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Case Report: Complete
pathologic response Iin
advanced melanoma with SFRT
and dual checkpoint inhibition
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Immune checkpoint inhibitors (ICls) have transformed the treatment landscape for
advanced melanoma, though response rates remain limited in bulky disease. Herein,
we report the case of a complete pathologic response following combination
spatially fractionated radiation therapy (SFRT) and dual nivolumab and ipilimumab
for a 12 cm right lung melanoma mass, with subsequent lobectomy revealing no
viable tumor cells. Now disease free 2.5 years after treatment, including more than 1
year off all systemic therapy, this case highlights the potential synergy between SFRT
and immunotherapy in advanced melanoma management.
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Introduction

The treatment landscape for melanoma has evolved significantly with the advent of immune
checkpoint inhibitors (ICIs), transforming outcomes in advanced stage and metastatic disease.
While long term results from CheckMate 067 demonstrated a durable response with dual
nivolumab and ipilimumab, objective response rates were 58% for combination therapy, with
approximately 40% of patients having a minimal response to ICI (1-3). As such, various patient
and tumor characteristics have been explored to predict treatment response. Tumor volume has
been negatively correlated with ICI efficacy, with large tumors demonstrating immune exclusion,
hypoxia, and poor antigen presentation, limiting treatment efficacy (3, 4). Radiation therapy may
be an optimal tool in this setting, recognized for its ability to reduce tumor burden and
increasingly for immunomodulatory properties that may augment systemic immune response (5).

Historically, melanoma has been considered radioresistant, and while high dose
radiotherapy with stereotactic body radiation therapy (SBRT) has shown promise, bulky
tumors tend to exhibit worse local control and are often limited by nearby organs at risk
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(OARs) (6). As such, ASTRO guidelines conditionally recommend
SBRT for tumors >5cm (7). Spatially fractionated radiation therapy
(SFRT) offers a novel alternative in such cases, creating a
heterogeneous dose distribution of high and low-dose regions
within a tumor while respecting OAR constraints. This technique
has demonstrated enhanced therapeutic outcomes with reports of
significant symptom relief and greater-than-expected tumor
responses (8-10). While the mechanisms for this are poorly
understood, SFRT has been shown to modulate the tumor
microenvironment and immune response, leading to bystander
and abscopal effects (11-13). Given its potential synergy with
immunotherapy, increasing interest has grown in coupling SFRT
with ICI for bulky tumors (14).

Here, we present the case of a bulky metastatic melanoma mass
involving the right lung treated with SFRT and concurrent
nivolumab and ipilimumab, leading to a complete pathologic
response within 5 months of treatment with low toxicity.
Currently disease free 2.5 years after treatment and off all
systemic therapy for over one year, this case highlights the
potential for SFRT to enhance ICI efficacy and underscores the

role of multimodal therapy in melanoma management.

10.3389/fonc.2025.1697902

Case presentation

A 58-year-old female with a history of occasional social
smoking (quit in 1993) and non-melanomatous skin cancer
presented with four months of progressive dyspnea and cough in
May 2022. Chest x-ray showed a large right-sided mass, with
Computed Tomography (CT) Chest 5/2022 confirming a 12.0 x
9.1 cm heterogeneously enhancing right lower lobe mass abutting
the right major fissure and extending into the right middle and
upper lobes (Figure 1). Small indeterminate pulmonary nodules
were seen, with a small right pleural effusion and no significant
adenopathy. Subsequent FDG PET and brain MRI revealed an
intensely avid primary thoracic mass with no evidence of metastatic
disease. Outside bronchoscopy with biopsy was suggestive of
melanoma, with negative lymph node stations 7, 10R, and 11L.
Repeat CT-guided biopsy 6/2022 confirmed malignant melanoma,
BRAF wild-type, with immunohistochemistry positive for SOX10,
S100, HMB45, Melan A, and H3K27me3. Clinical exam revealed no
evidence of a primary lesion, and differentials included primary
pulmonary melanoma versus metastatic melanoma with an
unknown primary, the latter favored due to the rarity of primary

FIGURE 1

CT chest 5/25/2022 demonstrating a 12.0 x 9.1 cm right lower lobe mass, with FDG F-18 PET 6/3/2022 noting avidity and no evidence of metastatic

disease, SUV max 24.6
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pulmonary disease. The patient denied any history of melanoma,
but did note a family history of melanoma in her father and sister,
along with other malignancies, including lymphoma, breast,
prostate, and pancreatic cancer. Guardant 360 testing was
performed showing somatic alterations in TP53 (5.7% cfDNA),
GNAS (0.3%), and APC (1.1%), with no MSI-High detected.

Initial discussion with medical oncology, pulmonology, and
thoracic surgery recommended neoadjuvant immunotherapy
followed by surgical resection. Given the tumor bulk, radiation
oncology was consulted with the aim of shrinking the mass,
bolstering immune response, and potentially increasing the
efficacy of systemic therapy. To this end, the patient was enrolled
on clinical trial ROR1903 and treated with Brass GRID SFRT 20 Gy
in 1 fraction on 7/1/2022, followed by 20 Gy in 4 fractions between
7/5-7/8/2022 (Figure 2). Concurrent nivolumab (1 mg/kg) and
ipilimumab (3 mg/kg) were administered every 21 days with first
administration 2 days prior to SFRT on 6/29/2022.

Radiation was well tolerated, and she continued dual
immunotherapy until August 2022 at which time she developed
grade 3 hepatitis and a grade 2 rash, necessitating a treatment hold
and initiation of high-dose prednisone. At that time, CT imaging
showed significant tumor shrinkage down to 7.5 x 3.5 cm with no
new evidence of disease. Given her immune-related toxicity,
ipilimumab was discontinued, and she was rechallenged with
nivolumab monotherapy every two weeks in October 2022 and
continued low dose prednisone. Interval PET imaging 9/2022 noted

FIGURE 2

10.3389/fonc.2025.1697902

marked response to therapy, with the mass measuring 6.1 x 3.6 cm
with an SUV max of 6.1, decreased from 18.7 previously (Figure 3).
New peripheral consolidative and ground glass infiltrates
concerning for radiation pneumonitis were identified, requiring
prolonged corticosteroid tapering.

Given persistent PET-avidity, she was evaluated for surgical
resection. PFTs showed FEV1 90% predicted and DLCO 78%
predicted, and in November 2022, she underwent a right lower
lobectomy and mediastinal lymphadenectomy. Final pathology
revealed a necrotic 4.1 cm mass with no viable tumor and all
lymph nodes negative (0/7), confirming a complete pathologic
response. Postoperatively, she resumed adjuvant nivolumab in
January 2023 with serial imaging continuing to show no evidence
of disease. Given her excellent response, she stopped all therapy in
February 2024 and remains disease free to date, with most recent
PET 1/2025 continuing to demonstrate no evidence of disease. A
summary timeline of key events and treatments can be seen below
in Figure 4.

Discussion

Radiation has increasingly been recognized for
immunomodulatory effects, both suppressive and stimulatory
depending on dosage and fractionation (14, 15). Interest has
grown in harnessing these effects with immunotherapy, and this

(a) Radiation Plan: SFRT plan 20 Gy in 1 fraction (b) Sum plan including 20 Gy in 4 fractions. D0.03 of 41 Gy
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FIGURE 3

FDG PET 9/22/2022 showing marked response of right lower lobe mass, 6.1 x 3.6 cm with SUV max 6.1

712022

5/2022 SFRT 20Gy in1 11/2022
4 months dyspnea fraction followed by Right lower
and cough. CT 20Gy in 4 fractions to  |obectomy and 1/2025
Chest: 12cm RLL lung mass. Started lymphadenectomy: ~ PET: no evidence
mass nivolumab/ ipilimumab 14 viable tumor cells ©of disease
6/2022 9/2022 2/2024
Lung biopsy: PET: marked Stopped all therapies
melanoma, BRAF response, 6.1cm with
wild-type SUV 6.1 from 18.7
prior
FIGURE 4
Timeline.

case adds evidence to support the safety and efficacy of SFRT and
dual ICIs in treating bulky disease — in this instance providing a
complete pathologic response.

Immunotherapy in melanoma

While immunotherapy use in melanoma dates back to 1984
with IL-2, effects were mixed and toxicity was significant (16).
Immune checkpoint inhibitors (ICI) redefined the treatment of
advanced melanoma in 2011 with the approval of ipilimumab, a
CTLA-4 inhibitor, following the results of MDX010-20 showing
significant improvement in survival with acceptable toxicity (17,
18). This was rapidly followed by PD-1 inhibitors Pembrolizumab
(KEYNOTE-001, -002) and Nivolumab (CheckMate 037) showing
benefit over standard-of-care chemotherapy (19). CheckMate 067
formed a landmark trial in 2015, establishing the benefit of
combined nivolumab and ipilimumab, with long term results
showing a median overall survival of 72 months, improved from

Frontiers in Oncology

less than 12 months before ipilimumab in 2011, and a melanoma
specific survival of 55% at 7.5 years. Notably, for patients who were
progression free at 3 years, 10 year melanoma specific survival was
96% (1).

Despite these advances, a significant subset of patients exhibit
primary or acquired resistance, with approximately 40% having no
response to therapy and another 30-40% experiencing an initial
response with subsequent progression (20). While the mechanisms
of resistance remain poorly understood, they include defective
antigen presentation, immunosuppressive signaling, alternative
immune check point activation, and a non-inflamed or “cold”
tumor microenvironment (TME) (20-22).

Since ICI efficacy largely relies on amplifying pre-existing anti-
tumor T cell responses, the TME and distribution of immune cells
within a tumor play a critical role in ICI response. Broadly, tumors
consist of tumor parenchyma, with nests of tumor cells, and tumor
stroma containing blood vessels, connective tissue, and
inflammatory cells (23). Distinct immune profiles have been
described relating to this, including immune-active or “hot”

frontiersin.org


https://doi.org/10.3389/fonc.2025.1697902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hobson et al.

tumor phenotypes characterized by parenchymal lymphocytic
infiltration, and immune-desert or “cold” phenotypes lacking
lymphocytic infiltration. Immune exclusion represents a third
phenotype, in which immune cells are abundant within the TME
but fail to penetrate the tumor parenchyma (23). Large tumors
exhibit increased heterogeneity and immune exclusion, and tumor
burden has been negatively correlated with ICI response (3, 24).
Additionally, bulky masses harbor a greater proportion of
immunosuppressive cells and cytokines, dampening both local
and systemic immune responses (24). As such, additional
strategies to overcome resistance and enhance response rates are
needed, particularly in bulky disease, with radiation therapy offering
promise as a synergistic modality.

Radiation immunomodulation

In addition to causing tumor cell death via direct DNA damage
and free radical (ROS) generation, radiation may induce a series of
biologic and immune-mediated effects locally and systemically.
Local bystander effects, where non-irradiated neighboring cells
respond through cell signaling, and distant abscopal effects, where
tumor lesions outside the radiation field shrink or disappear, have
been well documented in the literature (5). Data evaluating the
mechanisms behind these effects have revealed complex
immunosuppressive and immunostimulatory properties
of radiation.

Beyond its direct cytotoxic effects, radiation may induce
immunogenic cell death, releasing neoantigens and damage-
associated molecular patterns (DAMPS). These molecules activate
antigen-presenting cells, particularly dendritic cells, which in turn
prime cytotoxic T cells and bolster immune response (5, 14).
Additionally, radiation has been shown to increase the release of
pro-inflammatory cytokines and chemokines, upregulate
programmed death ligand 1 (PD-L1) expression, and enhance
major histocompatibility class I (MHC-1) surface expression (15,
25). The cGAS-STING pathway may also be activated, further
promoting immune cell maturation, activation, and polarization,
and remodeling the TME (25). These effects may increase
lymphocytic infiltration, converting a cold tumor into a hot
tumor and overcoming immune exclusion, thereby improving ICI
efficacy (26).

Immunosuppressive effects may also arise however, predominantly
mediated by the recruitment of myeloid-derived suppressor cells
(MDSCs) and regulatory T cells (Tregs), along with the release of
immunosuppressive cytokines (27). Additionally, radiation-induced
changes in tumor vasculature may exacerbate hypoxia, hinder drug
distribution, and limit lymphocyte infiltration. The balance between
these contrasting effects appears heavily dependent on dose and
fractionation. While conventional fractionation tends to be
immunosuppressive, higher doses per fraction may trigger both
stimulatory and suppressive responses. Hypofractionated regimens
for example, are associated with a greater type-1 interferon (IFN-I)
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response, while ablative doses, such as 20 Gy in 1 fraction, can induce
extensive cell death and release of cytosolic DNA, deplete radioresistant
suppressive immune cells, and enhance CD8+ lymphocyte-mediated
antitumor activity (28). These effects appear transient however, as
subsequent recruitment of MDSCs and Tregs can induce an
immunosuppressive environment, limiting the duration of the
antitumor response (28, 29). Additionally, ablative doses may
significantly damage endothelial cells and disrupt vasculature.

In contrast, low-dose radiotherapy induces less DNA damage,
but may reshape the TME to foster a favorable immune response,
enhancing both innate and adaptive immunity. It may polarize
macrophages toward a M1 phenotype, increasing TNF alpha and
IL-12 production and supporting immune recognition. Unlike high
dose radiation, it may also promote normalization of the tumor
vasculature, improving oxygenation and immune cell infiltration,
thereby enhancing ICI response (29). These immunologic effects of
low dose radiation alone may not be significant enough to overcome
tumor growth however, particularly in the case of bulky disease or
radioresistant histologies such as melanoma.

With a spectrum of immunomodulatory effects and distinct
dose-response profiles, the optimal dose and fractionation for
radiation use with immunotherapy has yet to be defined and may
vary between histologies. Pre-clinical data evaluating radiation with
anti-CTLA-4 antibodies has suggested that fractionated regimens
may elicit a greater abscopal effect than single fraction (30).
Additionally, combined regimens utilizing both high and low-
dose radiation may harness the immunologic properties of both
to achieve synergistic results (31). By creating a heterogenous dose
distribution, the enhanced therapeutic ratio and greater-than-
expected responses seen with SFRT likely hinge upon this effect
and may be ideal for use with ICIs in bulky disease. Additionally,
administering a conventional radiation treatment after SFRT, such
as the 20 Gy in 4 fractions this patient received, appears to improve
response rates, possibly reflecting the impact of fractionation and
varying dose responses.

Spatially fractionated radiation therapy and
immunotherapy

Dating back to 1909, SFRT was originally designed as a method
of delivering high doses of radiation to a tumor while avoiding
detrimental toxicity, particularly to the skin and subcutaneous
tissue. By delivering high dose radiation through a physical block
with holes called a GRID, a non-uniform dose distribution was
created, described as having high dose “peaks” and low dose
“valleys” (32). The interspersing of low dose regions between the
high dose radiation allowed for greater normal tissue recovery and
increased OAR tolerance. Cases utilizing this technique have
reported significant symptom relief and tumor shrinkage, thought
to be immunologic in nature with bystander and abscopal effects.
Modern technology and image guidance have expanded use of
SERT with 3D and VMAT planning, improving targeting and safe
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delivery (33). This has allowed treatment of tumors located
throughout the body, and expanded SFRT techniques. In addition
to traditional 2D GRID, 3D LATTICE, microbeam, and minibeam
techniques have been developed, altering beam thickness and
spatial distribution in hopes of optimizing immunologic
outcomes and applicability across tumor sizes and locations (14).
SBRT-based PArtial Tumor irradiation of HYpoxic clonogenic cells
(SBRT-PATHY), represents another form of SFRT specifically
targeting hypoxic regions in bulky masses to potentiate response.
Excellent clinical outcomes and abscopal effects have been reported
and investigation into the utility and selection for SFRT remain
ongoing (34).

Regarding the use of radiation with immunotherapy, responses
vary significantly between studies, reflecting differences in histology,
molecular alterations, radiation dose and fractionation,
chemotherapy and immunotherapy agents, and unique individual
biology. Several conventionally fractionated trials such as the
PACIFIC trial and CheckMate 577 have demonstrated benefit to
adjuvant ICI with definitive radiation (27). Conversely, conflicting
results have been seen between studies such as KEYNOTE-A18 and
CALLA, and other trials such as the JAVELIN trial have failed to
show significant improvement (27, 35, 36). In the high-dose setting,
SBRT to a single tumor site followed by pembrolizumab has shown
increased overall response rates in advanced non-small cell lung
cancer (37). A prospective study combining hypofractionated
radiation in metastatic cancers, including melanoma, with PD-1
inhibitors also demonstrated prolonged and complete responses,
including patients who had previously progressed while on PD-1
inhibitors (38). Data has been mixed however, with a randomized
phase I/II trial of pembrolizumab with SBRT or hypofractionated
radiation showing no benefit in progression free or overall survival
compared to pembrolizumab alone (39). Further data is needed to full
understand the impact of radiation, including dose and fractionation,
tumor size and histology, and immunotherapy timing.

While no large trials exist utilizing SFRT with immunotherapy,
case reports such as this support concurrent use and suggest synergistic
results. Jiang et al. reported a case of LATTICE SFRT combined with
anti-PD1 immunotherapy in a patient with metastatic non-small cell
lung cancer who achieved a complete response 5 months following
concurrent treatment (40). Likewise, Mohiuddin et al. reported a case
of advanced melanoma with acquired resistance to multiple systemic
agents, including ipilimumab, IL-2, and pembrolizumab, that
subsequently had a complete response following GRID SFRT and
pembrolizumab, suggesting combination therapy may re-sensitive
patients to treatment (41). This case represents another such
example, demonstrating a complete pathologic response with
minimal radiation induced toxicity aside from pneumonitis treated
with corticosteroids. Now almost a few years post treatment, including
a year off any therapy, her case supports the use of SFRT with ICIs,
offering hope for those with bulky disease.
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Limitations and future directions

While this case highlights a successful treatment using SFRT
and immunotherapy, the degree to which each component
contributed to her response remains unknown. Robust responses
to immunotherapy alone have been seen in melanoma, and the
degree to which radiation altered her outcome cannot be
ascertained (3). Furthermore, while bulky tumors may have a
reduced response to ICI therapy, it remains unclear if dual ICI
therapy may overcome this. Nevertheless, the immunomodulatory
effects of radiation and potential to overcome barriers such as
hypoxia suggest synergistic potential. Continued studies
evaluating the combined effects of SFRT and immunotherapy
may help elucidate the impact of multimodal therapy and refine
treatment regimens.

Conclusion

While immunotherapy has transformed outcomes in advanced
melanoma, responses rates are limited, particularly in bulky disease.
This case highlights the potential for SFRT to enhance ICI efficacy in
advanced melanoma, leading to a complete pathologic response with
minimal radiation-related toxicity. While the contribution of each
treatment modality remains uncertain, the significant and sustained
tumor remission suggests a synergistic effect between SFRT and dual
ICI therapy. Given the challenges of treating bulky melanoma and the
limitations of immunotherapy in this setting, SFRT represents a
promising strategy to reshape the tumor microenvironment, improve
immune infiltration, and augment systemic response. This case adds
to the growing evidence supporting the integration of SFRT with
immunotherapy and underscores the potential for multimodal
approaches to improve outcomes in advanced melanoma. Future
studies are needed to optimize radiation dose, fractionation, and
patient selection to maximize outcomes.
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