at 100× (scale bar 200 µm) and lower panels at 200× (scale bar 100 µm). (Ha) Ki−67
staining: dense, uniform brown nuclei in RRM2−OE versus sparse staining in RRM2−KD tumors. (Hb) PCNA staining: strong, uniform signal in RRM2
−OE versus near−absent in RRM2−KD. (Hc) RRM2 staining: intense brown granules in RRM2−OE versus weak, non−specific staining in RRM2−KD.
(Hd) HE staining confirming tumors’ histology with papillary structures, ground−glass nuclei, and adjacent skin, muscle, and adipose tissue.
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c-MYC, Cyclin D1, and CDK2 were all significantly reduced in the

RRM2 knockdown group (RRM2-KD-TPC-1) (P<0.05), with

particularly significant decreases in Cyclin A2, c-MYC and CDK2,

as shown in Figures 9G, H.

To explore the role of RRM2 in the PI3K/Akt signaling pathway,

we examined the expression levels of PI3K pathway-related proteins

including Akt, phosphorylated Akt (pAkt), PI3K kinase p85a, PI3K
kinase p110a, and PTEN in TPC-1, RRM2 knockdown (RRM2-KD-

TPC-1), and RRM2 overexpression (RRM2-OE-TPC-1) cells by

Western blot. The experimental results showed that RRM2

overexpression or knockdown had no significant effect on the

expression levels of Akt and PTEN proteins. However, the protein

expression levels of pAkt, p85a, and p110a were significantly

higher (P < 0.01) in the RRM2 overexpression group (RRM2-OE-

TPC-1) compared with the control group, as shown in Figures 9J, K.

In contrast, the protein expression levels of pAkt, p85a, and p110a
in the RRM2 knockdown group (RRM2-KD-TPC-1) were

significantly reduced (P < 0.01), see Figures 9L, M.
4 Discussions

Based on large THCA cohort from TCGA, we found that the

GSH metabolism related enzymes were upregulated in tumor

samples and negatively correlated with DFS. Thus, we for the first

time built a risk stratification model based on the GSH metabolism

related enzymes via LASSO Cox regression algorithm. Patients with

high-risk score suffered from dismal DFS, exhibited a positive

correlation with the infiltration levels of naïve B cells, activated

memory CD4+ T cells, helper T cells, and regulatory T cells. The

immune system responds to antigenic stimulation via dynamic

shifts in lymphocyte subpopulations: B cells mediate humoral

immunity, whereas CD4+ T cells serve as the “commanders” of

the adaptive response. An increase in naïve B cells (or their

recruitment) together with expansion of activated memory CD4+

T cells may reflect ongoing antigenic stimulation (for example,

persistent tumor antigen exposure or chronic inflammation) and a

degree of immune activation. The functional impact of increased

helper T cells will depend on their polarization (Th1 versus Th2),

which has divergent implications for antitumor immunity.

Important ly , regulatory T cel ls (Tregs) play a vi ta l

immunosuppressive role in tumor immunity; by inhibiting

effector T cell function and other antitumor immune
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mechanisms, Tregs facilitate immune evasion and tumor

progression (19, 20). The enhanced Treg infiltration in this

cohort indicates the development of tumor immunosuppression

among thyroid cancer patients falling into the high-risk GSH-

metabolism group. All these results indicated that the GSH

metabolism related enzymes might play a pivotal role in THCA

progression and was worth further researches.

Our risk model was developed and internally validated using

TCGA mRNA expression data by randomly splitting the dataset

into training and validation sets. We recognize that the current

study lacks external validation using an independent RNA

sequencing cohort. The primary reason for this limitation is the

difficulty in identifying publicly available, high-quality thyroid

cancer RNA sequencing datasets. These challenges stem from the

need for datasets that are both technically homogenous (RNA-seq

vs. microarray; differing normalization and batch effects) and

possess sufficient corresponding clinical data (particularly long-

term follow-up and survival status) to perform a reliable external

validation of the prognostic risk score.

We fully understand that this absence of external validation

limits the generalizability of our mRNA-based model. This

limitation is expected to be addressed by a dedicated two-phased

validation strategy in future work: Phase I Retrospective RNA

Validation: This involves prioritizing an intensive search for and

inclusion of any suitable independent external RNA-seq cohorts

with adequate clinical follow-up data. A crucial step will be to

perform a rigous retrospective validation after harmonized

preprocessing (including consistent expression units and rigorous

batch correction) to ensure the technical reliability of the analysis.

Phase II Prospective Clinical Validation: A more robust,

translational validation, focusing on the Asian population, is

being prepared through a prospective, multi-center study. This

phase will incorporate standardized sample processing and will

include the evaluation of the nine model genes using

Immunohistochemistry (IHC) scoring at the protein level, which

is critical for direct clinical application. This phased approach is

designed to systematically transition from computational mRNA-

based findings to a clinically applicable protein-level diagnostic tool.

Based on the risk score model of glutathione metabolism-

related enzyme genes in thyroid cancer, in a further correlation

analysis, we screened the target gene RRM2, whose high expression

was significantly and negatively correlated with disease-free survival

of patients, from nine candidate genes. As one of the subunits of the
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FIGURE 7

RRM2 promotes migration, invasion, and EMT marker expression in PTC cells (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001).
(A) Wound−healing assay showing scratch closure in control TPC−1, RRM2−overexpressing (RRM2−OE), and RRM2−knockdown (RRM2−KD)
cells at 0, 24, and 48 h. (B) Quantification of migration rates based on wound−closure area; data are mean ± SEM, one−way ANOVA.
(C) Transwell invasion assay for control, RRM2−OE, RRM2−KD and TPC−1 cells; invaded cell counts are presented as mean ± SD (n = 3). (D, E)
Western blot analysis of invasion−related proteins MMP2 and MMP9, and EMT markers N−Cadherin, Vimentin, and Snail in control versus
RRM2−OE TPC−1 cells; GAPDH as loading control; data are mean ± SEM, Student’s t−test. (F, G) Western blot analysis of the same panel of
MMP and EMT markers in control versus RRM2−KD TPC−1 cells; GAPDH loading control; data are mean ± SEM, Student’s t−test.
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nucleotide reductase enzyme, RRM2 plays a key role in the process

of DNA synthesis and repair. RRM2 is aberrantly expressed in

human tumors such as breast cancer (21, 22), gastric cancer (23),

adrenocortical cancer (24), pancreatic cancer (25) and bladder

cancer (26). Inhibition of RRM2 can reduce RRase activity, inhibit

cancer cell growth, promote cancer cell apoptosis, prevent tumor

metastasis and reverse drug resistance. In breast cancer cells, it has

been shown that SNHG16/miR-30a/RRM2 and TTN-AS1/miR-524-

5p/RRM2 regulatory axes are involved in malignant proliferation

and evasion of apoptosis in tumor cells, respectively (21, 22). In
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Huang’s study on non-small cell lung cancer (27), the results

showed that AFAP1-AS1 up-regulated RRM2 by inhibiting miR-

139-5p expression, which in turn promoted the proliferation and

chemotherapy tolerance of NSCLC cells. In addition, RRM2 may

exert its regulatory role by activating EGFR/AKT. In 2020, a related

study (28) demonstrated that overexpression of miR-140-3p

inhibited the proliferation of human cervical cancer cells by

targeting down-regulation of RRM2 inducing cell cycle arrest and

early apoptosis, while decreasing BCL-2 protein levels and inducing

a significant increase in BAX and caspase-3 protein levels. In
FIGURE 8

RRM2 modulates apoptosis in TPC−1 cells (**p < 0.01 and ***p < 0.001). (A) Flow cytometric analysis of apoptosis in control, RRM2−overexpressing (RRM2
−OE), and RRM2−knockdown (RRM2−KD) TPC−1 cells, showing distribution of early and late apoptotic populations. (B, C) Western blot of pro− and anti
−apoptotic proteins Bax and Bcl−2 in control versus RRM2−OE TPC−1 cells; GAPDH as loading control; quantification presented as mean ± SEM, Student’s t
−test. (D, E) Western blot of Bax and Bcl−2 in control versus RRM2−KD TPC−1 cells; GAPDH loading control; quantification presented as mean ± SEM,
Student’s t−test.
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FIGURE 9 (Continued)
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FIGURE 9 (Continued)

RRM2 overexpression induces transcriptomic changes, influences cell cycle progression, and modulates Pl3K/Akt signaling in TPC-1 cells (*p < 0.05,
**p < 0.01, ***p < 0.001 and ns (not significant)). (A) Volcano plot of differentially expressed genes (DEGs) in RRM2-OE versus control TPC-1 cells;
red, significantly upregulated; blue, significantly downregulated (P < 0.05, |log2FC| > 1); gray, non-significant. (B) Gene Ontology (GO) enrichment
analysis of DEGs, showing the top enriched biological processes, molecular functions, and cellular components; enrichment significance is plotted
as –log10(adjusted P-value). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs, highlighting tumor-
related pathways such as PI3K-Akt and p53 signaling; enrichment significance is plotted as –log10(adjusted P-value). (D) Flow cytometric analysis of
cell cycle distribution in control, RRM2−overexpressing (RRM2−OE), and RRM2−knockdown (RRM2−KD) TPC−1 cells; data are mean ± SD. (E, F)
Western blot of cell cycle regulators Cyclin A2, Cyclin E2, c−MYC, Cyclin D1, and CDK2 in control versus RRM2−OE TPC−1 cells; GAPDH as loading
control; quantification shown as mean ± SEM, Student’s t−test. (G, H) Western blot of the same panel of cell cycle proteins in control versus RRM2
−KD TPC−1 cells; GAPDH loading control; data are mean ± SEM, Student’s t−test. (J, K) Western blot analysis of PI3K/Akt pathway proteins Akt,
phosphorylated Akt (p−Akt), PI3K p85a, PI3K p110a, and PTEN in control versus RRM2−OE TPC−1 cells; GAPDH loading control; data are mean ±
SEM, Student’s t−test. (L, M) Western blot analysis of the same PI3K/Akt signaling proteins in control versus RRM2−KD TPC−1 cells; GAPDH as
loading control; data are mean ± SEM, Student’s t−test.
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another THCA transcriptome data (29), it was also mentioned that

it is closely associated as a core gene with the regulation of cell cycle

and E2F-mediated DNA replication pathway. To further

understand the role played by the RRM2 gene in the whole

biological behavior of tumors, we performed a pan-cancer

analysis by the combination of TCGA and GTEx data, which

showed that RRM2 was generally highly expressed in tumors of

epithelial origin, such as THCA, esophageal carcinoma, and breast

carcinoma, suggesting that its pro-carcinogenic mechanism is

conserved by the cancer species. We performed a detailed analysis

of RRM2 expression based on TNM stages and pathological types

using the TCGA data, When cases were grouped by pathological

subtype, RRM2 expression was higher in classic and tall-cell

variants of papillary thyroid carcinoma compared with the

follicular variant. These observations are concordant with recent

immunohistochemical data. For example, Ibrahim et al. reported

negative RRM2 staining in non-neoplastic thyroid tissue and non-

invasive follicular thyroid neoplasm, whereas strong RRM2

positivity was observed in PTC and invasive encapsulated

follicular-variant PTC (30). Together, our findings and those of

Ibrahim et al. support the hypothesis that RRM2 is associated with

more aggressive thyroid tumors and may therefore have potential

utility as a biomarker to distinguish higher-risk or more invasive

disease phenotypes. The correspondence between higher RRM2

expression and N stage further reinforces this notion. The

expression level of RRM2 in PTC tissues was much higher than

that in paracancerous thyroid epithelial tissues, and the expression

level of RRM2 was correlated with the size of the tumor (P<0.01). 44

cases of PTC tissues and paired paracancerous tissues diagnosed by

pathology were selected, and the expression level of RRM2 in PTC

tissues was much higher than that in paracancerous thyroid

epithelial tissues, and the expression level of RRM2 was correlated

with the size of the tumor (P<0.01). As mentioned above, RRM2

plays an important role in the development of various cancers, but

its effect on the biological behavior of THCA is still unclear and

needs to be further explored.

In vitro, both CCK-8 assay and colony-formation assay showed

that RRM2 overexpression significantly increased the proliferation

rate and clone formation ability of TPC-1 cells, while knockdown of

RRM2 significantly inhibited cell growth. Further in vivo nude

mouse tumor formation experiments provided strong support for
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our in vitro observations. The experimental results showed that the

tumor volume and weight of the RRM2 overexpression group were

significantly higher than those of the control group, and

immunohistochemistry showed up-regulation of the expression of

proliferation markers (e.g., Ki67, PCNA), which was in line with the

previous observation that RRM2 promotes cell proliferation in

tumors such as breast and lung cancers, and further corroborated

the promotional role of RRM2 in tumorigenesis and development.

It has been pointed out in the literature (31, 32) that RRM2 is

involved in DNA synthesis and repair, and its high expression is

often closely associated with cell cycle acceleration and high

proliferation of tumor cells. In this study, we found by mRNA

sequencing that a variety of genes involved in cell cycle regulation,

DNA replication and mitosis were significantly up-regulated in

RRM2 overexpressing cells (RRM2-OE-TPC-1) in the experimental

group, as shown in the Supplementary Table 4. This overall change

in gene expression suggests that the intracellular network regulating

cell cycle progression and DNA replication under RRM2

overexpression conditions undergoes systematic remodeling,

which may lead to abnormal acceleration of the cell cycle and

sustained activation of proliferative signals.

Meanwhile, the results of Western blot assay showed that the

protein expression levels of Cyclin A2, Cyclin E2, c-MYC, Cyclin D1

and CDK2 were significantly increased in the RRM2 overexpression

group, and Cyclin D1, Cyclin E1/E2 and Cyclin A2 are important

regulators driving the cell cycle process, and their high expression is

often associated with the acceleration of G1/S phase transition.

Cyclin D1 promotes the entry of cells from the G1 phase into the S

phase in the early cell cycle (33), while Cyclin E and Cyclin A play

key roles in the G1/S transition and S phase progression,

respectively. The upregulation of these proteins in the Western

blot data was highly consistent with the mRNA data, supporting the

experimental group’s RRM2-OE-TPC-1 cells were in a state of

continuous activation at various key nodes of the cell cycle, thus

promoting rapid cell proliferation. In this regulatory network, the

upregulation of c-MYC, as an important oncogenic transcription

factor, not only directly promotes the expression of cell cycle

proteins, but also participates in the regulation of cell metabolism,

apoptosis, and proliferation, and other aspects of biological

processes. c-MYC was elevated suggesting that RRM2-OE-TPC-1

cells may achieve the synergistic activation of multiple proliferative
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signaling pathways with the help of this transcription factor,

accelerating tumor progression (34). In addition, the increased

expression level of CDK2, which forms a complex with Cyclin E

and Cyclin A and is a key kinase regulating the G1/S transition and

S-phase progression, further corroborates the phenomenon of cell

cycle deregulation.

Other genes detected in mRNA sequencing, such as CDC20,

CDC25A, BUB1, BUB1B, and MAD2L1, are closely related to cell

cycle checkpoints and fine regulation of chromosome segregation.

Their abnormally high expression may predict increased

chromosomal instability and abnormalities during cell division,

thus providing a molecular basis for tumor aggressiveness and

malignant transformation. Meanwhile, the upregulation of MDM2

suggests that the p53 signaling pathway may be inhibited, which to a

certain extent reduces the ability of cells to repair DNA damage and

may prompt cells to evade apoptotic mechanisms, further

accelerating tumor progression.

The results of Wound-healing assay and Transwell invasion

assays showed that RRM2 overexpression significantly enhanced

the migration and invasion ability of TPC-1 cells, while knockdown

of RRM2 produced the opposite effect. Further Western blot

analysis showed that RRM2 regulated the expression levels of

MMP2, MMP9 and EMT-related proteins (N-Cadherin,

Vimentin, Snail), suggesting that RRM2 may promote tumor cell

invasion and metastasis by promoting matrix degradation and

inducing epithelial mesenchymal transition.

TPC-1, RRM2-OE-TPC-1 mRNA sequencing and KEGG

pathway analysis showed that the PI3K-Akt signaling pathway was

significantly enriched in the differential genes. Western blot results

further demonstrated that the expression level of RRM2 was

positively correlated with the levels of pAkt, PI3K p85a and p110a
proteins. The total Akt expression level was unchanged, while the

expression level of phosphorylated Akt (pAkt) was up-regulated with

the overexpression of RRM2, suggesting that RRM2 could be involved

in the regulation of phosphorylation activation of Akt, which was

consistent with the findings in other cancer types. The significant

changes in PI3K kinases (subunits) p85a and p110a and the absence

of significant changes in PTEN suggested that the RRM2 regulation

may activate Akt signaling through PI3K subunit stability regulation

rather than the classical PTEN-dependent pathway.

In conclusion, we observed significant upregulation of GSH

metabolism-related enzymes in THCA. For the first time, we

established a risk stratification model based on GSH metabolism-

related enzymes, and subsequently identified high-risk patient

groups with poorer prognosis. Additionally, we identified RRM2

as the key molecular candidate. In this study, we constructed a cell

model of PTC with knockdown and overexpression of RRM2, and

explored the specific functions of RRM2 in the proliferation,

migration, and invasion of PTC cells through a series of

experiments. In the case of its impact on the tumor invasive

biological behavioral phenotype, mRNA sequencing was applied

to study the effect of its transcriptional level to further explore the

downstream effector molecules or pathways of RRM2. Overall, the

results suggest that RRM2 acts as a pro-oncogenic molecule and

may promote the progression of PTC by activating the PI3K/Akt
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signaling pathway, regulating key proteins of the cell cycle, and

inducing the EMT process, which is in high agreement with

previous findings in other malignant tumors. Nevertheless, the

present study still has some limitations, as the current study has

not yet externally validated our proposed risk stratification model,

its clinical application still needs to be validated in external cohorts,

including retrospective cohorts from other centers and future

prospective multicenter cohorts. In addition, mRNA sequencing

analysis suggested potential other signaling pathways such as p53

signaling pathway and IL -17 signaling pathway. In the future, we

will combineWestern blot and immunofluorescence experiments to

purposefully elucidate the molecular mechanisms of PI3K, p53, and

other candidate pathways in the progression of RRM2-mediated

PTC, providing a more complete theoretical basis.
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