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Preoperative prediction of
aggressive endometrial cancer
using multiparametric MRI-based
deep transfer learning models
Ran Guo, Ruchen Peng, Yancui Li , Xiuzhi Shen, Jiali Zhong
and Ruiqiang Xin*

Department of Radiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
Background: Accurate preoperative prediction of endometrial cancer (EC)

aggressiveness is critical for individualized treatment planning. This study

proposes a method for integrating multimodal data to improve the prediction of

aggressiveness in EC.

Methods: A total of 207 patients with pathologically confirmed EC were

retrospectively enrolled. The patients were randomized (7:3) into a training cohort

(n=144) and a test cohort (n=63). All patients underwent preoperative MRI including

T2-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient

mapping, and contrast-enhanced T1-weighted imaging (CE-T1WI). Deep learning

(DL) models using ResNet50, ResNet101, DenseNet121 were employed to extract

deep transfer learning (DTL) features. Three decision-level fusion strategies (mean,

maximum, and minimum) were applied to integrate the multi-sequence model

outputs, from which the optimal DTL model was selected. Subsequently, a

combined clinical-DTL model was constructed by incorporating independent

clinical predictors identified through univariate and multivariate logistic regression

analyses. Model performance was evaluated using the area under the receiver

operating characteristic curve (AUC), clinical utility by decision curve analysis, and

goodness-of-fit through calibration curves.

Results: The mean fusion model integrating features from T2WI, ADC, and CE-

T1WI (excluding DWI due to suboptimal performance) yielded the best predictive

efficacy, with an AUC of 0.963 [95% confidence interval (CI): 0.933–0.992] in the

training cohort and 0.925 (95% CI: 0.859–0.990) in the test cohort. The

combined clinical-DTL model further achieved AUCs of 0.972 (95%CI: 0.948–

0.997) and 0.950 (95%CI: 0.891–1.000) in the training and test cohorts,

respectively. Decision curve analysis and calibration analyses confirmed its

clinical utility and good model fit.

Conclusion: The proposed DTL model based on multiparametric MRI

demonstrates strong performance in preoperatively predicting aggressive EC.

The integration of clinical features further enhancesmodel performance, offering

a non-invasive tool to support personalized treatment strategies.
KEYWORDS
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Introduction

Endometrial carcinoma (EC) has become one of the most

common gynecologic malignancies in developed countries (1, 2).

In recent years, rising global obesity rates and population aging have

contributed to a significant increase in its incidence and mortality

(3). The 2023 FIGO staging system introduces key updates by

incorporating histological type, tumor growth pattern, and

molecular classification—factors that critically influence prognosis

and guide personalized treatment strategies (4, 5). Histologically,

EC is now categorized into two major groups: Non-aggressive

tumors and aggressive tumors (5). Any aggressive histology

without myometrial invasion is classified as stage IC (previously

IA). Aggressive tumors with myometrial involvement are now stage

IIC (formerly IB). For early-stage, low-grade EC, lymphadenectomy

does not improve progression-free or overall survival but increases

surgical complications (e.g., bleeding, infection, lymphocyst

formation, lymphedema). Infracolic omentectomy (total/partial) is

recommended for stage I-II serous carcinoma, carcinosarcoma, and

undifferentiated carcinoma (6). Aggressive histologies are

consistently associated with higher recurrence rates (7, 8).

Dilation and curettage, as a crucial preoperative assessment

method for EC, can only obtain partial tumor tissue due to its

blind procedure, resulting in merely 80% concordance with

postoperative pathology (9–11). This limitation may compromise

treatment decision-making accuracy, highlighting the persistent

challenges in preoperative pathological evaluation. Conventional

imaging modalities demonstrate limited capability in preoperative

assessment of aggressiveness in EC. Therefore, it is particularly

important to determine a method that can accurately predict the

aggressiveness of EC prior to surgery.

Currently, artificial intelligence has been widely applied in the

diagnosis, treatment, and prognosis detection of tumors (12, 13).

Otani et al. built a multiparametric magnetic resonance images

(MRI)-based machine learning classifier to predict histological

grade in patients with EC, achieving an AUC of 0.77 (14). Xue

et al. found that a combined model that incorporated clinical and

radiomics features exhibited good performance in the prediction of

histological grade in EC, achieving an AUC of 0.91 in the test set (15).

While the results are promising, manual feature extraction remains

time-consuming and lacks interpretability. To address these

limitations, deep learning (DL) algorithms have been widely

adopted in medical image analysis with growing clinical acceptance

(16, 17). DL, as a branch of artificial intelligence, enables automatic

feature extraction from medical images and demonstrates superior

performance compared to manual feature extraction methods (18).

The success of DL models relies heavily on large annotated datasets,

yet the medical field faces significant challenges including limited

annotation resources and data acquisition difficulties. Deep transfer

learning (DTL) has thus emerged as a crucial solution to these

obstacles (19, 20). DTL utilizes models pre-trained on large-scale

natural image datasets (e.g., ImageNet) as foundational networks,

leveraging their acquired knowledge to address medical image

classification tasks. This approach significantly reduces the demand
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for extensive training data while simultaneously enhancing model

convergence speed and classification performance (21). Dai et al. (22)

found that a DLmodel based on non-enhancedMultiparametric MRI

and clinical features can effectively differentiate uterine sarcomas

from atypical leiomyomas, which is superior to radiomics. However,

research on the non-invasive prediction of aggressiveness of EC using

DTL model remains limited. Furthermore, fusion models

demonstrate significantly superior generalization capability

compared to individual machine learning models (23). Therefore,

we incorporated corresponding algorithms to evaluate the overall

predictive performance in this study.

In this study, we aim to develop DTL models, and clinical-DTL

model for preoperatively predicting aggressive of EC based on

multiparametric MRI before surgery, and to provide a basis for

clinicians to make personalized and precise treatment plans.
Materials and methods

Patients

This retrospective study was approved by the institutional review

board of our center, and the requirement of informed consent was

waived (Approval No: 2023-LHKY-086-01). A retrospective analysis

was performed on patients who underwent continuous surgical

resection of EC in our hospital from February 2016 to July 2023.

The inclusion criteria were as follows (1): all patients underwent

surgical treatment without preoperative chemoradiotherapy; (2)

preoperative MRI performed within two weeks prior to surgery; (3)

MRI sequences including T2-weighted imaging (T2WI), diffusion-

weighted imaging (DWI), apparent diffusion coefficient (ADC)

mapping, and contrast-enhanced T1-weighted imaging (CE-T1WI)

sequences; and (4) complete clinical data. The exclusion criteria were

as follows:(1) patients had undergone chemotherapy or radiotherapy

before surgery; (2) the maximum diameter of the tumor was less than

10 mm onMRI; (3) suboptimal imaging quality of MRI scan; and (4)

incomplete MRI sequences and clinical data. A flow chart of the

inclusion and exclusion criteria for the patients is shown Figure 1.

Clinical data were collected from all patients, including age,

hypertension, diabetes, age at menarche, menopausal status, body

mass index, CA125 and CA19–9 levels.
Histologic grading and grouping

The histological grading of endometrioid carcinoma is

primarily determined by the proportion of solid (non-glandular)

growth: grade 1 tumors have ≤5% solid component, grade 2 have 6-

50%, and grade 3 are defined by >50% solid growth (24). Aggressive

histological types are composed of high-grade endometrioid

carcinoma (grade 3), serous, clear cell, undifferentiated, mixed,

mesonephric-like, gastrointestinal mucinous type carcinomas, and

carcinosarcomas. Non-aggressive histological types are composed

of low-grade (grade 1 and 2) endometrioid carcinoma (5).
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MR images acquisition and segmentation

MRI examination was performed using 3.0-T scanners (Siemens

MAGNETOM Skyra and United Imaging uMR780) with an 8-channel

coil. The imaging protocol included axial T2WI, DWI, ADC, and CE-

T1WI. The detailed MRI parameters were as follows: Siemens

MAGNETOM Skyra T2WI: Repetition time (TR)/Echo time(TE)

5,000 ms/77 ms, Field of view (FOV) 230 × 230 mm, matrix 320 ×

320, slice thickness/gap 4 mm/1 mm; DWI: TR/TE 4,300 ms/57 ms,

FOV 200 × 200mm,matrix 160 × 160, slice thickness/gap 4mm/4mm;

CE-T1WI: TR/TE 2.77ms/1.55 ms, FOV 340 × 340 mm, matrix 320 ×

224, slice thickness/gap 3 mm/0 mm; United Imaging uMR780 T2WI:

TR/TE 3,393 ms/81.6 ms, FOV 230 × 230 mm, matrix 320 × 320, slice

thickness/gap 4 mm/1 mm; DWI: TR/TE 4,337 ms/78 ms, FOV 200 ×

200 mm,matrix 160 × 160, slice thickness/gap 4 mm/4mm; CE-T1WI:

TR/TE 4.19 ms/1.99 ms, FOV 340 × 270 mm, matrix 320 × 224, slice

thickness/gap 3 mm/0 mm. Axial CE-T1WI was performed by

injecting gadobutrol (Gadavist; Bayer Healthcare Pharmaceuticals,

Germany) at a rate of 2.0 mL/s and at a dosage of 0.2 mmol/L/kg.

The ITK-SNAP (version 3.8.0; https://www.itksnap.org)

software was used to manually segment the lesion. A radiologist

with 7 years of working experience manually delineated the region

of interest (ROI) slice by slice, including cystic and necrotic areas, to

generate a three-dimensional ROI volume of the tumor. After the

ROI delineation was completed, another radiologist with 20 years

of experience in imaging diagnosis reviewed the ROIs. In case of

disagreement between the two, a third expert with 30 years of

experience was consulted to provide a final decision.
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Preprocessing and DTL feature extraction

The patients were randomized (7:3) into a training cohort and a

test cohort. For each patient, the slice displaying the largest ROI was

chosen as the representative image. To streamline image complexity

and mitigate background interference in the algorithmic model,

only the minimal bounding rectangle of the ROI section was

retained. Recent research on peritumoral regions informed our

decision to expand this rectangle by an additional 10 pixels (25). To

ensure uniform intensity distribution across RGB channels, Z-score

normalization was applied to the images. The normalized images

were then used as inputs for our model. We adopted real-time data

augmentation techniques, such as random cropping and both

horizontal and vertical flips, during the training process. For test

images, however, only normalization was conducted.
Development of DTL models

In this study, three classical network architectures-

DenseNet121, ResNet101, and ResNet50-were employed. The

neural networks were pre-trained on the ImageNet dataset, and

partial pre-trained weights were transferred to the classification task

in this study to facilitate knowledge transfer. Subsequently, a

comprehensive fine-tuning strategy was adopted, where all

network layers were set to an unfrozen state, enabling the model

to deeply adapt to the current task and thereby enhance model

performance. During training, data augmentation techniques such
FIGURE 1

Flowchart of included and excluded patients with endometrial cancer.
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as random cropping were introduced to improve model robustness

and generalization capability. Furthermore, the model was further

optimized using a cosine decay learning rate scheduler, cross-

entropy loss function, and stochastic gradient descent optimizer.

A five-fold cross-validation strategy was applied to the training set

to optimize and evaluate the final model. In the feature extraction

stage, the penultimate layer of the fine-tuned convolutional neural

network was utilized as a high-dimensional feature output layer.

The DenseNet121, ResNet101, and ResNet50 models were used

to build DTL models based on single-sequence for T2WI, DWI,

ADC, and CE-T1WI. To understand the distinct characteristics of

each modality, we conducted a detailed comparative analysis of the

results from each. Additionally, to explore the integration of

multimodal and multi-model approaches, we combined their

results using three different methods: mean, maximum, and

minimum value fusion. The model with the best predictive

performance was selected as the optimal DTL model in this study.
Computational complexity analysis

The computational complexity of the models was systematically

assessed using the following three standard metrics: 1) the number

of parameters, indicating model size and memory footprint; 2) the

number offloating-point operations per second (FLOPs), calculated

for an input size of 224×224 to measure the theoretical

computational cost; and 3) inference speed, reported in frames

per second (FPS) and measured on an NVIDIA GeForce RTX 4090

GPU under FP16 precision with a batch size of 1 to simulate a

realistic deployment scenario.
Development of clinical model and
clinical-DTLmodel

Univariate and multivariate logistic regression analyses were

performed to identify clinical features associated with the

aggressiveness in EC. Features demonstrating significant differences

were considered independent risk factors and were subsequently used

to establish clinical models using three distinct classifiers: ExtraTrees,

Support Vector Machine, and RandomForest. The best-performing

model was then chosen as the final clinical model. Furthermore, these

significant clinical features were integrated with DTL predictions

through logistic regression analysis to develop a combined clinical-

DTL model, which was visualized using a nomogram. The final

model integrated clinical and DTL features to improve

prediction accuracy.
Statistical analysis

Data analyses were performed using Python (version 3.7.12;

https://www.python.org). Continuous variables are expressed as

mean ± standard deviation, and categorical variables as

frequencies (percentages). The Kolmogorov–Smirnov test was
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used to assess normality. Student’s t test or Mann-Whitney U test

was used for continuous variables, and the Chi-square test or

Fisher’s exact test was used for categorical variables. Variance

inflation factor analysis was used to assess multicollinearity

among the clinical variables. The area under the receiver

operating characteristic curve (AUC), accuracy, sensitivity, and

specificity were employed for the evaluation of each model. The

optimal cutoff point for calculating accuracy, sensitivity, and

specificity was determined by maximizing Youden’s index.

Delong test was applied to compare the models. Calibration

curves, Hosmer-Lemeshow analysis, and decision curve analysis

were used to assess the performance of the models and net clinical

benefit. p < 0.05 was considered statistically significant difference.
Results

Patients characteristics

A total of 207 patients were included. There were 144 patients in

the training cohort (32 cases in aggressive and 112 cases in non-

aggressive), 63 patients (10 cases in aggressive and 53 cases in non-

aggressive) in the test cohort. According to the statistical results,

none of the clinical characteristics were significantly different

between the training and test cohorts (all p>0.05), and the clinical

characteristics of the patients are listed in Table 1. Univariate and

multivariate logistic regression analyses indicated that age and

CA125 were independent risk factors for aggressive of EC

(Table 2). To further evaluate the collinearity between age and

CA-125, the variance inflation factors were calculated, which were

1.22 for age and 1.02 for CA-125, suggesting the absence of

multicollinearity. The clinical model based on the ExtraTrees

classifier demonstrated the highest AUC, with values of 0.830

(95% CI: 0.751–0.908) in the training cohort and 0.789 (95% CI:

0.643–0.934) in the test cohort. The AUCs achieved by the other

two classifiers are presented in Supplementary Table 1.
The performance of the DTL models based
on single-MRI sequence

The performance of the DTL models based on singe-MRI

sequence is shown in Table 3. The ROC curves of the different

DTL models are shown in Figure 2. In the training cohorts, all

twelve DTL models demonstrated satisfactory diagnostic

performance in predicting EC aggressiveness, with AUC values

ranging from 0.744 (95% CI: 0.637–0.852) to 0.920 (95% CI: 0.872–

0.967). In the test cohorts, the model based on DWI showed

relatively low diagnostic performance, while the remaining nine

models achieved AUC values between 0.736 (95% CI: 0.568–0.904)

and 0.892 (95% CI: 0.803–0.982). Among them, the ResNet101

model based on CE-T1WI performed best, with AUCs of 0.920

(95% CI: 0.872–0.967) in the training cohort and 0.884 (95% CI:

0.776–0.992) in the test cohort. This was followed by the ResNet50

model, which achieved AUCs of 0.905 (95% CI: 0.855–0.955) in the
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training cohort and 0.880 (95% CI: 0.780–0.963) in the test cohort.

Among the models based on T2WI, ResNet50 exhibited the highest

performance, with an AUC of 0.853 (95% CI: 0.781–0.926) in the

training cohort and 0.892 (95% CI: 0.803–0.982) in the test cohort.
Model interpretation

Gradient-weighted Class Activation Mapping (Grad-CAM)

visually illustrates the decision-making basis of models through

heatmaps, where varying color intensities represent the attention

strength of convolutional neural networks to different image regions.
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In our study, the CE-T1WI modality demonstrated the most

consistent model performance across all tested modalities. Figure 3

exemplarily presents the application of Grad-CAM by visualizing

activated regions in the final convolutional layer for cancer type

prediction. Figure 3A presents heatmap generated by the Grad-CAM

technique, displaying tumor probability estimate and the

corresponding inputted MRI image. The region highlighted by the

DTL model show strong concordance with area that radiologist

identified as critical for EC assessment. Figure 3B illustrates a

representative misclassification case from the test dataset, where a

tumor was incorrectly predicted as negative, with the yellow arrow

pointing to the tumor location. This visualization technique helps

identify which image areas exert the most critical influence on model

predictions, thereby providing essential insights for understanding

the decision-making process and enhancing model interpretability.
The optimal DTL model

The performance of the different fusion models for predicting

aggressive is shown in Table 4. The mean fusion model was selected

as the optimal prediction model with the highest AUC of 0.925(95%

CI: 0.859–0.990) in the test cohort. Notably, due to the suboptimal

performance of the DWI model on the test cohort, we excluded the

DWI modality from our fusion process. However, for

comprehensive insights, the results including the DWI modality

can be found in Supplementary Table 2. A systematic comparison of

the computational complexity of each model was conducted to

assess the practical utility and deployment potential of the proposed

hybrid model, as shown in Table 5.
Clinical and combined model

A combined model based on DTL and clinical features was

established, and visualized by a nomogram. The diagnostic

performance of the combined model for aggressive EC in the two

cohorts is presented in Table 6. The ROC curves of the different
TABLE 2 Preoperative clinical risk factors for aggressive endometrial cancer.

Features Univariate analysis Multivariate analysis

OR (95%CI) p value OR (95%CI) p value

Age 1.010 (1.003–1.016) 0.012 1.008 (1.002–1.014) 0.042

Age_at_menarche 0.986 (0.954–1.019) 0.483

BMI 0.997 (0.986–1.008) 0.658

CA125 1.002 (1.001–1.002) 0.000 1.002 (1.001–1.002) <0.001

CA19_9 1.001 (0.999–1.003) 0.211

Hypertension 1.000 (0.890–1.123) 1.000

Menopause 1.078 (0.926–1.255) 0.414

Diabetes 1.093 (0.966–1.236) 0.235
OR, odds ratio; CI, confidence interval.
TABLE 1 The clinical characteristics of the patients.

Clinical
features

Training cohort
(n=144)

Test cohort
(n=63)

p value

Age (year) 60.02 ± 8.83 58.68 ± 8.79 0.316

Age_at_menarche
(year)

14.97(14.00,16.00)
14.84

(13.00,16.00)
0.423

BMI (kg/m2) 26.41(22.50,30.72)
25.78

(22.00,29.15)
0.197

CA125 (U/ml) 45.19 (13.33,37.40)
59.51

(14.99,47.15)
0.176

CA19_9 (U/ml) 109.96 (9.48,36.78) 85.78 (9.99,38.68) 0.486

Menopause 0.374

no 25(17.36) 15(23.81)

yes 119(82.64) 48(76.19)

Hypertension 0.32

no 81(56.25) 30(47.62)

yes 63(43.75) 33(52.38)

Diabetes 0.972

no 98(68.06) 42(66.67)

yes 46(31.94) 21(33.33)
BMI, body mass index.
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models are shown in Figures 4A, B. The combined model

demonstrated the best diagnostic performance, achieving AUC of

0.967 (95% CI: 0.948–0.997) and 0.950 (95% CI: 0.891–1.000) in the

training and test cohorts, respectively. These results were

significantly superior to those of the clinical model (p < 0.001 and

0.021, respectively), but showed no statistically significant difference

compared to the DTL model. Comparisons of the AUCs among the

other models are provided in Supplementary Figure 1. For the

combined model, the areas under the precision-recall curve were

0.925 (95% CI: 0.882-0.968) and 0.782 (95% CI: 0.680-0.884) for the

training and test cohorts, respectively.
Frontiers in Oncology 06
Figure 4C shows the nomogram. The nomogram intuitively

predicted the risk of aggressiveness in EC, with the final formula as

follows: 16.3354 * DL + 0.0074 * CA125 + -0.0677 * Age

-3.4869056170053083. The calibration curve indicated good

agreement between the predicted values of the combined model

and the actual observations, with Brier scores of 0.056 and 0.075 in

the training and test cohorts, respectively. The Hosmer-Lemeshow

test results in both the training and test cohorts demonstrated

adequate model fit (p = 0.890 and 0.445, respectively) (Figures 5A, B).

Decision curve analysis further revealed that the combined model

provided higher net benefit across a wide threshold probability
TABLE 3 The performance of the deep transfer learning models based on single-MRI sequence.

Sequences Models AUC (95% CI) Accuracy Sensitivity Specificity

CE-T1WI

Training

DenseNet121 0.858 (0.782–0.933) 0.771 0.875 0.741

ResNet101 0.920 (0.872–0.967) 0.889 0.812 0.911

ResNet50 0.905 (0.855–0.955) 0.778 0.906 0.741

Test

DenseNet121 0.781 (0.652–0.910) 0.778 0.600 0.811

ResNet101 0.884 (0.776–0.992) 0.778 0.800 0.774

ResNet50 0.880 (0.797–0.963) 0.794 0.900 0.774

T2WI

Training

DenseNet121 0.829 (0.736–0.922) 0.840 0.687 0.884

ResNet101 0.807 (0.731–0.884) 0.764 0.719 0.777

ResNet50 0.853 (0.781–0.926) 0.826 0.687 0.866

Test

DenseNet121 0.792 (0.630–0.953) 0.635 0.800 0.604

ResNet101 0.783 (0.654–0.913) 0.683 0.700 0.679

ResNet50 0.892 (0.803–0.982) 0.778 0.800 0.774

DWI

Training

DenseNet121 0.744 (0.637–0.852) 0.792 0.594 0.848

ResNet101 0.739 (0.635–0.842) 0.750 0.531 0.812

ResNet50 0.786 (0.685–0.887) 0.833 0.594 0.902

Test

DenseNet121 0.592 (0.386–0.799) 0.746 0.300 0.830

ResNet101 0.626 (0.450–0.802) 0.556 0.700 0.528

ResNet50 0.730 (0.570–0.891) 0.476 0.900 0.396

ADC

Training

DenseNet121 0.809 (0.725–0.893) 0.847 0.500 0.946

ResNet101 0.867 (0.801–0.934) 0.799 0.812 0.795

ResNet50 0.804 (0.717–0.891) 0.729 0.781 0.714

Test

DenseNet121 0.775 (0.616–0.933) 0.746 0.600 0.774

ResNet101 0.755 (0.605–0.904) 0.667 0.700 0.660

ResNet50 0.736 (0.568–0.904) 0.698 0.700 0.698
CE-T1WI, contrast-enhanced T1-weighted imaging; T2WI, T2 weighted imaging; DWI, diffusion weighted imaging; ADC, apparent diffusion coefficient; AUC, the area under the receiver
operating characteristic curve; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1694223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2025.1694223
FIGURE 2

Receiver operating characteristic curves of the different deep transfer learning models.
FIGURE 3

(A) Representative heatmap of a successful prediction in the test dataset, constructed using the Gradient-weighted Class Activation Mapping
(Grad-CAM) technique. (B) Prediction failure visualized with Grad-CAM, showing an example where a tumor image was incorrectly classified
as negative.
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range in both the training (approximately 1% to 100%) and test

(approximately 2% to 70%) cohorts (Figures 5C, D), demonstrating

broader clinical utility.
Discussion

In this study, a combined model based on preoperative

multiparametric MRI-derived DTL features and incorporating

clinical features achieved the best performance for classifying EC

aggressiveness. The non-invasive prediction model constructed in

this study may provide clinicians with new therapeutic guidance for

treating EC patients.

Early-stage nonaggressive EC demonstrates favorable prognosis

with minimal recurrence risk, in contrast to advanced-stage aggressive

variants which exhibit poor clinical outcomes (26). Akçay A et al. found

that ADC measurements can helps to differentiate histological grade

(27). However, Bonatti M et al. reported that ADC values didn’t show

any statistically significant correlation with tumor grade (28). In

addition to conventional imaging methods, Yue et al. found that

diffusion kurtosis imaging could be used for histological grade

assessments of EC (29). Unlike conventional MRI sequences,

advanced DWI techniques require higher main magnetic field

strength and gradient performance, which may limit their clinical

utility. Since these functional imaging sequences are not part of

standard protocols, they prolong examination time and increase the

risk of scan failure. Two studies developed combined models based on

radiomics features and clinical features of patients to predict the

pathological grade of EC (30, 31). However, due to the manual

feature extraction required by radiomics, as well as the redundancy

of the extracted features, further studies are needed.
Frontiers in Oncology 08
DTL has been successfully applied to automatic segmentation of

EC lesions, assessment of myometrial infiltration, and

differentiation of benign and malignant lesions (32–35). The

features extracted by DTL are automatically learned from the

data, avoiding manual feature extraction, and are usually more

competitive in classification performance than traditional radiomics

methods. In this study, we leveraged three deep neural network

architectures (ResNet50, ResNet101, and DenseNet121), pre-

trained on ImageNet. These models were subsequently fine-tuned

to predict the aggressiveness of EC. Given the complementary value

of different MRI sequences in characterizing tumor features, we

developed DTL models incorporating features extracted from

multiple MRI sequences to identify the optimal approach for

predicting tumor differentiation of EC. Our results demonstrated

that the DTL model based on CE-T1WI sequences exhibited

superior predictive capability, showing the most consistent

performance across all three CNN architectures. This finding

aligns with previous studies on nasopharyngeal cancer and

cervical cancer (36, 37). This may be attributed to the high

malignancy and vascular density of aggressive EC, which creates

distinct contrast uptake patterns after administration and enhances

heterogeneity between aggressive and non-aggressive.

Recent studies suggest that decision-level fusion (late fusion),

which integrates predictions from multiple models, outperforms

both feature-level fusion (early fusion) and single-model

approaches in diagnostic performance (23). In this study,

maximum, minimum, and mean fusion strategies were applied to

integrate multi-modal outcomes at the decision level, leading to

further improvement in model performance. The average fusion

method achieved higher AUC values of 0.925 in the test cohort.

This finding is consistent with Ueno et al. (38), who also

demonstrated that combining texture features from multiple

sequences provides better predictive performance than single-

sequence features. A combined model incorporating DTL and

clinical features achieved an AUC of 0.950 in the test set, with

specificity increasing from 0.792 to 0.925. This indicates that clinical

variables provide significant value in enhancing model specificity.

Although the overall performance improvement was modest,

potentially due to the limited incremental information

contributed by the clinical model, these findings still establish an

important foundation for developing more precise multimodal

predictive frameworks. Future studies could focus on integrating
TABLE 4 The performance of different fusion model.

Cohorts Models AUC (95% CI) Accuracy Sensitivity Specificity

Training

mean 0.963 (0.933–0.992) 0.931 0.844 0.955

maximum 0.930 (0.889–0.971) 0.799 0.937 0.759

minimum 0.922 (0.865–0.980) 0.840 0.875 0.830

Test

mean 0.925 (0.859–0.990) 0.810 0.900 0.792

maximum 0.861 (0.770–0.952) 0.746 0.900 0.717

minimum 0.905 (0.820–0.990) 0.873 0.700 0.906
AUC, the area under the receiver operating characteristic curve; CI, confidence interval.
TABLE 5 Comparison of computational complexity (Input size:
3×224×224).

Model
Params
(M)

FLOPs
(G)

Inference Speed
(FPS)

ResNet50 25.5 4.1 ~2050

ResNet101 44.5 7.8 ~1250

DenseNet121 7.9 2.9 ~2450
FLOPs, Floating-point operations per second; FPS, Frames Per Second.
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advanced fusion architectures such as attention mechanisms, or

incorporating additional high-value clinical variables to further

optimize model performance.

Due to the fact that ResNet can capture more feature

information, has stronger stability, and better model accuracy and

generalization ability (39), we chose ResNet and compared two

commonly used ResNet models: ResNet50 and ResNet101. From

the perspective of computational complexity analysis, the FLOPs of

ResNet101 (7.8G) are 1.9 times those of ResNet50 (4.1G), while its
Frontiers in Oncology 09
AUC value on the CE-T1WI test cohort (0.884) shows an 11.3%

improvement over ResNet50 (0.794). This indicates that although

increasing network depth significantly raises computational cost, it

may also lead to optimized classification performance by enabling

the learning of more complex hierarchical feature representations.

Compared to ResNet, DenseNet constructs a model through dense

connections, with each layer’s input including the outputs of all

previous layers, improving information transmission efficiency (40).

Theoretically, the performance is better than ResNet. However,
TABLE 6 Diagnostic performance of the clinical, deep transfer learning, and combined model for aggressive of endometrial cancer.

Cohorts Models AUC (95% CI) Accuracy Sensitivity Specificity

Training

Clinical 0.830 (0.751– 0.908) 0.743 0.750 0.741

DTL 0.963 (0.933– 0.992) 0.938 0.875 0.955

Combined 0.972 (0.948– 0.997) 0.903 0.937 0.893

Test

Clinical 0.789 (0.643 – 0.934) 0.825 0.600 0.868

DTL 0.925 (0.859– 0.990) 0.825 1.000 0.792

Combined 0.950 (0.891– 1.000) 0.921 0.900 0.925
DTL, deep transfer learning.
FIGURE 4

Receiver operating characteristic curves of the three models for predicting aggressive endometrial cancer in the training (A) and test cohort (B);
(C) Nomogram for the prediction of aggressive endometrial cancer.
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ResNet101 achieves a performance improvement through a

moderate increase in computational cost, indicating that based on

specific clinical analysis, ResNet may be more suitable for

distinguishing the types of EC.

The 2023 FIGO staging system elevates histological type to a

central role in risk stratification: aggressive histological types with

any myometrial involvement are classified as stage IIC, while those

without myometrial involvement are classified as stage IC. These

categories differ significantly in both treatment strategies and

prognosis, with extensive database series and retrospective reports

consistently demonstrating higher recurrence rates in aggressive

histological types (41, 42). Thus, the DTL model developed in our

study for noninvasive and accurate preoperative prediction of

histological subtypes carries important clinical implications. The

model not only substantially advances the decision-making timeline

—providing critical guidance to clinicians before postoperative

pathology reports become available, thereby enabling personalized

surgical planning—but also creates valuable opportunities for early

adjuvant therapy strategizing. If integrated into clinical systems, this

tool could help mitigate biases arising from diagnostic delays or
Frontiers in Oncology 10
inter-observer variability among pathologists, effectively preventing

both overtreatment and undertreatment of patients.

This study has several limitations. First, as a single-center

retrospective investigation, the fusion model was selected based

on its performance on the hold-out test set, which may lead to

performance overestimation, prospective multi-center validation is

necessary prior to its clinical application. Second, although the

sample size was relatively limited, the use of transfer learning

still contributed to effective predictive performance. Third, we

only selected the largest cross-sectional image of the tumor for

DTL feature extraction, which may lose some important three-

dimensional information inside the EC. Fourth, potential bias from

scanner heterogeneity may affect the model’s generalizability.

Finally, manual segmentation of individual cases is highly time-

consuming and, to some extent, lacks standardization. Subsequent

studies will employ DL techniques to automatically segment the

entire tumor, which will help reduce operator-dependent variability

and enhance workflow efficiency.

Our combined model, which incorporates DTL and clinical

features based on multiparametric MRI, has the potential to
FIGURE 5

Calibration curves for predicting aggressive endometrial cancer probability in the training (A) and test cohort (B). Decision curve analysis of all
models for patients in the training (C) and test cohort (D).
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distinguish aggressive EC. This capability can aid clinicians in

tailoring individualized treatment strategies for EC patients.
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et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis,
treatment and follow-up. Ann Oncol. (2016) 27:16–41. doi: 10.1093/annonc/mdv484
3. Koskas M, Crosbie EJ, Fokdal L, McCluggage WG, Mileshkin L, Mutch DG, et al.
Cancer of the corpus uteri: A 2025 update. Int J Gynecol Obstet. (2025) 171:60–77.
doi: 10.1002/ijgo.70326

4. Siegenthaler F, Lindemann K, Epstein E, Rau TT, Nastic D, Ghaderi M, et al. Time
to first recurrence, pattern of recurrence, and survival after recurrence in endometrial
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2025.1694223/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2025.1694223/full#supplementary-material
https://doi.org/10.1016/S0140-6736(22)00323-3
https://doi.org/10.1093/annonc/mdv484
https://doi.org/10.1002/ijgo.70326
https://doi.org/10.3389/fonc.2025.1694223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo et al. 10.3389/fonc.2025.1694223
cancer according to the molecular classification. Gynecol Oncol. (2022) 165:230–8.
doi: 10.1016/j.ygyno.2022.02.024

5. Berek JS, Matias X, Creutzberg C, Fotopoulou C, Gaffney D, Kehoe S, et al. FIGO
staging of endometrial cancer: 2023. Int J Gynecol Obstet. (2023) 162:383–94.
doi: 10.1002/ijgo.14923

6. Concin N, Matias-Guiu X, Cibula D, Colombo N, Creutzberg CL, Ledermann J,
et al. ESGO–ESTRO–ESP guidelines for the management of patients with endometrial
carcinoma: update 2025. Lancet Oncol. (2025) 26:e423–35. doi: 10.1016/S1470-2045
(25)00167-6

7. Dobrzycka B, Terlikowska KM, Kowalczuk O, Niklinski J, Kinalski M,
Terlikowski SJ. Prognosis of stage I endometrial cancer according to the FIGO 2023
classification taking into account molecular changes. Cancers. (2024) 16:390.
doi: 10.3390/cancers16020390

8. Nwachukwu C, Baskovic M, Von Eyben R, Fujimoto D, Giaretta S, English D,
et al. Recurrence risk factors in stage IA grade 1 endometrial cancer. J Gynecol Oncol.
(2021) 32:e22. doi: 10.3802/jgo.2021.32.e22

9. Ferrero A, Attianese D, Villa M, Ravarino N, Menato G, Volpi E. How challenging
could be preoperative and intraoperative diagnosis of endometrial cancer? Minerva
Obstet Gynecol. (2023) 75:365–70. doi: 10.23736/S2724-606X.22.05037-0

10. Visser NCM, Reijnen C, Massuger LFAG, Nagtegaal ID, Bulten J, Pijnenborg
JMA. Accuracy of endometrial sampling in endometrial carcinoma. Obstet Gynecol.
(2017) 130:803–13. doi: 10.1097/AOG.0000000000002261

11. Batista TP, Cavalcanti CLC, Tejo AAG, Bezerra ALR. Accuracy of preoperative
endometrial sampling diagnosis for predicting the final pathology grading in uterine
endometrioid carcinoma. Eur J Surg Oncol EJSO. (2016) 42:1367–71. doi: 10.1016/
j.ejso.2016.03.009

12. Chen Z, Lin L, Wu C, Li C, Xu R, Sun Y. Artificial intelligence for assisting cancer
diagnosis and treatment in the era of precision medicine. Cancer Commun. (2021)
41:1100–15. doi: 10.1002/cac2.12215

13. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in
cancer research and precision medicine. Cancer Discov. (2021) 11:900–15. doi: 10.1158/
2159-8290.CD-21-0090

14. Otani S, Himoto Y, Nishio M, Fujimoto K, Moribata Y, Yakami M, et al.
Radiomic machine learning for pretreatment assessment of prognostic risk factors for
endometrial cancer and its effects on radiologists’ decisions of deep myometrial
invasion. Magn Reson Imaging. (2022) 85:161–7. doi: 10.1016/j.mri.2021.10.024

15. Yue X, He X, He S, Wu J, Fan W, Zhang H, et al. Multiparametric magnetic
resonance imaging-based radiomics nomogram for predicting tumor grade in
endometrial cancer. Front Oncol. (2023) 13:1081134. doi: 10.3389/fonc.2023.1081134

16. Chen X, Wang X, Zhang K, Fung K-M, Thai TC, Moore K, et al. Recent advances
and clinical applications of deep learning in medical image analysis. Med Image Anal.
(2022) 79:102444. doi: 10.1016/j.media.2022.102444

17. Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An
overview of the concepts and a survey of the state of the art with focus on MRI. J Magn
Reson Imaging. (2019) 49:939–54. doi: 10.1002/jmri.26534

18. Shi B, Grimm LJ, Mazurowski MA, Baker JA, Marks JR, King LM, et al.
Prediction of occult invasive disease in ductal carcinoma in situ using deep learning
features. J Am Coll Radiol. (2018) 15:527–34. doi: 10.1016/j.jacr.2017.11.036

19. Srinivas C, K S NP, Zakariah M, Alothaibi YA, Shaukat K, Partibane B, et al.
Deep transfer learning approaches in performance analysis of brain tumor classification
using MRI images. J Healthc Eng. (2022) 2022:3264367. doi: 10.1155/2022/3264367

20. Kim HE, Cosa-Linan A, Santhanam N, Jannesari M, Maros ME, Ganslandt T.
Transfer learning for medical image classification: a literature review. BMC Med
Imaging. (2022) 22:69. doi: 10.1186/s12880-022-00793-7

21. Atasever S, Azginoglu N, Terzi DS, Terzi RA. A comprehensive survey of deep
learning research on medical image analysis with focus on transfer learning. Clin
Imaging. (2023) 94:18–41. doi: 10.1016/j.clinimag.2022.11.003

22. Dai M, Liu Y, Hu Y, Li G, Zhang J, Xiao Z, et al. Combining multiparametric
MRI features-based transfer learning and clinical parameters: application of machine
learning for the differentiation of uterine sarcomas from atypical leiomyomas. Eur
Radiol. (2022) 32:7988–97. doi: 10.1007/s00330-022-08783-7

23. Wang W, Liang H, Zhang Z, Xu C, Wei D, Li W, et al. Comparing three-
dimensional and two-dimensional deep-learning, radiomics, and fusion models for
predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based
on CT imaging: a multicentre, retrospective, diagnostic study. eClinicalMedicine.
(2024) 67:102385. doi: 10.1016/j.eclinm.2023.102385

24. WHO Classification of Tumours Editorial Board. Female genital tumours. In:
WHO Classification of Tumours, 5th ed, vol. 4. Lyon, France: IARC Press (2020).
Frontiers in Oncology 12
25. Yan Q, Li F, Cui Y, Wang Y, Wang X, Jia W, et al. Discrimination between
glioblastoma and solitary brain metastasis using conventional MRI and diffusion-
weighted imaging based on a deep learning algorithm. J Digit Imaging. (2023) 36:1480–
8. doi: 10.1007/s10278-023-00838-5

26. Creasman W, Odicino F, Maisonneuve P, Quinn M, Beller U, Benedet J, et al.
Carcinoma of the corpus uteri. Int J Gynaecol Obstet. (2003) 83:79–118. doi: 10.1016/
s0020-7292(03)90116-0

27. Akçay A, Gültekin MA, Altıntas ̧ F, Peker AA, Balsak S, Atasoy B, et al. Updated
endometrial cancer FIGO staging: the role of MRI in determining newly included
histopathological criteria. Abdom Radiol. (2024) 49:3711–21. doi: 10.1007/s00261-024-
04398-2

28. Bonatti M, Pedrinolla B, Cybulski AJ, Lombardo F, Negri G, Messini S, et al.
Prediction of histological grade of endometrial cancer by means of MRI. Eur J Radiol.
(2018) 103:44–50. doi: 10.1016/j.ejrad.2018.04.008

29. Yue W, Meng N, Wang J, Liu W, Wang X, Yan M, et al. Comparative analysis of
the value of diffusion kurtosis imaging and diffusion-weighted imaging in evaluating
the histological features of endometrial cancer. Cancer Imaging. (2019) 19:9.
doi: 10.1186/s40644-019-0196-6

30. Zheng T, Yang L, Du J, Dong Y, Wu S, Shi Q, et al. Combination analysis of a
radiomics-based predictive model with clinical indicators for the preoperative
assessment of histological grade in endometrial carcinoma. Front Oncol. (2021)
11:582495. doi: 10.3389/fonc.2021.582495

31. Li X, Dessi M, Marcus D, Russell J, Aboagye EO, Ellis LB, et al. Prediction of
deep myometrial infiltration, clinical risk category, histological type, and
lymphovascular space invasion in women with endometrial cancer based on
clinical and T2-weighted MRI radiomic features. Cancers. (2023) 15:2209.
doi: 10.3390/cancers15082209

32. Hodneland E, Dybvik JA, Wagner-Larsen KS, Šoltészová V, Munthe-Kaas AZ,
Fasmer KE, et al. Automated segmentation of endometrial cancer on MR images using
deep learning. Sci Rep. (2021) 11:179. doi: 10.1038/s41598-020-80068-9

33. Urushibara A, Saida T, Mori K, Ishiguro T, Inoue K, Masumoto T, et al. The
efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a
comparison with radiologists. BMC Med Imaging. (2022) 22:80. doi: 10.1186/s12880-
022-00808-3

34. Chen X, Wang Y, Shen M, Yang B, Zhou Q, Yi Y, et al. Deep learning for the
determination of myometrial invasion depth and automatic lesion identification in
endometrial cancer MR imaging: a preliminary study in a single institution. Eur Radiol.
(2020) 30:4985–94. doi: 10.1007/s00330-020-06870-1

35. Dong HC, Dong HK, Yu MH, Lin YH, Chang CC. Using deep learning with
convolutional neural network approach to identify the invasion depth of endometrial
cancer in myometrium using MR images: A pilot study. Int J Environ Res Public Health.
(2020) 17:5993. doi: 10.3390/ijerph17165993

36. Zhang L, Wu X, Liu J, Zhang B, Mo X, Chen Q, et al. MRI-based deep-learning
model for distant metastasis-free survival in locoregionally advanced
nasopharyngeal carcinoma. J Magn Reson Imaging . (2021) 53:167–78.
doi: 10.1002/jmri.27308

37. Jiang X, Li J, Kan Y, Yu T, Chang S, Sha X, et al. MRI based radiomics approach
with deep learning for prediction of vessel invasion in early-stage cervical cancer. IEEE/
ACM Trans Comput Biol Bioinform. (2021) 18:995–1002. doi: 10.1109/
TCBB.2019.2963867

38. Ueno Y, Forghani B, Forghani R, Dohan A, Zeng XZ, Chamming’s F, et al.
Endometrial carcinoma: MR imaging–based texture model for preoperative risk
stratification—A preliminary analysis. Radiology. (2017) 284:748–57. doi: 10.1148/
radiol.2017161950

39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Las Vegas, NV; Piscataway, NJ, USA: IEEE (2016). p. 770–8. doi: 10.1109/CVPR.2016.90

40. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell.
(2021) 43:3349–64. doi: 10.1109/TPAMI.2020.2983686

41. de Boer SM, Powell ME, Mileshkin L, Katsaros D, Bessette P, Haie-Meder C,
et al. Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk
endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis
of a randomised phase 3 trial. Lancet Oncol. (2019) 20:1273–85. doi: 10.1016/S1470-
2045(19)30395-X

42. Page BR, Pappas L, Cooke EW, Gaffney DK. Does the FIGO 2009 endometrial
cancer staging system more accurately correlate with clinical outcome in different
histologies? Revised staging, endometrial cancer, histology. Int J Gynecol Cancer. (2012)
22:593–8. doi: 10.1097/IGC.0b013e3182412ebd
frontiersin.org

https://doi.org/10.1016/j.ygyno.2022.02.024
https://doi.org/10.1002/ijgo.14923
https://doi.org/10.1016/S1470-2045(25)00167-6
https://doi.org/10.1016/S1470-2045(25)00167-6
https://doi.org/10.3390/cancers16020390
https://doi.org/10.3802/jgo.2021.32.e22
https://doi.org/10.23736/S2724-606X.22.05037-0
https://doi.org/10.1097/AOG.0000000000002261
https://doi.org/10.1016/j.ejso.2016.03.009
https://doi.org/10.1016/j.ejso.2016.03.009
https://doi.org/10.1002/cac2.12215
https://doi.org/10.1158/2159-8290.CD-21-0090
https://doi.org/10.1158/2159-8290.CD-21-0090
https://doi.org/10.1016/j.mri.2021.10.024
https://doi.org/10.3389/fonc.2023.1081134
https://doi.org/10.1016/j.media.2022.102444
https://doi.org/10.1002/jmri.26534
https://doi.org/10.1016/j.jacr.2017.11.036
https://doi.org/10.1155/2022/3264367
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1016/j.clinimag.2022.11.003
https://doi.org/10.1007/s00330-022-08783-7
https://doi.org/10.1016/j.eclinm.2023.102385
https://doi.org/10.1007/s10278-023-00838-5
https://doi.org/10.1016/s0020-7292(03)90116-0
https://doi.org/10.1016/s0020-7292(03)90116-0
https://doi.org/10.1007/s00261-024-04398-2
https://doi.org/10.1007/s00261-024-04398-2
https://doi.org/10.1016/j.ejrad.2018.04.008
https://doi.org/10.1186/s40644-019-0196-6
https://doi.org/10.3389/fonc.2021.582495
https://doi.org/10.3390/cancers15082209
https://doi.org/10.1038/s41598-020-80068-9
https://doi.org/10.1186/s12880-022-00808-3
https://doi.org/10.1186/s12880-022-00808-3
https://doi.org/10.1007/s00330-020-06870-1
https://doi.org/10.3390/ijerph17165993
https://doi.org/10.1002/jmri.27308
https://doi.org/10.1109/TCBB.2019.2963867
https://doi.org/10.1109/TCBB.2019.2963867
https://doi.org/10.1148/radiol.2017161950
https://doi.org/10.1148/radiol.2017161950
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1016/S1470-2045(19)30395-X
https://doi.org/10.1016/S1470-2045(19)30395-X
https://doi.org/10.1097/IGC.0b013e3182412ebd
https://doi.org/10.3389/fonc.2025.1694223
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Preoperative prediction of aggressive endometrial cancer using multiparametric MRI-based deep transfer learning models
	Introduction
	Materials and methods
	Patients
	Histologic grading and grouping
	MR images acquisition and segmentation
	Preprocessing and DTL feature extraction
	Development of DTL models
	Computational complexity analysis
	Development of clinical model and clinical-DTLmodel
	Statistical analysis

	Results
	Patients characteristics
	The performance of the DTL models based on single-MRI sequence
	Model interpretation
	The optimal DTL model
	Clinical and combined model

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


