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Background: Hepatocellular carcinoma (HCC) remains a leading cause of

cancer-related mortality worldwide, and the prognosis of advanced disease is

still poor. Immunotherapy plus targeted therapy has reshaped systemic

treatment; however, the overall efficacy is limited. Increasing evidence

suggests that combining systemic therapy with locoregional modalities such as

transarterial chemoembolization (TACE) or radiotherapy (RT) may improve

survival. Artificial intelligence (AI) offers the potential to refine prognostic

prediction and optimize patient selection.

Methods: We retrospectively analyzed 351 patients with unresectable HCC,

classified into three groups: immunotherapy plus targeted therapy (P+T,

n = 89), P+T combined with TACE (n = 154), and P+T combined with RT

(n = 108). Univariable Cox regression identified prognostic factors, which

were incorporated into five AI models. Model performance was evaluated

using the C-index, Brier score, time-dependent receiver operating characteristics

(ROC), decision curve analysis (DCA), and calibration.

Results: The median overall survival (mOS) was 12.8 months in the P+T group,

19.7 months in the TACE group (p = 0.011), and 22.3 months in the RT group

(p = 0.030). Among the five AI models, random survival forest (RSF) showed the

best performance (C-index = 0.731) with favorable calibration. In the time-

dependent ROC analysis, the RSF model achieved area under the curve (AUC)

values of 0.844, 0.824, and 0.806 for the prediction of 6-, 12-, and 24-month

survival, respectively. DCA indicated a higher net clinical benefit with the RSF

model, and the calibration plots showed good agreement between the predicted

and the observed survival.
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Conclusion: Immunotherapy plus targeted therapy combined with TACE or RT

significantly improved survival in advanced HCC compared with systemic therapy

alone. RSF provided superior predictive performance and identified critical

prognostic variables, supporting AI-assisted approaches as valuable tools for

individualized risk stratification and treatment optimization in advanced HCC.
KEYWORDS

artificial intelligence, immunotherapy, targeted therapy, radiotherapy, TACE,
hepatocellular carcinoma
Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies worldwide and ranks among the leading causes of

cancer-related mortality, particularly in Asia (1). Despite advances

in screening and early detection, the majority of patients are

still diagnosed at an advanced stage, and the prognosis remains

dismal (2, 3). The median overall survival (mOS) of patients

with advanced HCC seldom exceeds 1 year with conventional

therapies, highlighting the urgent need for more effective

treatment strategies (4).

In recent years, programmed cell death 1 (PD-1) inhibitors

combined with molecular targeted agents have reshaped systemic

therapy for HCC (5, 6). While these regimens have shown promise,

the overall response rate and the durability of the benefit remain

unsatisfactory. To enhance treatment efficacy, growing evidence

supports combining systemic therapy with locoregional modalities.

Among these, transarterial chemoembolization (TACE) and

radiotherapy (RT) are the most commonly applied in advanced

HCC. Studies suggest that triple therapy—immunotherapy plus

targeted therapy together with TACE or RT—may provide superior

survival outcomes compared with systemic therapy alone (7, 8).

However, not all patients experience meaningful benefits from

these treatment strategies. The high heterogeneity of HCC makes it

challenging to identify optimal candidates for immunotherapy,

targeted therapy, or their combination with local treatments (9).

Artificial intelligence (AI) has emerged as a promising approach to

address this issue (10). By integrating diverse data sources—clinical

information, imaging biomarkers, and treatment variables—AI-

based models can capture complex, nonlinear associations beyond

the capacity of conventional statistical tools, thus improving the

prediction of treatment benefits (11–13).

Building on this rationale, we designed the present study to

explore whether AI can improve prognostic evaluation in advanced

HCC treated with immunotherapy plus targeted therapy, with or

without RT or TACE. By developing AI-assisted models, we

aimed to refine risk stratification, identify patients most likely to

benefit from combination strategies, and ultimately provide
02
evidence to guide individualized therapeutic decision-making in

clinical practice.
Materials and methods

Patient screening and selection

A total of 351 patients with unresectable HCC were retrospectively

enrolled from three hospitals in China. Patients were classified into

three groups: the PD-1 inhibitor plus targeted therapy group (P+T

group, n = 89), the PD-1 inhibitor plus targeted therapy combined with

TACE group (TACE group, n = 154), and the PD-1 inhibitor plus

targeted therapy combined with RT group (RT group, n = 108).

Participants were selected based on the following inclusion criteria:

1) a clinically or pathologically confirmed diagnosis of HCC; 2) BCLC

Barcelona Clinic Liver Cancer (BCLC) stage B/C; 3) Child–Pugh A/B;

4) receipt of P+T; and 5) a subset of patients additionally receiving

TACE or RT. The exclusion criteria were as follows: 1) Child–Pugh C;

2) contraindications to TACE or RT; 3) hepatic encephalopathy or

refractory ascites; and 4) incomplete clinical data.

This study complied with the Declaration of Helsinki and was

approved by the Ethics Committee of Luzhou People’s Hospital.

Owing to its retrospective nature, informed consent was waived.
Treatment

PD-1 inhibitors (such as camrelizumab, tislelizumab, and

sintilimab) and targeted agents (i.e., sorafenib or lenvatinib) were

administered. In this retrospective study, the decision for patients to

receive additional TACE or RT was made collaboratively by the

treating physicians and the patients. The considerations included

anticipated treatment efficacy, potential toxicities, economic

burden, and patient preferences. Written informed consent was

obtained from all patients before therapy initiation.

Overall survival (OS) was defined as the time from the start of

treatment to death from any cause or the last follow-up.
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AI modeling

Patients were randomly divided into a training set and a validation

set at a ratio of 6:4. In the training set, univariate Cox regression was

first performed to identify statistically significant prognostic variables

for inclusion in the subsequent machine learning models. While

univariate Cox regression captures linear relationships, it may

overlook complex, nonlinear interactions. To address this, several

machine learning models were used, including random survival forest

(RSF), least absolute shrinkage and selection operator (LASSO),

gradient boosting machine (GBM), decision tree (DT), and support

vector machine (SVM), in order to capture nonlinear associations and

enhance the predictive accuracy. The model with the highest

concordance index (C-index) in the training set was selected. In the

validation set, model performance was evaluated using the Brier score,

time-dependent receiver operating characteristic (ROC) curves,

decision curve analysis (DCA), and calibration plots.

To enhance interpretability, variable importance plots and

partial dependence plots (PDPs) were generated.
Statistical analysis

Differences between categorical variables were compared using

the chi-square test, while continuous variables were analyzed with

the Student’s t-test or the Mann–WhitneyU test, depending on data

distribution. Survival curves were estimated using the Kaplan–

Meier method, and group differences were assessed with the log-
Frontiers in Oncology 03
rank test. All statistical analyses were performed with R software

(version 4.4.3), and a two-sided p-value <0.05 was considered

statistically significant.
Results

Clinical features and survival outcomes

A total of 351 patients with unresectable HCC were included,

with 89 in the P+T group, 154 in the TACE group, and 108 in the

RT group. The majority of the patients were men (83.1%–89.8%)

and positive for hepatitis B virus (HBV) (63.0%–74.7%). The

majority had Child–Pugh A liver function (71.3%–75.3%) and

advanced BCLC stage C disease (79.2%–93.5%). Tumor burden

was high, with the majority of patients presenting with two or more

nodules (70.4%–85.1%) and a large tumor size (≥5 cm in the

majority). Portal vein tumor thrombus (PVTT) was present in

approximately 55.8%–67.6% of patients, while extrahepatic spread

(M1) was observed in 27.8%–40.4%. Compared with the P+T

group, no significant differences were observed in the baseline

characteristics between the TACE group and the RT group,

including demographic factors, liver function, tumor burden,

disease stage, and laboratory parameters (Table 1).

Compared with the P+T group (mOS = 12.8 months), both the

TACE group (mOS = 19.7 months, p = 0.011) and the RT group

(mOS = 22.3 months, p = 0.030) demonstrated significant survival

benefits (Figure 1).
TABLE 1 Baseline characteristics of the patients in the P+T, TACE, and RT groups.

P+t TACE Pa RT Pb

Patients, n 89 154 108

Age (years), mean ± SD 54.2 ± 11.2 52.2 ± 10.4 0.175 53.8 ± 11.5 0.823

Sex 0.524 0.244

Women 15 (16.9%) 20 (13.0%) 11 (10.2%)

Men 74 (83.1%) 134 (87.0%) 97 (89.8%)

HBV 0.212 0.737

No 30 (33.7%) 39 (25.3%) 40 (37.0%)

Yes 59 (66.3%) 115 (74.7%) 68 (63.0%)

Child–Pugh 0.665 1.000

A 64 (71.9%) 116 (75.3%) 77 (71.3%)

B 25 (28.1%) 38 (24.7%) 31 (28.7%)

AFP 0.317 1.000

<400 46 (51.7%) 68 (44.2%) 55 (50.9%)

≥400 43 (48.3%) 86 (55.8%) 53 (49.1%)

BCLC 0.307 0.101

(Continued)
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Prognostic factor selection

Univariable Cox analysis demonstrated that OS was significantly

associated with age, the Child–Pugh score, the alpha-fetoprotein

(AFP) level, the BCLC stage, the tumor size, PVTT, metastasis,

aspartate aminotransferase (AST), and treatment (Table 2).
Frontiers in Oncology 04
AI model

A total of 351 patients were allocated into a training cohort (n =

210) and a validation cohort (n = 141) at a 6:4 ratio. The baseline

characteristics were comparable between the two cohorts

(Supplementary Table S1).
TABLE 1 Continued

P+t TACE Pa RT Pb

B 13 (14.6%) 32 (20.8%) 7 (6.48%)

C 76 (85.4%) 122 (79.2%) 101 (93.5%)

Number 0.507 0.125

1 17 (19.1%) 23 (14.9%) 32 (29.6%)

≥2 72 (80.9%) 131 (85.1%) 76 (70.4%)

Size 0.410 0.578

<5 22 (24.7%) 29 (18.8%) 25 (23.1%)

≥ 5, <10 34 (38.2%) 56 (36.4%) 49 (45.4%)

≥10 33 (37.1%) 69 (44.8%) 34 (31.5%)

PVTT 0.549 0.390

No 35 (39.3%) 68 (44.2%) 35 (32.4%)

Yes 54 (60.7%) 86 (55.8%) 73 (67.6%)

N 0.797 0.603

No 37 (41.6%) 68 (44.2%) 50 (46.3%)

Yes 52 (58.4%) 86 (55.8%) 58 (53.7%)

M 0.051 0.085

No 53 (59.6%) 112 (72.7%) 78 (72.2%)

Yes 36 (40.4%) 42 (27.3%) 30 (27.8%)

Leukocyte 6.29 ± 2.27 6.34 ± 2.55 0.862 6.68 ± 2.49 0.250

<4 11 (12.4%) 19 (12.3%) 14 (13.0%)

≥4 78 (87.6%) 135 (87.7%) 94 (87.0%)

Platelet 172 ± 94.6 168 ± 89.1 0.717 173 ± 82.1 0.916

<100 22 (24.7%) 33 (21.4%) 20 (18.5%)

≥100 67 (75.3%) 121 (78.6%) 88 (81.5%)

ALT 58.6 ± 47.7 62.6 ± 108 0.685 64.5 ± 73.4 0.495

<40 36 (40.4%) 88 (57.1%) 53 (49.1%)

≥40 53 (59.6%) 66 (42.9%) 55 (50.9%)

AST 90.2 ± 78.0 78.2 ± 72.0 0.238 78.2 ± 76.8 0.283

<40 23 (25.8%) 44 (28.6%) 35 (32.4%)

≥40 66 (74.2%) 110 (71.4%) 73 (67.6%)
P+T, PD-1 inhibitors plus targeted therapy; TACE, transarterial chemoembolization; RT, radiotherapy; HBV, hepatitis B virus; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer;
PVTT, portal vein tumor thrombosis; N, lymph node involvement; M, metastasis; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
aP+T vs. TACE.
bP+T vs. RT.
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In the training set, the risk factors identified by univariable Cox

regression were incorporated into the multivariable Cox, LASSO, DT,

RSF, and GBM models. Among these, the RSF model achieved the

highest concordance index (C-index = 0.731). In the validation set,

the RSF model showed favorable calibration, with Brier scores of

0.144, 0.215, and 0.218 at 6, 12, and 24 months, respectively (Table 3).

For the time-dependent ROC analysis, the area under the curve

(AUC) values at 6, 12, and 24 months were, respectively, 0.754, 0.731,

and 0.732 for the Cox model (Figure 2A); 0.722, 0.699, and 0.687 for

LASSO (Figure 2B); 0.681, 0.739, and 0.688 for DT (Figure 2C); 0.844,

0.824, and 0.806 for RSF (Figure 2D); and 0.701, 0.689, and 0.717 for

GBM (Figure 2E). The DCA showed greater net clinical benefits than

the treat-all or treat-none strategies at 6 months (Supplementary

Figure 1A), 12 months (Supplementary Figure 1B), and 24 months

(Supplementary Figure 1C). The calibration curves (Supplementary

Figure 1D) indicated good consistency between the predicted and the

observed survival at each time point.

Variable importance analysis of the RSF model revealed dynamic

prognostic patterns across different time points. At 6 months, AST,

tumor size, and treatment were the top contributors to survival

prediction. By 12 months, tumor size, PVTT, and AST became the

most influential variables. At 24 months, tumor size and PVTT

consistently remained the strongest predictors, followed by age and

AST (Figure 3). The PDP of the RSF model showed that unfavorable

clinical factors, including a high AFP, Child–Pugh B, the presence of

PVTT or metastasis, advanced BCLC stage, a large tumor size, and

an elevated AST, were consistently associated with poorer survival

probabilities. In contrast, patients receiving TACE or RT demonstrated

improved survival compared with those on systemic therapy

alone (Figure 4).
Discussion

In this retrospective study, we confirmed that, in patients

with advanced HCC, immunotherapy plus targeted therapy
FIGURE 1

Kaplan–Meier curves of overall survival (OS) in patients treated with PD-1 inhibitors plus targeted therapy (P+T), transarterial chemoembolization
(TACE), or radiotherapy (RT). OS, overall survival.
TABLE 2 Univariable Cox for overall survival.

HR Univariable p

Age (years) 0.99 0.97–1.00 0.033

Sex (men/women) 0.83 0.57–1.20 0.322

HBV (positive/negative) 1.33 0.99–1.79 0.062

Child (B/A) 1.70 1.28–2.27 <0.001

AFP (≥400/<400 ng/ml) 1.58 1.21–2.07 <0.001

BCLC (C/B) 2.60 1.64–4.12 <0.001

Number (≥2/<2) 1.27 0.90–1.79 0.178

Size

<5 Reference

≥ 5, <10 1.25 0.85–1.83 0.261

≥10 1.88 1.30–2.74 <0.001

PVTT (positive/
negative)

1.85 1.39–2.46 <0.001

N (positive/negative) 1.24 0.95–1.62 0.115

M (positive/negative) 1.56 1.18–2.06 0.002

Leukocyte 1.01 0.96–1.07 0.589

Platelet 1.00 1.00–1.00 0.675

ALT 1.00 1.00–1.00 0.107

AST 1.00 1.00–1.00 0.002

Treatment

P+T Reference

TACE 0.65 0.47–0.91 0.011

RT 0.67 0.47–0.96 0.03
P+T, PD-1 inhibitors plus targeted therapy; TACE, transarterial chemoembolization; RT,
radiotherapy; HBV, hepatitis B virus; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver
Cancer; PVTT, portal vein tumor thrombosis; N, lymph node involvement; M, metastasis;
ALT, alanine aminotransferase; AST, aspartate aminotransferase
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combined with a locoregional treatment (i.e., TACE or RT)

significantly improved survival compared with systemic therapy

alone. Specifically, the mOS reached 19.7 months in the TACE

group and 22.3 months in the RT group, while it was only 12.8

months in the P+T group. Furthermore, the application of AI-based

modeling refined the prognostic evaluation and improved survival

prediction, highlighting its value in clinical decision-making.

The survival benefits of triple therapy are supported by several

high-impact studies. Llovet et al. (14) reported that the combination

of systemic and locoregional therapy improved tumor control and

prolonged survival in advanced HCC. McPartlin and Dawson (15)

and Tan et al. (16) demonstrated that the addition of locoregional

modalities could enhance the efficacy of systemic therapy by

promoting antigen release, improving T-cell infiltration, and
Frontiers in Oncology 06
remodeling the tumor microenvironment. Similarly, Sun et al.

(17) emphasized that the integration of local and systemic approaches

could overcome resistance mechanisms and synergistically enhance

therapeutic efficacy. Together, these findings support the rationale for

triple therapy in certain patients.

AI provides unique advantages in prognostic modeling (18).

Traditional Cox regression is constrained by linear assumptions

and proportional hazards, which may oversimplify relationships

in heterogeneous populations. In contrast, AI models can

accommodate nonlinear interactions and high-dimensional data

(19). In this study, the RSF model outperformed Cox, LASSO, DT,

and GBM, achieving the highest C-index (0.731) and demonstrating

superior calibration, ROC, and DCA results. As an ensemble

learning method, RSF was used in this study due to its capacity to
TABLE 3 Performance comparison of the different models for survival prediction.

Model C-index
Brier

(6 months)
Brier

(12 months)
Brier

(24 months)
ROC

(6 months)
ROC

(12 months)
ROC

(24 months)

Cox 0.664 0.146 0.206 0.205 0.754 0.731 0.732

LASSO 0.667 0.154 0.222 0.224 0.722 0.699 0.687

DT 0.647 0.144 0.215 0.218 0.681 0.739 0.688

RSF 0.731 0.134 0.185 0.189 0.844 0.824 0.806

GBM 0.694 0.169 0.272 0.295 0.701 0.689 0.717
ROC, receiver operating characteristics; LASSO, least absolute shrinkage and selection operator; DT, decision tree; RSF, random survival forest; GBM, gradient boosting machine
FIGURE 2

Receiver operating characteristic (ROC) curves for predicting overall survival using different models. (A) Cox. (B) Least absolute shrinkage and
selection operator (LASSO). (C) Decision tree (DT). (D) Random survival forest (RSF). (E) Gradient boosting machine (GBM).
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directly handle high-dimensional variables without the need for

preselection. RSF, as an ensemble method, performs automatic

variable selection during model fitting, thereby identifying the

most informative predictors from a large pool of variables. This

approach is particularly useful in high-dimensional settings as it

reduces overfitting, handles missing data efficiently, and avoids the

loss of important nonlinear predictors that may be excluded by

traditional variable selection methods (20–23).

While the RSF model demonstrates strong predictive

performance, its practical application in clinical decision-making

remains underexplored. The model can be used to stratify patients

based on predicted survival outcomes, enabling clinicians to

identify those most likely to benefit from specific treatments. For

instance, patients predicted to have a poor prognosis may be

prioritized for more aggressive treatments or closer monitoring,

while those with a better prognosis may be considered for less

intensive therapies, thus optimizing resource allocation and

minimizing unnecessary toxicity. Furthermore, the ability of the

RSF model to integrate complex, high-dimensional data from

clinical variables, treatments, and biomarkers makes it a valuable

tool for personalized treatment strategies, aligning with the goals of

precision medicine.

The variable importance and partial dependence analyses

revealed that tumor size, PVTT, and AST were consistently the
Frontiers in Oncology 07
most influential prognostic factors at 6, 12, and 24 months. These

variables are well-established prognostic factors in clinical practice. A

larger tumor size and the presence of PVTT indicate a higher tumor

burden and a more advanced disease, both of which are known to be

associated with poor prognosis (24, 25). Similarly, an elevated AST

level reflects liver function impairment, which is crucial in predicting

patient outcomes in HCC, as liver dysfunction is a key determinant of

treatment response and survival (26). The importance of these

variables aligns with current clinical knowledge, confirming their

role in guiding treatment decisions for patients with HCC. Our

findings suggest that these factors, when considered in combination,

can provide a more robust prediction of survival outcomes and help

personalize treatment strategies (27). Patients with large tumors, with

PVTT, or with an elevated AST exhibited significantly worse

outcomes, whereas those treated with TACE or RT demonstrated

persistently improved survival (28–30). This reinforces the clinical

value of integrating locoregional and systemic therapies in the

management of advanced HCC.

The clinical implications of these findings are substantial.

Advanced HCC is highly heterogeneous, and uniform treatment

strategies may not be optimal. AI-assisted prognostic models such as

RSF provide data-driven tools to stratify patients by risk and identify

those most likely to benefit from triple therapy. This individualized

approach facilitates tailored treatment decisions, improves cost-
FIGURE 3

Variable importance for overall survival prediction at different time points (6, 12, and 24 months). AST, aspartate aminotransferase; PVTT, portal vein
tumor thrombosis; AFP, alpha-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; M, metastasis.
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effectiveness, and reduces unnecessary toxicity for patients unlikely to

respond, thereby advancing precision oncology in HCC.

However, several limitations must be acknowledged. Firstly, the

retrospective nature of the study carries inherent risks of selection bias

despite the balanced baseline features across groups. Secondly,

heterogeneity in the treatment strategies, including the RT dose, the

TACE protocols, and the selection of PD-1 inhibitors or targeted

agents, may have influenced the outcomes. Thirdly, the study

population was derived from three centers in China, potentially

limiting generalizability. Finally, external validation in larger,

prospective, and ethnically diverse cohorts, as well as the integration
Frontiers in Oncology 08
of radiomics, genomics, and immune profiling, will be necessary to

further enhance the predictive performance of AI models.

In conclusion, this study demonstrated that immunotherapy plus

targeted therapy combined with TACE or RT significantly prolonged

survival in patients with advanced HCC compared with systemic

therapy alone. The RSF model exhibited superior predictive

performance and identified key prognostic variables, providing a

robust AI-based framework for individualized prognostic evaluation.

These findings underscore the potential of integrating AI with

multimodal treatment strategies to refine risk stratification and

optimize therapeutic decision-making in advanced HCC.
FIGURE 4

Partial dependence survival profiles for key clinical variables. AST, aspartate aminotransferase; PVTT, portal vein tumor thrombosis; AFP, alpha-
fetoprotein; BCLC, Barcelona Clinic Liver Cancer; M, metastasis.
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