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Background: Nutmeg (Myristica fragrans) has been traditionally used in herbal
medicine, but its potential anti-cancer effects remain largely unexplored. This
study aimed to investigate the molecular mechanisms of nutmeg against bladder
cancer through an integrated strategy combining network pharmacology,
molecular docking, and in vitro validation.

Methods: Active compounds of nutmeg were retrieved from the TCMSP and
PubChem databases using oral bioavailability (OB >30%) and drug-likeness (DL
>0.18) as criteria. Potential targets were predicted using SwissTargetPrediction
and cross-referenced with bladder cancer-related genes from GeneCards,
OMIM, and TTD. Common targets were analyzed by STRING, Cytoscape, and
DAVID for PPI, GO, and KEGG enrichment. Molecular docking was performed to
evaluate binding affinities between candidate compounds and core targets. In
vitro experiments, including CCK-8, colony formation, wound-healing,
Transwell, flow cytometry, and Western blotting, were conducted to validate
the anti-tumor effects of B-sitosterol on T24 and 5637 bladder cancer cells.
Results: Nine active compounds were identified, with B-sitosterol emerging as
the key candidate. A total of 284 overlapping targets were obtained between
nutmeg and bladder cancer. GO and KEGG enrichment suggested significant
involvement in apoptosis and PI3K-Akt signaling pathways. Molecular docking
showed that B-sitosterol exhibited strong binding to BCL-2 (-8.6 kcal/mol) and
CASP3 (8.3 kcal/mol). In vitro, B-sitosterol significantly reduced cell viability
(ICs0: 50 uM for 5637, 60 uM for T24), inhibited proliferation, colony formation,
and migration, and induced apoptosis in a dose-dependent manner. Western
blot confirmed upregulation of Bax and cleaved Caspase-3 and downregulation
of BCL-2.
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Conclusion: This study demonstrates that B-sitosterol, a major bioactive
compound of nutmeg, suppresses bladder cancer progression by modulating
the BCL-2/Bax/Caspase-3 axis and PI3K-Akt signaling pathway. These findings
provide novel insights into the therapeutic potential of nutmeg as a
complementary strategy for bladder cancer treatment.

Myristica fragrans, bladder cancer, network pharmacology, p-sitosterol, apoptosis

1 Introduction

Bladder cancer is the tenth most common malignancy worldwide
and represents the most prevalent cancer of the urinary system. Its
incidence shows a marked gender disparity, with men being
approximately three to four times more frequently affected than
women (1). According to recent global statistics, about 573,000 new
cases and 213,000 related deaths occur annually. Major risk factors
include cigarette smoking, occupational exposure to aromatic amines,
chronic inflammation of the bladder, and inherited susceptibility
(2, 3). Histopathologically, bladder cancer is categorized into non-
muscle-invasive (NMIBC) and muscle-invasive (MIBC) types.
NMIBC constitutes roughly 75% of initial diagnoses and, despite
generally favorable early outcomes, exhibits a recurrence rate of
50-70% (4). In contrast, MIBC is characterized by aggressive
invasion and metastasis, with a five-year survival rate below 50%
(5). Recent studies have revealed the biological complexity of bladder
cancer. Crosstalk between the nervous system and tumor
microenvironment has been implicated in tumor progression and
resistance to therapy (6). Patient-derived xenograft models have
further highlighted their profound heterogeneity and translational
challenges (7). Moreover, exosome-mediated signaling has been
shown to contribute to chemoresistance mechanisms (8). Current
standard management relies on surgery, chemotherapy, radiotherapy,
and immunotherapy. However, conventional chemotherapeutic
agents such as cisplatin and gemcitabine often cause severe
systemic toxicity and readily induce resistance (9). Immune
checkpoint inhibitors targeting PD-1/PD-L1 can benefit certain
patients, yet their overall response rates remain limited (10). These
limitations underscore the pressing need for novel therapeutic
strategies. Among emerging approaches, the systematic exploration
of natural bioactive compounds offers a promising direction for
overcoming existing treatment bottlenecks, providing safer and
multi-targeted alternatives.

Natural products and bioactive compounds derived from
traditional Chinese medicine (TCM) have received growing
attention in cancer research. Their multi-target actions, low
toxicity, and potential synergistic effects make them promising
candidates for novel anticancer drug development (11).
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Numerous studies have demonstrated that TCM formulations can
inhibit tumor growth, induce apoptosis, and suppress metastasis
through the coordinated regulation of multiple molecular pathways
(12). Network pharmacology, integrating principles from
chemistry, biology, and pharmacology, provides a powerful
approach to uncover the complex relationships among bioactive
compounds, molecular targets, and signaling networks in TCM
(9, 13). This systems-level strategy helps elucidate the multi-
component and multi-target nature of TCM and supports its
modernization through evidence-based research.

Nutmeg (Myristica fragrans) is a widely used medicinal and
dietary herb with reported anti-inflammatory, antioxidant, and
antitumor properties. Among its bioactive constituents,
[-sitosterol has been extensively studied and shown to suppress
tumor progression in several cancer types, including breast,
prostate, and lung cancers (10, 11, 14). However, the potential
role of nutmeg-derived [B-sitosterol in bladder cancer remains
largely unexplored. Unlike prior studies that investigated
[3-sitosterol in isolation, our work establishes a direct mechanistic
link between nutmeg-derived B-sitosterol and apoptosis induction
in bladder cancer cells. Moreover, we explore whether nutmeg’s
multi-component composition may enhance the pharmacological
relevance of B-sitosterol in this context.

Therefore, this study integrates network pharmacology,
molecular docking, and in vitro validation to elucidate the
molecular mechanisms by which nutmeg-derived B-sitosterol
suppresses bladder cancer cell growth and induces apoptosis. By
focusing on apoptosis-related signaling and complementary
pathways, this work provides novel insights into the therapeutic
potential of B-sitosterol and nutmeg in bladder cancer treatment.

2 Materials and methods
2.1 Cell lines and culture
Human bladder cancer cell lines T24 and 5637 were obtained

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). Cells were cultured in RPMI-1640 medium supplemented
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with 10% fetal bovine serum (FBS) and maintained under standard
conditions (37 °C, 5% CO,, humidified atmosphere). No human
participants or animals were involved in this study; therefore,
ethical approval was not required.

2.2 Reagents and antibodies

[B-Sitosterol (purity 295%, CAS: 83-46-5) was purchased from
Yuanye Biotechnology (Shanghai, China). RPMI-1640 medium and
FBS were obtained from Zhongqiao Xinzhou Biotechnology
(Shanghai, China). Cell Counting Kit-8 (CCK-8) was purchased
from Sicojet Biotechnology (Shandong, China). Antibodies against
BCL-2, Bax, Caspase-3, and GAPDH were obtained from
Proteintech (Wuhan, China).

2.3 Network pharmacology analysis

2.3.1 Identification of active compounds and
targets

Nutmeg compounds were retrieved from the Traditional
Chinese Medicine Systems Pharmacology (TCMSP) database
(https://www.tcmsp-e.com/) using oral bioavailability (OB) >30%
and drug-likeness (DL) >0.18 as screening criteria. Chemical
structures and SMILES formats were confirmed using PubChem
(https://pubchem.ncbi.nlm.nih.gov/). Potential targets were
predicted by SwissTargetPrediction (restricted to Homo sapiens)
and standardized using UniProt (https://www.uniprot.org/).

2.3.2 Collection of bladder cancer targets

Bladder cancer-associated genes were obtained from GeneCards
(https://www.genecards.org/), OMIM (https://www.omim.org/),
and the Therapeutic Target Database (TTD, https://db.idrblab.
net/ttd/). Duplicate targets were removed to construct the final
disease-related target set.

2.3.3 ldentification of overlapping targets
Intersection of nutmeg- and bladder cancer-related targets
was performed using an online Venn diagram tool (http://www.

bioinformatics.com.cn/).

2.3.4 Network construction and PPI analysis

The overlapping targets were uploaded to STRING (https://
string-db.org/) with the organism restricted to Homo sapiens and
the minimum required interaction score set at 0.4 for protein-
protein interaction (PPI) network construction. The results were
visualized using Cytoscape 3.10.0, and hub genes were identified
using the cytoNCA plugin based on Degree, Betweenness, and
Closeness parameters.

2.3.5 GO and KEGG enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using
DAVID (https://davidbioinformatics.nih.gov/summary.jsp),
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with the species limited to Homo sapiens and significance
thresholds set at p < 0.05 and FDR < 0.05. Results were visualized
using the MicroBioinformatics platform (http://www.
bioinformatics.com.cn/).

2.3.6 Molecular docking

Crystal structures of target proteins were retrieved from the
Protein Data Bank (PDB, https://www.rcsb.org/). Ligand structures
were prepared using PubChem. Molecular docking was performed
using CB-Dock2 (https://cadd.labshare.cn/cb-dock2/), and binding
energies were calculated. Docking conformations were visualized
using Discovery Studio 2021.

2.4 In vitro experiments

2.4.1 Cell viability and ICsq determination

Cells were seeded in 96-well plates (1 x 10* cells/well) and
treated with [B-sitosterol at various concentrations (0-90 uM) for
24 h. Viability was measured using the CCK-8 assay, and
absorbance was recorded at 450 nm. ICs, values were calculated
using GraphPad Prism 9.0.

2.4.2 Cell proliferation assay
Cells were exposed to B-sitosterol for 24, 48, and 72 h. Cell
proliferation was assessed using the CCK-8 assay as described above.

2.4.3 Colony formation assay

T24 and 5637 cells (1,000 cells/well) were seeded in 6-well plates
and treated with B-sitosterol. After 9 days, colonies were fixed with
paraformaldehyde, stained with crystal violet, and counted
(colonies >50 wm were considered viable).

2.4.4 Migration assays
2.4.4.1 Wound-healing assay

Confluent monolayers were scratched using a sterile pipette tip
and cultured in medium containing 1% FBS with or without
[-sitosterol. Images were captured at 0 and 24 h, and wound
closure was quantified using Image].

2.4.4.2 Transwell migration assay

Cells (1.5 x 10*) were seeded into the upper chamber with
serum-free medium. The lower chamber contained medium with
10% FBS. After 48 h, migrated cells were fixed, stained with crystal
violet, and counted under a microscope.

2.4.5 Apoptosis assay

Apoptosis was assessed by flow cytometry using Annexin
V-FITC/PI double staining after 24 h treatment with B-sitosterol.
Data were analyzed using Flow]Jo software.

2.4.6 Western blotting
Cells were lysed in RIPA buffer supplemented with protease
inhibitors, and protein concentrations were determined using a
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cor/:‘gtiavr?ent MOL ID  Chinese name Molecule name OB DL
RDK1 MOL000358 B-7% s55 beta-sitosterol 36.91 0.75
RDK2 MOL007920 25 &Y meso-1,4-Bis-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutane 31.31 0.26
RDK3 MOL009243 S Isoguaiacin 48.78 0.31
RDK4 MOL009254 TR e Galbacin 60.99 0.53
o spuan Tl 0
RDK6 MOL009259 k) Kudos 45.05 0.37
RDK7 MOL009263 75 &Y saucernetindiol 41.85 0.32
RDKS8 MOL009264 8 G Tetrahydrofuroguaiacin B 62.85 0.32
RDK9 MOL009265 9T threo-austrobailignan-5 49.48 0.31

BCA assay. Equal amounts of protein (30-50 L1g) were separated by
SDS-PAGE and transferred to PVDF membranes. Membranes were
blocked with 5% non-fat milk for 1 h at room temperature and
incubated overnight at 4 °C with primary antibodies against
BCL-2 (1:1000), Bax (1:1000), Caspase-3 (1:1000), and GAPDH
(1:5000) (all from Proteintech, Wuhan, China). After washing,
membranes were incubated with HRP-conjugated secondary
antibodies (1:5000) for 1 h at room temperature. Protein
bands were detected using enhanced chemiluminescence (ECL)
and imaged with a Bio-Rad ChemiDoc system. Densitometric
analysis was performed with Image] software, and protein
expression levels were normalized to GAPDH. Data were
obtained from at least three independent experiments and
analyzed using one-way ANOVA, with p < 0.05 considered
statistically significant.

2.5 Statistical analysis

Data are expressed as mean * standard deviation (SD) from at
least three independent experiments. Statistical analysis was
performed using SPSS 31.0. Comparisons between groups were
made using one-way ANOVA followed by least significant
difference (LSD) tests. A P value <0.05 was considered
statistically significant.

3 Results

3.1 Screening of active components in
nutmeg

Based on the TCMSP and PubChem databases, a total of nine
candidate compounds were identified from nutmeg (Myristica
fragrans) using the criteria of oral bioavailability (OB > 30%) and
drug-likeness (DL = 0.18). The screened compounds and their
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pharmacokinetic parameters are summarized in Table 1. Notably,
[-sitosterol (OB = 36.91%, DL = 0.75) was highlighted as a potential
core bioactive compound.

3.2 Prediction of potential targets

Potential targets of the nine candidate compounds were
predicted using SwissTargetPrediction (Homo sapiens). After
merging and deduplication, 327 unique targets were obtained. In
parallel, bladder cancer-related targets were collected from the
GeneCards, OMIM, and TTD databases, yielding 1,258 unique
targets. Intersection analysis identified 284 common targets,
representing potential anti-bladder cancer targets of nutmeg
(Figure 1A). Protein-protein interaction (PPI) network
construction further revealed several hub targets (Figure 1B).

3.3 Construction of component—target
networks

To further elucidate the relationships between active
compounds and potential targets, an active component-target
network and a compound-core target subnetwork were
constructed. These networks revealed that B-sitosterol and other
major compounds exhibited strong associations with multiple
cancer-related targets (Figures 2A, B).

2.4 GO Functional enrichment and KEGG
pathway analysis

GO enrichment analysis indicated significant involvement of
the predicted targets in biological processes such as protein
phosphorylation, xenobiotic response, EGFR signaling, tyrosine
phosphorylation, and regulation of apoptosis (Figure 3A).

KEGG pathway analysis identified 25 significantly enriched
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Active ingredient target

FIGURE 1

(A) Venn diagram of overlapping targets between nutmeg active components and bladder cancer. (B) PPI network of nutmeg active components

and bladder cancer targets.

signaling pathways (P < 0.05). The top enriched pathways included
cancer pathways (hsa05200), PI3K-Akt signaling pathway
(hsa04151), and apoptosis-related pathways, suggesting that
nutmeg may exert anti-bladder cancer effects through multi-
pathway regulation (Figure 3B).

2.5 Molecular docking

To validate compound-target interactions, molecular docking
was performed for eight compounds with available structures
against the apoptosis-related targets BCL-2 and CASP3. Among
these, B-sitosterol showed the strongest binding affinity (BCL-2:
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-8.6 kcal/mol; CASP3: -8.3 kcal/mol), surpassing the screening
threshold of -5.0 kcal/mol. Docking conformations are shown in
Table 2, Figures 4A, B.

2.6 Effects of B-sitosterol on cell viability
(IC50 determination)

Based on network pharmacology and docking results,
[-sitosterol (B-SIT) was selected for in vitro validation. CCK-8
assays showed that -sitosterol significantly reduced the viability of
T24 and 5637 bladder cancer cells in a concentration-dependent
manner after 24 h treatment. The calculated IC50 values were
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FIGURE 2

(A) Active component—target network of nutmeg against bladder cancer. In the figure, dark green circular nodes represent the drug, light green circular
nodes represent active ingredients, purple diamond-shaped nodes represent target proteins, and orange hexagons represent the disease. (B) Compound—
core target network of nutmeg. The circular nodes in the figure represent key core targets, with darker colors indicating higher Degree values.

approximately 50 UM in 5637 cells and 60 UM in T24 cells.
Concentrations of 40, 50, and 60 UM were used in subsequent
experiments (Figure 5).

2.7 B-sitosterol inhibits cell proliferation
Treatment of T24 and 5637 cells with B-sitosterol for 24, 48, and

72 h significantly reduced proliferation in a time- and dose-
dependent manner compared to controls (Figure 6).

2.8 B-sitosterol suppresses colony
formation

Colony formation assays revealed that [B-sitosterol markedly
reduced the clonogenic ability of bladder cancer cells. Both the
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number and size of colonies decreased significantly in a
concentration-dependent manner (Figure 7).

2.9 B-sitosterol inhibits cell migration

Wound-healing and Transwell migration assays demonstrated
that 3-sitosterol significantly impaired the migratory ability of T24
and 5637 cells (P < 0.05). Quantitative analysis confirmed a
significant reduction in scratch closure rate and Transwell
migration compared to controls (Figures 8A-D).

2.10 B-sitosterol induces apoptosis

Flow cytometry revealed a dose-dependent increase in
apoptosis after 24 h of B-sitosterol treatment in both T24 and
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Biological process Cellular component Molecular function

hsa05200:Pathways in cancer

hsa01522:Endocrine resistance

hsa04080:Neuroactive ligand-receptor interaction
hsa04020:Calcium signaling pathway
hsa05215:Prostate cancer

hsa05161:Hepatitis B

hsa01521:EGFR tyrosine kinase inhibitor resistance
hsa04071:Sphingolipid signaling pathway
hsa05417:Lipid and atherosclerosis
hsa05205:Proteoglycans in cancer
hsa04750:Inflammatory mediator regulation of TRP channels

hsa04914:Prog i oocyte

hsa04933:AGE-RAGE signaling pathway in diabetic complications
hsa04151:PI3K-Akt signaling pathway
hsa05212:Pancreatic cancer

hsa04210:Apoptosis

hsa05418:Fluid shear stress and atherosclerosis
hsa04012:ErbB signaling pathway

hsa04024:cAMP signaling pathway

hsa05170:Human immunodeficiency virus 1 infection
hsa04068:FoxO signaling pathway

hsa05163:Human cytomegalovirus infection
hsa05207:Chemical carcinogenesis — receptor activation
hsa04722:Neurotrophin signaling pathway
hsa04510:Focal adhesion
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FIGURE 3

(A) GO enrichment analysis (BP/CC/MF). GO (BP/CC/MF) enrichment analysis of potential anti-bladder cancer targets for Myristica fragrans X-axis:
Green bars correspond to Biological Process, orange to Cellular Component, and blue to Molecular Function. Y-axis: The height of the bars
represents the inversely transformed P-value, with greater height indicating higher statistical significance. (B) G pathway enrichment analysis. X-axis:
Enrichment Factor; Y-axis: Pathway Name; Bubble size: Number of target genes; Bubble color: -log10(P-value), with redder colors indicating more

significant enrichment.

5637 cells (Figure 9A). Western blot analysis showed upregulation
of Bax and cleaved Caspase-3 and downregulation of BCL-2,
indicating that B-sitosterol promotes apoptosis via the BCL-2/
BAX/Caspase-3 signaling axis (Figure 9B).

4 Discussion

Significant advances have been made in elucidating the
molecular mechanisms underlying the initiation and progression

Frontiers in Oncology

TABLE 2 Binding energies of nutmeg compounds with core targets.
binding energy of < -5.0 kcal/mol indicates potential binding activity,
while < -7.5 kcal/mol suggests strong binding activity.

Active component = Target protein

Binding energy

(kcal/mol)

RDK1 (B-7F %) BCL-2 -8.6

CASP3 83

RDK2 BCL-2 6.8
(Continued)

07
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TABLE 2 Continued

Binding energy

Active component Target protein (e
CASP3 6.8

RDK3 BCL-2 63
CASP3 7.5

RDK4 BCL-2 7.3
CASP3 7.6

RDK5 BCL-2 7.6
CASP3 7.7

RDK6 BCL-2 74
CASP3 7.9

RDK?7 BCL-2 7.3
CASP3 7.1

RDKS BCL-2 74
CASP3 6.8

Compounds corresponding to RDK numbers are detailed in Table 1. BCL-2: B-cell lymphoma
2; CASP3: Caspase-3.

of bladder cancer, providing a solid theoretical basis for the
development of novel therapeutic strategies. Mounting evidence
indicates that tumor cell evasion of programmed cell death
(apoptosis) is a hallmark of malignancy and a major contributor
to therapeutic resistance (15). Thus, dissecting apoptosis-related
signaling pathways in bladder cancer is crucial for identifying
innovative therapeutic targets with potential clinical value.

Current oncological research predominantly focuses on
targeting signaling cascades (16). However, due to tumor
heterogeneity and extensive cross-talk among pathways (17, 18),
monotherapies often fail to block compensatory activation
mechanisms. For instance, in BRAF-mutant melanoma, inhibition
of the MAPK pathway induces tumor cells to activate alternative
survival pathways via epigenetic or non-genetic mechanisms,
leading to treatment escape (19). Consequently, therapeutic
efficacy is often limited by drug resistance. To address this
complexity, multi-targeted and combination strategies have been
increasingly emphasized. For example, in breast cancer, curcumin
enhances the efficacy of chemotherapy and mitigates resistance
through its multi-targeted effects (20). Hence, the conventional
“one disease—one target” paradigm is insufficient for complex
tumors such as bladder cancer (21-23).

Network pharmacology, an emerging discipline integrating
systems biology, computational analysis, and pharmacology,
provides a powerful tool for elucidating the holistic mechanisms
of traditional Chinese medicine (TCM). Unlike the linear “one
drug-one target” paradigm, network pharmacology emphasizes the
“multi-component-multi-target-multi-pathway” model, aligning
with the therapeutic principles of TCM (24). This approach has
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proven particularly effective in unraveling the pharmacological
basis of herbal medicines and their synergistic effects in complex
diseases (25-27). For instance, studies using network pharmacology
and molecular docking revealed that Prunella vulgaris exerts anti-
thyroid cancer activity by modulating oxidative stress and immune-
related pathways (28).

In recent years, network pharmacology has been widely
applied to mechanism studies, drug repurposing, and novel drug
design, thereby enhancing the global recognition of TCM and
contributing to next-generation drug development paradigms
(29). Nevertheless, chemotherapy-induced drug resistance and
severe adverse reactions remain major limitations of current
treatment strategies, while targeted and immunotherapies are
still challenged by high recurrence and tolerance rates in
bladder cancer (30). Thus, there is an urgent need for novel
agents with low toxicity and high efficacy. TCM extracts,
characterized by multi-target synergism, immunomodulatory
activity, and low risk of resistance, represent a promising
direction in anticancer research. Indeed, several TCM-derived
formulations, such as Santalol Injection (Curcuma wenyujin),
Kanglaite Injection (Coix seed extract), Huachansu Injection
(from toad extract), and Yadanzi Oral Liquid, have already
demonstrated clinical efficacy (31-33). Beyond these, new
bioactive compounds continue to be identified, and their
mechanisms are extensively investigated.

In this context, we employed network pharmacology to identify
[3-sitosterol (B-SIT), a phytosterol from nutmeg (Myristica fragrans),
as a candidate active compound for experimental validation. Nutmeg,
a widely used medicinal and dietary substance, has traditionally been
employed to warm the spleen and stomach, regulate qi, and alleviate
diarrhea (34, 35). Modern phytochemical analyses have revealed its
diverse bioactive constituents, including lignans, volatile oils,
phenylpropanoids, organic acids, and steroids. Among these,
[-sitosterol is of particular interest due to its structural and
pharmacological properties.

Our experimental results demonstrated that [-sitosterol
significantly inhibited the proliferation and migration of bladder
cancer cell lines T24 and 5637 (Figures 6-8), while promoting
apoptosis (Figure 9A). Western blot analysis further confirmed that
[3-sitosterol upregulated pro-apoptotic proteins Bax and cleaved
Caspase-3, while downregulating the anti-apoptotic protein BCL-2
(Figure 9B). These findings are consistent with molecular docking
predictions indicating strong binding affinity between b-sitosterol
and BCL-2/CASP3 (Table 2). Collectively, these results suggest that
[3-sitosterol induces apoptosis in bladder cancer cells by modulating
the BCL-2/Bax/Caspase-3 signaling axis. Since apoptosis involves
coordinated activation of initiator (Caspase-8/9), regulatory (BCL-2
family), and effector (Caspase-3/7) proteins (36-38), the observed
regulation of BCL-2 and Caspase-3 highlights the mechanistic
significance of B-sitosterol. In addition to apoptosis, our
enrichment analysis also highlighted the PI3K-Akt and EGFR
signaling pathways as significantly associated with the predicted
targets of Myristica fragrans in bladder cancer. The PI3K-Akt
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FIGURE 4

(A) Docking model of B-sitosterol with BCL-2. Binding conformation of B-sitosterol with BCL-2 protein (binding energy = -8.6 kcal/mol). (B)
Docking model of B-sitosterol with CASP3. Binding conformation of B-sitosterol with CASP3 protein (binding energy = -8.3 kcal/mol).

pathway plays a central role in regulating cell survival, proliferation,
and drug resistance in bladder cancer. Aberrant activation of PI3K-
Akt signaling has been reported to promote tumor progression and
confer chemoresistance, making it an attractive therapeutic target
(38). Previous studies demonstrated that phytochemicals, such as
curcumin and resveratrol, can modulate PI3K-Akt activity to
enhance chemosensitivity in bladder cancer cells (39). Our

findings suggest that B-sitosterol may exert similar effects, either
directly or indirectly, through the regulation of upstream targets
within this pathway. Likewise, the EGFR pathway emerged as
another enriched axis in our network pharmacology analysis.
EGFR overexpression and mutation are well-documented drivers
of bladder cancer progression, contributing to enhanced
proliferation, invasion, and epithelial-mesenchymal transition
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Inhibitory effect of B-sitosterol on bladder cancer cell viability. Effects of B-sitosterol (3-SIT) at different concentrations on the viability of T24 and
5637 cells after 24-hour treatment. Data are presented as mean + standard deviation (n = 10). *P < 0.05.
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and 72 hours of treatment. Data are presented as mean + standard deviation (n = 3). *P < 0.05.

(EMT). Inhibition of EGFR has been shown to suppress tumor
growth and improve outcomes in preclinical bladder cancer models
(40). Although our current experimental validation primarily
focused on apoptosis-related targets, the integration of EGFR-
related signaling pathways indicates a broader mechanistic
spectrum of B-sitosterol’s action. Future studies should further
investigate whether [-sitosterol can modulate EGFR-mediated
signaling, either alone or in combination with standard therapies,
to achieve synergistic antitumor effects.

In summary, this study combined network pharmacology and in
vitro validation to elucidate the anti-bladder cancer mechanism of
nutmeg and its key constituent B-sitosterol. The results indicate that

[3-sitosterol suppresses proliferation and migration while inducing
apoptosis, mainly through the BCL-2/Bax/Caspase-3 axis, and
potentially through additional pathways such as PI3K-Akt, EGEFR,
and PI3K/mTOR. These findings provide mechanistic evidence
supporting nutmeg and [-sitosterol as potential adjuvant therapies for
bladder cancer. Beyond bladder cancer, [B-sitosterol has also
demonstrated anticancer effects in other tumor types, including breast
and lung cancers, where it was reported to inhibit proliferation and
induce apoptosis (41, 42). Although our study focused on bladder
cancer, these findings suggest that B-sitosterol may have broader
therapeutic relevance, and future research should evaluate its activity
across multiple cancer models to clarify its general applicability.
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Effects of B-sitosterol on colony formation. Representative images of colony formation in T24 and 5637 cells (crystal violet staining).Quantitative
analysis of colony formation in T24 and 5637 cells. Data are presented as mean + standard deviation (n = 3). *P < 0.05.
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deviation (n = 3). *P < 0.05.
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(A) Apoptosis detection by flow cytometry. Representative scatter plots of Annexin V-FITC/PI double staining and quantitative analysis of apoptosis
rate. Data are presented as mean + standard deviation (n = 3). *P < 0.05. (B) Expression of apoptosis-related proteins by Western blot.
Representative bands of BCL-2, BAX, and Cleaved Caspase-3, with relative quantitative analysis of their expression levels normalized to GAPDH. Data

are presented as mean + standard deviation (n = 3). *P < 0.05.

5 Limitations

This study has several limitations. First, the findings rely on in vitro
assays and network pharmacology, which need validation in animal
models and clinical settings. Second, while B-sitosterol was identified as
the main compound, other nutmeg constituents with potential
anticancer activity (e.g, isoguaiacin, galbacin) were not examined.
Third, B-sitosterol shows low oral bioavailability and limited stability
in vivo, which may restrict its clinical use. In addition, although it is
generally considered safe, its effects on organs such as the liver and
kidneys remain unclear, and evidence for long-term safety is lacking.
Finally, pharmacokinetic and pharmacodynamic studies, together with
systematic toxicological assessments, are required to clarify its ADME
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profile and safety. Future work should also explore possible synergistic
effects among nutmeg-derived compounds to fully establish its
therapeutic potential.

6 Conclusion

This study integrates network pharmacology and experimental
validation to provide preliminary evidence that nutmeg exerts
anti-bladder cancer effects through multi-component, multi-
target, and multi-pathway mechanisms. [-sitosterol, identified
as a core bioactive compound, significantly suppresses the
proliferation and migration of bladder cancer cells and induces
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apoptosis by modulating the BCL-2/Bax/Caspase-3 axis. These
findings support the potential of nutmeg and [-sitosterol as
adjuvant therapeutic candidates for bladder cancer. Future
investigations should include in-depth mechanistic studies, in
vivo validation, and clinical trials to establish efficacy, safety,
and therapeutic applicability.
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