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Background: This study seeks to build a two-stage deep learning approach for
identifying the microsatellite instability (MSI) status of colon cancer based on
computed tomography (CT) scans without the requirement for manual segmentation.
Methods: This study included 108 enhanced CT scans of colon cancer, including
68 cases of ascending colon, 14 cases of transverse colon, 18 cases of
descending colon, and 8 cases of sigmoid colon; there were 56 cases of MSI-
H and 52 cases of microsatellite stability (MSS). In the first stage, the
segmentation model MSI-SAM was trained to accurately segment the lesion
locations in the CT scans. In the second stage, the mask acquired from the MSI-
SAM segmentation was multiplied by the original CT image (CT_Origin) bitwise,
and the result was merged with the mask obtained from the MSI-SAM
segmentation (Segment) to obtain CT_ROI. Both CT_ROI and CT_Origin were
then diagnosed using the colon cancer MSI status diagnosis model.

Results: The performance of the suggested CT segmentation model MSI-SAM in
the ascending colon, transverse colon, descending colon, and sigmoid colon
areas (DSC: loU) was (0.886:0.798), (0.878:0.783), (0.923:0.857), and
(0.854:0.747), respectively. The AUC of the MSI status diagnostic model for
patients with colon cancer was 0.935 (95% Cl 0.892-0.947), the ACC was 0.913,
the sensitivity was 1.000, and the specificity was 0.846.

Conclusions: The segmentation masks created by the trained deep learning
segmentation model achieved a level comparable to that of expert radiologists,
and the deep learning diagnostic model played an essential role in supporting
doctors in diagnosis.
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1 Introduction

Studies have revealed that patients with colon cancer with high
microsatellite instability (MSI-H) do not react to 5-fluorouracil
chemotherapy but are susceptible to immunotherapy and have a
good prognosis in the early stages (1, 2). Therefore, precisely
detecting the MSI status of patients with colon cancer is crucial
for clinical therapy and prognosis. Routine testing for MSI includes
immunohistochemistry (IHC), polymerase chain reaction (PCR),
and next-generation sequencing (NGS) (3). However, relatively few
medical institutions are equipped with these tests, the NGS method
is expensive and technically demanding, and not suitable for stand-
alone MSI testing (4), and THC results may be interfered with by
benign germline polymorphisms, leading to false-negative and
false-positive results. Not only that, all of these tests are invasive
and need surgery or biopsy to obtain tissue specimens. Therefore,
there is an urgent need for a noninvasive preoperative screening
approach to predict the MSI status of patients with colon cancer and
to guide accurate and customized treatment.

Computed tomography (CT) is a noninvasive imaging modality
that is widely used in the clinical practice of colon cancer (5).
Pernicka et al. (6) created three machine learning prediction models
comprising clinical features, imaging histology features, and a mix
of the two by evaluating preoperative CT images of 198 patients
with stage IT-III colon cancer; Gao et al. (7) analyzed enhanced CT
images of 108 patients with colon liver metastasis and selected 7
imaging histological features that can effectively distinguish MSI-H
from microsatellite stability (MSS), and used a random forest model
for classification, and Ma et al. and Pei et al. (8, 9) used a similar
method for MSI prediction. The preceding approach for MSI status
detection based on colon cancer CT by imaging histology is halted;
i.e., after extracting the features through radiomics (10), we need to
manually screen the features to form the model for training.
Radiomics relies on hand-designed features, like grayscale
covariance matrix, stroke length matrix, and other features (10),
and the selection and construction of these features are heavily
dependent on the researcher’s experience and past knowledge.

Recently, the advancement of deep learning (DL) has led to
major advances in computer-aided diagnosis (CAD) in the field of
medical imaging (11), with extensive applications across diverse
tasks including few-shot learning, histopathology analysis, and
biometric recognition (12-15). Compared with traditional
medical imaging diagnosis, the feature extraction technique in DL
can tap into the latent information that cannot be detected by the
naked eye. Therefore, CT-based DL approaches are of tremendous
aid in the prediction of MSI status in patients with colon cancer and
the formulation of customized treatment programs for patients
after physicians. To this purpose, we present a two-stage DL colon
cancer MSI diagnostic technique based on segmentation followed
by diagnosis.

This colon cancer MSI status diagnostic approach avoids the
time-consuming and labor-intensive procedure of human
segmentation of CT. In the final experiment, we use the mask
Segment obtained from MSI-SAM segmentation to outperform the
CT-based diagnostic methods in colon cancer MSI status diagnosis,
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which focuses on the local region of the ROI and takes into account
the global CT information to better help the colon cancer MSI status
diagnostic model to make a decision, and also proves that Segment
has a comparable performance with the mask sketched by the
doctor in colon cancer MSI status diagnosis. It also indicates that
Segment and doctor-drafted masks have equivalent performance in
colon cancer MSI status diagnosis.

2 Materials and methods
2.1 Data description and dataset division

All CT data in this study were acquired using a SOMATOM
Definition AS+64-slice 128-layer spiral CT scanner manufactured
by Siemens Healthineers. Scan parameters were set as follows: tube
voltage: 120 kV; tube current: CareDose 4D intelligent dose
modulation enabled; spiral pitch: 0.6; and image reconstruction
slice thickness: 2 mm. The scanning range covered the entire
abdomen, specifically from 2 cm above the diaphragm to the
lower margin of the symphysis pubis. Contrast agent
administration employed a dual-phase bolus injection protocol
using a dual-chamber high-pressure syringe. The contrast agent
used was iopamidol (concentration, 300 mgl/mL), administered at a
dose of 1.2 mL/kg with an infusion rate of 3.0-3.5 mL/s. Following
the contrast agent bolus, 30 mL of normal saline was infused at the
same rate to ensure adequate distribution. The scanning sequence
comprised three phases: the arterial phase initiated 30-35 s after
contrast injection, the parenchymal phase began 80-85 s post-
injection, and the excretory phase commenced 15-30 min post-
injection. All acquired images were retrieved and exported from the
Picture Archiving and Communication System (PACS).

There were a total of 108 CT images of colon cancer, comprising
68 cases of ascending colon, 14 cases of transverse colon, 18 cases of
descending colon, and 8 cases of sigmoid colon; there were 56 cases
of patients with colon cancer with MSI-H status, and 52 cases of
patients with colon cancer with MSS status.

During the CT segmentation phase for colon cancer, CT data
from different regions of colon cancer were divided into an 8:2 ratio
to form the training and testing datasets. In the MSI status diagnosis
phase, CT data from colon cancers with different MSI statuses were
similarly divided into an 8:2 ratio to constitute the training and
testing datasets. To characterize the study population and ensure
the reliability of the experimental results, we summarized the
demographic and clinical baseline characteristics of the 108
enrolled patients in Table 1.

2.2 LoRA on the Image Encoder3D of MSI-
SAM

Identifying MSI-related regions and extracting valuable
information from complex colon cancer CT images can greatly
avoid the colon cancer MSI status diagnosis model from not
capturing the valid information in the CT images; thus, in the

frontiersin.org


https://doi.org/10.3389/fonc.2025.1699430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Cui et al. 10.3389/fonc.2025.1699430

TABLE 1 The demographic and clinical baseline characteristics of the dimensional, which solves the disadvantage that SAM cannot
108-patient cohort, including age, gender, tumor location, and MSI

status, showed a balanced distribution between MSI-H and MSS. deal with the Spatlal information of medical 1mages, and

likewise the parameter of the whole model focuses on the Image
Total cohort MSI-H MSS Encoder3D part. The colon cancer CT that needs to be segmented

Characteristic

(n=108) (n=56) (n=52) is outputted as an image feature representation after the Patch

6269 (40 Embedding operation through multiple Vision Transformers
Age, years 56.67 (37-77) 51.07 (37-71) ’ - . - .
§ 77) (VITs) (16), before which the pre-training weights need to be
Sex. n (%) loaded and frozen, and we describe the pre-training weights in the
' Image Encoder3D part as follows. The LoRA fine-tuning approach
Male 53 (49.0) 24 (429) 21 (404) is achieved by adding a bypass to the frozen Transformer
Female 55 (50.9) 32 (57.1) 31 (59.6) structure, which consists of two linear layers, B & RS * " and
= R X Cout ; ;
Tumor location, n (%) AER , where r < min{Cin, Cout}, and the updated
weights are Equation 1:
Ascending colon 68 (63.0) 37 (66.1) 31 (59.6)
Transverse colon 14 (13.0) 5(8.9) 9(17.3) W=W+AW=W+ BA (1)
Descending colon 18 (166) 10 (17.9) 8 (15.4) Consider that the input sequence of Image Encoder3D is x €
— R™WD “and the output following Image Encoder3D that has been
Sigmoid colon 80 4D L7 fine-tuned by LoRA low rank is Equation 2:
MSI status, n (%) B
Zr=Wx=(W+AW)x = (W + BA)x (2)
MSL-H 56 (51.9) — _
MSS s2045.1) Thanks to the prompt learning of the SAM model and the
i comparative learning (CL) of the Clip (17) model, we execute a

semantic prompt for distinct colon cancer sites. Clip and SAM-

segmentation stage of colon cancer CT images, the MSI-SAM  Med3D are the same pre-trained model, which collects images a
model is trained to segment the ROI of the colon cancer CT images. ~ huge number of image-text pairs for pre-training, and builds a
Our colon cancer CT segmentation model MSI-SAM is shown  connection between the images and the text. Following the training

in Figure 1. The structure of MSI-SAM is inherited from that of = approach of Clip, we performed an alignment operation between

SAM-Med3D; the dimension of image processing is three-  the text feature representation extracted by Text Encoder in Clip
o ] -~
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1 1
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FIGURE 1
Overview of the MSI-SAM CT segmentation model for colon cancer.
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and the image feature representation Z; extracted by Image
Encoder3D in MSI-SAM using the Info NEC (18) loss function.
Contrast learning allows the model to learn to distinguish between
similar and dissimilar data samples (19), stating that each CT
corresponds to a positive sample location prompt text
representation as Zy, and a negative sample as Zp_. Using the
cosine similarity, sim measures the similarity between the two
modal representations, and the more similar the current CT is to
the positive sample textual representation against the more unlike it
is to the negative sample, the lesser the loss will be. Info NEC adds a
temperature coefficient 7" to the NEC loss function. Info NEC adds
a temperature coefficient E to the NEC loss function, which boosts
the model’s capacity to discriminate between negative samples,
allowing the model to focus on negative cases that are harder to
identify from positive ones. Info NEC loss function is Equation 3:

‘ClnfoNEC =
o ; exp(sim(Z;, Z21,))/T
N 2l e B Zr ) T + Svez, explsim(ZN)/T
(3)

2.3 Feature fusion between CT images and
positional text

After CL alignment, the positional text feature representation
output by Text Encoder is similar to that of the corresponding
image in terms of data distribution, but the aligned positional text
feature representation directly input into the prompt encoder of
MSI-SAM for positional prompt not only will not help the
segmentation effect but also will cause trouble to the model
obtained by LoRA fine-tuning, resulting in the segmentation
effect of model degradation (20). To make the aligned textual
representations better understand the semantic information in the
images and provide more accurate location prompt for different
colon cancer CT sites, we use the feature fusion (FF) module
implemented through the cross-attention mechanism to fuse the
CT image feature representations with the corresponding location
textual feature representations to better prompt different colon
cancer sites. In the FF module, two separate modal feature
representations have their corresponding gkv for producing cross-
attention, and the related formulas are as follows (Equation 4):

I

kv Toky = Lineari]zv(ZIZT) (4)

FF consists of two cross-attention modules, CA; and CA,. The
CA, inputs are T, I, and I,. The CA; module formula is as follows
(Equation 5):

T,If
Vi,

When the first cross-attention module CA,; of the FF, we may
acquire g, k, and ¥, which contain the information of two modal

CA(T, I I,) = SoftMax( ), (5)

feature representations, and then when the second cross-attention
module CA, is fully fused, the formula is as follows (Equation 6):
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aT;
CAy(g, Ty, T,) = softmax( \/dL)TV (6)

Ty
The feature representations of the two modalities are fully fused
through the FF module and input into the Prompt Encoder 3D
module of MSI-SAM to provide corresponding text position

prompts for colon cancer CT.

2.4 Employ KAN to replace MLP in MSI
classification

Our colon cancer MSI status diagnosis model is displayed in
Figure 2. The feature extraction part of the whole network
architecture is inherited from ResNetl8, and its added residual
connections strengthen the connection between different layers of
the network, avoiding the gradient disappearance or gradient
explosion during training, and solving the degradation problem of
the deep network during training. The information related to the
MSI status is mainly contained in the ROI in the CT of colon cancer,
and we use the mask Segment obtained by MSI-SAM segmentation
and the corresponding CT_Origin to multiply by bit to get a copy of
CT_ROI containing only the CT information of the ROI, and
CT_Origin containing all the information provides a wider
perspective for observing the MSI; thus, CT_ROI and CT_Origin
are input into the improved ResNetl8 colon cancer MSI status
diagnosis model in parallel, and matrix summation is performed
after the convolution operation with a convolution kernel size of 7
and the global average pooling operation afterward to achieve FF
under different CT perspectives during the feature extraction
process, respectively.

Meanwhile, to tackle the difficulties of poor parameter
utilization efficiency and poor interpretability that normally exist
in MLP networks, the final MLP classification output layer of the
MSI status diagnostic network is substituted by a KAN network. As
shown in Figure 2, the design principle of KAN originates from the
Kolmogorov-Arnold theorem (21), and KAN differs from MLP in
that, although it also possesses a fully connected structure, there is
no linear weight matrix; instead, each weight parameter is replaced
by a learnable one-dimensional function parameterized by a spline.
In the nodes of a KAN, the incoming signals are merely subjected to
a basic summation operation without any nonlinear
transformations. KAN is typically able to realize smaller
computational graphs than MLP (22). After the convolution
operation of the ResNet18 network and the fusion of the two CT
feature summations, the recovered image features are marked as I.
Finally, the KAN is utilized to make the final diagnosis of the MSI
status of the colon cancer patient. In a KAN network, denoting the
whole design of the ith layer, a KAN with I layers can be stated as
Equation 7:

KAN(D) = (@ @ Ppy @ Dpy -+ - @)1 (7)

Therefore, to better align with the feature extraction component
of ResNet18, we set the number of layers I in KAN to match the
number of layers in the fully connected component of ResNet18.
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FIGURE 2

Overview of diagnostic methods for MSI status in patients with colon cancer.

3 Results
3.1 Model evaluation

In the colon cancer CT segmentation challenge, we employed
DSC and IoU to accomplish the evaluation, with the experimental
results at this stage obtained through fivefold cross-validation.
Similarly, to comprehensively evaluate the performance of the
MSI status diagnostic model for colon cancer, we used AUC,
ACC, sensitivity, and specificity as evaluation metrics, and the
experimental results of this stage were also derived via fivefold
cross-validation. The DSC and IoU formulas are as follows
(Equations 8, 9), where A is the set of predicted results and B is
the set of true labels:

2 x |AN B|
psc=-"12_~ )
|A] + |B|
|A N B|
IoU = 9
Y T AUB| ©)

3.2 Segmentation results

3.2.1 Comparison with other SAM pre-trained
methods

To validate the performance of MSI-SAM on our dataset, we
introduced two categories of comparative models to ensure a
comprehensive evaluation: (1) non-SAM-based clinical DL

Frontiers in Oncology

baselines widely used in 3D medical image segmentation,
including 3DUNet (23) and 3DTransUNet (24); (2) SAM-based
large medical models capable of handling 3D data, including SAM-
Med3D (25), Promise (26), FastSAM3D (27), and 3DSAM (28). For
the SAM-based models, we loaded their corresponding pre-trained
weights, while 3DUNet and 3DTransUNet were trained from
scratch using the same training protocol. All comparative
networks and the proposed MSI-SAM were subjected to the
identical preprocessing pipeline and evaluated on the same
dataset partition (8:2 training-test split). The comparison results
are shown in Table 2: MSI-SAM achieves a DSC of 0.886 and an
IoU of 0.798 on the ascending colon, with DSC-IoU values of
0.878-0.783 (transverse colon), 0.923-0.857 (descending colon),
and 0.854-0.747 (sigmoid colon), outperforming both non-SAM-
based baselines and SAM-based models across all colon sites.

To intuitively illustrate the segmentation performance, we
present the segmentation results of different algorithms across
four colon cancer sites (ascending colon, transverse colon,
descending colon, and sigmoid colon) in Figure 3. In the
visualization, the colon cancer lesion is marked in blue as the
segmented foreground, while varying grayscale values represent the
background. As shown, compared to both non-SAM-based clinical
baselines (3DUNet and 3DTransUNet) and SAM-based 3D medical
image segmentation models (SAM-Med3D, Promise, FastSAM3D,
and 3DSAM) that have been pre-trained on large medical datasets,
our MSI-SAM network—fine-tuned on our specified dataset—
achieves more complete lesion region segmentation and better
edge integrity. For instance, 3DUNet and 3DTransUNet exhibit
partial under-segmentation or irregular boundaries, while SAM-
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TABLE 2 Quantitative comparison of MSI-SAM with other SAM pretraining methods for segmenting 3D medical images at different sites on the CT
dataset of colon cancer.

Ascending Transverse Descending Sigmoid

Methods
DSC loU DSC loU DSC loU DSC loU
3DUNet (23) 0.844 0.750 0.852 0.763 0.866 0.782 0.798 0.723
3DTransUNet (24) 0.865 0.765 0.863 0.777 0.878 0.802 0.835 0.745
SAM-Med3D (25) 0.746 0.600 0.728 0.572 0.749 0.604 0.587 0.416
Promise (26) 0.445 0.315 0.237 0.153 0.375 0.262 0.649 0.481
FastSAM3D (27) 0.673 0.511 0.617 0.450 0.715 0.558 0.621 0.455
3DSAM (28) 0.541 0.397 0.353 0.258 0.686 0.532 0.465 0.307
MSI-SAM 0.886 0.798 0.878 0.783 0.923 0.857 0.854 0.747

The bold values in this table represent the best performance achieved across all methods for the corresponding evaluation metrics (DSC, IoU) in the segmentation task of each anatomical site.

Med3D, Promise, FastSAM3D, and 3DSAM either miss lesion
details or show fragmented segmentation. In contrast, MSI-SAM
consistently aligns with the ground truth (GT) in contour
completeness and edge accuracy across all four colon sites.

3.2.2 CT segmentation ablation experiment

To prove the improvement effect of MSI-SAM more fully,
ablation experiments were done on LoRA fine-tuning, text-image
alignment (CL), and text-image fusion modules (FF), respectively,
and the experimental results are provided in Table 3. Table 3 proves
the influence of each module chosen in this research on boosting the
capability of MSI-SAM in CT segmentation of colon cancer. The
MSI-SAM model obtained by fine-tuning SAM-Med3D with the

LoRA strategy demonstrated significantly improved performance on
the colon cancer CT dataset. Testing different values for r revealed
that fine-tuning yielded optimal results when r was set to 8. Because
of the larger volume of CT data in the ascending colon, MSI-SAM
outperformed the other three regions in both DSC and IoU
evaluation metrics.

Simply inputting text aligned with corresponding CT scans into
the MSI-SAM Prompt Encoder3D for text-based positional
guidance actually degrades the performance of models fine-tuned
with LoRA. Considering that text features and CT image features
were not fully understood, after integrating both types of features
through the FF module, the model achieved optimal segmentation
performance on both DSC and IoU metrics.

Buipuassag asiaAasuell Buipuassy

plowbis

3DUNet

FIGURE 3

FastSAM3D (27), and 3DSAM (28)

3DTransUNet SAM-Med3D Promise FastSAM3D

..

GT

3DSAM MSI-SAM

Quialitative visualization of the proposed method, MSI-SAM with benchmark methods on CT of four colon cancer sites: ascending colon, transverse
colon, descending colon, and sigmoid colon. The benchmark approaches include 3DUNet (23), 3DTransUNet (24), SAM-Med3D (25), Promise (26),
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TABLE 3 Quantitative results of MSI-SAM ablation analysis with different components.

Ascending Transverse Descending Sigmoid
Methods
DSC loU DSC loU DSC loU DSC

LoRA r=2 0.846 0.788 0.763 0.663 0.855 0.788 0.792 0.688
LoRA r=4 0.872 0.803 0.794 0.688 0.893 0.819 0.811 0.696
LoRA r=8 0.896 0.812 0.817 0.695 0.904 0.826 0.828 0.708
LoRA r=16 0.884 0.809 0.804 0.692 0.895 0.823 0.821 0.698
LoRA (r=8)+CL 0.762 0.544 0.680 0517 0.778 0.605 0.743 0533
LoRA (r=8)+CL+FF 0.886 0.798 0.878 0.783 0.923 0.857 0.854 0.747

The bold values in this table represent the best performance achieved across all methods for the corresponding evaluation metrics (DSC, IoU) in the segmentation task of each anatomical site.

3.3 Diagnostic results construct CT_ROI (lesion-local information) via bitwise
multiplication with CT_Origin. At this point, the model transitions
to a dual-input framework that integrates CT_Origin (global
anatomical context) and CT_ROI (targeted lesion details). With

this dual-input design, the model’s extracted features

3.3.1 Diagnosis of MSI status in colon cancer and
ablation experiments

In the process of colon cancer MSI status diagnosis, we conducted
ablation experiments to explore how different strategies affect the simultaneously cover full CT information and MSI-relevant lesion
regions, leading to notable performance improvements.

Furthermore, replacing the final MLP layer of ResNet18 with KAN
in this dual-input framework yielded the optimal diagnostic results: an
AUC 0f 0.935, an ACC of 0.913, a sensitivity of 1.000, and a specificity of
0.846. This confirms that the combination of dual-input FF (CT_Origin

+CT_ROI) and KAN'’s superior feature mapping capability is key to

performance of the ResNet18-based diagnostic model, with results
presented in Table 4. For the baseline native ResNet18 model that only
takes single-input CT_Origin (global abdominal CT information), its
diagnostic performance is limited—achieving an AUC of 0.810, an
ACC of 0.783, a sensitivity of 0.800, and a specificity of 0.769. This
limitation arises because 3D CT data contain extensive non-MS-
related background information, making it difficult for the single-
input model to focus on lesion regions critical to MSI status judgment.

enhancing the model’s MSI status diagnostic accuracy.
To clarify the statistical significance of performance differences
To address this, we introduced the segmentation mask (Segment) ~ between models in the second-stage MSI diagnosis phase, we

output by the MSI-SAM model (from the first segmentation stage) to ~ present Table 5, which quantifies comparisons between our

TABLE 4 Ablation trials utilizing three techniques, Segment, KAN, and Mask, on the impact of diagnostic results of MSI status in colon cancer.

Strategies AUC (95% ClI) ACC (95% ClI) Sensitivity (95% ClI) Specificity (95% CI)
OF Orisi 0810 0.783 0.800 0.769
—onetn (95% CI 0.732-0.838) (95% CI 0.722-0.806) (95% CI 0.779-0.821) (95% CI 0.755-0.813)
0.890 0.870 0.900 0.846
+Segment

(95% CI 0.640-0.932)

(95% CI 0.825-0.901)

(95% CI 0.862-0.934)

(95% CI 0.798-0.911)

+Segment, KAN

0.935
(95% CI 0.892-0.947)

0913
(95% CI 0.870-0.957)

1.000
(95% CI 0.932-1.000)

0.846
(95% CI 0.821-0.894)

+Mask, KAN

0.943
(95% CI 0.922-0.986)

0913
(95% CI 0.870-0.957)

0.900
(95% CI 0.885-0.964)

0.923
(95% CI 0.902-0.966)

TABLE 5 Quantitative comparison and significance testing of MSI diagnostic models in the second stage.

Comparison (proposed model vs. baseline) Metric Proposed model Baseline model p-value Significance
Dual-input (Segment)+KAN vs. Single CT_Origin+MLP AUC 0.935 0.810 0.002 p<0.01
ACC 0913 0.783 0.038 p<0.05
Dual-input (Segment)+KAN vs. Dual-input+MLP (Segment) AUC 0.935 0.890 0.018 p<0.05
ACC 0913 0.870 0.049 p<0.05
Dual-input (Segment)+KAN vs. Single CT_Origin+MLP (Mask) AUC 0.935 0.943 0.620 -
ACC 0.913 0913 1.000 -
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proposed dual-input KAN model [Dual-input(Segment)+KAN]
and baseline models using significance testing.

The table evaluates three key comparison scenarios, reporting
metrics (AUC and ACC), p-values, and significance levels (with
p<0.05 and p<0.01 denoting statistical significance). The test
methods are DeLong test for AUC and McNemar’s test for ACC,
with Bonferroni correction applied for multiple comparisons.
Compared to Single CT_Origin+MLP, our proposed model shows
highly significant improvements in both AUC (12.5% increase,
p<0.01) and ACC (13% increase, p<0.05), validating the value of
dual-input fusion (CT_Origin+CT_ROI). When replacing MLP
with KAN in the dual-input framework [Dual-input+MLP
(Segment)], our model still achieves significant gains in AUC
(4.5% increase, p<0.05) and ACC (4.3% increase, p<0.05),
highlighting KAN’s superiority in parameter efficiency and
feature alignment.

The key is that our dual input KAN model showed no statistical
difference between using different masks drafted by radiologists and
MSI-SAM automatic segmentation, which confirms that automatic
segmentation is equivalent to manual annotation in clinical

10.3389/fonc.2025.1699430

practice, thus meeting the needs of low-labor, noninvasive
MSI diagnosis.

To verify that the mask Segment of MSI-SAM segmentation has
comparable performance with the mask Mask outlined by the
imaging physician in the diagnosis of colon cancer MSI status, at
this time, CT_ROI is derived from the multiplication of CT_Origin
and Mask by bit, and the diagnostic model uses Mask based on the
two evaluation indexes of AUC and sensitivity to reach 0.943 and
1.000; specificity is slightly worse and comparable to ACC, but
overall, the mask of MSI-SAM segmentation has a comparable
performance to the mask sketched by the imaging physician in the
diagnosis of colon cancer MSI status. We also demonstrate the
outcomes of the ablation experiments for the colon cancer MSI
status diagnosis job under different techniques from another
perspective. We drew the ROC curves employing different
strategies in Figure 4, and the results corresponding to Table 3
can be seen in the figure.

In order to meet the interpretability requirements of the model,
Figure 5 shows the Grad CAM attention heatmap visualization
results of the proposed MSI diagnostic model on representative
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FIGURE 4

Performance of the MSI status diagnostic model for colon cancer under different conditions. (a) ROC curves of the MSI diagnostic model under
different conditions. (b) Confusion matrix based only under CT_Origin. (c) Confusion matrix after adding Segment segmented by MSI-SAM. (d)
Confusion matrix after adding Segment and replacing MLP with KAN. (e) Confusion matrix after adding Mask and replacing MLP with KAN.
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High

FIGURE 5

colon cancer CT images, where the red highlighted areas represent
the decision key regions that the model focuses on. The four sets of
images show the original abdominal CT images and corresponding
Grad CAM heatmaps of MSI-H status patients in different colon
cancer sites, clearly marking the boundaries of colon lesions. It can be
observed that the model always focuses attention on the tumor lesion
area and its adjacent intestinal wall, rather than irrelevant
background tissues such as fat, muscle, or normal intestinal
segments—this attention distribution is highly consistent with the
clinical attention of radiologists to lesion features. This visualization
not only breaks the “black box” limitations of DL, but also proves that
the decision-making basis of the model is consistent with clinical
diagnostic logic, laying the foundation for clinical trust
and application.

4 Discussion

In this study, we created a colon cancer MSI status diagnostic
approach based on two-stage DL, i.e., segmentation followed by
diagnosis, which provides a unique solution for the clinical
noninvasive diagnosis of MSI.

Inspired by the field of Natural Language Processing (NLP),
SAM-Med3D (25) is proposed in the field of image segmentation

Frontiers in Oncology

For each site, the left panel displays the original CT image covering the lesion mask (blue), marking the areas of interest, while the right panel
displays the Grad CAM heatmap, where the color gradient from red (high attention) to blue (low attention) represents the model's priority for MSI-
related features. (a) Ascending colon, (b) transverse colon, (c) descending colon, and (d) sigmoid colon.

Low

and pre-trained on a fully processed large-scale 3D medical dataset.
The pre-trained base model usually performs poorly in the defined
application scenarios, as shown in Table 2, and the SAM-Med3D
pre-trained model performed moderately on the untrained
unfamiliar dataset and not enough to be applied to the next step
of diagnosis of MSI status of colon cancer. LoRA (29) is a common
and effective Parameter Efficient Fine-Tuning (PEFT) (30) method,
which requires much less updating than the whole model
parameters through a low-rank decomposition strategy, which
greatly reduces the consumption of computational resources and
decreases the computational equipment requirements.

Thus, in the CT segmentation stage of colon cancer, MSI-SAM
achieved the best results in each colon cancer site after adaptation
on a specific dataset, which fully demonstrates the importance of
fine-tuning and customization of pre trained models in specific
tasks to improve the segmentation performance of MSI-SAM
models. Meanwhile, we conducted ablation experiments on the
rank r of the LoRA fine-tuning during the segmentation phase of
colon cancer CT scans. We observed that the model’s segmentation
capability progressively improved as r increased from 2 to 8.
However, when r reached 16, the model exhibited varying degrees
of performance degradation across different colon cancer regions.
Therefore, we retained r at 8 and proceeded to ablation experiments
on other modules in the subsequent phase.
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Directly inputting text position prompts into the Prompt
Encoder 3D module of MSI-SAM after aligning the CL module
can actually lead to a decrease in model performance. This is
because although the two aligned feature representations have
similar distributions in vector space, they do not fully understand
each other. Therefore, after aligning the two feature representations
in the CL module, they are fused and fully understood through the
FF module before being input into the Prompt Encoder 3D module
for text position prompts. It can be seen that the performance of the
model at this point has been substantially enhanced in the
transverse colon, descending colon, and sigmoid colon by the
whole body of MSI-SAM at the expense of the performance of
some areas of the ascending colon.

To comprehensively validate our segmentation model MSI-
SAM, we included two non-SAM-based clinical baselines 3DUNet
and 3DTransUNet, widely used in 3D medical image segmentation,
alongside SAM-based models for comparison. As shown in Table 2,
3DUNet (DSC 0.798-0.866, IoU 0.723-0.782) and 3DTransUNet
(DSC 0.835-0.878, IoU 0.745-0.802) outperform most SAM-based
models (e.g., SAM-Med3D DSC 0.587-0.749, Promise DSC 0.237-
0.649) due to their tailored 3D medical segmentation architectures.
However, our MSI-SAM (DSC 0.854-0.923, ToU 0.747-0.857) still
surpasses both baselines by integrating LoRA fine-tuning (r=8) and
cross-modal FF, confirming that task-specific optimization
enhances 3D segmentation adaptability for colon cancer CT.

The structural differences among comparative models further
explain performance gaps: SAM-Med3D and FastSAM3D
reconfigure SAM’s full architecture for 3D data, while Promise
and 3DSAM only add adapters (requiring 3D data splitting/
assembling), leading to suboptimal feature extraction (Table 2).
This aligns with 3DUNet/3DTransUNet’s advantage in 3D spatial
information capture, yet MSI-SAM’s superiority highlights the
value of combining architecture-level 3D adaptation with LoRA
and FF.

In the diagnosis stage, our ResNet18-based model replaces MLP
with KAN and inputs CT_Origin and CT_ROI in parallel. Table 5
supplements p-values and significance testing to verify model
differences: compared to single CT_Origin+MLP, our model
shows highly significant improvements in AUC (0.935 vs. 0.810,
p=0.002) and ACC (0.913 vs. 0.783, p=0.038); compared to dual-
input+MLP, gains in AUC (p=0.018) and ACC (p=0.049) remain
significant. Additionally, Figure 5’s Grad-CAM attention maps
confirm that the model focuses on tumor lesions, not irrelevant
background, aligning with clinical diagnostic logic-breaking DL’s
“black box” while validating that its decision-making basis is
clinically interpretable.

The two-stage MSI diagnostic system is well-suited for
integration into radiology workflows: it directly accepts standard
format CT data from clinical PACS systems and uses MSI-SAM to
automate lesion segmentation and the ResNet18+KAN model to
process CT_Origin/CT_ROI for diagnosis without manual feature
extraction—freeing radiologists to focus on high-value tasks like
edge-case review. Notably, newly added clinical data can be used to
continuously fine-tune MSI-SAM and retrain the diagnostic model,
enabling iterative performance improvement aligned with long-

Frontiers in Oncology

10

10.3389/fonc.2025.1699430

term workflow use. Before deployment, key steps are required:
conducting a reader study with three to five abdominal radiologists
to confirm that the system enhances clinical judgment, and
establishing quarterly post-deployment performance monitoring
to maintain reliability.

Overall, this two-stage DL method is highly eftective, fast, and
reliable in diagnosing the MSI status of colon cancer, and the whole
process greatly avoids human intervention such as manual
segmentation, manual extraction of features, and screening of
colon cancer CT, which provides strong support for clinicians to
develop personalized and precise treatment plans. However, there
are some drawbacks in this work, such as the relatively small size of
the dataset, which may impair the generalization capacity of the
model, and the diagnostic effect of different colon cancer
locations was not studied in the second stage of the diagnostic
approach. Future studies can further expand the sample size,
study the application of the model in different clinical
circumstances, and continually enhance the performance of the
model to support the development of MSI status detection
technology for colon cancer.

5 Conclusion

We have developed a two-stage DL method for diagnosing the
MSI status of colon cancer based on CT, which involves
segmentation followed by diagnosis. We have shown its
effectiveness through experiments. However, further training with
more data is required to verify its diagnostic skills in actual
clinical settings.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by The Ethics
Committee of the Third Affiliated Hospital of Kunming Medical
University. The studies were conducted in accordance with the local
legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

SC: Writing - original draft, Visualization, Software,
Investigation, Validation. XX: Writing — review & editing, Formal
analysis, Conceptualization. XY: Writing — review & editing, Data
curation. JH: Conceptualization, Supervision, Writing - review &
editing, Methodology. TS: Conceptualization, Writing - review &
editing, Data curation.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1699430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Cui et al.

Funding

The author(s) declared that financial support was received for this
work and/or its publication. This work was supported by the National
Natural Science Foundation of China (No. 82160347), the Basic
Research on the Application of Joint Special Funding of Science
supported by Yunnan Fundamental Research Project
(No0.202301AY070001-251), the Yunnan Provincial Science and
Technology Department Social Development Special Project (No.
202403AC100018), and the Yunnan Province Young and Middle
aged Academic and Technical Leaders Project (202305AC350007).

Conflict of interest

The authors declared that this work was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

References

1. Diaz LA, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab
versus chemotherapy for microsatellite instability-high or mismatch repair-deficient
metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-
label, phase 3 study. Lancet Oncol. (2022) 23:659-70. doi: 10.1016/S1470-2045(22)
00197-8

2. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al.
Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based
adjuvant chemotherapy for colon cancer. New Engl ] Med. (2003) 349:247-57.
doi: 10.1056/NEJM02a022289

3. Sun BL. Current microsatellite instability testing in management of
colorectal cancer. Clin Colorectal Cancer. (2021) 20:E12-20. doi: 10.1016/
j.clcc.2020.08.001

4. Diao ZL, Han YX, Chen YQ, Zhang R, Li JM. The clinical utility of microsatellite
instability in colorectal cancer. Crit Rev Oncol Hematol. (2021) 157:103171.
doi: 10.1016/j.critrevonc.2020.103171

5. Rodriguez-Fraile M, Cozar-Santiago M, Sabaté-Llobera A, Caresia-Aroztegui A,
Delgado-Bolton R, Orcajo-Rincon J, et al. FDG PET/CT in colorectal cancer. Rev
Espaiiola Med Nucl e Imagen Mol (English Edition). (2020) 39:57-66. doi: 10.1016/
j.remnie.2019.12.001

6. Golia Pernicka JS, Gagniere ], Chakraborty J, Yamashita R, Nardo L, Creasy JM,
et al. Radiomics-based prediction of microsatellite instability in colorectal cancer at
initial computed tomography evaluation. Abdominal Radiol. (2019) 44:3755-63.
doi: 10.1007/s00261-019-02117-w

7. Gao B, Wang Y, Ma L, Guo H, Wang X, Ye Z, et al. Eﬂiciency of CT radiomics
model in assessing the microsatellite instability of colorectal cancer liver metastasis.
Curr Med Imaging. (2023) 20:e250823220368. doi: 10.2174/
1573405620666230825113524

8. MaY, Lin CS, Liu S, Wei Y, Ji CF, Shi F, et al. Radiomics features based on internal
and marginal areas of the tumor for the preoperative prediction of microsatellite
instability status in colorectal cancer. Front Oncol. (2022) 12:1020349. doi: 10.3389/
fonc.2022.1020349

9. PeiQ, Yi X, Chen C, Pang P, Fu Y, Lei G, et al. Pre-treatment CT-based radiomics
nomogram for predicting microsatellite instability status in colorectal cancer. Eur
Radiol. (2022) 32:714-24. doi: 10.1007/s00330-021-08167-3

10. Mayerhoefer ME, Materka A, Langs G, Héggstrom I, Szczypinski P, Gibbs P,
et al. Introduction to radiomics. J Nucl Med. (2020) 61:488-95. doi: 10.2967/
jnumed.118.222893

11. Razzak MI, Naz S, Zaib A. Deep learning for medical image processing:
Overview, challenges and the future. In: Classification in BioApps: Automation of
decision making. Heidelberg, Germany: Classification in BioApps (2017). p. 323-50.

12. Zhang J, Liu L, Silven O, Pietikdinen M, Hu D. Few-shot class-incremental
learning for classification and object detection: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence. (2025) 47:2924-45. doi: 10.1109/
TPAMI.2025.3529038

Frontiers in Oncology

11

10.3389/fonc.2025.1699430

Generative Al statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

13. Jiang H, Yin Y, Zhang J, Deng W, Li C. Deep learning for liver cancer
histopathology image analysis: A comprehensive survey. Eng Appl Artif Intell. (2024)
133:108436. doi: 10.1016/j.engappai.2024.108436

14. Zhang ], Liu L, Gao K, Hu D. A forward and backward compatible framework
for few-shot class-incremental pill recognition. IEEE Transactions on Neural Networks
and Learning Systems. (2024) 36:9837-9851. doi: 10.1109/TNNLS.2024.3497956

15. Yin Y, Zhang R, Liu P, Deng W, Hu D, He S, et al. Artificial neural networks for
finger vein recognition: a survey. Eng Appl Artif Intell. (2025) 150:110586. doi: 10.1016/
j.engappai.2025.110586

16. Vaswani A, Shazeer N, Parmar N, Uszkoreit ], Jones L, Gomez AN, et al.
Attention is all you need. Adv Neural Inf Process Syst. (2017) 30.

17. Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. (2021).
Learning transferable visual models from natural language supervision, in:
International conference on machine learning, PmLR. New York, USA: Curran
Associates, Inc. 8748-63.

18. Gutmann M, Hyvirinen A. (2010). Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics.
Brookline, MA, USA: Microtome Publishing. 297-304.

19. Khosla P, Teterwak P, Wang C, Sarna A, Tian YL, Isola P, et al. Supervised
contrastive learning. Adv Neural Inf Process Syst. (2020) 33:18661-73.

20. LiJN, Selvaraju RR, Gotmare AD, Joty S, Xiong CM, Hoi SCH. Align before fuse:
vision and language representation learning with momentum distillation. Adv Neural
Inf Process Syst. (2021) 34:9694-705.

21. Kolmogorov AN. On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addition.
Translations Am Math Soc. (1963) 2:55-9.

22. Yu R, Yu W, Wang X. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674. (2024). doi: 10.48550/arXiv.2407.16674

23. Cicek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning
dense volumetric segmentation from sparse annotation. Medical Image Computing and
Computer Assisted Intervention - MICCAI 2016. Springer. (2016), 424-32.

24. ChenJ, Mei ], Li X, Lu Y, Yu Q, Wei Q, et al. 3d transunet: Advancing medical
image segmentation through vision transformers. arXiv 2023 arXiv preprint
arXiv:2310.07781. doi: 10.48550/arXiv.2310.07781

25. Wang H, Guo S, Ye J, Deng Z, Cheng J, Li T, et al. Sam-med3d: towards general-
purpose segmentation models for volumetric medical images. arXiv preprint
arXiv:2310.15161. (2023) 15638:51-67.

26. Li H, Liu H, Hu D, Wang J, Oguz I. Promise: prompt-driven 3D medical image
segmentation using pretrained image foundation models. IEEE International
Symposium on Biomedical Imaging. (2023). doi: 10.1109/ISBI56570.2024.10635207

27. ShenY, LiJ, Shao X, Inigo Romillo B, Jindal A, Dreizin D, et al. (2024). Fastsam3d:
An efficient segment anything model for 3d volumetric medical images. Medical

frontiersin.org


https://doi.org/10.1016/S1470-2045(22)00197-8
https://doi.org/10.1016/S1470-2045(22)00197-8
https://doi.org/10.1056/NEJMoa022289
https://doi.org/10.1016/j.clcc.2020.08.001
https://doi.org/10.1016/j.clcc.2020.08.001
https://doi.org/10.1016/j.critrevonc.2020.103171
https://doi.org/10.1016/j.remnie.2019.12.001
https://doi.org/10.1016/j.remnie.2019.12.001
https://doi.org/10.1007/s00261-019-02117-w
https://doi.org/10.2174/1573405620666230825113524
https://doi.org/10.2174/1573405620666230825113524
https://doi.org/10.3389/fonc.2022.1020349
https://doi.org/10.3389/fonc.2022.1020349
https://doi.org/10.1007/s00330-021-08167-3
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1109/TPAMI.2025.3529038
https://doi.org/10.1109/TPAMI.2025.3529038
https://doi.org/10.1016/j.engappai.2024.108436
https://doi.org/10.1109/TNNLS.2024.3497956
https://doi.org/10.1016/j.engappai.2025.110586
https://doi.org/10.1016/j.engappai.2025.110586
https://doi.org/10.48550/arXiv.2407.16674
https://doi.org/10.48550/arXiv.2310.07781
https://doi.org/10.1109/ISBI56570.2024.10635207
https://doi.org/10.3389/fonc.2025.1699430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Cui et al.

Image Computing and Computer Assisted Intervention - MICCAI 2024. 542-52.
Springer.

28. Gong S, Zhong Y, Ma W, Li J, Wang Z, Zhang J, et al. 3dsam-adapter: Holistic
adaptation of sam from 2d to 3d for promptable medical image segmentation. arXiv:
2306.13465. (2023). doi: 10.48550/arXiv.2306.13465

Frontiers in Oncology

12

10.3389/fonc.2025.1699430

29. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. Lora: Low-rank
adaptation of large language models. ICLR. (2022) 1:3.

30. Han Z, Gao C, LiuJ, Zhang ], Zhang SQ. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608. (2024).
doi: 10.48550/arXiv.2403.14608

frontiersin.org


https://doi.org/10.48550/arXiv.2306.13465
https://doi.org/10.48550/arXiv.2403.14608
https://doi.org/10.3389/fonc.2025.1699430
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	A two-stage deep learning prediction system for colon cancer microsatellite instability status using CT images
	1 Introduction
	2 Materials and methods
	2.1 Data description and dataset division
	2.2 LoRA on the Image Encoder3D of MSI-SAM
	2.3 Feature fusion between CT images and positional text
	2.4 Employ KAN to replace MLP in MSI classification

	3 Results
	3.1 Model evaluation
	3.2 Segmentation results
	3.2.1 Comparison with other SAM pre-trained methods
	3.2.2 CT segmentation ablation experiment

	3.3 Diagnostic results
	3.3.1 Diagnosis of MSI status in colon cancer and ablation experiments


	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


