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and Ruigiang Xin*

Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China

Background: Accurate preoperative prediction of endometrial cancer (EC)
aggressiveness is critical for individualized treatment planning. This study
proposes a method for integrating multimodal data to improve the prediction of
aggressiveness in EC.

Methods: A total of 207 patients with pathologically confirmed EC were
retrospectively enrolled. The patients were randomized (7:3) into a training cohort
(n=144) and a test cohort (n=63). All patients underwent preoperative MRI including
T2-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient
mapping, and contrast-enhanced T1-weighted imaging (CE-T1WI). Deep learning
(DL) models using ResNet50, ResNet101, DenseNet121 were employed to extract
deep transfer learning (DTL) features. Three decision-level fusion strategies (mean,
maximum, and minimum) were applied to integrate the multi-sequence model
outputs, from which the optimal DTL model was selected. Subsequently, a
combined clinical-DTL model was constructed by incorporating independent
clinical predictors identified through univariate and multivariate logistic regression
analyses. Model performance was evaluated using the area under the receiver
operating characteristic curve (AUC), clinical utility by decision curve analysis, and
goodness-of-fit through calibration curves.

Results: The mean fusion model integrating features from T2WI, ADC, and CE-
T1WI (excluding DWI due to suboptimal performance) yielded the best predictive
efficacy, with an AUC of 0.963 [95% confidence interval (Cl): 0.933-0.992] in the
training cohort and 0.925 (95% Cl: 0.859-0.990) in the test cohort. The
combined clinical-DTL model further achieved AUCs of 0.972 (95%Cl: 0.948—
0.997) and 0.950 (95%Cl: 0.891-1.000) in the training and test cohorts,
respectively. Decision curve analysis and calibration analyses confirmed its
clinical utility and good model fit.

Conclusion: The proposed DTL model based on multiparametric MRI
demonstrates strong performance in preoperatively predicting aggressive EC.
The integration of clinical features further enhances model performance, offering
a non-invasive tool to support personalized treatment strategies.

endometrial carcinoma, aggressive, histological grade, deep learning, artificial
intelligence, multiparametric magnetic resonance imaging
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Introduction

Endometrial carcinoma (EC) has become one of the most
common gynecologic malignancies in developed countries (1, 2).
In recent years, rising global obesity rates and population aging have
contributed to a significant increase in its incidence and mortality
(3). The 2023 FIGO staging system introduces key updates by
incorporating histological type, tumor growth pattern, and
molecular classification—factors that critically influence prognosis
and guide personalized treatment strategies (4, 5). Histologically,
EC is now categorized into two major groups: Non-aggressive
tumors and aggressive tumors (5). Any aggressive histology
without myometrial invasion is classified as stage IC (previously
IA). Aggressive tumors with myometrial involvement are now stage
IIC (formerly IB). For early-stage, low-grade EC, lymphadenectomy
does not improve progression-free or overall survival but increases
surgical complications (e.g., bleeding, infection, lymphocyst
formation, lymphedema). Infracolic omentectomy (total/partial) is
recommended for stage I-II serous carcinoma, carcinosarcoma, and
undifferentiated carcinoma (6). Aggressive histologies are
consistently associated with higher recurrence rates (7, 8).
Dilation and curettage, as a crucial preoperative assessment
method for EC, can only obtain partial tumor tissue due to its
blind procedure, resulting in merely 80% concordance with
postoperative pathology (9-11). This limitation may compromise
treatment decision-making accuracy, highlighting the persistent
challenges in preoperative pathological evaluation. Conventional
imaging modalities demonstrate limited capability in preoperative
assessment of aggressiveness in EC. Therefore, it is particularly
important to determine a method that can accurately predict the
aggressiveness of EC prior to surgery.

Currently, artificial intelligence has been widely applied in the
diagnosis, treatment, and prognosis detection of tumors (12, 13).
Otani et al. built a multiparametric magnetic resonance images
(MRI)-based machine learning classifier to predict histological
grade in patients with EC, achieving an AUC of 0.77 (14). Xue
et al. found that a combined model that incorporated clinical and
radiomics features exhibited good performance in the prediction of
histological grade in EC, achieving an AUC of 0.91 in the test set (15).
While the results are promising, manual feature extraction remains
time-consuming and lacks interpretability. To address these
limitations, deep learning (DL) algorithms have been widely
adopted in medical image analysis with growing clinical acceptance
(16, 17). DL, as a branch of artificial intelligence, enables automatic
feature extraction from medical images and demonstrates superior
performance compared to manual feature extraction methods (18).
The success of DL models relies heavily on large annotated datasets,
yet the medical field faces significant challenges including limited
annotation resources and data acquisition difficulties. Deep transfer
learning (DTL) has thus emerged as a crucial solution to these
obstacles (19, 20). DTL utilizes models pre-trained on large-scale
natural image datasets (e.g., ImageNet) as foundational networks,
leveraging their acquired knowledge to address medical image
classification tasks. This approach significantly reduces the demand
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for extensive training data while simultaneously enhancing model
convergence speed and classification performance (21). Dai et al. (22)
found that a DL model based on non-enhanced Multiparametric MRI
and clinical features can effectively differentiate uterine sarcomas
from atypical leiomyomas, which is superior to radiomics. However,
research on the non-invasive prediction of aggressiveness of EC using
DTL model remains limited. Furthermore, fusion models
demonstrate significantly superior generalization capability
compared to individual machine learning models (23). Therefore,
we incorporated corresponding algorithms to evaluate the overall
predictive performance in this study.

In this study, we aim to develop DTL models, and clinical-DTL
model for preoperatively predicting aggressive of EC based on
multiparametric MRI before surgery, and to provide a basis for
clinicians to make personalized and precise treatment plans.

Materials and methods
Patients

This retrospective study was approved by the institutional review
board of our center, and the requirement of informed consent was
waived (Approval No: 2023-LHKY-086-01). A retrospective analysis
was performed on patients who underwent continuous surgical
resection of EC in our hospital from February 2016 to July 2023.
The inclusion criteria were as follows (1): all patients underwent
surgical treatment without preoperative chemoradiotherapy; (2)
preoperative MRI performed within two weeks prior to surgery; (3)
MRI sequences including T2-weighted imaging (T2WI), diffusion-
weighted imaging (DWI), apparent diffusion coefficient (ADC)
mapping, and contrast-enhanced T1-weighted imaging (CE-T1WT)
sequences; and (4) complete clinical data. The exclusion criteria were
as follows:(1) patients had undergone chemotherapy or radiotherapy
before surgery; (2) the maximum diameter of the tumor was less than
10 mm on MRI; (3) suboptimal imaging quality of MRI scan; and (4)
incomplete MRI sequences and clinical data. A flow chart of the
inclusion and exclusion criteria for the patients is shown Figure 1.
Clinical data were collected from all patients, including age,
hypertension, diabetes, age at menarche, menopausal status, body
mass index, CA125 and CA19-9 levels.

Histologic grading and grouping

The histological grading of endometrioid carcinoma is
primarily determined by the proportion of solid (non-glandular)
growth: grade 1 tumors have <5% solid component, grade 2 have 6-
50%, and grade 3 are defined by >50% solid growth (24). Aggressive
histological types are composed of high-grade endometrioid
carcinoma (grade 3), serous, clear cell, undifferentiated, mixed,
mesonephric-like, gastrointestinal mucinous type carcinomas, and
carcinosarcomas. Non-aggressive histological types are composed
of low-grade (grade 1 and 2) endometrioid carcinoma (5).

frontiersin.org


https://doi.org/10.3389/fonc.2025.1694223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Guo et al.

10.3389/fonc.2025.1694223

Patients with pathologically confirmed EC who underwent preoperative pelvic
contrast-enhanced MRI between February 2016 and July 2023 (n=274)

Patients had undergone chemotherapy
or radiotherapy before surgery (n=15)

Suboptimal imaging quality of MRI
scan (n=7)

}_

A 4

The maximum diameter of the tumor
was less than 10 mm on MRI (n=17)

Incomplete MRI sequences and clinical
data (n=28)

207 patients were enrolled
Aggressive (n=42)/ Non-aggressive (n=165)

!

Training cohort
n=144

FIGURE 1
Flowchart of included and excluded patients with endometrial cancer.

MR images acquisition and segmentation

MRI examination was performed using 3.0-T scanners (Siemens
MAGNETOM Skyra and United Imaging uMR780) with an 8-channel
coil. The imaging protocol included axial T2ZWI, DWI, ADC, and CE-
T1IWIL The detailed MRI parameters were as follows: Siemens
MAGNETOM Skyra T2WTI: Repetition time (TR)/Echo time(TE)
5,000 ms/77 ms, Field of view (FOV) 230 x 230 mm, matrix 320 x
320, slice thickness/gap 4 mm/1 mm; DWI: TR/TE 4,300 ms/57 ms,
FOV 200 x 200 mm, matrix 160 x 160, slice thickness/gap 4 mm/4 mmy;
CE-T1WI: TR/TE 2.77ms/1.55 ms, FOV 340 x 340 mm, matrix 320 x
224, slice thickness/gap 3 mm/0 mm; United Imaging uMR780 T2WTI:
TR/TE 3,393 ms/81.6 ms, FOV 230 x 230 mm, matrix 320 x 320, slice
thickness/gap 4 mm/1 mm; DWI: TR/TE 4,337 ms/78 ms, FOV 200 x
200 mm, matrix 160 x 160, slice thickness/gap 4 mm/4 mm; CE-TIWTI:
TR/TE 4.19 ms/1.99 ms, FOV 340 x 270 mm, matrix 320 x 224, slice
thickness/gap 3 mm/0 mm. Axial CE-TIWI was performed by
injecting gadobutrol (Gadavist; Bayer Healthcare Pharmaceuticals,
Germany) at a rate of 2.0 mL/s and at a dosage of 0.2 mmol/L/kg.

The ITK-SNAP (version 3.8.0; https://www.itksnap.org)
software was used to manually segment the lesion. A radiologist
with 7 years of working experience manually delineated the region
of interest (ROI) slice by slice, including cystic and necrotic areas, to
generate a three-dimensional ROI volume of the tumor. After the
ROI delineation was completed, another radiologist with 20 years
of experience in imaging diagnosis reviewed the ROIs. In case of
disagreement between the two, a third expert with 30 years of
experience was consulted to provide a final decision.
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Test cohort
n=63

Preprocessing and DTL feature extraction

The patients were randomized (7:3) into a training cohort and a
test cohort. For each patient, the slice displaying the largest ROI was
chosen as the representative image. To streamline image complexity
and mitigate background interference in the algorithmic model,
only the minimal bounding rectangle of the ROI section was
retained. Recent research on peritumoral regions informed our
decision to expand this rectangle by an additional 10 pixels (25). To
ensure uniform intensity distribution across RGB channels, Z-score
normalization was applied to the images. The normalized images
were then used as inputs for our model. We adopted real-time data
augmentation techniques, such as random cropping and both
horizontal and vertical flips, during the training process. For test
images, however, only normalization was conducted.

Development of DTL models

In this study, three classical network architectures-
DenseNet121, ResNet101, and ResNet50-were employed. The
neural networks were pre-trained on the ImageNet dataset, and
partial pre-trained weights were transferred to the classification task
in this study to facilitate knowledge transfer. Subsequently, a
comprehensive fine-tuning strategy was adopted, where all
network layers were set to an unfrozen state, enabling the model
to deeply adapt to the current task and thereby enhance model
performance. During training, data augmentation techniques such
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as random cropping were introduced to improve model robustness
and generalization capability. Furthermore, the model was further
optimized using a cosine decay learning rate scheduler, cross-
entropy loss function, and stochastic gradient descent optimizer.
A five-fold cross-validation strategy was applied to the training set
to optimize and evaluate the final model. In the feature extraction
stage, the penultimate layer of the fine-tuned convolutional neural
network was utilized as a high-dimensional feature output layer.
The DenseNet121, ResNet101, and ResNet50 models were used
to build DTL models based on single-sequence for T2WI, DWI,
ADC, and CE-T1WI. To understand the distinct characteristics of
each modality, we conducted a detailed comparative analysis of the
results from each. Additionally, to explore the integration of
multimodal and multi-model approaches, we combined their
results using three different methods: mean, maximum, and
minimum value fusion. The model with the best predictive
performance was selected as the optimal DTL model in this study.

Computational complexity analysis

The computational complexity of the models was systematically
assessed using the following three standard metrics: 1) the number
of parameters, indicating model size and memory footprint; 2) the
number of floating-point operations per second (FLOPs), calculated
for an input size of 224x224 to measure the theoretical
computational cost; and 3) inference speed, reported in frames
per second (FPS) and measured on an NVIDIA GeForce RTX 4090
GPU under FP16 precision with a batch size of 1 to simulate a
realistic deployment scenario.

Development of clinical model and
clinical-DTLmodel

Univariate and multivariate logistic regression analyses were
performed to identify clinical features associated with the
aggressiveness in EC. Features demonstrating significant differences
were considered independent risk factors and were subsequently used
to establish clinical models using three distinct classifiers: ExtraTrees,
Support Vector Machine, and RandomForest. The best-performing
model was then chosen as the final clinical model. Furthermore, these
significant clinical features were integrated with DTL predictions
through logistic regression analysis to develop a combined clinical-
DTL model, which was visualized using a nomogram. The final
model integrated clinical and DTL features to improve
prediction accuracy.

Statistical analysis

Data analyses were performed using Python (version 3.7.12;
https://www.python.org). Continuous variables are expressed as
mean * standard deviation, and categorical variables as
frequencies (percentages). The Kolmogorov-Smirnov test was
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used to assess normality. Student’s t test or Mann-Whitney U test
was used for continuous variables, and the Chi-square test or
Fisher’s exact test was used for categorical variables. Variance
inflation factor analysis was used to assess multicollinearity
among the clinical variables. The area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity, and
specificity were employed for the evaluation of each model. The
optimal cutoff point for calculating accuracy, sensitivity, and
specificity was determined by maximizing Youden’s index.
Delong test was applied to compare the models. Calibration
curves, Hosmer-Lemeshow analysis, and decision curve analysis
were used to assess the performance of the models and net clinical
benefit. p < 0.05 was considered statistically significant difference.

Results
Patients characteristics

A total of 207 patients were included. There were 144 patients in
the training cohort (32 cases in aggressive and 112 cases in non-
aggressive), 63 patients (10 cases in aggressive and 53 cases in non-
aggressive) in the test cohort. According to the statistical results,
none of the clinical characteristics were significantly different
between the training and test cohorts (all p>0.05), and the clinical
characteristics of the patients are listed in Table 1. Univariate and
multivariate logistic regression analyses indicated that age and
CA125 were independent risk factors for aggressive of EC
(Table 2). To further evaluate the collinearity between age and
CA-125, the variance inflation factors were calculated, which were
1.22 for age and 1.02 for CA-125, suggesting the absence of
multicollinearity. The clinical model based on the ExtraTrees
classifier demonstrated the highest AUC, with values of 0.830
(95% CI: 0.751-0.908) in the training cohort and 0.789 (95% CI:
0.643-0.934) in the test cohort. The AUCs achieved by the other
two classifiers are presented in Supplementary Table 1.

The performance of the DTL models based
on single-MRI sequence

The performance of the DTL models based on singe-MRI
sequence is shown in Table 3. The ROC curves of the different
DTL models are shown in Figure 2. In the training cohorts, all
twelve DTL models demonstrated satisfactory diagnostic
performance in predicting EC aggressiveness, with AUC values
ranging from 0.744 (95% CI: 0.637-0.852) to 0.920 (95% CI: 0.872-
0.967). In the test cohorts, the model based on DWI showed
relatively low diagnostic performance, while the remaining nine
models achieved AUC values between 0.736 (95% CI: 0.568-0.904)
and 0.892 (95% CI: 0.803-0.982). Among them, the ResNet101
model based on CE-T1WI performed best, with AUCs of 0.920
(95% CI: 0.872-0.967) in the training cohort and 0.884 (95% CI:
0.776-0.992) in the test cohort. This was followed by the ResNet50
model, which achieved AUCs of 0.905 (95% CI: 0.855-0.955) in the
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TABLE 1 The clinical characteristics of the patients.

Clinical Training cohort  Test cohort

features (n=144) (n=63)

Age (year) 60.02 + 8.83 58.68 + 8.79 0316

Age_at_menarche 14.97(14.00,16.00) 14.84 0.423

(year) (13.00,16.00)

BMI (kg/m?) 26.41(22.50,30.72) (22;3;;15) 0.197

CA125 (U/ml) 45.19 (13.33,37.40) 59:51 0.176
(14.99,47.15)

CA19_9 (U/ml) 109.96 (9.48,36.78) 85.78 (9.99,38.68) 0.486

Menopause 0.374

no 25(17.36) 15(23.81)

yes 119(82.64) 48(76.19)

Hypertension 0.32

no 81(56.25) 30(47.62)

yes 63(43.75) 33(52.38)

Diabetes 0.972

no 98(68.06) 42(66.67)

yes 46(31.94) 21(33.33)

BMI, body mass index.

training cohort and 0.880 (95% CI: 0.780-0.963) in the test cohort.
Among the models based on T2WI, ResNet50 exhibited the highest
performance, with an AUC of 0.853 (95% CI: 0.781-0.926) in the
training cohort and 0.892 (95% CI: 0.803-0.982) in the test cohort.

Model interpretation

Gradient-weighted Class Activation Mapping (Grad-CAM)
visually illustrates the decision-making basis of models through
heatmaps, where varying color intensities represent the attention
strength of convolutional neural networks to different image regions.

TABLE 2 Preoperative clinical risk factors for aggressive endometrial cancer.

10.3389/fonc.2025.1694223

In our study, the CE-TIWI modality demonstrated the most
consistent model performance across all tested modalities. Figure 3
exemplarily presents the application of Grad-CAM by visualizing
activated regions in the final convolutional layer for cancer type
prediction. Figure 3A presents heatmap generated by the Grad-CAM
technique, displaying tumor probability estimate and the
corresponding inputted MRI image. The region highlighted by the
DTL model show strong concordance with area that radiologist
identified as critical for EC assessment. Figure 3B illustrates a
representative misclassification case from the test dataset, where a
tumor was incorrectly predicted as negative, with the yellow arrow
pointing to the tumor location. This visualization technique helps
identify which image areas exert the most critical influence on model
predictions, thereby providing essential insights for understanding
the decision-making process and enhancing model interpretability.

The optimal DTL model

The performance of the different fusion models for predicting
aggressive is shown in Table 4. The mean fusion model was selected
as the optimal prediction model with the highest AUC of 0.925(95%
CI: 0.859-0.990) in the test cohort. Notably, due to the suboptimal
performance of the DWI model on the test cohort, we excluded the
DWI modality from our fusion process. However, for
comprehensive insights, the results including the DWI modality
can be found in Supplementary Table 2. A systematic comparison of
the computational complexity of each model was conducted to
assess the practical utility and deployment potential of the proposed
hybrid model, as shown in Table 5.

Clinical and combined model

A combined model based on DTL and clinical features was
established, and visualized by a nomogram. The diagnostic
performance of the combined model for aggressive EC in the two
cohorts is presented in Table 6. The ROC curves of the different

Features Univariate analysis Multivariate analysis
OR (95%Cl) p value OR (95%Cl) p value

Age 1.010 (1.003-1.016) 0.012 1.008 (1.002-1.014) 0.042
Age_at_menarche 0.986 (0.954-1.019) 0.483

BMI 0.997 (0.986-1.008) 0.658

CA125 1.002 (1.001-1.002) 0.000 1.002 (1.001-1.002) <0.001
CA19.9 1.001 (0.999-1.003) 0.211

Hypertension 1.000 (0.890-1.123) 1.000

Menopause 1.078 (0.926-1.255) 0.414

Diabetes 1.093 (0.966-1.236) 0.235

OR, odds ratio; CI, confidence interval.

Frontiers in Oncology

frontiersin.org


https://doi.org/10.3389/fonc.2025.1694223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Guo et al.

10.3389/fonc.2025.1694223

TABLE 3 The performance of the deep transfer learning models based on single-MRI sequence.

Sequences Models AUC (95% CI) Accuracy Sensitivity Specificity
CE-T1wI
DenseNet121 0.858 (0.782-0.933) 0771 0.875 0.741
Training ResNet101 0.920 (0.872-0.967) 0.889 0.812 0911
ResNet50 0.905 (0.855-0.955) 0.778 0.906 0.741
DenseNet121 0.781 (0.652-0.910) 0.778 0.600 0.811
Test ResNet101 0.884 (0.776-0.992) 0.778 0.800 0.774
ResNet50 0.880 (0.797-0.963) 0.794 0.900 0.774
T2WI
DenseNet121 0.829 (0.736-0.922) 0.840 0.687 0.884
Training ResNet101 0.807 (0.731-0.884) 0.764 0.719 0.777
ResNet50 0.853 (0.781-0.926) 0.826 0.687 0.866
DenseNet121 0.792 (0.630-0.953) 0.635 0.800 0.604
Test ResNet101 0.783 (0.654-0.913) 0.683 0.700 0.679
ResNet50 0.892 (0.803-0.982) 0.778 0.800 0.774
DWI
DenseNet121 0.744 (0.637-0.852) 0.792 0.594 0.848
Training ResNet101 0.739 (0.635-0.842) 0.750 0.531 0812
ResNet50 0.786 (0.685-0.887) 0.833 0.594 0.902
DenseNet121 0.592 (0.386-0.799) 0.746 0.300 0.830
Test ResNet101 0.626 (0.450-0.802) 0.556 0.700 0528
ResNet50 0.730 (0.570-0.891) 0476 0.900 0396
ADC
DenseNet121 0.809 (0.725-0.893) 0.847 0.500 0.946
Training ResNet101 0.867 (0.801-0.934) 0.799 0.812 0.795
ResNet50 0.804 (0.717-0.891) 0.729 0.781 0.714
DenseNet121 0.775 (0.616-0.933) 0.746 0.600 0.774
Test ResNet101 0.755 (0.605-0.904) 0.667 0.700 0.660
ResNet50 0.736 (0.568-0.904) 0.698 0.700 0.698

CE-T1WI, contrast-enhanced T1-weighted imaging; T2WT, T2 weighted imaging; DWI, diffusion weighted imaging; ADC, apparent diffusion coefficient; AUC, the area under the receiver

operating characteristic curve; CI, confidence interval.

models are shown in Figures 4A, B. The combined model
demonstrated the best diagnostic performance, achieving AUC of
0.967 (95% CI: 0.948-0.997) and 0.950 (95% CI: 0.891-1.000) in the
training and test cohorts, respectively. These results were
significantly superior to those of the clinical model (p < 0.001 and
0.021, respectively), but showed no statistically significant difference
compared to the DTL model. Comparisons of the AUCs among the
other models are provided in Supplementary Figure 1. For the
combined model, the areas under the precision-recall curve were
0.925 (95% CI: 0.882-0.968) and 0.782 (95% CI: 0.680-0.884) for the
training and test cohorts, respectively.

Frontiers in Oncology

Figure 4C shows the nomogram. The nomogram intuitively
predicted the risk of aggressiveness in EC, with the final formula as
follows: 16.3354 * DL + 0.0074 * CA125 + -0.0677 * Age
-3.4869056170053083. The calibration curve indicated good
agreement between the predicted values of the combined model
and the actual observations, with Brier scores of 0.056 and 0.075 in
the training and test cohorts, respectively. The Hosmer-Lemeshow
test results in both the training and test cohorts demonstrated
adequate model fit (p = 0.890 and 0.445, respectively) (Figures 5A, B).
Decision curve analysis further revealed that the combined model
provided higher net benefit across a wide threshold probability
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Receiver operating characteristic curves of the different deep transfer learning models.
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(A) Representative heatmap of a successful prediction in the test dataset, constructed using the Gradient-weighted Class Activation Mapping
(Grad-CAM) technique. (B) Prediction failure visualized with Grad-CAM, showing an example where a tumor image was incorrectly classified

as negative.
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TABLE 4 The performance of different fusion model.

10.3389/fonc.2025.1694223

Cohorts Models AUC (95% CI)
mean 0.963 (0.933-0.992)
Training maximum 0.930 (0.889-0.971)
minimum 0.922 (0.865-0.980)
mean 0.925 (0.859-0.990)
Test maximum 0.861 (0.770-0.952)
minimum 0.905 (0.820-0.990)

AUC, the area under the receiver operating characteristic curve; CI, confidence interval.

range in both the training (approximately 1% to 100%) and test
(approximately 2% to 70%) cohorts (Figures 5C, D), demonstrating
broader clinical utility.

Discussion

In this study, a combined model based on preoperative
multiparametric MRI-derived DTL features and incorporating
clinical features achieved the best performance for classifying EC
aggressiveness. The non-invasive prediction model constructed in
this study may provide clinicians with new therapeutic guidance for
treating EC patients.

Early-stage nonaggressive EC demonstrates favorable prognosis
with minimal recurrence risk, in contrast to advanced-stage aggressive
variants which exhibit poor clinical outcomes (26). Akgay A et al. found
that ADC measurements can helps to differentiate histological grade
(27). However, Bonatti M et al. reported that ADC values didn’t show
any statistically significant correlation with tumor grade (28). In
addition to conventional imaging methods, Yue et al. found that
diffusion kurtosis imaging could be used for histological grade
assessments of EC (29). Unlike conventional MRI sequences,
advanced DWI techniques require higher main magnetic field
strength and gradient performance, which may limit their clinical
utility. Since these functional imaging sequences are not part of
standard protocols, they prolong examination time and increase the
risk of scan failure. Two studies developed combined models based on
radiomics features and clinical features of patients to predict the
pathological grade of EC (30, 31). However, due to the manual
feature extraction required by radiomics, as well as the redundancy
of the extracted features, further studies are needed.

TABLE 5 Comparison of computational complexity (Input size:
3x224x224).

ETET FLOPs Inference Speed
(M) (©) (FPS)
ResNet50 255 4.1 ~2050
ResNet101 445 7.8 ~1250
DenseNet121 7.9 29 ~2450

FLOPs, Floating-point operations per second; FPS, Frames Per Second.
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Accuracy Sensitivity Specificity
0931 0.844 0.955
0.799 0.937 0.759
0.840 0.875 0.830
0.810 0.900 0.792
0.746 0.900 0.717
0.873 0.700 0.906

DTL has been successfully applied to automatic segmentation of
EC lesions, assessment of myometrial infiltration, and
differentiation of benign and malignant lesions (32-35). The
features extracted by DTL are automatically learned from the
data, avoiding manual feature extraction, and are usually more
competitive in classification performance than traditional radiomics
methods. In this study, we leveraged three deep neural network
architectures (ResNet50, ResNetl01, and DenseNetl121), pre-
trained on ImageNet. These models were subsequently fine-tuned
to predict the aggressiveness of EC. Given the complementary value
of different MRI sequences in characterizing tumor features, we
developed DTL models incorporating features extracted from
multiple MRI sequences to identify the optimal approach for
predicting tumor differentiation of EC. Our results demonstrated
that the DTL model based on CE-T1WI sequences exhibited
superior predictive capability, showing the most consistent
performance across all three CNN architectures. This finding
aligns with previous studies on nasopharyngeal cancer and
cervical cancer (36, 37). This may be attributed to the high
malignancy and vascular density of aggressive EC, which creates
distinct contrast uptake patterns after administration and enhances
heterogeneity between aggressive and non-aggressive.

Recent studies suggest that decision-level fusion (late fusion),
which integrates predictions from multiple models, outperforms
both feature-level fusion (early fusion) and single-model
approaches in diagnostic performance (23). In this study,
maximum, minimum, and mean fusion strategies were applied to
integrate multi-modal outcomes at the decision level, leading to
further improvement in model performance. The average fusion
method achieved higher AUC values of 0.925 in the test cohort.
This finding is consistent with Ueno et al. (38), who also
demonstrated that combining texture features from multiple
sequences provides better predictive performance than single-
sequence features. A combined model incorporating DTL and
clinical features achieved an AUC of 0.950 in the test set, with
specificity increasing from 0.792 to 0.925. This indicates that clinical
variables provide significant value in enhancing model specificity.
Although the overall performance improvement was modest,
potentially due to the limited incremental information
contributed by the clinical model, these findings still establish an
important foundation for developing more precise multimodal
predictive frameworks. Future studies could focus on integrating
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TABLE 6 Diagnostic performance of the clinical, deep transfer learning, and combined model for aggressive of endometrial cancer.

10.3389/fonc.2025.1694223

Cohorts Models AUC (95% CI) Accuracy Sensitivity Specificity
Clinical 0.830 (0.751- 0.908) 0.743 0.750 0.741

Training DTL 0.963 (0.933- 0.992) 0.938 0.875 0.955
Combined 0.972 (0.948- 0.997) 0.903 0937 0.893
Clinical 0.789 (0.643 — 0.934) 0.825 0.600 0.868

Test DTL 0.925 (0.859- 0.990) 0.825 1.000 0.792
Combined 0.950 (0.891- 1.000) 0921 0.900 0925

DTL, deep transfer learning.

advanced fusion architectures such as attention mechanisms, or
incorporating additional high-value clinical variables to further
optimize model performance.

Due to the fact that ResNet can capture more feature
information, has stronger stability, and better model accuracy and
generalization ability (39), we chose ResNet and compared two
commonly used ResNet models: ResNet50 and ResNet101. From
the perspective of computational complexity analysis, the FLOPs of
ResNet101 (7.8G) are 1.9 times those of ResNet50 (4.1G), while its

AUC value on the CE-T1WTI test cohort (0.884) shows an 11.3%
improvement over ResNet50 (0.794). This indicates that although
increasing network depth significantly raises computational cost, it
may also lead to optimized classification performance by enabling
the learning of more complex hierarchical feature representations.
Compared to ResNet, DenseNet constructs a model through dense
connections, with each layer’s input including the outputs of all
previous layers, improving information transmission efficiency (40).
Theoretically, the performance is better than ResNet. However,
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FIGURE 4

Receiver operating characteristic curves of the three models for predicting aggressive endometrial cancer in the training (A) and test cohort (B);

(C) Nomogram for the prediction of aggressive endometrial cancer.
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FIGURE 5

Calibration curves for predicting aggressive endometrial cancer probability in the training (A) and test cohort (B). Decision curve analysis of all

models for patients in the training (C) and test cohort (D).

ResNet101 achieves a performance improvement through a
moderate increase in computational cost, indicating that based on
specific clinical analysis, ResNet may be more suitable for
distinguishing the types of EC.

The 2023 FIGO staging system elevates histological type to a
central role in risk stratification: aggressive histological types with
any myometrial involvement are classified as stage IIC, while those
without myometrial involvement are classified as stage IC. These
categories differ significantly in both treatment strategies and
prognosis, with extensive database series and retrospective reports
consistently demonstrating higher recurrence rates in aggressive
histological types (41, 42). Thus, the DTL model developed in our
study for noninvasive and accurate preoperative prediction of
histological subtypes carries important clinical implications. The
model not only substantially advances the decision-making timeline
—providing critical guidance to clinicians before postoperative
pathology reports become available, thereby enabling personalized
surgical planning—but also creates valuable opportunities for early
adjuvant therapy strategizing. If integrated into clinical systems, this
tool could help mitigate biases arising from diagnostic delays or

Frontiers in Oncology

inter-observer variability among pathologists, effectively preventing
both overtreatment and undertreatment of patients.

This study has several limitations. First, as a single-center
retrospective investigation, the fusion model was selected based
on its performance on the hold-out test set, which may lead to
performance overestimation, prospective multi-center validation is
necessary prior to its clinical application. Second, although the
sample size was relatively limited, the use of transfer learning
still contributed to effective predictive performance. Third, we
only selected the largest cross-sectional image of the tumor for
DTL feature extraction, which may lose some important three-
dimensional information inside the EC. Fourth, potential bias from
scanner heterogeneity may affect the model’s generalizability.
Finally, manual segmentation of individual cases is highly time-
consuming and, to some extent, lacks standardization. Subsequent
studies will employ DL techniques to automatically segment the
entire tumor, which will help reduce operator-dependent variability
and enhance workflow efficiency.

Our combined model, which incorporates DTL and clinical
features based on multiparametric MRI, has the potential to
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distinguish aggressive EC. This capability can aid clinicians in
tailoring individualized treatment strategies for EC patients.
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