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regulating the BCL-2/BAX/
caspase-3 pathway
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Hao Pan1, Haozhe Jiang1, Zhen Zhang1 and Huiqing Zhang1,4,3*

1Department of Urology (Ward I), The First Affiliated Hospital of Xinxiang Medical University, Xinxiang,
Henan, China, 2Life Science Center, The First Affiliated Hospital of Xinxiang Medical University,
Xinxiang, Henan, China, 3Xinxiang Municipal Key Laboratory for Diagnosis and Treatment of Lower
Urinary Tract Obstruction, Xinxiang, Henan, China, 4Henan Provincial Key Laboratory of Urodynamics
and Pelvic Floor Reconstruction Medicine, Xinxiang, Henan, China
Background: Nutmeg (Myristica fragrans) has been traditionally used in herbal

medicine, but its potential anti-cancer effects remain largely unexplored. This

study aimed to investigate the molecular mechanisms of nutmeg against bladder

cancer through an integrated strategy combining network pharmacology,

molecular docking, and in vitro validation.

Methods: Active compounds of nutmeg were retrieved from the TCMSP and

PubChem databases using oral bioavailability (OB ≥30%) and drug-likeness (DL

≥0.18) as criteria. Potential targets were predicted using SwissTargetPrediction

and cross-referenced with bladder cancer-related genes from GeneCards,

OMIM, and TTD. Common targets were analyzed by STRING, Cytoscape, and

DAVID for PPI, GO, and KEGG enrichment. Molecular docking was performed to

evaluate binding affinities between candidate compounds and core targets. In

vitro experiments, including CCK-8, colony formation, wound-healing,

Transwell, flow cytometry, and Western blotting, were conducted to validate

the anti-tumor effects of b-sitosterol on T24 and 5637 bladder cancer cells.

Results: Nine active compounds were identified, with b-sitosterol emerging as

the key candidate. A total of 284 overlapping targets were obtained between

nutmeg and bladder cancer. GO and KEGG enrichment suggested significant

involvement in apoptosis and PI3K-Akt signaling pathways. Molecular docking

showed that b-sitosterol exhibited strong binding to BCL-2 (–8.6 kcal/mol) and

CASP3 (–8.3 kcal/mol). In vitro, b-sitosterol significantly reduced cell viability

(IC50: 50 mM for 5637, 60 mM for T24), inhibited proliferation, colony formation,

and migration, and induced apoptosis in a dose-dependent manner. Western

blot confirmed upregulation of Bax and cleaved Caspase-3 and downregulation

of BCL-2.
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Conclusion: This study demonstrates that b-sitosterol, a major bioactive

compound of nutmeg, suppresses bladder cancer progression by modulating

the BCL-2/Bax/Caspase-3 axis and PI3K-Akt signaling pathway. These findings

provide novel insights into the therapeutic potential of nutmeg as a

complementary strategy for bladder cancer treatment.
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1 Introduction

Bladder cancer is the tenth most common malignancy worldwide

and represents the most prevalent cancer of the urinary system. Its

incidence shows a marked gender disparity, with men being

approximately three to four times more frequently affected than

women (1). According to recent global statistics, about 573,000 new

cases and 213,000 related deaths occur annually. Major risk factors

include cigarette smoking, occupational exposure to aromatic amines,

chronic inflammation of the bladder, and inherited susceptibility

(2, 3). Histopathologically, bladder cancer is categorized into non-

muscle-invasive (NMIBC) and muscle-invasive (MIBC) types.

NMIBC constitutes roughly 75% of initial diagnoses and, despite

generally favorable early outcomes, exhibits a recurrence rate of

50–70% (4). In contrast, MIBC is characterized by aggressive

invasion and metastasis, with a five-year survival rate below 50%

(5). Recent studies have revealed the biological complexity of bladder

cancer. Crosstalk between the nervous system and tumor

microenvironment has been implicated in tumor progression and

resistance to therapy (6). Patient-derived xenograft models have

further highlighted their profound heterogeneity and translational

challenges (7). Moreover, exosome-mediated signaling has been

shown to contribute to chemoresistance mechanisms (8). Current

standardmanagement relies on surgery, chemotherapy, radiotherapy,

and immunotherapy. However, conventional chemotherapeutic

agents such as cisplatin and gemcitabine often cause severe

systemic toxicity and readily induce resistance (9). Immune

checkpoint inhibitors targeting PD-1/PD-L1 can benefit certain

patients, yet their overall response rates remain limited (10). These

limitations underscore the pressing need for novel therapeutic

strategies. Among emerging approaches, the systematic exploration

of natural bioactive compounds offers a promising direction for

overcoming existing treatment bottlenecks, providing safer and

multi-targeted alternatives.

Natural products and bioactive compounds derived from

traditional Chinese medicine (TCM) have received growing

attention in cancer research. Their multi-target actions, low

toxicity, and potential synergistic effects make them promising

candidates for novel anticancer drug development (11).
02
Numerous studies have demonstrated that TCM formulations can

inhibit tumor growth, induce apoptosis, and suppress metastasis

through the coordinated regulation of multiple molecular pathways

(12). Network pharmacology, integrating principles from

chemistry, biology, and pharmacology, provides a powerful

approach to uncover the complex relationships among bioactive

compounds, molecular targets, and signaling networks in TCM

(9, 13). This systems-level strategy helps elucidate the multi-

component and multi-target nature of TCM and supports its

modernization through evidence-based research.

Nutmeg (Myristica fragrans) is a widely used medicinal and

dietary herb with reported anti-inflammatory, antioxidant, and

antitumor properties. Among its bioactive constituents,

b-sitosterol has been extensively studied and shown to suppress

tumor progression in several cancer types, including breast,

prostate, and lung cancers (10, 11, 14). However, the potential

role of nutmeg-derived b-sitosterol in bladder cancer remains

largely unexplored. Unlike prior studies that investigated

b-sitosterol in isolation, our work establishes a direct mechanistic

link between nutmeg-derived b-sitosterol and apoptosis induction

in bladder cancer cells. Moreover, we explore whether nutmeg’s

multi-component composition may enhance the pharmacological

relevance of b-sitosterol in this context.

Therefore, this study integrates network pharmacology,

molecular docking, and in vitro validation to elucidate the

molecular mechanisms by which nutmeg-derived b-sitosterol
suppresses bladder cancer cell growth and induces apoptosis. By

focusing on apoptosis-related signaling and complementary

pathways, this work provides novel insights into the therapeutic

potential of b-sitosterol and nutmeg in bladder cancer treatment.
2 Materials and methods

2.1 Cell lines and culture

Human bladder cancer cell lines T24 and 5637 were obtained

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China). Cells were cultured in RPMI-1640 medium supplemented
frontiersin.org
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with 10% fetal bovine serum (FBS) and maintained under standard

conditions (37 °C, 5% CO2, humidified atmosphere). No human

participants or animals were involved in this study; therefore,

ethical approval was not required.
2.2 Reagents and antibodies

b-Sitosterol (purity ≥95%, CAS: 83-46-5) was purchased from

Yuanye Biotechnology (Shanghai, China). RPMI-1640 medium and

FBS were obtained from Zhongqiao Xinzhou Biotechnology

(Shanghai, China). Cell Counting Kit-8 (CCK-8) was purchased

from Sicojet Biotechnology (Shandong, China). Antibodies against

BCL-2, Bax, Caspase-3, and GAPDH were obtained from

Proteintech (Wuhan, China).
2.3 Network pharmacology analysis

2.3.1 Identification of active compounds and
targets

Nutmeg compounds were retrieved from the Traditional

Chinese Medicine Systems Pharmacology (TCMSP) database

(https://www.tcmsp-e.com/) using oral bioavailability (OB) ≥30%

and drug-likeness (DL) ≥0.18 as screening criteria. Chemical

structures and SMILES formats were confirmed using PubChem

(https://pubchem.ncbi.nlm.nih.gov/). Potential targets were

predicted by SwissTargetPrediction (restricted to Homo sapiens)

and standardized using UniProt (https://www.uniprot.org/).

2.3.2 Collection of bladder cancer targets
Bladder cancer-associated genes were obtained from GeneCards

(https://www.genecards.org/), OMIM (https://www.omim.org/),

and the Therapeutic Target Database (TTD, https://db.idrblab.

net/ttd/). Duplicate targets were removed to construct the final

disease-related target set.

2.3.3 Identification of overlapping targets
Intersection of nutmeg- and bladder cancer-related targets

was performed using an online Venn diagram tool (http://www.

bioinformatics.com.cn/).

2.3.4 Network construction and PPI analysis
The overlapping targets were uploaded to STRING (https://

string-db.org/) with the organism restricted to Homo sapiens and

the minimum required interaction score set at 0.4 for protein–

protein interaction (PPI) network construction. The results were

visualized using Cytoscape 3.10.0, and hub genes were identified

using the cytoNCA plugin based on Degree, Betweenness, and

Closeness parameters.

2.3.5 GO and KEGG enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed using

DAVID (https://davidbioinformatics.nih.gov/summary.jsp),
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with the species limited to Homo sapiens and significance

thresholds set at p < 0.05 and FDR < 0.05. Results were visualized

using the MicroBioinformatics platform (http://www.

bioinformatics.com.cn/).

2.3.6 Molecular docking
Crystal structures of target proteins were retrieved from the

Protein Data Bank (PDB, https://www.rcsb.org/). Ligand structures

were prepared using PubChem. Molecular docking was performed

using CB-Dock2 (https://cadd.labshare.cn/cb-dock2/), and binding

energies were calculated. Docking conformations were visualized

using Discovery Studio 2021.
2.4 In vitro experiments

2.4.1 Cell viability and IC50 determination
Cells were seeded in 96-well plates (1 × 104 cells/well) and

treated with b-sitosterol at various concentrations (0–90 mM) for

24 h. Viability was measured using the CCK-8 assay, and

absorbance was recorded at 450 nm. IC50 values were calculated

using GraphPad Prism 9.0.

2.4.2 Cell proliferation assay
Cells were exposed to b-sitosterol for 24, 48, and 72 h. Cell

proliferation was assessed using the CCK-8 assay as described above.

2.4.3 Colony formation assay
T24 and 5637 cells (1,000 cells/well) were seeded in 6-well plates

and treated with b-sitosterol. After 9 days, colonies were fixed with

paraformaldehyde, stained with crystal violet, and counted

(colonies ≥50 mm were considered viable).
2.4.4 Migration assays
2.4.4.1 Wound-healing assay

Confluent monolayers were scratched using a sterile pipette tip

and cultured in medium containing 1% FBS with or without

b-sitosterol. Images were captured at 0 and 24 h, and wound

closure was quantified using ImageJ.
2.4.4.2 Transwell migration assay

Cells (1.5 × 104) were seeded into the upper chamber with

serum-free medium. The lower chamber contained medium with

10% FBS. After 48 h, migrated cells were fixed, stained with crystal

violet, and counted under a microscope.
2.4.5 Apoptosis assay
Apoptosis was assessed by flow cytometry using Annexin

V-FITC/PI double staining after 24 h treatment with b-sitosterol.
Data were analyzed using FlowJo software.

2.4.6 Western blotting
Cells were lysed in RIPA buffer supplemented with protease

inhibitors, and protein concentrations were determined using a
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BCA assay. Equal amounts of protein (30–50 mg) were separated by

SDS-PAGE and transferred to PVDF membranes. Membranes were

blocked with 5% non-fat milk for 1 h at room temperature and

incubated overnight at 4 °C with primary antibodies against

BCL-2 (1:1000), Bax (1:1000), Caspase-3 (1:1000), and GAPDH

(1:5000) (all from Proteintech, Wuhan, China). After washing,

membranes were incubated with HRP-conjugated secondary

antibodies (1:5000) for 1 h at room temperature. Protein

bands were detected using enhanced chemiluminescence (ECL)

and imaged with a Bio-Rad ChemiDoc system. Densitometric

analysis was performed with ImageJ software, and protein

expression levels were normalized to GAPDH. Data were

obtained from at least three independent experiments and

analyzed using one-way ANOVA, with p < 0.05 considered

statistically significant.
2.5 Statistical analysis

Data are expressed as mean ± standard deviation (SD) from at

least three independent experiments. Statistical analysis was

performed using SPSS 31.0. Comparisons between groups were

made using one-way ANOVA followed by least significant

difference (LSD) tests. A P value <0.05 was considered

statistically significant.
3 Results

3.1 Screening of active components in
nutmeg

Based on the TCMSP and PubChem databases, a total of nine

candidate compounds were identified from nutmeg (Myristica

fragrans) using the criteria of oral bioavailability (OB ≥ 30%) and

drug-likeness (DL ≥ 0.18). The screened compounds and their
Frontiers in Oncology 04
pharmacokinetic parameters are summarized in Table 1. Notably,

b-sitosterol (OB = 36.91%, DL = 0.75) was highlighted as a potential

core bioactive compound.
3.2 Prediction of potential targets

Potential targets of the nine candidate compounds were

predicted using SwissTargetPrediction (Homo sapiens). After

merging and deduplication, 327 unique targets were obtained. In

parallel, bladder cancer-related targets were collected from the

GeneCards, OMIM, and TTD databases, yielding 1,258 unique

targets. Intersection analysis identified 284 common targets,

representing potential anti-bladder cancer targets of nutmeg

(Figure 1A). Protein-protein interaction (PPI) network

construction further revealed several hub targets (Figure 1B).
3.3 Construction of component–target
networks

To further elucidate the relationships between active

compounds and potential targets, an active component–target

network and a compound–core target subnetwork were

constructed. These networks revealed that b-sitosterol and other

major compounds exhibited strong associations with multiple

cancer-related targets (Figures 2A, B).
2.4 GO Functional enrichment and KEGG
pathway analysis

GO enrichment analysis indicated significant involvement of

the predicted targets in biological processes such as protein

phosphorylation, xenobiotic response, EGFR signaling, tyrosine

phosphorylation, and regulation of apoptosis (Figure 3A).

KEGG pathway analysis identified 25 significantly enriched
frontiersin.or
TABLE 1 Active components screened from Myristica fragrans.

Active
component

MOL ID Chinese name Molecule name OB DL

RDK1 MOL000358 b-谷甾醇 beta-sitosterol 36.91 0.75

RDK2 MOL007920 2号化合物 meso-1,4-Bis-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutane 31.31 0.26

RDK3 MOL009243 异瓜亚辛 Isoguaiacin 48.78 0.31

RDK4 MOL009254 加尔巴新 Galbacin 60.99 0.53

RDK5 MOL009255 5号化合物
5-[(2S,3S)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-
dihydrobenzofuran-2-yl]-1,3-benzodioxole

53.11 0.4

RDK6 MOL009259 氯菊脂 Kudos 45.05 0.37

RDK7 MOL009263 7号化合物 saucernetindiol 41.85 0.32

RDK8 MOL009264 8号化合物 Tetrahydrofuroguaiacin B 62.85 0.32

RDK9 MOL009265 9号化合物 threo-austrobailignan-5 49.48 0.31
g

https://doi.org/10.3389/fonc.2025.1698721
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1698721
signaling pathways (P < 0.05). The top enriched pathways included

cancer pathways (hsa05200), PI3K-Akt signaling pathway

(hsa04151), and apoptosis-related pathways, suggesting that

nutmeg may exert anti-bladder cancer effects through multi-

pathway regulation (Figure 3B).
2.5 Molecular docking

To validate compound–target interactions, molecular docking

was performed for eight compounds with available structures

against the apoptosis-related targets BCL-2 and CASP3. Among

these, b-sitosterol showed the strongest binding affinity (BCL-2:
Frontiers in Oncology 05
–8.6 kcal/mol; CASP3: –8.3 kcal/mol), surpassing the screening

threshold of –5.0 kcal/mol. Docking conformations are shown in

Table 2, Figures 4A, B.
2.6 Effects of b-sitosterol on cell viability
(IC50 determination)

Based on network pharmacology and docking results,

b-sitosterol (b-SIT) was selected for in vitro validation. CCK-8

assays showed that b-sitosterol significantly reduced the viability of

T24 and 5637 bladder cancer cells in a concentration-dependent

manner after 24 h treatment. The calculated IC50 values were
frontiersin.or
FIGURE 1

(A) Venn diagram of overlapping targets between nutmeg active components and bladder cancer. (B) PPI network of nutmeg active components
and bladder cancer targets.
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approximately 50 mM in 5637 cells and 60 mM in T24 cells.

Concentrations of 40, 50, and 60 mM were used in subsequent

experiments (Figure 5).
2.7 b-sitosterol inhibits cell proliferation

Treatment of T24 and 5637 cells with b-sitosterol for 24, 48, and
72 h significantly reduced proliferation in a time- and dose-

dependent manner compared to controls (Figure 6).
2.8 b-sitosterol suppresses colony
formation

Colony formation assays revealed that b-sitosterol markedly

reduced the clonogenic ability of bladder cancer cells. Both the
Frontiers in Oncology 06
number and size of colonies decreased significantly in a

concentration-dependent manner (Figure 7).
2.9 b-sitosterol inhibits cell migration

Wound-healing and Transwell migration assays demonstrated

that b-sitosterol significantly impaired the migratory ability of T24

and 5637 cells (P < 0.05). Quantitative analysis confirmed a

significant reduction in scratch closure rate and Transwell

migration compared to controls (Figures 8A–D).
2.10 b-sitosterol induces apoptosis

Flow cytometry revealed a dose-dependent increase in

apoptosis after 24 h of b-sitosterol treatment in both T24 and
frontiersin.or
FIGURE 2

(A) Active component–target network of nutmeg against bladder cancer. In the figure, dark green circular nodes represent the drug, light green circular
nodes represent active ingredients, purple diamond-shaped nodes represent target proteins, and orange hexagons represent the disease. (B) Compound–
core target network of nutmeg. The circular nodes in the figure represent key core targets, with darker colors indicating higher Degree values.
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5637 cells (Figure 9A). Western blot analysis showed upregulation

of Bax and cleaved Caspase-3 and downregulation of BCL-2,

indicating that b-sitosterol promotes apoptosis via the BCL-2/

BAX/Caspase-3 signaling axis (Figure 9B).
4 Discussion

Significant advances have been made in elucidating the

molecular mechanisms underlying the initiation and progression
FIGURE 3

(A) GO enrichment analysis (BP/CC/MF). GO (BP/CC/MF) enrichment analysis of potential anti-bladder cancer targets for Myristica fragrans X-axis:
Green bars correspond to Biological Process, orange to Cellular Component, and blue to Molecular Function. Y-axis: The height of the bars
represents the inversely transformed P-value, with greater height indicating higher statistical significance. (B) G pathway enrichment analysis. X-axis:
Enrichment Factor; Y-axis: Pathway Name; Bubble size: Number of target genes; Bubble color: -log10(P-value), with redder colors indicating more
significant enrichment.
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TABLE 2 Binding energies of nutmeg compounds with core targets.
binding energy of ≤ -5.0 kcal/mol indicates potential binding activity,
while ≤ -7.5 kcal/mol suggests strong binding activity.

Active component Target protein
Binding energy
(kcal/mol)

RDK1 (b-谷甾醇) BCL-2 -8.6

CASP3 -8.3

RDK2 BCL-2 -6.8

(Continued)
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of bladder cancer, providing a solid theoretical basis for the

development of novel therapeutic strategies. Mounting evidence

indicates that tumor cell evasion of programmed cell death

(apoptosis) is a hallmark of malignancy and a major contributor

to therapeutic resistance (15). Thus, dissecting apoptosis-related

signaling pathways in bladder cancer is crucial for identifying

innovative therapeutic targets with potential clinical value.

Current oncological research predominantly focuses on

targeting signaling cascades (16). However, due to tumor

heterogeneity and extensive cross-talk among pathways (17, 18),

monotherapies often fail to block compensatory activation

mechanisms. For instance, in BRAF-mutant melanoma, inhibition

of the MAPK pathway induces tumor cells to activate alternative

survival pathways via epigenetic or non-genetic mechanisms,

leading to treatment escape (19). Consequently, therapeutic

efficacy is often limited by drug resistance. To address this

complexity, multi-targeted and combination strategies have been

increasingly emphasized. For example, in breast cancer, curcumin

enhances the efficacy of chemotherapy and mitigates resistance

through its multi-targeted effects (20). Hence, the conventional

“one disease–one target” paradigm is insufficient for complex

tumors such as bladder cancer (21–23).

Network pharmacology, an emerging discipline integrating

systems biology, computational analysis, and pharmacology,

provides a powerful tool for elucidating the holistic mechanisms

of traditional Chinese medicine (TCM). Unlike the linear “one

drug–one target” paradigm, network pharmacology emphasizes the

“multi-component–multi-target–multi-pathway” model, aligning

with the therapeutic principles of TCM (24). This approach has
Frontiers in Oncology 08
proven particularly effective in unraveling the pharmacological

basis of herbal medicines and their synergistic effects in complex

diseases (25–27). For instance, studies using network pharmacology

and molecular docking revealed that Prunella vulgaris exerts anti-

thyroid cancer activity by modulating oxidative stress and immune-

related pathways (28).

In recent years, network pharmacology has been widely

applied to mechanism studies, drug repurposing, and novel drug

design, thereby enhancing the global recognition of TCM and

contributing to next-generation drug development paradigms

(29). Nevertheless, chemotherapy-induced drug resistance and

severe adverse reactions remain major limitations of current

treatment strategies, while targeted and immunotherapies are

still challenged by high recurrence and tolerance rates in

bladder cancer (30). Thus, there is an urgent need for novel

agents with low toxicity and high efficacy. TCM extracts,

characterized by multi-target synergism, immunomodulatory

activity, and low risk of resistance, represent a promising

direction in anticancer research. Indeed, several TCM-derived

formulations, such as Santalol Injection (Curcuma wenyujin),

Kanglaite Injection (Coix seed extract), Huachansu Injection

(from toad extract), and Yadanzi Oral Liquid, have already

demonstrated clinical efficacy (31–33). Beyond these, new

bioactive compounds continue to be identified, and their

mechanisms are extensively investigated.

In this context, we employed network pharmacology to identify

b-sitosterol (b-SIT), a phytosterol from nutmeg (Myristica fragrans),

as a candidate active compound for experimental validation. Nutmeg,

a widely used medicinal and dietary substance, has traditionally been

employed to warm the spleen and stomach, regulate qi, and alleviate

diarrhea (34, 35). Modern phytochemical analyses have revealed its

diverse bioactive constituents, including lignans, volatile oils,

phenylpropanoids, organic acids, and steroids. Among these,

b-sitosterol is of particular interest due to its structural and

pharmacological properties.

Our experimental results demonstrated that b-sitosterol
significantly inhibited the proliferation and migration of bladder

cancer cell lines T24 and 5637 (Figures 6–8), while promoting

apoptosis (Figure 9A). Western blot analysis further confirmed that

b-sitosterol upregulated pro-apoptotic proteins Bax and cleaved

Caspase-3, while downregulating the anti-apoptotic protein BCL-2

(Figure 9B). These findings are consistent with molecular docking

predictions indicating strong binding affinity between b-sitosterol

and BCL-2/CASP3 (Table 2). Collectively, these results suggest that

b-sitosterol induces apoptosis in bladder cancer cells by modulating

the BCL-2/Bax/Caspase-3 signaling axis. Since apoptosis involves

coordinated activation of initiator (Caspase-8/9), regulatory (BCL-2

family), and effector (Caspase-3/7) proteins (36–38), the observed

regulation of BCL-2 and Caspase-3 highlights the mechanistic

significance of b-sitosterol. In addition to apoptosis, our

enrichment analysis also highlighted the PI3K-Akt and EGFR

signaling pathways as significantly associated with the predicted

targets of Myristica fragrans in bladder cancer. The PI3K-Akt
TABLE 2 Continued

Active component Target protein
Binding energy
(kcal/mol)

CASP3 -6.8

RDK3 BCL-2 -6.3

CASP3 -7.5

RDK4 BCL-2 -7.3

CASP3 -7.6

RDK5 BCL-2 -7.6

CASP3 -7.7

RDK6 BCL-2 -7.4

CASP3 -7.9

RDK7 BCL-2 -7.3

CASP3 -7.1

RDK8 BCL-2 -7.4

CASP3 -6.8
Compounds corresponding to RDK numbers are detailed in Table 1. BCL-2: B-cell lymphoma
2; CASP3: Caspase-3.
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pathway plays a central role in regulating cell survival, proliferation,

and drug resistance in bladder cancer. Aberrant activation of PI3K-

Akt signaling has been reported to promote tumor progression and

confer chemoresistance, making it an attractive therapeutic target

(38). Previous studies demonstrated that phytochemicals, such as

curcumin and resveratrol, can modulate PI3K-Akt activity to

enhance chemosensitivity in bladder cancer cells (39). Our
Frontiers in Oncology 09
findings suggest that b-sitosterol may exert similar effects, either

directly or indirectly, through the regulation of upstream targets

within this pathway. Likewise, the EGFR pathway emerged as

another enriched axis in our network pharmacology analysis.

EGFR overexpression and mutation are well-documented drivers

of bladder cancer progression, contributing to enhanced

proliferation, invasion, and epithelial–mesenchymal transition
FIGURE 4

(A) Docking model of b-sitosterol with BCL-2. Binding conformation of b-sitosterol with BCL-2 protein (binding energy = -8.6 kcal/mol). (B)
Docking model of b-sitosterol with CASP3. Binding conformation of b-sitosterol with CASP3 protein (binding energy = -8.3 kcal/mol).
FIGURE 5

Inhibitory effect of b-sitosterol on bladder cancer cell viability. Effects of b-sitosterol (b-SIT) at different concentrations on the viability of T24 and
5637 cells after 24-hour treatment. Data are presented as mean ± standard deviation (n = 10). *P < 0.05.
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(EMT). Inhibition of EGFR has been shown to suppress tumor

growth and improve outcomes in preclinical bladder cancer models

(40). Although our current experimental validation primarily

focused on apoptosis-related targets, the integration of EGFR-

related signaling pathways indicates a broader mechanistic

spectrum of b-sitosterol’s action. Future studies should further

investigate whether b-sitosterol can modulate EGFR-mediated

signaling, either alone or in combination with standard therapies,

to achieve synergistic antitumor effects.

In summary, this study combined network pharmacology and in

vitro validation to elucidate the anti-bladder cancer mechanism of

nutmeg and its key constituent b-sitosterol. The results indicate that
Frontiers in Oncology 10
b-sitosterol suppresses proliferation and migration while inducing

apoptosis, mainly through the BCL-2/Bax/Caspase-3 axis, and

potentially through additional pathways such as PI3K-Akt, EGFR,

and PI3K/mTOR. These findings provide mechanistic evidence

supporting nutmeg and b-sitosterol as potential adjuvant therapies for
bladder cancer. Beyond bladder cancer, b-sitosterol has also

demonstrated anticancer effects in other tumor types, including breast

and lung cancers, where it was reported to inhibit proliferation and

induce apoptosis (41, 42). Although our study focused on bladder

cancer, these findings suggest that b-sitosterol may have broader

therapeutic relevance, and future research should evaluate its activity

across multiple cancer models to clarify its general applicability.
FIGURE 6

Inhibition of cell proliferation by b-sitosterol. Effects of different concentrations of b-sitosterol (b-SIT) on T24 and 5637 cell proliferation after 24, 48,
and 72 hours of treatment. Data are presented as mean ± standard deviation (n = 3). *P < 0.05.
FIGURE 7

Effects of b-sitosterol on colony formation. Representative images of colony formation in T24 and 5637 cells (crystal violet staining).Quantitative
analysis of colony formation in T24 and 5637 cells. Data are presented as mean ± standard deviation (n = 3). *P < 0.05.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1698721
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1698721
FIGURE 8

(A, B) Wound-healing assay in T24 and 5637 cells. Representative images (40× magnification) and quantitative analysis of wound healing rate in T24
and 5637 cells at 0h and 24h after scratch wound assay. Data are presented as mean ± standard deviation (n = 3). *P < 0.05. (C) Representative
images of the Transwell migration assay. Representative images of Transwell migration assay (crystal violet staining, 40× magnification). (D)
Quantitative analysis of migrated cells. Quantitative analysis of migrated cell count in the Transwell assay. Data are presented as mean ± standard
deviation (n = 3). *P < 0.05.
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5 Limitations

This study has several limitations. First, the findings rely on in vitro

assays and network pharmacology, which need validation in animal

models and clinical settings. Second, while b-sitosterol was identified as
the main compound, other nutmeg constituents with potential

anticancer activity (e.g., isoguaiacin, galbacin) were not examined.

Third, b-sitosterol shows low oral bioavailability and limited stability

in vivo, which may restrict its clinical use. In addition, although it is

generally considered safe, its effects on organs such as the liver and

kidneys remain unclear, and evidence for long-term safety is lacking.

Finally, pharmacokinetic and pharmacodynamic studies, together with

systematic toxicological assessments, are required to clarify its ADME
Frontiers in Oncology 12
profile and safety. Future work should also explore possible synergistic

effects among nutmeg-derived compounds to fully establish its

therapeutic potential.
6 Conclusion

This study integrates network pharmacology and experimental

validation to provide preliminary evidence that nutmeg exerts

anti-bladder cancer effects through multi-component, multi-

target, and multi-pathway mechanisms. b-sitosterol, identified
as a core bioactive compound, significantly suppresses the

proliferation and migration of bladder cancer cells and induces
FIGURE 9

(A) Apoptosis detection by flow cytometry. Representative scatter plots of Annexin V-FITC/PI double staining and quantitative analysis of apoptosis
rate. Data are presented as mean ± standard deviation (n = 3). *P < 0.05. (B) Expression of apoptosis-related proteins by Western blot.
Representative bands of BCL-2, BAX, and Cleaved Caspase-3, with relative quantitative analysis of their expression levels normalized to GAPDH. Data
are presented as mean ± standard deviation (n = 3). *P < 0.05.
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apoptosis by modulating the BCL-2/Bax/Caspase-3 axis. These

findings support the potential of nutmeg and b-sitosterol as

adjuvant therapeutic candidates for bladder cancer. Future

investigations should include in-depth mechanistic studies, in

vivo validation, and clinical trials to establish efficacy, safety,

and therapeutic applicability.
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