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The CD300c antibody CL7
suppresses tumor growth
by regulating the tumor
microenvironment in non-
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Despite advances in therapy, non-small cell lung cancer (NSCLC) continues to
rank among the deadliest cancers worldwide. Targeting immunosuppressive
components within the tumor microenvironment (TME) has emerged as a
promising therapeutic strategy. Unlike M1 tumor-associated macrophages
(TAMs), M2-like TAMs contribute to NSCLC progression by promoting an
immunosuppressive tumor microenvironment (TME), highlighting the need for
tumor microenvironment remodeling. CL7, a monoclonal antibody that targets
the activating receptor CD300c on human monocytes and macrophages, was
selected as a therapeutic candidate because CD300c engagement triggers MAPK
and NF-xB signaling pathways, promoting M1 macrophage polarization and
antitumor immune activation. To evaluate the therapeutic potential of CL7, we
established an orthotopic NSCLC model by inoculating LLC-luc cells into the left
lung of mice. We administered CL7 intraperitoneally at doses of 5 or 10 mg/kg
twice a week. Only representative data from the 10 mg/kg CL7 group are shown
to maintain consistency with subsequent analyses (flow cytometry, RT-qPCR,
and IHC). Tumor growth was significantly suppressed in the CL7-treated group
compared to the PBS control group. CL7 treatment also modulated the tumor
microenvironment by increasing the population of M1 macrophages and CD8" T
cells, while decreasing the population of regulatory T cells. Our findings suggest
that CL7 exerts antitumor effects in NSCLC by reprogramming the
immunosuppressive landscape of the TME and enhancing antitumor immunity.
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1 Introduction

Lung cancer is one of the most lethal cancers for both men and
women. Regardless of clinical stage, the overall prognosis of lung
cancer remains poor, with a 5-year survival rate of approximately
22% (1). Lung cancer is broadly classified into two main subtypes:
small cell lung carcinoma (SCLC) and non-small cell lung
carcinoma (NSCLC), accounting for approximately 15% and 85%
of all cases, respectively (2).

The tumor microenvironment (TME) is composed of tumor
cells, stroma, immune cells, blood vessels, and extracellular matrices
(3, 4). The TME plays a pivotal role in tumor initiation and
progression of NSCLC by regulating key processes such as tumor
cell growth, immune evasion, and angiogenesis (5-7). Cancer
immunotherapy aims to enhance the immune system to target
and eliminate tumor cells, while also modifying the TME to
improve treatment outcomes (8). Immune checkpoint inhibitors
targeting PD-1, PD-L1, and CTLA-4 have transformed NSCLC
treatment; however, many patients remain unresponsive or develop
acquired resistance. Immunotherapy has demonstrated long-term
efficacy and tolerability across several cancers, making it a
promising therapeutic approach. However, immunotherapy is
often limited in efficacy, with immune escape and drug resistance
emerging as challenges, particularly due to factors inherent within
the TME (7, 9). Therefore, exploring novel immunotherapeutic
strategies is essential to overcome these limitations and enhance
treatment outcomes.

Tumor-associated macrophages (TAMs) are a major
component of NSCLC TME. Most TAMs originate from
monocytes circulating in the bloodstream and exhibit significant
plasticity, with their phenotypes shaped by signals within the TME
(10-13). TAMs can be divided into classically activated M1
macrophages and alternatively activated M2 macrophages. High-
density infiltration of M2 TAMs in the tumor stroma has been
associated with tumor growth, angiogenesis, invasion, metastasis,
and poor prognosis in lung cancer, whereas M1 macrophages are
typically located in tumor islets and related to good prognosis (14,
15). Given their pivotal role in tumor progression, TAMs have
become key targets for therapeutic strategies. Several therapeutic
strategies have been developed to manipulate TAMs in cancer,
including 1) TAM recruitment inhibition in the TME, 2) shifting
their phenotype from tumor-promoting M2 to tumor-suppressive
M1, 3) selective elimination of M2 TAMs, and 4) harnessing TAMs
for drug delivery (16-18).

CD300 proteins are expressed on a variety of immune cells,
where they are involved in both stimulatory and inhibitory
signaling functions (19). CD300c, a member of the CD300 family,
is expressed on the surface of human monocytes and monocyte-
derived cells, including macrophages and dendritic cells. Recent
studies have highlighted the dual immunomodulatory roles of
CD300 family members in tumor immunity, with CD300a acting
as an inhibitory checkpoint and CD300c serving as an activating
receptor that promotes pro-inflammatory responses in myeloid
cells (20). Previous studies have demonstrated that targeting
CD300c¢ with a monoclonal antibody activates MAPK and NF-xB
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pathways, promoting M1 macrophage polarization and suppressing
tumor growth in preclinical models (21). Given the involvement of
CD300c in macrophage polarization and antitumor responses,
targeting this receptor may offer a novel strategy to modulate the
NSCLC microenvironment.

In this study, we aimed to evaluate whether CL7 (CB301)
treatment could suppress tumor growth and progression in
NSCLC by modulating immune cell composition within the
fumor microenvironment.

2 Materials and methods
2.1 Reagents and cell lines

This biopanning process was performed to obtain a CD300c-
specific antibody clone with high affinity and binding specificity.
The clone CL7 was isolated from four rounds of biopanning against
human CD300c using synthetic human scFv library based on VH3-
23 and VL1-47, with non-combinant complementarity determining
region (CDR) diversity (unpublished results). Lewis-lung
carcinoma (LLC) cells were purchased from ATCC. LLC cells
were maintained in DMEM supplemented with 1% penicillin-
streptomycin (Hyclone) and 10% fetal bovine serum (FBS;
Welgene). Cells were subcultured every 2-3 days to ensure proper
growth of cells. All cells were cultured in a humidified incubator set
at 37°C. Luciferase-expressing LLC cells (LLC-luc) were generated
by transducing parental LLC cells with a lentiviral vector encoding
the firefly luciferase gene (luc2), enabling bioluminescence imaging
for in vivo tumor monitoring.

2.2 Animal study

Male wild-type C57BL/6] (6-8 weeks) mice were purchased
from DBL (Chungbuk, Republic of Korea). All animal experiments
were approved by the Institutional Animal Care and Use
Committee (IACUC) of Kyung Hee University (Approval
number: KHUASP(SE)-24-041), and were conducted in
accordance with the ARRIVE guidelines and the NIH Guide for
the Care and Use of Laboratory Animals (NIH Publications No.
8023, revised 1978). Male mice were used in this study to ensure
higher surgical tolerance and survival rates during orthotopic tumor
implantation procedures. Additionally, male mice exhibit more
consistent body weights and reduced hormonal variability
compared to females, which can minimize experimental
variability in tumor growth assessment. All animals were
maintained in a pathogen-free environment with a 12 h light/
dark cycle and were supplied with water and food ad libitum.

To generate the mouse lung cancer orthotopic model, a 30 pL
suspension of 2 x 10* LLC-Luc cells in Matrigel matrix (Corning,
NY, USA) were prepared. Cells were suspended in serum-free
DMEM and mixed with Matrigel. Matrigel: cell suspension at a
6:4 (vol/vol) ratio. Mice were anesthetized with 3% isoflurane in an
induction chamber, then placed on a sterile heating pad. Then
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positioned in a left lateral decubitus position with his nose in an
isoflurane (3%) nosecone to maintain anesthesia during surgery.
The left dorsal side of the mouse, which was removed of all hair the
previous day using Nair, was prepared for sterile surgery by wiping
with ethanol and then betadine three times. A small incision was
made horizontally using scissors to cut through the skin, and to
carefully cut through the underlying fat layer. A 30 pL suspension of
2 x 10* LLC-Luc cells were injected into the injection site of the left
lung (between the fifth and sixth rib bones) using insulin syringe.
To prevent the hemorrhage and the cellular spill after injection, the
transient local compression was operated. After that, the skin was
closed back together using 3M Vetbond Tissue Adhesive. The
dosing schedule and concentrations for CL7 administration were
determined based on our previous preclinical study using a
CD300c-targeting antibody (21). Three days after inoculation,
mice were intraperitoneally injected with CL7 (5 and 10 mg/kg
(CentricsBio)) while measuring the resulting tumor size changes.
For measurement, D-luciferin (150 mg/kg) was injected
intraperitoneally into the mice, and imaging was performed 10
minutes later using an in vivo imaging system (Berthold
Technologies). After four drug injections, tumor growth was
assessed, and mice were deeply anesthetized with isoflurane and
euthanized by cervical dislocation (n=9). For all analyses, total lung
tissues containing tumor lesions were harvested and used for flow
cytometry and molecular assays.

To generate the mouse lung cancer subcutaneous model, a
100 L suspension of 1 x 10° LLC cells in Matrigel matrix (Corning,
NY, USA) were prepared and inoculated subcutaneously into the
right flank. When the tumor volume reaches the 50mm?>, mice were
intravenously injected CL7 (10mg/kg ((CentricsBio)) every three
days (n=7). Mice were sacrificed when the tumor size attained a
maximum diameter of 1.5 cm after inoculation.

2.3 Measurement of tumor growth in
NSCLC orthotopic model

In the LLC orthotopic model, the tumor growth was detected
using an in vivo bioluminescence imaging system (NightOWL II;
Berthold Technologies GmbH, Wildbad, Germany), at the end of
the drug administration. Fifteen minutes after D-luciferin
(BioVision, Milpitas, CA, USA) injection (4 mg per mouse),
luminescence signals were detected with an exposure time of 0.1 s
and 4 x 4 binning. Photon energy and tumor area were analyzed
using IndiGO software (Berthold Technologies GmbH).

2.4 Flow cytometry

For flow cytometry analysis, lung tissues were harvested from
the sacrificed mice and put in the MACS C tube (Miltenyi Biotec,
Auburn, CA, USA) containing Collagenase D (1 mg/mL; Sigma-
Aldrich, St. Louis, MO, USA) and DNasel (1 mg/mL; Sigma-
Aldrich) in serum-free medium. The tissues were dissociated
using a MACS dissociator (Miltenyi Biotec) and digested for 25
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min at 37°C with a shaking incubator. The tissues were then filtered
using a 40 um cell strainer (Corning Incorporated, Corning, NY,
USA) to obtain a single-cell suspension. Red blood cells (RBCs)
were lysed with 1x RBC lysis buffer (Invitrogen, Carlsbad, CA,
USA) for 5 min at room temperature. Cells were washed and
resuspended in BD Pharmingen'rM Stain Buffer (BD bioscience,
San Jose, CA, USA). The cells were stained for 45 min at 4 °C with
antibodies. Gating boundaries were defined based on unstained and
single-stained controls used for compensation and negative
reference. The following antibodies were purchased from BD
Biosciences or Biolegend (San Diego, CA, USA) for the
identification of myeloid cells: mouse CD45-FITC, CD11b-
PECy7, CD86-BV786, CD206-APC, F4/80-PE, and CDI11c-APC-
Cy7; to identify the infiltration of lymphoid cells: mouse CD45-
APC-Cy7, CD8-PE-Cy7, CD4-BB700, CD25-BV421, and
Granzyme B-APC. For intracellular staining, the cells were treated
with 1x fixation and permeabilization buffer (BD Biosciences) for 30
min. The single-cell suspension was washed and stained with
Granzyme B. The data were acquired using a BD FACSlyricTM
(BD Biosciences) flow cytometry system and analyzed using the BD
FACSuite software (BD Biosciences).

2.5 Quantitative real-time PCR

Total RNA was isolated from lung tissues of tumor-bearing
mice using an easy-BLUE RNA extraction kit (iNtRON
Biotechnology, Seongnam, South Korea). cDNA was synthesized
using Cyclescript reverse transcriptase (Bioneer, Daejeon, South
Korea) according to the manufacturer’s instructions. Real-time PCR
was performed using a CFX connect real-time PCR system (Bio-
Rad La-boratories, Hercules, CA, USA) and the SensiFAST SYBR
no-Rox kit (Bioline, London, UK). The expression levels of the
target mRNAs were normalized to the expression levels of mouse
GAPDH, a housekeeping gene. All fold-changes were expressed
relative to the PBS group. Each reaction was performed in
duplicates. The base sequences of the primers used were listed in
Supplementary Table 1.

2.6 Immunohistochemistry

Lung tissues from tumor-bearing mice were fixed in 10%
neutral-buffered formalin, embedded in paraffin, and sectioned at
a thickness of 5 pum. Deparaffinization was performed using xylene
for 10 minutes, followed by rehydration through a graded ethanol
series. Antigen retrieval was carried out by heating the sections in 10
mM sodium citrate buffer (pH 6.0) using a microwave. After
washing with PBS, the sections were blocked with normal serum
provided in the VECTASTAIN® ABC-HRP Kit (PK-6101, Vector
Laboratories, Newark, CA, USA) for 30 minutes. The sections were
then incubated overnight at 4°C with a rabbit polyclonal anti-
PCNA antibody (1:200, Santa Cruz Biotechnology, Dallas, TX,
USA). Following PBS washes, a biotinylated secondary antibody
was applied, and the sections were incubated with the
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VECTASTAIN® ABC reagent. The signal was visualized using DAB
peroxidase substrate kit (SK-4100, Vector Laboratories). Slides were
rinsed in tap water, counterstained with hematoxylin, dehydrated,
and mounted with coverslips. Tissue slides were photographed at
20x magnification under a light microscope (Olympus, Tokyo,
Japan). Three random fields were selected, and PCNA-positive
cells were quantified using QuPath software.

2.7 Statistics

The data collected were analyzed using Prism 5.01 software
(GraphPad Software Inc., San Diego, CA, USA), and are expressed
as the mean + standard error of mean (SEM). All data were tested
for normality using the normality test in GraphPad prism.
Unpaired Student’s t-test was used to determine significant
differences between two groups. Kaplan-Meier survival analysis
was performed in the mouse NSCLC model (n=7). The statistical
significance of the survival between mice treated with PBS and CL7
was determined using the log-rank (Mantel-Cox) test. Two-way
ANOVA followed by Bonferroni post-hoc test was performed for
group comparisons (n=9). P < 0.05 was considered to indicate a
statistically significant difference.

3 Results

3.1 CL7 treatment significantly inhibits
tumor growth and progression in an
NSCLC model

To investigate the effect of CL7 treatment on tumor growth in a
non-small cell lung cancer (NSCLC) model, we established an
orthotopic NSCLC mouse model and administered CL7 at doses
of 5 or 10 mg/kg (Figure 1A). Both CL7-treated groups exhibited a
significant reduction in tumor size compared to the PBS-treated
control group. Although tumor size tended to be smaller in the 10
mg/kg group than in the 5 mg/kg group, the difference between the
two treatment groups was not statistically significant (Figures 1B-
D). Furthermore, mice treated with CL7 (10 mg/kg) showed a
significant increase in survival compared to PBS-treated controls,
with median survival was 19 and 26 days, respectively (Figures 1E,
F). Our findings suggest that CL7 treatment reduces tumor growth
and prolongs survival in the NSCLC model.

3.2 CL7 reduces NSCLC cancer cell
proliferation

To investigate whether CL7 affects the tumor cell proliferation
in NSCLC, the expression of PCNA, a proliferation marker in
tumor tissues were examined by immunohistochemistry. The
PCNA expression was reduced in a CL7-treated group compared
to PBS group. In line with the reduced tumor growth, PCNA-
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positive cells were significantly decreased in CL7 group (Figure 2).
These results demonstrate that CL7 inhibit the tumor growth
and proliferation.

3.3 CL7 promotes M1 macrophage
polarization within the NSCLC tumor
microenvironment

CL7, the CD300c monoclonal antibody induced the repolarized
M1 macrophages from monocytes (21). To determine whether CL7
influences in the modulation of macrophage population within the
NSCLC tumor microenvironment (TME), we analyzed the
macrophage population using flow cytometry in lung tissues of
tumor-bearing mice (Figure 3A). The CL7 treatment group showed
a significant increase in the M1 macrophage population compared
to PBS group (Figure 3B), while there were no significant differences
in the M2 macrophages (Figure 3C), dendritic cells (DCs)
(Figure 3D), and neutrophils (Figure 3E). These results indicate
that CL7 treatment promotes an MI-like macrophage phenotype
within the tumor microenvironment, with minimal effects on

dendritic cells, neutrophils, or M2 macrophages.

3.4 CL7 alleviates immunosuppressive
conditions in the NSCLC TME

To investigate the effect of CL7 treatment on lymphoid cell
populations, flow cytometry was performed on lung tissues from
NSCLC-bearing mice (Figure 4A). A significant reduction in
regulatory T cells (Tregs) was observed in the CL7-treated group
compared to the PBS control (Figure 4B). Furthermore, the CL7
treatment significantly increased the CD8" T cell populations
(Figure 4C). These results suggest that CL7 may contribute to
relieving the immunosuppression in the TME, accompanied by
cytotoxic CD8" T cells.

3.5 CL7 attenuates immunosuppression
and enhances immune activation in NSCLC
model

To evaluate the immunomodulatory effects of CL7 treatment in
the NSCLC tumor microenvironment, we analyzed the expression
levels of immune-related genes using qQRT-PCR. The expression of
M1 macrophage markers, Nos2 and Cd86, was significantly
increased in the CL7-treated group compared to the PBS group,
indicating the promotion of pro-inflammatory macrophage
activation. In contrast, the expression levels of M2 markers, such
as Argl and Mrcl, showed no significant changes (Figure 5A). CL7
treatment also upregulated the expression of inflammatory
cytokines Tnfo, and Il1B (Figure 5B). Notably, the expression of
immunosuppressive markers, including Foxp3, Ctla4, 1110, and
Vegfa, was significantly decreased in the CL7-treated group
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FIGURE 1

CL7 treatment significantly inhibits tumor growth and progression in an NSCLC model. (A) Schematic diagram of the in vivo experimental schedule.
LLC-luc cells (2 x 10%) were injected into the left lung (between the fifth and sixth ribs) using an insulin syringe. Three days post-inoculation, mice
received intraperitoneal injections of CL7 (5 or 10 mg/kg; CentricsBio) twice a week. The PBS was administered on the same schedule as the CL7
treatment. (B, C) Tumor progression was monitored using in vivo bioluminescence imaging after four drug administrations. (D) Mice were sacrificed,
and lung tissues were collected for analysis. Only representative data from the 10 mg/kg CL7 group are shown to maintain consistency with
subsequent analyses. All data are presented as mean + SEM. *p < 0.05, ***p < 0.001 versus PBS group (n = 9). (E) In a subcutaneous model, regular
LLC cells (1 x 10°) were injected into the right flank of mice. When tumor volumes reached 50 mm?, mice were intravenously treated with CL7 (10
mg/kg) every three days. Mice were sacrificed once tumor diameters reached 1.5 cm. (F) Kaplan-Meier survival analysis was performed in the
orthotopic NSCLC model. Median survival was 19 days for the PBS group and 26 days for the CL7-treated group (n = 7). *p < 0.05 versus PBS group
(log-rank test).

Frontiers in Oncology 05 frontiersin.org


https://doi.org/10.3389/fonc.2025.1698857
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Kim et al.

10.3389/fonc.2025.1698857

A
SRS

UH A
i
e
= Vﬁiﬁ 4 :;b‘"
SR ATLPYE A

el
>

i

FIGURE 2

@ 100-

[}

o 904 . *

@ 80- N

o

< i ° —

< 7o u

&

— 60+ n

(=]

o

= 50 : .
PBS cL7

CL7 reduces NSCLC cancer cell proliferation. IHC images and quantitative analyses were performed using the 10 mg/kg CL7 group, which served as
the representative dose for downstream experiments. Immunohistochemistry analysis for proliferating cell nuclear antigen (PCNA), a marker of cell

proliferation, was performed on lung tissue sections from tumor-bearing mice (n = 6 per group). Images were acquired using a light microscope at
20x magnification. Three random fields were selected, and PCNA-positive cells were quantified using QuPath software. All data are presented as

mean + SEM. *p < 0.05 versus PBS group.

(Figure 5C). These findings suggest that CL7 may alleviate
immunosuppression within the NSCLC tumor microenvironment
and promote antitumor immune responses.

4 Discussion

Our study highlights the therapeutic potential of tumor-
associated macrophage (TAM) reprogramming with
immunotherapy for the treatment of non-small cell lung
carcinoma (NSCLC). The main finding of our research is that
CL7, an anti-CD300c antibody, promotes M1 macrophage
polarization in the TME while concurrently reducing Treg
infiltration, resulting in significant tumor volume reduction. The
potential clinical significance of our findings is that TAM
reprogramming successfully transformed the immune-suppressive
TME into a pro-inflammatory environment, leading to a
therapeutic effect.

NSCLC is the most prevalent subtype of lung cancer and is
characterized by relatively slow but progressive growth, eventually
acquiring metastatic potential (22). Despite advances in standard
treatment modalities, including surgery, chemotherapy, and
radiotherapy, therapeutic efficacy remains unsatisfactory,
especially in late-stage NSCLC (23). The prognosis remains poor,
with less than 5% of patients surviving beyond stage IV. Early
detection is also limited by the asymptomatic nature of early-stage
disease (24). One of the central challenges in NSCLC treatment is its
immune evasive capacity, largely attributed to the highly
immunosuppressive nature of the TME. Through mechanisms
such as immune editing and mimicry of normal cells, tumor cells
can escape immune surveillance and suppress effective antitumor
immunity (25).

In this context, the tumor microenvironment (TME) has gained
attention as a key determinant of tumor development and
therapeutic response. The TME comprises not only tumor cells
but also a diverse array of stromal and immune components,
including endothelial cells, fibroblasts, immune cells, and
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extracellular matrix elements (26, 27). These cellular and non-
cellular interactions dynamically shape tumor initiation and
progression. Tumor-associated macrophages (TAMs), which are
the main components in TME, have complex functions in terms of
their antitumor or protumor effects. TAMs are broadly classified
into classically activated M1 macrophages that produce effector
molecules such as reactive oxygen and nitrogen intermediates, and
TNFo, to limit tumor growth, and alternately activated M2
macrophages that promote tumor growth and metastasis by
secretion of matrix-degrading enzymes, angiogenic factors and
immunosuppressive cytokines/chemokines (28). The balance of
these macrophages determines the anti- or protumor effects of the
macrophage population within the TME.

CD300 molecules regulate immune responses by interacting
with lipid-based ligands, with CD300c acting as an activator and
CD300a as an inhibitor. CD300c is expressed on T cells, NK cells,
macrophages, and neutrophils (29). It has been reported that
CD300c modulates the activation of immune cells (30, 31).
Previous studies have reported that targeting CD300c with
monoclonal antibodies can stimulate MAPK and NF-xB
signaling, thereby inducing M1 polarization. The CL7 antibody,
developed by Lee et al., has shown promising antitumor activity in
the CT26 colon cancer model through this mechanism (21). Based
on these findings, we hypothesized that CL7 could similarly
modulate the immune landscape in NSCLC. Previous study
demonstrated that CL7 specifically binds to exogenously
expressed CD300c on 293T cells and induces M1 macrophage
differentiation through activation of the MAPK and NF-xB
pathways. In vitro, CL7 also upregulated PD-L1 expression on
THP-1 cells, further supporting its role in modulating myeloid
activation through CD300c engagement (21). Building upon these
findings, the present study extends the investigation to in vivo
tumor models, showing that CL7 treatment markedly suppresses
tumor growth and enhances M1 macrophage enrichment within
the tumor microenvironment. Although these results suggest that
CL7 exerts its antitumor effect, the direct in vivo evidence
confirming complete CD300c dependence remains limited. To
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FIGURE 3

CL7 promotes M1 macrophage polarization within the NSCLC tumor microenvironment (TME). Identification of changes in immune cell populations
within the NSCLC orthogonal mouse model by flow cytometry. Flow cytometry data were obtained from the 10 mg/kg CL7 group, which was used as
the representative dose for downstream analyses. Gating boundaries were defined based on unstained and single-stained controls used for
compensation and negative reference. (A) Identification of myeloid cell populations following exclusion of doublets. CD45" gate was also used as a first
step for specific immune cell identification. (B) CD45*CD11b*CD86" cells were regarded as M1 macrophages, whereas (C) CD45*CD11b*CD206™ cells
were regarded as M2 macrophages. (C) CD45"CD11b*CD11c* cells were considered as dendritic cells (DCs) and (D) CD45*CD11b*F4/80 Gr-1" were
considered as neutrophils (n = 8 per group). All data are presented as the mean + SEM; ** p < 0.01 versus PBS group.
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FIGURE 4

CL7 alleviates immunosuppressive conditions in the NSCLC TME. Identification of changes in immune cell populations within the NSCLC orthogonal
mouse model by flow cytometry. Gating boundaries were defined based on unstained and single-stained controls used for compensation and negative
reference. (A) Identification of lymphoid cell populations following exclusion of doublets. CD45* gate was also used as a first step for specific immune
cell identification. (B) CD45*CD4"CD25" cells were considered infiltrating regulatory T cells (Tregs), and (C) CD45*CD8*GranzymeB™ cells were
considered infiltrating activated CD8" T cells. All data are presented as the mean + SEM; ** p < 0.01 versus PBS group (n = 8 per group).

address this limitation, future studies using CD300c knockout mice
and blocking-antibody approaches are needed to further validate
the target specificity of CL7 and exclude potential off-target effects.
Moreover, additional studies are warranted to clarify how CL7-
mediated CD300c engagement triggers MAPK and NF-«B signaling
in tumor-associated macrophages and how these pathways
subsequently shape T cell activation. Such analyses will be

Frontiers in Oncology

important to delineate the molecular framework underlying CL7-
induced immune modulation.

The dose range used in this study was selected based on our
previous preclinical work, where 10 mg/kg was used for comparison
with the anti-PD-1 antibody and consistently showed measurable
therapeutic efficacy (21). 5 mg/kg was included as a lower reference
dose to evaluate whether comparable effects could be achieved. The
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FIGURE 5

CL7 attenuates immunosuppression and enhances immune activation in NSCLC model. After the in vivo experiment, lung tissues from NSCLC orthotopic
mouse model were harvested (n = 7 per group), and total RNA was extracted for gRT-PCR analysis. The mRNA expression levels of

(A) Nos2 and Cd86 (M1 macrophage-related genes), Argl and Mrcl (M2 macrophage-related genes), (B) Tnfa and 1B (inflammation-related genes), and
(C) Foxp3, Ctla4, 1110, and Vegfa (immunosuppressive genes) were quantified. All data are presented as mean + SEM; * p < 0.05, ** p < 0.01 versus PBS

group.

absence of a clear difference between these two doses suggests that
CL7’s activity may begin to plateau within this range. To more
precisely define the dose-response relationship and identify the
optimal therapeutic window, additional experiments encompassing
a broader range of concentrations (0.1-10 mg/kg) will be conducted
in future studies. These efforts will also help determine whether
specific immunological changes, such as macrophage polarization
dynamics, are dose-dependent. In addition, considering future
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clinical applications, further studies using humanized models and
toxicity studies are needed.

CL7 treatment notably expanded the M1 macrophage population
without significantly altering other myeloid subsets (Figures 3, 5A),
suggesting that M1 macrophage enrichment plays a key role in the
observed tumor suppression. This result aligns with previous reports
showing a positive correlation between M1 macrophage density in
tumor islets and prolonged survival in NSCLC patients (32, 33).
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Interestingly, no significant change was observed in M2 macrophage
levels between the PBS- and CL7-treated groups, implying that the
therapeutic effect of CL7 is primarily driven by the activation and
infiltration of M1 macrophages rather than modulation of the M2
compartment. The observed increase in M1 macrophages without a
corresponding decrease in M2 cells suggests that CL7 treatment
primarily promotes the recruitment and differentiation of
circulating monocytes into M1 macrophages, rather than direct
M2-to-M1 repolarization within the tumor microenvironment.
CD300c engagement activates pro-inflammatory signaling cascades
in myeloid cells, potentially enhancing monocyte trafficking and M1-
type differentiation upon tumor infiltration. This interpretation is
consistent with our flow cytometry data, which show elevated M1
populations but stable M2 levels, indicating that CL7 expands the M1
compartment through de novo recruitment and activation rather than
conversion of existing M2 macrophages. Collectively, these results
suggest that CL7 remodels the tumor immune landscape toward a
more proinflammatory, antitumor phenotype. Although these
findings support the hypothesis that CL7 modulates macrophage
polarization, they do not directly demonstrate M2-to-M1
repolarization in vivo. To better define the direct polarizing effect
of CL7 on NSCLC-associated macrophages, further investigations—
including immunohistochemical validation of macrophage
phenotypes and in vitro co-culture experiments—are needed.

Regulatory T cells (Tregs), a key immunosuppressive cell
population within the TME, are known to impair antitumor
immunity and are associated with poor prognosis in NSCLC (34).
Recent research in various cancer types has shown that insufficient
glucose supply and increased intracellular glycolysis in cancer cells
can lead to the production of lactic acid and fatty acids, which
enhance Treg proliferation (35, 36). Additionally, tumor-derived
factors such as TGF-B, ATP, and indoleamine 2,3-dioxygenase
(IDO) have been shown to reinforce the immunosuppressive
function of Tregs within the TME (37-39). The macrophage
receptor with collagenous structure (MARCO), found on tumor-
associated macrophages (TAMs), has been shown to stimulate Treg
proliferation and IL-10 production in NSCLC (40). During the
protumor inflammatory phase of lung cancer, TGF-o stimulation
can increase MHC-II expression on alveolar type II cells, triggering
Treg expansion and facilitating the development of inflammation-
driven lung adenocarcinoma (41). In our study, CL7 resulted in a
significant reduction in Tregs (Figure 4B), accompanied by
decreased expression of immunosuppressive genes such as Foxp3,
Ctla4, 1110, and Vegfa, indicating a partial regulation of the
immunosuppressive TME (Figure 5C).

CD8" T cells mediate antitumor immunity by recognizing and
killing tumor cells through MHC class I-restricted antigen
presentation, as well as releasing cytotoxic molecules such as
perforin and Granzyme B (42, 43). However, M2-like tumor-
associated macrophages have been shown to impair T cell
receptor (TCR) signaling, thereby suppressing the activation and
cytotoxic function of CD8" T cells (44). As expected, activated
CD8" T cell population enhanced significantly (Figure 4C),
suggesting that CL7 could promote cytotoxic T cell functions. In
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parallel, CL7 treatment induced a notable increase in M1-like
macrophages without significantly affecting the M2 macrophage
population, and upregulated pro-inflammatory cytokines including
TNF-o and IL-1B (Figure 5B). These results suggest that CL7
modulates the innate immune landscape by promoting a pro-
inflammatory macrophage phenotype, which may contribute to
antitumor immunity. These findings indicate that CL7 partially
remodels the immunosuppressive TME to an immune-stimulatory
environment. However, further mechanistic studies are needed to
elucidate the pathways underlying CL7-mediated
immune modulation.

Taken together, our findings demonstrate that CL7, a CD300c-
targeting antibody, exerts potent antitumor effects in NSCLC by
reshaping the tumor immune microenvironment. By promoting
M1-like macrophage polarization, suppressing regulatory T cells,
and enhancing cytotoxic T cell activity, CL7 shifts the TME from an
immunosuppressive state toward a pro-inflammatory, tumor-
inhibitory landscape. Further studies are needed to elucidate the
underlying molecular mechanisms and assess their potential for
clinical translation.
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