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Case Report: Complete
pathologic response in
advanced melanoma with SFRT
and dual checkpoint inhibition
Jared Hobson1*†, Michael P. Grams1†, Joanina K. Gicobi2,
Dennis Wigle3, Lisa A. Kottschade2, Lindsey A. Durham1,
Kimberly Corbin1, Haidong Dong4, Svetomir N. Markovic2*

and Sean S. Park1*

1Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States, 2Department of Medical
Oncology, Mayo Clinic, Rochester, MN, United States, 3Department of Thoracic Surgery, Mayo Clinic,
Rochester, MN, United States, 4Department of Immunology, Mayo Clinic, Rochester, MN, United States
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for

advancedmelanoma, though response rates remain limited in bulky disease. Herein,

we report the case of a complete pathologic response following combination

spatially fractionated radiation therapy (SFRT) and dual nivolumab and ipilimumab

for a 12 cm right lung melanoma mass, with subsequent lobectomy revealing no

viable tumor cells. Now disease free 2.5 years after treatment, including more than 1

year off all systemic therapy, this case highlights the potential synergy between SFRT

and immunotherapy in advanced melanoma management.
KEYWORDS
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Introduction

The treatment landscape for melanoma has evolved significantly with the advent of immune

checkpoint inhibitors (ICIs), transforming outcomes in advanced stage and metastatic disease.

While long term results from CheckMate 067 demonstrated a durable response with dual

nivolumab and ipilimumab, objective response rates were 58% for combination therapy, with

approximately 40% of patients having a minimal response to ICI (1–3). As such, various patient

and tumor characteristics have been explored to predict treatment response. Tumor volume has

been negatively correlated with ICI efficacy, with large tumors demonstrating immune exclusion,

hypoxia, and poor antigen presentation, limiting treatment efficacy (3, 4). Radiation therapy may

be an optimal tool in this setting, recognized for its ability to reduce tumor burden and

increasingly for immunomodulatory properties thatmay augment systemic immune response (5).

Historically, melanoma has been considered radioresistant, and while high dose

radiotherapy with stereotactic body radiation therapy (SBRT) has shown promise, bulky

tumors tend to exhibit worse local control and are often limited by nearby organs at risk
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(OARs) (6). As such, ASTRO guidelines conditionally recommend

SBRT for tumors >5cm (7). Spatially fractionated radiation therapy

(SFRT) offers a novel alternative in such cases, creating a

heterogeneous dose distribution of high and low-dose regions

within a tumor while respecting OAR constraints. This technique

has demonstrated enhanced therapeutic outcomes with reports of

significant symptom relief and greater-than-expected tumor

responses (8–10). While the mechanisms for this are poorly

understood, SFRT has been shown to modulate the tumor

microenvironment and immune response, leading to bystander

and abscopal effects (11–13). Given its potential synergy with

immunotherapy, increasing interest has grown in coupling SFRT

with ICI for bulky tumors (14).

Here, we present the case of a bulky metastatic melanoma mass

involving the right lung treated with SFRT and concurrent

nivolumab and ipilimumab, leading to a complete pathologic

response within 5 months of treatment with low toxicity.

Currently disease free 2.5 years after treatment and off all

systemic therapy for over one year, this case highlights the

potential for SFRT to enhance ICI efficacy and underscores the

role of multimodal therapy in melanoma management.
Frontiers in Oncology 02
Case presentation

A 58-year-old female with a history of occasional social

smoking (quit in 1993) and non-melanomatous skin cancer

presented with four months of progressive dyspnea and cough in

May 2022. Chest x-ray showed a large right-sided mass, with

Computed Tomography (CT) Chest 5/2022 confirming a 12.0 x

9.1 cm heterogeneously enhancing right lower lobe mass abutting

the right major fissure and extending into the right middle and

upper lobes (Figure 1). Small indeterminate pulmonary nodules

were seen, with a small right pleural effusion and no significant

adenopathy. Subsequent FDG PET and brain MRI revealed an

intensely avid primary thoracic mass with no evidence of metastatic

disease. Outside bronchoscopy with biopsy was suggestive of

melanoma, with negative lymph node stations 7, 10R, and 11L.

Repeat CT-guided biopsy 6/2022 confirmed malignant melanoma,

BRAF wild-type, with immunohistochemistry positive for SOX10,

S100, HMB45, Melan A, and H3K27me3. Clinical exam revealed no

evidence of a primary lesion, and differentials included primary

pulmonary melanoma versus metastatic melanoma with an

unknown primary, the latter favored due to the rarity of primary
FIGURE 1

CT chest 5/25/2022 demonstrating a 12.0 x 9.1 cm right lower lobe mass, with FDG F-18 PET 6/3/2022 noting avidity and no evidence of metastatic
disease, SUV max 24.6.
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pulmonary disease. The patient denied any history of melanoma,

but did note a family history of melanoma in her father and sister,

along with other malignancies, including lymphoma, breast,

prostate, and pancreatic cancer. Guardant 360 testing was

performed showing somatic alterations in TP53 (5.7% cfDNA),

GNAS (0.3%), and APC (1.1%), with no MSI-High detected.

Initial discussion with medical oncology, pulmonology, and

thoracic surgery recommended neoadjuvant immunotherapy

followed by surgical resection. Given the tumor bulk, radiation

oncology was consulted with the aim of shrinking the mass,

bolstering immune response, and potentially increasing the

efficacy of systemic therapy. To this end, the patient was enrolled

on clinical trial ROR1903 and treated with Brass GRID SFRT 20 Gy

in 1 fraction on 7/1/2022, followed by 20 Gy in 4 fractions between

7/5-7/8/2022 (Figure 2). Concurrent nivolumab (1 mg/kg) and

ipilimumab (3 mg/kg) were administered every 21 days with first

administration 2 days prior to SFRT on 6/29/2022.

Radiation was well tolerated, and she continued dual

immunotherapy until August 2022 at which time she developed

grade 3 hepatitis and a grade 2 rash, necessitating a treatment hold

and initiation of high-dose prednisone. At that time, CT imaging

showed significant tumor shrinkage down to 7.5 x 3.5 cm with no

new evidence of disease. Given her immune-related toxicity,

ipilimumab was discontinued, and she was rechallenged with

nivolumab monotherapy every two weeks in October 2022 and

continued low dose prednisone. Interval PET imaging 9/2022 noted
Frontiers in Oncology 03
marked response to therapy, with the mass measuring 6.1 x 3.6 cm

with an SUV max of 6.1, decreased from 18.7 previously (Figure 3).

New peripheral consolidative and ground glass infiltrates

concerning for radiation pneumonitis were identified, requiring

prolonged corticosteroid tapering.

Given persistent PET-avidity, she was evaluated for surgical

resection. PFTs showed FEV1 90% predicted and DLCO 78%

predicted, and in November 2022, she underwent a right lower

lobectomy and mediastinal lymphadenectomy. Final pathology

revealed a necrotic 4.1 cm mass with no viable tumor and all

lymph nodes negative (0/7), confirming a complete pathologic

response. Postoperatively, she resumed adjuvant nivolumab in

January 2023 with serial imaging continuing to show no evidence

of disease. Given her excellent response, she stopped all therapy in

February 2024 and remains disease free to date, with most recent

PET 1/2025 continuing to demonstrate no evidence of disease. A

summary timeline of key events and treatments can be seen below

in Figure 4.
Discussion

Rad ia t ion has inc rea s ing ly been re cogn i zed for

immunomodulatory effects, both suppressive and stimulatory

depending on dosage and fractionation (14, 15). Interest has

grown in harnessing these effects with immunotherapy, and this
FIGURE 2

(a) Radiation Plan: SFRT plan 20 Gy in 1 fraction (b) Sum plan including 20 Gy in 4 fractions. D0.03 of 41 Gy.
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case adds evidence to support the safety and efficacy of SFRT and

dual ICIs in treating bulky disease – in this instance providing a

complete pathologic response.
Immunotherapy in melanoma

While immunotherapy use in melanoma dates back to 1984

with IL-2, effects were mixed and toxicity was significant (16).

Immune checkpoint inhibitors (ICI) redefined the treatment of

advanced melanoma in 2011 with the approval of ipilimumab, a

CTLA-4 inhibitor, following the results of MDX010–20 showing

significant improvement in survival with acceptable toxicity (17,

18). This was rapidly followed by PD-1 inhibitors Pembrolizumab

(KEYNOTE-001, -002) and Nivolumab (CheckMate 037) showing

benefit over standard-of-care chemotherapy (19). CheckMate 067

formed a landmark trial in 2015, establishing the benefit of

combined nivolumab and ipilimumab, with long term results

showing a median overall survival of 72 months, improved from
Frontiers in Oncology 04
less than 12 months before ipilimumab in 2011, and a melanoma

specific survival of 55% at 7.5 years. Notably, for patients who were

progression free at 3 years, 10 year melanoma specific survival was

96% (1).

Despite these advances, a significant subset of patients exhibit

primary or acquired resistance, with approximately 40% having no

response to therapy and another 30-40% experiencing an initial

response with subsequent progression (20). While the mechanisms

of resistance remain poorly understood, they include defective

antigen presentation, immunosuppressive signaling, alternative

immune check point activation, and a non-inflamed or “cold”

tumor microenvironment (TME) (20–22).

Since ICI efficacy largely relies on amplifying pre-existing anti-

tumor T cell responses, the TME and distribution of immune cells

within a tumor play a critical role in ICI response. Broadly, tumors

consist of tumor parenchyma, with nests of tumor cells, and tumor

stroma containing blood vessels, connective tissue, and

inflammatory cells (23). Distinct immune profiles have been

described relating to this, including immune-active or “hot”
FIGURE 4

Timeline.
FIGURE 3

FDG PET 9/22/2022 showing marked response of right lower lobe mass, 6.1 x 3.6 cm with SUV max 6.1.
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tumor phenotypes characterized by parenchymal lymphocytic

infiltration, and immune-desert or “cold” phenotypes lacking

lymphocytic infiltration. Immune exclusion represents a third

phenotype, in which immune cells are abundant within the TME

but fail to penetrate the tumor parenchyma (23). Large tumors

exhibit increased heterogeneity and immune exclusion, and tumor

burden has been negatively correlated with ICI response (3, 24).

Additionally, bulky masses harbor a greater proportion of

immunosuppressive cells and cytokines, dampening both local

and systemic immune responses (24). As such, additional

strategies to overcome resistance and enhance response rates are

needed, particularly in bulky disease, with radiation therapy offering

promise as a synergistic modality.
Radiation immunomodulation

In addition to causing tumor cell death via direct DNA damage

and free radical (ROS) generation, radiation may induce a series of

biologic and immune-mediated effects locally and systemically.

Local bystander effects, where non-irradiated neighboring cells

respond through cell signaling, and distant abscopal effects, where

tumor lesions outside the radiation field shrink or disappear, have

been well documented in the literature (5). Data evaluating the

mechanisms behind these effects have revealed complex

immunosuppressive and immunostimulatory properties

of radiation.

Beyond its direct cytotoxic effects, radiation may induce

immunogenic cell death, releasing neoantigens and damage-

associated molecular patterns (DAMPS). These molecules activate

antigen-presenting cells, particularly dendritic cells, which in turn

prime cytotoxic T cells and bolster immune response (5, 14).

Additionally, radiation has been shown to increase the release of

pro-inflammatory cytokines and chemokines, upregulate

programmed death ligand 1 (PD-L1) expression, and enhance

major histocompatibility class I (MHC-1) surface expression (15,

25). The cGAS-STING pathway may also be activated, further

promoting immune cell maturation, activation, and polarization,

and remodeling the TME (25). These effects may increase

lymphocytic infiltration, converting a cold tumor into a hot

tumor and overcoming immune exclusion, thereby improving ICI

efficacy (26).

Immunosuppressive effects may also arise however, predominantly

mediated by the recruitment of myeloid-derived suppressor cells

(MDSCs) and regulatory T cells (Tregs), along with the release of

immunosuppressive cytokines (27). Additionally, radiation-induced

changes in tumor vasculature may exacerbate hypoxia, hinder drug

distribution, and limit lymphocyte infiltration. The balance between

these contrasting effects appears heavily dependent on dose and

fractionation. While conventional fractionation tends to be

immunosuppressive, higher doses per fraction may trigger both

stimulatory and suppressive responses. Hypofractionated regimens

for example, are associated with a greater type-1 interferon (IFN-I)
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response, while ablative doses, such as 20 Gy in 1 fraction, can induce

extensive cell death and release of cytosolic DNA, deplete radioresistant

suppressive immune cells, and enhance CD8+ lymphocyte-mediated

antitumor activity (28). These effects appear transient however, as

subsequent recruitment of MDSCs and Tregs can induce an

immunosuppressive environment, limiting the duration of the

antitumor response (28, 29). Additionally, ablative doses may

significantly damage endothelial cells and disrupt vasculature.

In contrast, low-dose radiotherapy induces less DNA damage,

but may reshape the TME to foster a favorable immune response,

enhancing both innate and adaptive immunity. It may polarize

macrophages toward a M1 phenotype, increasing TNF alpha and

IL-12 production and supporting immune recognition. Unlike high

dose radiation, it may also promote normalization of the tumor

vasculature, improving oxygenation and immune cell infiltration,

thereby enhancing ICI response (29). These immunologic effects of

low dose radiation alone may not be significant enough to overcome

tumor growth however, particularly in the case of bulky disease or

radioresistant histologies such as melanoma.

With a spectrum of immunomodulatory effects and distinct

dose-response profiles, the optimal dose and fractionation for

radiation use with immunotherapy has yet to be defined and may

vary between histologies. Pre-clinical data evaluating radiation with

anti-CTLA-4 antibodies has suggested that fractionated regimens

may elicit a greater abscopal effect than single fraction (30).

Additionally, combined regimens utilizing both high and low-

dose radiation may harness the immunologic properties of both

to achieve synergistic results (31). By creating a heterogenous dose

distribution, the enhanced therapeutic ratio and greater-than-

expected responses seen with SFRT likely hinge upon this effect

and may be ideal for use with ICIs in bulky disease. Additionally,

administering a conventional radiation treatment after SFRT, such

as the 20 Gy in 4 fractions this patient received, appears to improve

response rates, possibly reflecting the impact of fractionation and

varying dose responses.
Spatially fractionated radiation therapy and
immunotherapy

Dating back to 1909, SFRT was originally designed as a method

of delivering high doses of radiation to a tumor while avoiding

detrimental toxicity, particularly to the skin and subcutaneous

tissue. By delivering high dose radiation through a physical block

with holes called a GRID, a non-uniform dose distribution was

created, described as having high dose “peaks” and low dose

“valleys” (32). The interspersing of low dose regions between the

high dose radiation allowed for greater normal tissue recovery and

increased OAR tolerance. Cases utilizing this technique have

reported significant symptom relief and tumor shrinkage, thought

to be immunologic in nature with bystander and abscopal effects.

Modern technology and image guidance have expanded use of

SFRT with 3D and VMAT planning, improving targeting and safe
frontiersin.org
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delivery (33). This has allowed treatment of tumors located

throughout the body, and expanded SFRT techniques. In addition

to traditional 2D GRID, 3D LATTICE, microbeam, and minibeam

techniques have been developed, altering beam thickness and

spatial distribution in hopes of optimizing immunologic

outcomes and applicability across tumor sizes and locations (14).

SBRT-based PArtial Tumor irradiation of HYpoxic clonogenic cells

(SBRT-PATHY), represents another form of SFRT specifically

targeting hypoxic regions in bulky masses to potentiate response.

Excellent clinical outcomes and abscopal effects have been reported

and investigation into the utility and selection for SFRT remain

ongoing (34).

Regarding the use of radiation with immunotherapy, responses

vary significantly between studies, reflecting differences in histology,

molecular alterations, radiation dose and fractionation,

chemotherapy and immunotherapy agents, and unique individual

biology. Several conventionally fractionated trials such as the

PACIFIC trial and CheckMate 577 have demonstrated benefit to

adjuvant ICI with definitive radiation (27). Conversely, conflicting

results have been seen between studies such as KEYNOTE-A18 and

CALLA, and other trials such as the JAVELIN trial have failed to

show significant improvement (27, 35, 36). In the high-dose setting,

SBRT to a single tumor site followed by pembrolizumab has shown

increased overall response rates in advanced non-small cell lung

cancer (37). A prospective study combining hypofractionated

radiation in metastatic cancers, including melanoma, with PD-1

inhibitors also demonstrated prolonged and complete responses,

including patients who had previously progressed while on PD-1

inhibitors (38). Data has been mixed however, with a randomized

phase I/II trial of pembrolizumab with SBRT or hypofractionated

radiation showing no benefit in progression free or overall survival

compared to pembrolizumab alone (39). Further data is needed to full

understand the impact of radiation, including dose and fractionation,

tumor size and histology, and immunotherapy timing.

While no large trials exist utilizing SFRT with immunotherapy,

case reports such as this support concurrent use and suggest synergistic

results. Jiang et al. reported a case of LATTICE SFRT combined with

anti-PD1 immunotherapy in a patient with metastatic non-small cell

lung cancer who achieved a complete response 5 months following

concurrent treatment (40). Likewise, Mohiuddin et al. reported a case

of advanced melanoma with acquired resistance to multiple systemic

agents, including ipilimumab, IL-2, and pembrolizumab, that

subsequently had a complete response following GRID SFRT and

pembrolizumab, suggesting combination therapy may re-sensitive

patients to treatment (41). This case represents another such

example, demonstrating a complete pathologic response with

minimal radiation induced toxicity aside from pneumonitis treated

with corticosteroids. Now almost a few years post treatment, including

a year off any therapy, her case supports the use of SFRT with ICIs,

offering hope for those with bulky disease.
Frontiers in Oncology 06
Limitations and future directions

While this case highlights a successful treatment using SFRT

and immunotherapy, the degree to which each component

contributed to her response remains unknown. Robust responses

to immunotherapy alone have been seen in melanoma, and the

degree to which radiation altered her outcome cannot be

ascertained (3). Furthermore, while bulky tumors may have a

reduced response to ICI therapy, it remains unclear if dual ICI

therapy may overcome this. Nevertheless, the immunomodulatory

effects of radiation and potential to overcome barriers such as

hypoxia suggest synergistic potential. Continued studies

evaluating the combined effects of SFRT and immunotherapy

may help elucidate the impact of multimodal therapy and refine

treatment regimens.
Conclusion

While immunotherapy has transformed outcomes in advanced

melanoma, responses rates are limited, particularly in bulky disease.

This case highlights the potential for SFRT to enhance ICI efficacy in

advanced melanoma, leading to a complete pathologic response with

minimal radiation-related toxicity. While the contribution of each

treatment modality remains uncertain, the significant and sustained

tumor remission suggests a synergistic effect between SFRT and dual

ICI therapy. Given the challenges of treating bulkymelanoma and the

limitations of immunotherapy in this setting, SFRT represents a

promising strategy to reshape the tumor microenvironment, improve

immune infiltration, and augment systemic response. This case adds

to the growing evidence supporting the integration of SFRT with

immunotherapy and underscores the potential for multimodal

approaches to improve outcomes in advanced melanoma. Future

studies are needed to optimize radiation dose, fractionation, and

patient selection to maximize outcomes.
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