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A two-stage deep learning
prediction system for colon
cancer microsatellite instability
status using CT images
Songlin Cui1, Xin Xiong1, Xudong Yang2, Jianfeng He1*

and Tao Shen2*

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical
University, Kunming, China
Background: This study seeks to build a two-stage deep learning approach for

identifying the microsatellite instability (MSI) status of colon cancer based on

computed tomography (CT) scanswithout the requirement formanual segmentation.

Methods: This study included 108 enhanced CT scans of colon cancer, including

68 cases of ascending colon, 14 cases of transverse colon, 18 cases of

descending colon, and 8 cases of sigmoid colon; there were 56 cases of MSI-

H and 52 cases of microsatellite stability (MSS). In the first stage, the

segmentation model MSI-SAM was trained to accurately segment the lesion

locations in the CT scans. In the second stage, the mask acquired from the MSI-

SAM segmentation was multiplied by the original CT image (CT_Origin) bitwise,

and the result was merged with the mask obtained from the MSI-SAM

segmentation (Segment) to obtain CT_ROI. Both CT_ROI and CT_Origin were

then diagnosed using the colon cancer MSI status diagnosis model.

Results: The performance of the suggested CT segmentation model MSI-SAM in

the ascending colon, transverse colon, descending colon, and sigmoid colon

areas (DSC: IoU) was (0.886:0.798), (0.878:0.783), (0.923:0.857), and

(0.854:0.747), respectively. The AUC of the MSI status diagnostic model for

patients with colon cancer was 0.935 (95% CI 0.892–0.947), the ACC was 0.913,

the sensitivity was 1.000, and the specificity was 0.846.

Conclusions: The segmentation masks created by the trained deep learning

segmentation model achieved a level comparable to that of expert radiologists,

and the deep learning diagnostic model played an essential role in supporting

doctors in diagnosis.
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1 Introduction

Studies have revealed that patients with colon cancer with high

microsatellite instability (MSI-H) do not react to 5-fluorouracil

chemotherapy but are susceptible to immunotherapy and have a

good prognosis in the early stages (1, 2). Therefore, precisely

detecting the MSI status of patients with colon cancer is crucial

for clinical therapy and prognosis. Routine testing for MSI includes

immunohistochemistry (IHC), polymerase chain reaction (PCR),

and next-generation sequencing (NGS) (3). However, relatively few

medical institutions are equipped with these tests, the NGS method

is expensive and technically demanding, and not suitable for stand-

alone MSI testing (4), and IHC results may be interfered with by

benign germline polymorphisms, leading to false-negative and

false-positive results. Not only that, all of these tests are invasive

and need surgery or biopsy to obtain tissue specimens. Therefore,

there is an urgent need for a noninvasive preoperative screening

approach to predict the MSI status of patients with colon cancer and

to guide accurate and customized treatment.

Computed tomography (CT) is a noninvasive imaging modality

that is widely used in the clinical practice of colon cancer (5).

Pernicka et al. (6) created three machine learning prediction models

comprising clinical features, imaging histology features, and a mix

of the two by evaluating preoperative CT images of 198 patients

with stage II–III colon cancer; Gao et al. (7) analyzed enhanced CT

images of 108 patients with colon liver metastasis and selected 7

imaging histological features that can effectively distinguish MSI-H

frommicrosatellite stability (MSS), and used a random forest model

for classification, and Ma et al. and Pei et al. (8, 9) used a similar

method for MSI prediction. The preceding approach for MSI status

detection based on colon cancer CT by imaging histology is halted;

i.e., after extracting the features through radiomics (10), we need to

manually screen the features to form the model for training.

Radiomics relies on hand-designed features, like grayscale

covariance matrix, stroke length matrix, and other features (10),

and the selection and construction of these features are heavily

dependent on the researcher’s experience and past knowledge.

Recently, the advancement of deep learning (DL) has led to

major advances in computer-aided diagnosis (CAD) in the field of

medical imaging (11), with extensive applications across diverse

tasks including few-shot learning, histopathology analysis, and

biometric recognition (12–15). Compared with traditional

medical imaging diagnosis, the feature extraction technique in DL

can tap into the latent information that cannot be detected by the

naked eye. Therefore, CT-based DL approaches are of tremendous

aid in the prediction of MSI status in patients with colon cancer and

the formulation of customized treatment programs for patients

after physicians. To this purpose, we present a two-stage DL colon

cancer MSI diagnostic technique based on segmentation followed

by diagnosis.

This colon cancer MSI status diagnostic approach avoids the

time-consuming and labor-intensive procedure of human

segmentation of CT. In the final experiment, we use the mask

Segment obtained from MSI-SAM segmentation to outperform the

CT-based diagnostic methods in colon cancer MSI status diagnosis,
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which focuses on the local region of the ROI and takes into account

the global CT information to better help the colon cancer MSI status

diagnostic model to make a decision, and also proves that Segment

has a comparable performance with the mask sketched by the

doctor in colon cancer MSI status diagnosis. It also indicates that

Segment and doctor-drafted masks have equivalent performance in

colon cancer MSI status diagnosis.
2 Materials and methods

2.1 Data description and dataset division

All CT data in this study were acquired using a SOMATOM

Definition AS+64-slice 128-layer spiral CT scanner manufactured

by Siemens Healthineers. Scan parameters were set as follows: tube

voltage: 120 kV; tube current: CareDose 4D intelligent dose

modulation enabled; spiral pitch: 0.6; and image reconstruction

slice thickness: 2 mm. The scanning range covered the entire

abdomen, specifically from 2 cm above the diaphragm to the

lower margin of the symphysis pubis. Contrast agent

administration employed a dual-phase bolus injection protocol

using a dual-chamber high-pressure syringe. The contrast agent

used was iopamidol (concentration, 300 mgI/mL), administered at a

dose of 1.2 mL/kg with an infusion rate of 3.0–3.5 mL/s. Following

the contrast agent bolus, 30 mL of normal saline was infused at the

same rate to ensure adequate distribution. The scanning sequence

comprised three phases: the arterial phase initiated 30–35 s after

contrast injection, the parenchymal phase began 80–85 s post-

injection, and the excretory phase commenced 15–30 min post-

injection. All acquired images were retrieved and exported from the

Picture Archiving and Communication System (PACS).

There were a total of 108 CT images of colon cancer, comprising

68 cases of ascending colon, 14 cases of transverse colon, 18 cases of

descending colon, and 8 cases of sigmoid colon; there were 56 cases

of patients with colon cancer with MSI-H status, and 52 cases of

patients with colon cancer with MSS status.

During the CT segmentation phase for colon cancer, CT data

from different regions of colon cancer were divided into an 8:2 ratio

to form the training and testing datasets. In the MSI status diagnosis

phase, CT data from colon cancers with different MSI statuses were

similarly divided into an 8:2 ratio to constitute the training and

testing datasets. To characterize the study population and ensure

the reliability of the experimental results, we summarized the

demographic and clinical baseline characteristics of the 108

enrolled patients in Table 1.
2.2 LoRA on the Image Encoder3D of MSI-
SAM

Identifying MSI-related regions and extracting valuable

information from complex colon cancer CT images can greatly

avoid the colon cancer MSI status diagnosis model from not

capturing the valid information in the CT images; thus, in the
frontiersin.org
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segmentation stage of colon cancer CT images, the MSI-SAM

model is trained to segment the ROI of the colon cancer CT images.

Our colon cancer CT segmentation model MSI-SAM is shown

in Figure 1. The structure of MSI-SAM is inherited from that of

SAM-Med3D; the dimension of image processing is three-
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dimensional, which solves the disadvantage that SAM cannot

deal with the spatial information of medical images, and

likewise the parameter of the whole model focuses on the Image

Encoder3D part. The colon cancer CT that needs to be segmented

is outputted as an image feature representation after the Patch

Embedding operation through multiple Vision Transformers

(VITs) (16), before which the pre-training weights need to be

loaded and frozen, and we describe the pre-training weights in the

Image Encoder3D part as follows. The LoRA fine-tuning approach

is achieved by adding a bypass to the frozen Transformer

structure, which consists of two linear layers, B ∈ RCin   x   r   and

A ∈ Rr   x  Cout , where r ≪ min Cin,  Coutf g, and the updated

weights are Equation 1:

�W = W + DW = W +  BA (1)

Consider that the input sequence of Image Encoder3D is x ∈
RHxWxD, and the output following Image Encoder3D that has been

fine-tuned by LoRA low rank is Equation 2:

ZI = �Wx = (W + DW)x = (W + BA)x (2)

Thanks to the prompt learning of the SAM model and the

comparative learning (CL) of the Clip (17) model, we execute a

semantic prompt for distinct colon cancer sites. Clip and SAM-

Med3D are the same pre-trained model, which collects images a

huge number of image–text pairs for pre-training, and builds a

connection between the images and the text. Following the training

approach of Clip, we performed an alignment operation between

the text feature representation extracted by Text Encoder in Clip
TABLE 1 The demographic and clinical baseline characteristics of the
108-patient cohort, including age, gender, tumor location, and MSI
status, showed a balanced distribution between MSI-H and MSS.

Characteristic
Total cohort

(n=108)
MSI-H
(n=56)

MSS
(n=52)

Age, years 56.67 (37–77) 51.07 (37–71)
62.69 (40–

77)

Sex, n (%)

Male 53 (49.1) 24 (42.9) 21 (40.4)

Female 55 (50.9) 32 (57.1) 31 (59.6)

Tumor location, n (%)

Ascending colon 68 (63.0) 37 (66.1) 31 (59.6)

Transverse colon 14 (13.0) 5 (8.9) 9 (17.3)

Descending colon 18 (16.6) 10 (17.9) 8 (15.4)

Sigmoid colon 8 (7.4) 4 (7.1) 4 (7.7)

MSI status, n (%)

MSI-H 56 (51.9) — —

MSS 52(48.1) — —
FIGURE 1

Overview of the MSI-SAM CT segmentation model for colon cancer.
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and the image feature representation Zi extracted by Image

Encoder3D in MSI-SAM using the Info NEC (18) loss function.

Contrast learning allows the model to learn to distinguish between

similar and dissimilar data samples (19), stating that each CT

corresponds to a positive sample location prompt text

representation as ZT+ and a negative sample as ZT−. Using the

cosine similarity, sim measures the similarity between the two

modal representations, and the more similar the current CT is to

the positive sample textual representation against the more unlike it

is to the negative sample, the lesser the loss will be. Info NEC adds a

temperature coefficient T to the NEC loss function. Info NEC adds

a temperature coefficient E to the NEC loss function, which boosts

the model’s capacity to discriminate between negative samples,

allowing the model to focus on negative cases that are harder to

identify from positive ones. Info NEC loss function is Equation 3:

LInfo NEC =

−
1
No

N
i=1log

exp(sim(ZI ,ZT+))=T
exp(sim(ZI ,ZT+))=T +oN∈Zt−

exp(sim(ZI ,N))=T  

(3)
2.3 Feature fusion between CT images and
positional text

After CL alignment, the positional text feature representation

output by Text Encoder is similar to that of the corresponding

image in terms of data distribution, but the aligned positional text

feature representation directly input into the prompt encoder of

MSI-SAM for positional prompt not only will not help the

segmentation effect but also will cause trouble to the model

obtained by LoRA fine-tuning, resulting in the segmentation

effect of model degradation (20). To make the aligned textual

representations better understand the semantic information in the

images and provide more accurate location prompt for different

colon cancer CT sites, we use the feature fusion (FF) module

implemented through the cross-attention mechanism to fuse the

CT image feature representations with the corresponding location

textual feature representations to better prompt different colon

cancer sites. In the FF module, two separate modal feature

representations have their corresponding qkv for producing cross-

attention, and the related formulas are as follows (Equation 4):

Iq,k,v ,Tq,k,v = LinearIjTq,k,v(ZIZT ) (4)

FF consists of two cross-attention modules, CA1 and CA2. The

CA1 inputs are Tq, Ik, and Iv . The CA1 module formula is as follows

(Equation 5):

CA1(Tq, Ik, Iv) = SoftMax(
TqI

T
kffiffiffiffiffiffi
dIk

p )Iv   (5)

When the first cross-attention module CA1 of the FF, we may

acquire �q, �k, and �v, which contain the information of two modal

feature representations, and then when the second cross-attention

module CA2 is fully fused, the formula is as follows (Equation 6):
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CA2(�q,Tk,Tv) = softmax(
�qTT

kffiffiffiffiffiffiffi
dTk

p )Tv (6)

The feature representations of the two modalities are fully fused

through the FF module and input into the Prompt Encoder 3D

module of MSI-SAM to provide corresponding text position

prompts for colon cancer CT.
2.4 Employ KAN to replace MLP in MSI
classification

Our colon cancer MSI status diagnosis model is displayed in

Figure 2. The feature extraction part of the whole network

architecture is inherited from ResNet18, and its added residual

connections strengthen the connection between different layers of

the network, avoiding the gradient disappearance or gradient

explosion during training, and solving the degradation problem of

the deep network during training. The information related to the

MSI status is mainly contained in the ROI in the CT of colon cancer,

and we use the mask Segment obtained by MSI-SAM segmentation

and the corresponding CT_Origin to multiply by bit to get a copy of

CT_ROI containing only the CT information of the ROI, and

CT_Origin containing all the information provides a wider

perspective for observing the MSI; thus, CT_ROI and CT_Origin

are input into the improved ResNet18 colon cancer MSI status

diagnosis model in parallel, and matrix summation is performed

after the convolution operation with a convolution kernel size of 7

and the global average pooling operation afterward to achieve FF

under different CT perspectives during the feature extraction

process, respectively.

Meanwhile, to tackle the difficulties of poor parameter

utilization efficiency and poor interpretability that normally exist

in MLP networks, the final MLP classification output layer of the

MSI status diagnostic network is substituted by a KAN network. As

shown in Figure 2, the design principle of KAN originates from the

Kolmogorov–Arnold theorem (21), and KAN differs from MLP in

that, although it also possesses a fully connected structure, there is

no linear weight matrix; instead, each weight parameter is replaced

by a learnable one-dimensional function parameterized by a spline.

In the nodes of a KAN, the incoming signals are merely subjected to

a basic summation operat ion without any nonl inear

transformations. KAN is typically able to realize smaller

computational graphs than MLP (22). After the convolution

operation of the ResNet18 network and the fusion of the two CT

feature summations, the recovered image features are marked as I.

Finally, the KAN is utilized to make the final diagnosis of the MSI

status of the colon cancer patient. In a KAN network, denoting the

whole design of the ith layer, a KAN with I layers can be stated as

Equation 7:

KAN(I) = (Fk ⊗Fk−1 ⊗Fk−2 ⋯⋯F1)I (7)

Therefore, to better align with the feature extraction component

of ResNet18, we set the number of layers I in KAN to match the

number of layers in the fully connected component of ResNet18.
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3 Results

3.1 Model evaluation

In the colon cancer CT segmentation challenge, we employed

DSC and IoU to accomplish the evaluation, with the experimental

results at this stage obtained through fivefold cross-validation.

Similarly, to comprehensively evaluate the performance of the

MSI status diagnostic model for colon cancer, we used AUC,

ACC, sensitivity, and specificity as evaluation metrics, and the

experimental results of this stage were also derived via fivefold

cross-validation. The DSC and IoU formulas are as follows

(Equations 8, 9), where A is the set of predicted results and B is

the set of true labels:

DSC =
2� A ∩ Bj j
Aj j + Bj j (8)

IoU =
A ∩ Bj j
A ∪ Bj j (9)
3.2 Segmentation results

3.2.1 Comparison with other SAM pre-trained
methods

To validate the performance of MSI-SAM on our dataset, we

introduced two categories of comparative models to ensure a

comprehensive evaluation: (1) non-SAM-based clinical DL
Frontiers in Oncology 05
baselines widely used in 3D medical image segmentation,

including 3DUNet (23) and 3DTransUNet (24); (2) SAM-based

large medical models capable of handling 3D data, including SAM-

Med3D (25), Promise (26), FastSAM3D (27), and 3DSAM (28). For

the SAM-based models, we loaded their corresponding pre-trained

weights, while 3DUNet and 3DTransUNet were trained from

scratch using the same training protocol. All comparative

networks and the proposed MSI-SAM were subjected to the

identical preprocessing pipeline and evaluated on the same

dataset partition (8:2 training–test split). The comparison results

are shown in Table 2: MSI-SAM achieves a DSC of 0.886 and an

IoU of 0.798 on the ascending colon, with DSC–IoU values of

0.878–0.783 (transverse colon), 0.923–0.857 (descending colon),

and 0.854–0.747 (sigmoid colon), outperforming both non-SAM-

based baselines and SAM-based models across all colon sites.

To intuitively illustrate the segmentation performance, we

present the segmentation results of different algorithms across

four colon cancer sites (ascending colon, transverse colon,

descending colon, and sigmoid colon) in Figure 3. In the

visualization, the colon cancer lesion is marked in blue as the

segmented foreground, while varying grayscale values represent the

background. As shown, compared to both non-SAM-based clinical

baselines (3DUNet and 3DTransUNet) and SAM-based 3D medical

image segmentation models (SAM-Med3D, Promise, FastSAM3D,

and 3DSAM) that have been pre-trained on large medical datasets,

our MSI-SAM network—fine-tuned on our specified dataset—

achieves more complete lesion region segmentation and better

edge integrity. For instance, 3DUNet and 3DTransUNet exhibit

partial under-segmentation or irregular boundaries, while SAM-
FIGURE 2

Overview of diagnostic methods for MSI status in patients with colon cancer.
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Med3D, Promise, FastSAM3D, and 3DSAM either miss lesion

details or show fragmented segmentation. In contrast, MSI-SAM

consistently aligns with the ground truth (GT) in contour

completeness and edge accuracy across all four colon sites.

3.2.2 CT segmentation ablation experiment
To prove the improvement effect of MSI-SAM more fully,

ablation experiments were done on LoRA fine-tuning, text-image

alignment (CL), and text-image fusion modules (FF), respectively,

and the experimental results are provided in Table 3. Table 3 proves

the influence of each module chosen in this research on boosting the

capability of MSI-SAM in CT segmentation of colon cancer. The

MSI-SAM model obtained by fine-tuning SAM-Med3D with the
Frontiers in Oncology 06
LoRA strategy demonstrated significantly improved performance on

the colon cancer CT dataset. Testing different values for r revealed

that fine-tuning yielded optimal results when r was set to 8. Because

of the larger volume of CT data in the ascending colon, MSI-SAM

outperformed the other three regions in both DSC and IoU

evaluation metrics.

Simply inputting text aligned with corresponding CT scans into

the MSI-SAM Prompt Encoder3D for text-based positional

guidance actually degrades the performance of models fine-tuned

with LoRA. Considering that text features and CT image features

were not fully understood, after integrating both types of features

through the FF module, the model achieved optimal segmentation

performance on both DSC and IoU metrics.
FIGURE 3

Qualitative visualization of the proposed method, MSI-SAM with benchmark methods on CT of four colon cancer sites: ascending colon, transverse
colon, descending colon, and sigmoid colon. The benchmark approaches include 3DUNet (23), 3DTransUNet (24), SAM-Med3D (25), Promise (26),
FastSAM3D (27), and 3DSAM (28).
TABLE 2 Quantitative comparison of MSI-SAM with other SAM pretraining methods for segmenting 3D medical images at different sites on the CT
dataset of colon cancer.

Methods
Ascending Transverse Descending Sigmoid

DSC IoU DSC IoU DSC IoU DSC IoU

3DUNet (23) 0.844 0.750 0.852 0.763 0.866 0.782 0.798 0.723

3DTransUNet (24) 0.865 0.765 0.863 0.777 0.878 0.802 0.835 0.745

SAM-Med3D (25) 0.746 0.600 0.728 0.572 0.749 0.604 0.587 0.416

Promise (26) 0.445 0.315 0.237 0.153 0.375 0.262 0.649 0.481

FastSAM3D (27) 0.673 0.511 0.617 0.450 0.715 0.558 0.621 0.455

3DSAM (28) 0.541 0.397 0.353 0.258 0.686 0.532 0.465 0.307

MSI-SAM 0.886 0.798 0.878 0.783 0.923 0.857 0.854 0.747
The bold values in this table represent the best performance achieved across all methods for the corresponding evaluation metrics (DSC, IoU) in the segmentation task of each anatomical site.
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3.3 Diagnostic results

3.3.1 Diagnosis of MSI status in colon cancer and
ablation experiments

In the process of colon cancer MSI status diagnosis, we conducted

ablation experiments to explore how different strategies affect the

performance of the ResNet18-based diagnostic model, with results

presented in Table 4. For the baseline native ResNet18 model that only

takes single-input CT_Origin (global abdominal CT information), its

diagnostic performance is limited—achieving an AUC of 0.810, an

ACC of 0.783, a sensitivity of 0.800, and a specificity of 0.769. This

limitation arises because 3D CT data contain extensive non-MS-

related background information, making it difficult for the single-

input model to focus on lesion regions critical to MSI status judgment.

To address this, we introduced the segmentation mask (Segment)

output by the MSI-SAMmodel (from the first segmentation stage) to
Frontiers in Oncology 07
construct CT_ROI (lesion-local information) via bitwise

multiplication with CT_Origin. At this point, the model transitions

to a dual-input framework that integrates CT_Origin (global

anatomical context) and CT_ROI (targeted lesion details). With

this dual-input design, the model ’s extracted features

simultaneously cover full CT information and MSI-relevant lesion

regions, leading to notable performance improvements.

Furthermore, replacing the final MLP layer of ResNet18 with KAN

in this dual-input framework yielded the optimal diagnostic results: an

AUCof 0.935, an ACC of 0.913, a sensitivity of 1.000, and a specificity of

0.846. This confirms that the combination of dual-input FF (CT_Origin

+CT_ROI) and KAN’s superior feature mapping capability is key to

enhancing the model’s MSI status diagnostic accuracy.

To clarify the statistical significance of performance differences

between models in the second-stage MSI diagnosis phase, we

present Table 5, which quantifies comparisons between our
TABLE 4 Ablation trials utilizing three techniques, Segment, KAN, and Mask, on the impact of diagnostic results of MSI status in colon cancer.

Strategies AUC (95% CI) ACC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

CT_Origin
0.810

(95% CI 0.732–0.838)
0.783

(95% CI 0.722–0.806)
0.800

(95% CI 0.779–0.821)
0.769

(95% CI 0.755–0.813)

+Segment
0.890

(95% CI 0.640–0.932)
0.870

(95% CI 0.825–0.901)
0.900

(95% CI 0.862–0.934)
0.846

(95% CI 0.798–0.911)

+Segment, KAN
0.935

(95% CI 0.892–0.947)
0.913

(95% CI 0.870–0.957)
1.000

(95% CI 0.932–1.000)
0.846

(95% CI 0.821–0.894)

+Mask, KAN
0.943

(95% CI 0.922–0.986)
0.913

(95% CI 0.870–0.957)
0.900

(95% CI 0.885–0.964)
0.923

(95% CI 0.902–0.966)
TABLE 3 Quantitative results of MSI-SAM ablation analysis with different components.

Methods
Ascending Transverse Descending Sigmoid

DSC IoU DSC IoU DSC IoU DSC IoU

LoRA r=2 0.846 0.788 0.763 0.663 0.855 0.788 0.792 0.688

LoRA r=4 0.872 0.803 0.794 0.688 0.893 0.819 0.811 0.696

LoRA r=8 0.896 0.812 0.817 0.695 0.904 0.826 0.828 0.708

LoRA r=16 0.884 0.809 0.804 0.692 0.895 0.823 0.821 0.698

LoRA (r=8)+CL 0.762 0.544 0.680 0.517 0.778 0.605 0.743 0.533

LoRA (r=8)+CL+FF 0.886 0.798 0.878 0.783 0.923 0.857 0.854 0.747
The bold values in this table represent the best performance achieved across all methods for the corresponding evaluation metrics (DSC, IoU) in the segmentation task of each anatomical site.
TABLE 5 Quantitative comparison and significance testing of MSI diagnostic models in the second stage.

Comparison (proposed model vs. baseline) Metric Proposed model Baseline model p-value Significance

Dual-input (Segment)+KAN vs. Single CT_Origin+MLP AUC 0.935 0.810 0.002 p<0.01

ACC 0.913 0.783 0.038 p<0.05

Dual-input (Segment)+KAN vs. Dual-input+MLP (Segment) AUC 0.935 0.890 0.018 p<0.05

ACC 0.913 0.870 0.049 p<0.05

Dual-input (Segment)+KAN vs. Single CT_Origin+MLP (Mask) AUC 0.935 0.943 0.620 –

ACC 0.913 0.913 1.000 –
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proposed dual-input KAN model [Dual-input(Segment)+KAN]

and baseline models using significance testing.

The table evaluates three key comparison scenarios, reporting

metrics (AUC and ACC), p-values, and significance levels (with

p<0.05 and p<0.01 denoting statistical significance). The test

methods are DeLong test for AUC and McNemar’s test for ACC,

with Bonferroni correction applied for multiple comparisons.

Compared to Single CT_Origin+MLP, our proposed model shows

highly significant improvements in both AUC (12.5% increase,

p<0.01) and ACC (13% increase, p<0.05), validating the value of

dual-input fusion (CT_Origin+CT_ROI). When replacing MLP

with KAN in the dual-input framework [Dual-input+MLP

(Segment)], our model still achieves significant gains in AUC

(4.5% increase, p<0.05) and ACC (4.3% increase, p<0.05),

highlighting KAN’s superiority in parameter efficiency and

feature alignment.

The key is that our dual input KAN model showed no statistical

difference between using different masks drafted by radiologists and

MSI-SAM automatic segmentation, which confirms that automatic

segmentation is equivalent to manual annotation in clinical
Frontiers in Oncology 08
practice, thus meeting the needs of low-labor, noninvasive

MSI diagnosis.

To verify that the mask Segment of MSI-SAM segmentation has

comparable performance with the mask Mask outlined by the

imaging physician in the diagnosis of colon cancer MSI status, at

this time, CT_ROI is derived from the multiplication of CT_Origin

and Mask by bit, and the diagnostic model uses Mask based on the

two evaluation indexes of AUC and sensitivity to reach 0.943 and

1.000; specificity is slightly worse and comparable to ACC, but

overall, the mask of MSI-SAM segmentation has a comparable

performance to the mask sketched by the imaging physician in the

diagnosis of colon cancer MSI status. We also demonstrate the

outcomes of the ablation experiments for the colon cancer MSI

status diagnosis job under different techniques from another

perspective. We drew the ROC curves employing different

strategies in Figure 4, and the results corresponding to Table 3

can be seen in the figure.

In order to meet the interpretability requirements of the model,

Figure 5 shows the Grad CAM attention heatmap visualization

results of the proposed MSI diagnostic model on representative
FIGURE 4

Performance of the MSI status diagnostic model for colon cancer under different conditions. (a) ROC curves of the MSI diagnostic model under
different conditions. (b) Confusion matrix based only under CT_Origin. (c) Confusion matrix after adding Segment segmented by MSI-SAM. (d)
Confusion matrix after adding Segment and replacing MLP with KAN. (e) Confusion matrix after adding Mask and replacing MLP with KAN.
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colon cancer CT images, where the red highlighted areas represent

the decision key regions that the model focuses on. The four sets of

images show the original abdominal CT images and corresponding

Grad CAM heatmaps of MSI-H status patients in different colon

cancer sites, clearly marking the boundaries of colon lesions. It can be

observed that the model always focuses attention on the tumor lesion

area and its adjacent intestinal wall, rather than irrelevant

background tissues such as fat, muscle, or normal intestinal

segments—this attention distribution is highly consistent with the

clinical attention of radiologists to lesion features. This visualization

not only breaks the “black box” limitations of DL, but also proves that

the decision-making basis of the model is consistent with clinical

diagnostic logic, laying the foundation for clinical trust

and application.
4 Discussion

In this study, we created a colon cancer MSI status diagnostic

approach based on two-stage DL, i.e., segmentation followed by

diagnosis, which provides a unique solution for the clinical

noninvasive diagnosis of MSI.

Inspired by the field of Natural Language Processing (NLP),

SAM-Med3D (25) is proposed in the field of image segmentation
Frontiers in Oncology 09
and pre-trained on a fully processed large-scale 3D medical dataset.

The pre-trained base model usually performs poorly in the defined

application scenarios, as shown in Table 2, and the SAM-Med3D

pre-trained model performed moderately on the untrained

unfamiliar dataset and not enough to be applied to the next step

of diagnosis of MSI status of colon cancer. LoRA (29) is a common

and effective Parameter Efficient Fine-Tuning (PEFT) (30) method,

which requires much less updating than the whole model

parameters through a low-rank decomposition strategy, which

greatly reduces the consumption of computational resources and

decreases the computational equipment requirements.

Thus, in the CT segmentation stage of colon cancer, MSI-SAM

achieved the best results in each colon cancer site after adaptation

on a specific dataset, which fully demonstrates the importance of

fine-tuning and customization of pre trained models in specific

tasks to improve the segmentation performance of MSI-SAM

models. Meanwhile, we conducted ablation experiments on the

rank r of the LoRA fine-tuning during the segmentation phase of

colon cancer CT scans. We observed that the model’s segmentation

capability progressively improved as r increased from 2 to 8.

However, when r reached 16, the model exhibited varying degrees

of performance degradation across different colon cancer regions.

Therefore, we retained r at 8 and proceeded to ablation experiments

on other modules in the subsequent phase.
FIGURE 5

For each site, the left panel displays the original CT image covering the lesion mask (blue), marking the areas of interest, while the right panel
displays the Grad CAM heatmap, where the color gradient from red (high attention) to blue (low attention) represents the model’s priority for MSI-
related features. (a) Ascending colon, (b) transverse colon, (c) descending colon, and (d) sigmoid colon.
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Directly inputting text position prompts into the Prompt

Encoder 3D module of MSI-SAM after aligning the CL module

can actually lead to a decrease in model performance. This is

because although the two aligned feature representations have

similar distributions in vector space, they do not fully understand

each other. Therefore, after aligning the two feature representations

in the CL module, they are fused and fully understood through the

FF module before being input into the Prompt Encoder 3D module

for text position prompts. It can be seen that the performance of the

model at this point has been substantially enhanced in the

transverse colon, descending colon, and sigmoid colon by the

whole body of MSI-SAM at the expense of the performance of

some areas of the ascending colon.

To comprehensively validate our segmentation model MSI-

SAM, we included two non-SAM-based clinical baselines 3DUNet

and 3DTransUNet, widely used in 3D medical image segmentation,

alongside SAM-based models for comparison. As shown in Table 2,

3DUNet (DSC 0.798–0.866, IoU 0.723–0.782) and 3DTransUNet

(DSC 0.835–0.878, IoU 0.745–0.802) outperform most SAM-based

models (e.g., SAM-Med3D DSC 0.587–0.749, Promise DSC 0.237–

0.649) due to their tailored 3D medical segmentation architectures.

However, our MSI-SAM (DSC 0.854–0.923, IoU 0.747–0.857) still

surpasses both baselines by integrating LoRA fine-tuning (r=8) and

cross-modal FF, confirming that task-specific optimization

enhances 3D segmentation adaptability for colon cancer CT.

The structural differences among comparative models further

explain performance gaps: SAM-Med3D and FastSAM3D

reconfigure SAM’s full architecture for 3D data, while Promise

and 3DSAM only add adapters (requiring 3D data splitting/

assembling), leading to suboptimal feature extraction (Table 2).

This aligns with 3DUNet/3DTransUNet’s advantage in 3D spatial

information capture, yet MSI-SAM’s superiority highlights the

value of combining architecture-level 3D adaptation with LoRA

and FF.

In the diagnosis stage, our ResNet18-based model replaces MLP

with KAN and inputs CT_Origin and CT_ROI in parallel. Table 5

supplements p-values and significance testing to verify model

differences: compared to single CT_Origin+MLP, our model

shows highly significant improvements in AUC (0.935 vs. 0.810,

p=0.002) and ACC (0.913 vs. 0.783, p=0.038); compared to dual-

input+MLP, gains in AUC (p=0.018) and ACC (p=0.049) remain

significant. Additionally, Figure 5’s Grad-CAM attention maps

confirm that the model focuses on tumor lesions, not irrelevant

background, aligning with clinical diagnostic logic-breaking DL’s

“black box” while validating that its decision-making basis is

clinically interpretable.

The two-stage MSI diagnostic system is well-suited for

integration into radiology workflows: it directly accepts standard

format CT data from clinical PACS systems and uses MSI-SAM to

automate lesion segmentation and the ResNet18+KAN model to

process CT_Origin/CT_ROI for diagnosis without manual feature

extraction—freeing radiologists to focus on high-value tasks like

edge-case review. Notably, newly added clinical data can be used to

continuously fine-tune MSI-SAM and retrain the diagnostic model,

enabling iterative performance improvement aligned with long-
Frontiers in Oncology 10
term workflow use. Before deployment, key steps are required:

conducting a reader study with three to five abdominal radiologists

to confirm that the system enhances clinical judgment, and

establishing quarterly post-deployment performance monitoring

to maintain reliability.

Overall, this two-stage DL method is highly effective, fast, and

reliable in diagnosing the MSI status of colon cancer, and the whole

process greatly avoids human intervention such as manual

segmentation, manual extraction of features, and screening of

colon cancer CT, which provides strong support for clinicians to

develop personalized and precise treatment plans. However, there

are some drawbacks in this work, such as the relatively small size of

the dataset, which may impair the generalization capacity of the

model, and the diagnostic effect of different colon cancer

locations was not studied in the second stage of the diagnostic

approach. Future studies can further expand the sample size,

study the application of the model in different clinical

circumstances, and continually enhance the performance of the

model to support the development of MSI status detection

technology for colon cancer.
5 Conclusion

We have developed a two-stage DL method for diagnosing the

MSI status of colon cancer based on CT, which involves

segmentation followed by diagnosis. We have shown its

effectiveness through experiments. However, further training with

more data is required to verify its diagnostic skills in actual

clinical settings.
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