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Hyperpolarized magnetic resonance imaging (MRI) has emerged as a transformative

tool in cancer diagnostics, enabling real-time, non-invasive assessment of tumor

metabolism. By employing hyperpolarized molecular probes, such as [1-13C]

pyruvate, energy metabolism and metabolic changes associated with malignancy

in tumors can be visualized, providing key insights into tumor aggressiveness,

heterogeneity, and treatment response. In addition to their preclinical and clinical

applications in cancer diagnostic imaging, some molecular probes can be used as

potentiators of cancer therapy. This perspective article explores the potential use of

hyperpolarized magnetic resonance spectroscopic imaging (MRSI) in conjunction

with cancer treatment. Notably, the direct application of hyperpolarized molecular

probes immediately after imaging to enhance DNA-targeted cancer therapies,

including chemotherapeutic drugs and radiotherapy, is termed “hyperpolarized

MRI theranostics in cancer.” In this novel approach, metabolic and physiological

intratumoral changes induced by biomolecular probes are used to enhance the

efficacy of subsequent therapeutic interventions. Additionally, future prospects for

advancements in oncology enabled by hyperpolarized MRI are discussed.
KEYWORDS
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1 Introduction

Cancer remains a leading cause of mortality worldwide, necessitating the development

of advanced therapeutic strategies (1). Clinically, four major cancer treatment strategies are

employed: surgical resection, chemotherapy, immunotherapy, and radiotherapy.

Chemotherapeutic agents developed to target cancer cells include DNA cross-linking

compounds, topoisomerase inhibitors, mitotic inhibitors, and metabolic inhibitors (2, 3).

Molecular targeted agents such as imatinib markedly improve chronic leukemia treatment

outcomes (4). Similarly, multi-kinase inhibitors such as sunitinib extend progression-free

survival in metastatic renal cell carcinoma (5). Advancements in antibody engineering have

significantly enhanced the effectiveness of therapeutic antibodies, molecular targeted

therapy, and immunotherapy to significantly improve cancer treatment (6).
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Radiotherapy is a non-invasive strategy for eradicating cancer

cells using high-energy beams with a localized dose distribution.

Ionizing radiation induces DNA damage by interacting with DNA

and producing free radicals, resulting in cell death. Its efficacy is

limited by the hypoxic tumor microenvironment (TME) (i.e., the

oxygen effect) (7); however, the use of high-linear energy transfer

particles (e.g., a-particles and heavy ion particles) can overcome

this radioresistance (8). Some forms of radiation-induced cell death,

such as immunogenic cell death, stimulate anticancer immunity,

leading to radiotherapeutic effects even in distant, non-irradiated

tumors (e.g., metastatic lesions), a phenomenon termed the

abscopal effect (9–12). Furthermore, immune checkpoint

inhibitors can enhance radiation-induced anti-tumor immunity

(13, 14), supporting the use of strategies combining radiotherapy

with immunotherapy (15, 16).

Precise radiation dose distribution requires the use of imaging

techniques to visualize the tumor location, including computed

tomography (CT), positron emission tomography (PET), and

magnetic resonance imaging (MRI). Combining diagnostic

imaging with radiation exposure, such as in image-guided

radiotherapy (IGRT), tomotherapy, and MRI-guided linear

accelerators (MR-LINACs), markedly enhances tumor targeting

accuracy (17–19). Additionally, pharmaceutical imaging agents

are also employed therapeutically, an approach termed

theranostics (theragnostics), which combines diagnosis and

therapy. In nuclear medicine, companion diagnostics, particularly

in PET imaging, have been adopted as a theranostic approach. The

susceptibility of patients to radioligand therapy can be evaluated

using radiodiagnostics through the accumulation of tumor-avid

molecules or antibodies labeled with radioisotopes, such as 18F and
68Ga, followed by treatment with similar drugs labeled with other

radioisotopes, such as 177Lu and 225Ac (20, 21).

Recent multiomics analyses have revealed metabolic hallmarks

associated with malignancy (22–24). Traditional imaging modalities

often fail to provide comprehensive metabolic information crucial for

effective cancer management, underscoring the importance of

functional imaging. Hyperpolarized MRI enables real-time, non-

invasive assessment of tumor metabolism by employing

hyperpolarized molecular probes such as [1-13C]pyruvate (25).

Unlike PET, a widespread imaging technique that visualizes

metabolic function based on probe uptake and accumulation (e.g.,
18F-FDG), hyperpolarized MRI enables assessment of the enzymatic

reaction of the probe (25). Thus, PET and hyperpolarizedMRI provide

distinct yet complementary metabolic information, and both

modalities can be used for elucidating metabolic functions in cancer.

Beyond the diagnostic applications of 13C-probes in

hyperpolarized MRI, several studies have indicated that

hyperpolarized MRI probes show promise for enhancing

therapeutic efficacy. In this perspective article, we introduce the

novel concept of “hyperpolarized MRI theranostics in cancer,”

which is the direct application of hyperpolarized molecular

probes for potentiating cancer treatment immediately following

imaging. Compared to the above-mentioned PET-based

theranostics, this approach utilizes stable isotope-labeled

biomolecular probes that induce metabolic and physiological
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intratumoral changes, generating therapeutic or sensitizing

targets. First, cancer metabolism and the basics of hyperpolarized

MRI are outlined; then the potential of hyperpolarized MRI probes

for theranostics and their future clinical prospects in oncology

are explored.
2 Cancer metabolism

2.1 Metabolism as a hallmark of cancer

The “Hallmarks of Cancer” conceptual framework, originally

introduced in 2000, emphasizes the genetic and signaling alterations

underlying malignant traits (26). A 2011 update incorporated

dysregulated cellular energetics as a core hallmark, recognizing

metabolic reprogramming as a fundamental driver of tumorigenesis

(22, 23). Recent conceptual advancements have reframed cancer

metabolism as a system-level adaptation that extends beyond cell-

autonomous processes to encompass dynamic interactions with both

the TME and host (27, 28). Metabolic plasticity enables cancer cells to

transition between epithelial and mesenchymal states, acquire stem-

like properties, and adapt to fluctuating nutrient and oxygen

availability through the reprogramming of glucose, glutamine, and

lipid metabolism (29, 30).

The tumor-associated microbiome also influences cancer

metabolism, with microbial metabolites (e.g., short-chain fatty

acids and bile acids) modulating cancer cell signaling, immunity,

and therapeutic responses (31, 32). Additionally, metabolic

alterations are increasingly linked to the senescence-associated

secretory phenotype (SASP), where senescent stromal and

immune cells release bioactive factors that reshape TME

metabolism, promote immunosuppression, and drive tumor

progression (33, 34).

Competition for metabolic resources within the TME further

exacerbates immune evasion, as cancer cells consume key nutrients

(e.g., glucose and tryptophan) and release immunosuppressive

oncometabolites, such as lactate and kynurenine, thereby

impairing anti-tumor immunity (35, 36).
2.2 Metabolic reprogramming

Metabolic reprogramming is a hallmark of cancer that involves

changes in central carbon metabolism, lipid synthesis, and amino

acid use to provide the energy, building blocks, and redox balance

required for uncontrolled growth (Figure 1, 37). Beyond changes in

glycolysis, cancer cells rewire the tricarboxylic acid (TCA) cycle and

exhibit adaptive amino acid metabolism (38–40). This metabolic

reprogramming involves a shift in the glutamine-derived nitrogen

flux from anaplerotic pathways to nucleotide biosynthesis (41, 42).

This shift is facilitated by increased phosphoribosyl pyrophosphate

amidotransferase (PPAT) activity relative to that of glutaminase

(GLS1). Higher PPAT/GLS1 ratios are linked to poor prognosis in

aggressive cancers such as small-cell lung cancer. Suppressing

PPAT significantly reduces tumor growth, highlighting glutamine
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nitrogen metabolism as a potential treatment target (41). Mutations

in driver genes, such as KRAS and TP53, play a significant role in

orchestrating these metabolic changes (43). Environmental factors

such as hypoxia and nutrient scarcity further promote metabolic
Frontiers in Oncology 03
flexibility (44, 45). Moreover, specific oncometabolites, such as 2-

hydroxyglutarate (2-HG), in isocitrate dehydrogenase (IDH)-

mutant cancers act as epigenetic modifiers and reinforce cancer-

promoting programs (43, 46).
FIGURE 1

Overview of metabolic pathways relevant to hyperpolarized MRI theranostics in cancer. Metabolic reprogramming is a key hallmark of cancer.
Cancer cells exhibit enhanced glucose consumption and rely on glycolysis regardless of oxygen concentration (Warburg effect). The most promising
hyperpolarized MRI probe, [1-13C]pyruvate, can be used to evaluate metabolic activities in glycolysis (lactate production), the TCA cycle (bicarbonate
production), and amino acid synthesis (alanine production). To compensate for the limited pyruvate entry into the TCA cycle owing to enhanced
lactate production, cancer cells utilize glutamine via the glutaminolysis pathway. The TCA cycle generates intermediate metabolites for biosynthesis
and reduced cofactors, such as NADH and FADH2, for ATP production via oxidative phosphorylation in the mitochondrial electron transport chain.
IDH gene mutations result in the abnormal production of the oncometabolite 2-HG from a-ketoglutarate. Hyperpolarized MRI using a-ketoglutarate
can monitor this reaction and thus serve as a probe for IDH mutation. Cellular metabolic pathways are coordinated beyond the plasma membrane
through transporters. Disrupting this orchestration represents a promising cancer treatment strategy. Metabolic changes triggered by hyperpolarized
MRI probes may potentially enhance therapeutic effectiveness. Notably, the metabolites, proteins, and pathways shown are excerpted
representatives, and not all participants are illustrated. The names of the enzymes are highlighted with a black background. Biologically important
processes are indicated by red characters. 2-HG, 2-hydroxyglutarate; ACLY, ATP citrate lyase; AGC, aspartate-glutamate carrier (SLC25A12/13);
a-KG, alpha-ketoglutarate; aKGDC, a-ketoglutarate dehydrogenase complex (2-oxoglutarate dehydrogenase complex, OGDHc, OGDC); aKGDD:
a-ketoglutarate dependent dioxygenase (2-oxoglutarate dependent dioxygenase, 2OGDD); Ala, alanine; ASCT2, alanine serine cysteine transporter 2
(ASC transporter 2, SLC1A5); Asn, asparagine; ASNS, asparagine synthetase; Asp, aspartate; CA, carbonic anhydrase; CIC, mitochondrial citrate carrier
(SLC25A1); Cys: cysteine; FH, fumarate hydratase (fumarase); g-Glu-Cys, gamma glutamyl cysteine; G-6-P, glucose-6-phosphate; GDH, glutamate
dehydrogenase (GLDH); Gln, glutamine; GLS, L-glutamine amidohydrolase (glutaminase); Glu, glutamate; GLUT, glucose transporter (SLC2A); Gly,
glycine; GOT, glutamic-oxaloacetic transaminase (aspartate transaminase, AST); GPT, glutamic-pyruvic transaminase (alanine transaminase, ALT); GS,
glutamine synthetase; GSH, reduced form of glutathione; GSSG, glutathione disulfide (oxidized form of glutathione); HK, hexokinase; IDH, isocitrate
dehydrogenase; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter (SLC16A); MDH, malate dehydrogenase; MPC, mitochondrial
pyruvate carrier (SLC54); mut-IDH, mutated isocitrate dehydrogenase; OAA, oxaloacetic acid; ODC, mitochondrial oxodicarboxylate carrier
(SLC25A21); OGC, mitochondrial oxoglutarate malate carrier (SLC25A11); PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP,
phosphoenolpyruvic acid; PK, pyruvate kinase; PPP, pentose-phosphate pathway; R-5-P, ribose-5-phosphate; ROS, reactive oxygen species; SDH,
succinate dehydrogenase (respiratory complex II); Suc-CoA, succinyl-CoA; TCA cycle, tricarboxylic acid cycle (citric acid cycle, Krebs cycle).
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2.3 Relationship between cancer
metabolism and DNA damage/repair in
radiotherapy

Ionizing radiation induces radiation responses at the

intracellular, intratumoral, and systemic levels. DNA damage

activates signaling pathways that regulate DNA repair and cell

cycle arrest, ultimately inducing cell death (47). Dynamic metabolic

rewiring, which provides cells with metabolites involved in

antioxidant defense and DNA repair, occurs in irradiated cells to

support the DNA damage response (48, 49). Enhanced glycolysis

supplies ribonucleotides for nucleotide synthesis (DNA repair) and

NADPH for the reduction of oxidized glutathione via the pentose

phosphate pathway (50, 51). Additionally, increased glycolytic

capacity results in the acidification of the intratumoral pH

through lactate efflux (52, 53), an end product of glycolysis whose

production is essential for replenishing NAD+ in cancer (54).

Activation of the mitochondrial electron transport chain increases

ATP production and oxygen consumption following irradiation,

and mitochondrial activation and/or dysfunction causes abnormal

reactive oxygen species (ROS) production, which disrupts redox

homeostasis (55–58). Given that DNA repair is highly energy-

intensive, insufficient ATP production is critical for irradiated cells

(59–61). Accordingly, considering the hallmarks of cancer and

therapy-induced changes, metabolism represents a potential target

for sensitizing treatments, including radiotherapy (3).
3 Hyperpolarized 13C MRI

Hyperpolarized MRI has gained increased attention owing to

the need for direct monitoring of cancer metabolism in

radiotherapy. Hyperpolarization by dynamic nuclear polarization

(DNP) is a promising technique that enhances the magnetic

resonance signal by over 10,000-fold (62). This enables

hypersensitive NMR spectroscopy and magnetic resonance

spectroscopic imaging (MRSI) to directly probe enzymatic activity

and metabolic reprogramming, including the Warburg effect. This

technique can also assess therapeutic responses to chemotherapy or

radiotherapy during the early phase (63–65).

Molecular probes are central to the functionality of

hyperpolarized MRI. These probes, typically labeled with isotopes

such as 13C or 15N, are hyperpolarized to enhance their MRI signals

(66) . Upon adminis t ra t ion , they undergo metabo l ic

transformations within the body, and their conversion products

are detected using MRI. For instance, [1-13C]pyruvate is typically

used to assess glycolytic activity, as it is rapidly converted to [1-13C]

lactate and [13C]bicarbonate in tumors (Figures 2A–C) (67–70).

The relative concentrations of these metabolites provide insights

into the metabolic state of the tumor, which can be indicative of

malignancy and aggressiveness. Therefore, hyperpolarized MRI can

be used as a non-invasive means to monitor the effects of novel

therapeutic agents and evaluate their impact on tumor metabolism.

Among 13C-labeled probes, clinical trials have predominantly

focused on [1-13C]pyruvate, which enables real-time quantification
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of pyruvate-to-lactate flux (kPL) in prostate cancer (NCT04286386),

ischemic heart disease (NCT06054516), and primary central

nervous system lymphoma (NCT04656431). Several other 13C-

labeled probes are being explored in clinical trials to provide

complementary metabolic and physiological information. For

instance, [2-13C]pyruvate has been used to evaluate TCA cycle

activity and mitochondrial function in prostate cancer

(NCT04346225). 13C-bicarbonate enables noninvasive imaging

of extracellular tumor pH (NCT05851365), while a-ketoglutarate
(a-KG) can be used for imaging IDH-mutant tumors through its

conversion to 2-HG (NCT05851378). 13C,15N-urea serves as a

metabolically inert perfusion marker that can be used to assess

renal and tumor vasculature and co-polarized with pyruvate to

simultaneously provide perfusion and metabolic information

(NCT06391034) (71). Additionally, 13C-fumarate detects necrotic

tissue via conversion to malate and can monitor therapeutic

responses, with translational studies supporting its clinical

applicability (ISRCTN49119680).
4 Representative hyperpolarized 13C
molecular probes and theranostic
applications

Hyperpolarized 13C-labeled molecules are administered as a

bolus injection within a narrow time window (5–20 s) to obtain

metabolic images to preserve hyperpolarized 13C signals before they

decay. Using this standard rapid injection protocol, some molecular

probes have been found to induce physiological and pharmacological

changes within the TME and enhance therapeutic efficacy

against cancers.
4.1 Pyruvate

Pyruvate is currently the most promising clinical 13C molecular

probe and is used to evaluate the metabolic capacity of both the

glycolysis pathway and TCA cycle and monitor tumor progression

and treatment response (72–74). Although hyperpolarized [1-13C]

pyruvate provides valuable metabolic information, intravenous

bolus pyruvate injection induces transient hypoxia that lasts for

several hours (75–77). Pyruvate administration results in increased

mitochondrial oxygen consumption, which contributes to an acute

decrease in tumor tissue oxygen pressure (pO2) (Figures 2D, E)

(76, 77). For instance, a mouse squamous cell carcinoma (SCC)

model exhibited resistance to radiotherapy within 5 h of pyruvate

injection attributable to this induced hypoxia (75). Notably, these

pharmacological effects only occur in living individuals (in vivo), as

they depend on the interplay between cancer cells and TME, and are

unlikely to be fully recapitulated in vitro due to the absence of

intratumor vasculature. This underscores that the direct analysis of

biological processes in vivo, including energy metabolism, is crucial

for advancing medical technology.

Although the physiological effects of pyruvate on the TME must

be considered in radiotherapy, they can also be exploited in
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hypoxia-targeted treatment strategies such as hypoxia-activated

prodrugs (HAPs). Evofosfamide (TH-302) can be activated

depending on the oxygen concentration (<76 mmHg),

particularly under severe hypoxic conditions (<10 mmHg) such

as in the TME, and releases a warhead to crosslink double-stranded

DNA, resulting in cell death (78–81). Pyruvate-induced hypoxia

enhances the anti-tumor effects of TH-302 in mouse SCC

(Figure 2F), human colon cancer, and human pancreatic ductal
Frontiers in Oncology 05
adenocarcinoma models (76, 77). Because TH-302 exhibits minimal

toxicity in aerobic tissues (76), a potential theranostic strategy

could involve combining transient tumor hypoxia (induced

by hyperpolarized [1-13C]pyruvate MRI) with subsequent

HAP administration.

Moreover, the combination of TH-302 and X-ray irradiation yields

superior outcomes compared to either treatment alone (81–83).

Fundamentally, radiotherapy targets normoxic lesions but not
FIGURE 2 (Continued)
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FIGURE 2 (Continued)

Hyperpolarized MRI of pyruvate metabolism followed by hypoxia induction and its potential for augmenting cancer treatment. Panels (B–F) are cited
from the indicated references. (A) Diagram of [1-13C]pyruvate metabolism. [1-13C]pyruvate is metabolized to [1-13C]lactate, [1-13C]alanine, and [13C]
bicarbonate via 13CO2. (B) Non-invasive evaluation of pyruvate metabolism using hyperpolarized MRI in SCC VII tumor-bearing mice. Each signal
peak corresponds to [1-13C]pyruvate (right) and [1-13C]lactate (left). (C) Heatmap of the lactate-to-pyruvate ratio (Lac/Pyr) calculated based on (B)
overlaid on the anatomical image. Panels (B, C) were reproduced from (70) the publication Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J,
Devasahayam N, et al. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C
hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget (2018). 9:25089–25100. (doi: 10.18632/oncotarget.25317).
Creative Commons CC BY 3.0. (D) Non-invasive monitoring of tumor pO2 distribution by electron paramagnetic resonance imaging before and 30
min after pyruvate injection in SCC VII tumor-bearing mice. (E) In vitro monitoring of oxygen consumption rates (OCR) under treatment with
pyruvate and mitochondrial electron transport chain inhibitors (rotenone/antimycin A). (F) Tumor doubling time following treatment with pyruvate
and/or the hypoxia-activated prodrug TH-302. TH-302 (100 mg/kg) was intraperitoneally injected 30 min after pyruvate injection. **, P<0.01, ***,
P<0.001. Panels (D–F) were reproduced from (76) the publication Takakusagi Y, Matsumoto S, Saito K, Matsuo M, Kishimoto S, Wojtkowiak JW, et al.
Pyruvate Induces Transient Tumor Hypoxia by Enhancing Mitochondrial Oxygen Consumption and Potentiates the Anti-Tumor Effect of a Hypoxia-
Activated Prodrug TH-302. PLoS One. (2014) 9:e107995. (doi: 10.1371/journal.pone.0107995). Creative Commons CC0. Pyruvate was administered
intravenously at a consistent dose (1.15 mmol/kg) across Panels (B-D) and (F). (G) Workflow of hyperpolarized MRI theranostics for cancer
treatment. An example workflow is presented with the approximate time requirements for each step. (1) Preparation for hyperpolarization: A 13C-
labeled probe and electron paramagnetic agent (EPA) are mixed with a glass-forming agent. The sterile fluid path is assembled. (2) Hyperpolarization
in a DNP hyperpolarizer: The probe mixture is inserted into a polarizer, where it is placed under a magnetic field at 0.8–1.4 K. Microwave irradiation
is applied to transfer the spin polarization from electrons to 13C-nuclei. The time required to achieve sufficient polarization depends on the probe,
protocol, and polarizer (e.g., over 2 h for [1-13C]pyruvate). During this time, the patient is positioned in the MRI machine, and preliminary scans (e.g.,
1H anatomy imaging) for localization and calibration are performed. (3) Dissolution and quality control (QC): The hyperpolarized probe is rapidly
dissolved in superheated water, filtered to remove EPA, mixed with buffer, and sterile filtered into the administration syringe. The final solution is
automatically tested using a QC module to ensure it meets the release criteria (e.g., concentration, pH, sterility, polarization level, residual EPAs, and
temperature). (4) Intravenous injection: The syringe is transported to the MRI room, and the hyperpolarized probe is intravenously administered as a
bolus injection (e.g., 230 mM, 0.43 mL/kg body weight, 5 mL/s for [1-13C]pyruvate). The duration from dissolution to injection is approximately 60 s.
(5) MR spectroscopic data acquisition: Data are acquired using pulse sequences specialized for 13C MRI. Scanning begins within a few minutes after
dissolution to minimize signal loss due to relaxation. Metabolite images are reconstructed from the data. Data analysis (quantification and parameter
calculation) provides translatable functional information. If necessary, additional MRI sequences can be performed, such as diffusion-weighted
imaging and dynamic contrast-enhanced MRI. (6) Therapeutic intervention: To potentiate efficacy, patients should receive therapies (such as
radiotherapy or chemotherapy) an appropriate duration after probe injection (e.g., 30 min for pyruvate-induced hypoxia). Treatment may continue
for several weeks depending on the procedure. (7) Treatment evaluation: Treatment outcomes are evaluated using imaging (X-rays/CT/MRI) to
assess tumor size reduction or elimination. Adverse events must be monitored during and after treatment.
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hypoxic fractions; however, TH-302 functions in the opposite manner.

Thus, both therapeutic strategies are complementary and can function

synergistically. Additionally, TH-302 reduces intratumor oxygen levels

(i.e., reoxygenation) by eliminating hypoxic tumor cells and lowering

oxygen demand, thereby enhancing the effectiveness of subsequent

ionizing radiation (83). Overall, we anticipate that the theranostic

approach can be conducted as follows: First, metabolic diagnosis is

performed using hyperpolarized [1-13C]pyruvate, which induces

transient hypoxia. This can be exploited to potentiate the activity of

HAPs administered 30 min after pyruvate injection, which eliminate

tumor cells in the hypoxic fraction. Finally, 1–2 days after HAPs

administration, radiotherapy can be used to target normoxic tumor

cells, thereby complementing HAPs and leveraging their tumor

reoxygenation activity. For clinical applications, appropriate

combination therapy protocols must be developed. For instance,

pyruvate + HAP administration only once on the imaging day may

be insufficient for treatment. Therefore, the treatment days required to

eradicate hypoxic cells and achieve reoxygenation prior to radiotherapy

need to be established.
4.2 Alpha-ketoglutaric acid

Alpha-ketoglutarate, known as 2-oxoglutarate, is a TCA cycle

intermediate produced from glutamate via glutamate

dehydrogenase (GDH), thus linking the glutaminolysis pathway
Frontiers in Oncology 06
with the TCA cycle following glycolysis (84, 85). In hyperpolarized

MRI, a-KG is used for probing IDH1 mutations (e.g., glioma) by

monitoring the conversion of a-KG into the oncometabolite 2-HG

(86–88). 2-HG has multiple roles in tumor progression and immune

regulation (46, 89). a-KG-dependent dioxygenase (aKGDD), also
known as 2-oxoglutarate-dependent dioxygenase (2OGDD), is a

key target of 2-HG (90). The aKGDD superfamily comprises

enzymes with diverse biological functions, including oxygen

sensing, epigenetic regulation, and extracellular matrix formation

(91, 92). aKGDD enzymes require a-KG, divalent iron (Fe2+), and

oxygen as co-substrates and produce hydroxylated substrates,

succinate, trivalent iron (Fe3+), and CO2. Dysregulation of

aKGDD has been observed in various cancers (91, 93).

Considering the importance of 2-HG, hyperpolarized a-KG MRI

provides valuable insights for precision medicine, and derivatives

with enhanced membrane permeability (e.g., diethyl-a-KG)
enhance its feasibility (94).

More recently, a-KG has been identified as a radiosensitizer for

lung cancer treatment in combination with CTPI-2, an inhibitor of

mitochondrial citrate carrier (SLC25A1; CIC), whereas a-KG alone

had no pharmacological effects (95). Although CTPI-2 alone can

increase D-2-HG levels and act as a radiosensitizer by modulating

DNA repair (96), the combination of a-KG and CTPI-2

significantly enhanced D-2-HG levels and radiosensitivity. This

effect did not solely depend on D-2-HG, suggesting that metabolic

alterations such as NAD+/NADH imbalance also contribute.
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Collectively, these findings demonstrate that hyperpolarized a-KG
probes can be used as theranostic agents to potentiate CTPI-2

efficacy in specific cancers following metabolic imaging.

aKGDD activity is also inhibited by TCA cycle intermediates,

including succinate and fumarate (91). Solute carriers (SLC) on the

mitochondrial membrane play key roles in transporting TCA

intermediates to the cytosol (97, 98). Therefore, metabolic

modulation, which impacts the production, consumption, and

transportation of TCA intermediates, can attenuate oncogenic

aKGDD activity and modulate biosynthesis and the ATP/ADP

and NAD(P)+/NAD(P)H balance (97, 99). Notably, the cell-

permeable derivative 1-trifluoromethyl benzyl-a-KG can disrupt

cellular energy metabolism and induce cell death under hypoxic

conditions (100). These observations further support combining

mitochondrial SLC inhibitors with cell-permeable a-KG to

modulate metabolism and thus enhance therapeutic efficacy.

Overall, the theranostic workflow can be summarized as

follows: First, metabolic diagnosis is performed using

hyperpolarized a-KG, followed by CTPI-2 administration, and

finally, radiotherapy is applied. Preclinical studies have explored

administering drugs 2 h before radiotherapy both in vitro and in an

in vivo chick embryo chorioallantoic membrane model (95);

however, the feasibility and optimal protocol, including timing

after imaging and radiotherapeutic conditions, require further

investigation in animal experiments.

A workflow diagram of hyperpolarized MRI theranostics for

cancer is illustrated in Figure 2G.
5 Discussion

5.1 Metabolism as a therapeutic target

Insights into the systemic role of metabolism have revealed

novel therapeutic opportunities, including targeting metabolic

dependencies through enzymes such as lactate dehydrogenase

(LDH) and GLS, disrupting metabolic plasticity to inhibit

adaptive fuel switching under stress, and combining metabolic

inhibitors with immunotherapies such as anti-PD-1 to enhance

immune responses. By transcending the boundaries of a single

hallmark, metabolic reprogramming integrates genetic, epigenetic,

and environmental factors from cancer initiation and progression

to therapeutic resistance, holding significant promise for next-

generation therapies.
5.2 Advantages of radiotherapy in
hyperpolarized theranostics

The systemic effects of hyperpolarized MRI probes remain

unclear, although adverse events are rare in clinical metabolic

imaging (101). Nonetheless, some metabolic modulation may occur

even in normal tissues, potentially enhancing or triggering adverse

effects when combined with therapeutic interventions. Thus, it is
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anticipated that tumor-selective treatment strategies, such as HAPs

and radiotherapy, are better suited for hyperpolarized MRI

theranostics. To minimize radiation exposure to the surrounding

healthy organs, radiation beams are generally targeted at the tumor

region from multiple angles, with doses adjusted to match tumor

shape, in techniques known as intensity-modulated radiation therapy

(IMRT) and volumetric modulated arc therapy (VMAT) (17).

Delivering tumor-localized radiation can minimize the risk of

adverse events in the surrounding organs while leveraging the

physiological modulation accompanied by hyperpolarized MRI. To

this end, MR-LINAC is a promising radiotherapy platform owing to

its high contrast that enables soft tissue discrimination and precise

dose delivery through motion management during irradiation (102,

103). Performing, hyperpolarized MRI using MR-LINAC is an

attractive strategy; however, it faces challenges regarding limited

magnetic field strength (1.5 T in Elekta Unity MR-LINAC vs. 3 T

in most human hyperpolarized MRI studies) (101, 103), spatial

positioning accuracy, and the need to update MR-LINAC systems

to support multinuclear imaging.
5.3 Comparison of PET-based and
hyperpolarized MRI theranostics

Hyperpolarized MRI theranostics differs substantially from

PET-based radiotheranostics: 1) Hyperpolarized MRI employs

stable isotope (13C)-labeled probes, thus avoiding the

administration of radioactive compounds, but requires an

external radiation source or DNA-damaging agent for therapy; 2)

therapeutically, hyperpolarized molecular probes induce

physiological and metabolic changes that potentiate therapeutic

efficacy; 3) radioligand imaging predicts the effectiveness of the

subsequent radioligand therapy, whereas the MRI results and

subsequent treatment outcomes are not necessarily correlated in

hyperpolarized MRI theranostics. As better optimized post-imaging

interventions are developed, the importance of this method will

increase; and 4) since synthetic radioligands accumulate by

targeting cell surface proteins or enhanced permeability and

retention (EPR) effects, off-target effects may occur depending on

the drug-delivery systems. Conversely, 13C-labeled biomolecular

probe distribution relies on perfusion and cellular uptake,

which is less organ selective and may require tumor-targeted

therapeutic interventions.
5.4 Limitations of current hyperpolarized
MRI theranostic approaches

The concept of hyperpolarized MRI theranostics is based on the

chick embryo model (a-KG) and animal experiments (pyruvate),

whose conditions differ from those of humans. For example, the

dose of [1-13C]pyruvate used in hyperpolarized MRI experiments in

mice (1.15 mmol/kg; 300 mL/mouse; 96 mM) (75) is over 10 times

higher than doses required for humans (0.10 mmol/kg; 0.43 mL/kg;
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230 mM) (68). As there is no evidence for pyruvate-induced

hypoxia or radiosensitization from using the combination of a-
KG and CTPI-2 in humans, the clinical feasibility of hyperpolarized

MRI theranostics warrants further investigation.

Several clinical trials have investigated the use of TH-302 as a

single agent or in combination with chemotherapeutic drugs;

however, it has not yet been approved by the Food and Drug

Administration (FDA). Other HAPs have similarly encountered

challenges in clinical trials (104). Therefore, it is worth investigating

whether these drugs exhibit significant efficacy under pyruvate-

induced severe hypoxic conditions, as other HAPs beyond TH-302

may benefit from this strategy.
5.5 Future prospects for hyperpolarized
MRI theranostics

Currently, hyperpolarized MRI faces several barriers to clinical

translation, including regulatory hurdles, high costs, and

reproducibility challenges (101, 105, 106). The widespread

adoption of hyperpolarized MRI is crucial for realizing its

theranostic applications. The scarcity of preclinical and clinical

facilities equipped with dissolution DNP polarizers represents a

major limitation; thus, increasing this infrastructure is crucial. The

development of dissolution DNP techniques that enable

transportable hyperpolarized probes will substantially increase

clinical use and accessibility (107, 108). Furthermore, the

development of rapid and cost-effective hyperpolarization

techniques such as parahydrogen-induced polarization (PHIP)

(109) or signal amplification by reversible exchange (SABRE)

(110–112) is crucial for maximizing scalability (113, 114).

For the clinical application of hyperpolarized MRI theranostics,

the probe must be approved for both imaging and therapeutic

purposes. Research on their use as imaging probes in humans has

already been initiated (101, 115). The quality of the probe must be

guaranteed, and its preparation procedures resemble those of

radiopharmaceuticals, requiring an on-site pharmacy kit (116).

For use as a therapeutic sensitizer, additional clinical trials are

required. Once the probe has been approved and clinically used for

imaging, drug repositioning to expand its indications may

streamline and accelerate therapeutic approval (117). For a new

probe to obtain approval equivalent to an Investigational New Drug

prior to clinical trials, preclinical studies confirming safety and

efficacy are mandatory. 13C atoms on these probes enable preclinical

evaluation of their pharmacokinetics.

Among hyperpolarized MRI probes, pyruvate is anticipated to

lead in therapeutic applications. However, other probes evaluated in

clinical trials (introduced in Section 3) also demonstrate therapeutic

potential. Furthermore, previously developed probes, such as

dehydroascorbic acid (redox evaluation) (118, 119), have potential

application in this field in combination with radiotherapy, which

warrants further exploration. Mechanistically, since hyperpolarized

MRI targets the distinctive metabolism of cancer, preclinically

developed tumor probes may modulate cancer metabolism to

reveal novel targetable vulnerabilities.
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6 Conclusion

Hyperpolarized MRI theranostics may serve as an effective

approach for cancer therapy as well as metabolic diagnosis. By

providing real-time, non-invasive insights into tumor metabolism, this

approach facilitates early detection, personalized treatment planning,

and monitoring of therapeutic efficacy. By effectively integrating

treatment strategies, this approach can be used both for diagnosis and

also to intelligently enhance cancer treatment efficacy. Continued

research and development are crucial to fully realize the potential of

hyperpolarized MRI in oncology for future clinical applications.
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Glossary

2-HG 2-hydroxyglutarate
Frontiers in Oncology
2OGDD 2-oxoglutarate dependent dioxygenase
ADP adenosine diphosphate
a-KG alpha-ketoglutaric acid
aKGDD alpha-ketoglutarate dependent dioxygenase
ATP adenosine triphosphate
CIC mitochondrial citrate carrier
CSI chemical shift imaging
CT computed tomography
DNA deoxyribonucleic acid
DNP dynamic nuclear polarization
EMT epithelial-mesenchymal transition
EPR effect enhanced permeability and retention effect
FDA Food and Drug Administration
GDH glutamate dehydrogenase
GLS glutaminase
HAP hypoxia-activated prodrug
IDH isocitrate dehydrogenase
IGRT image-guided radiotherapy
IMRT intensity modulated radiation therapy
kPL pharmacokinetic conversion rate for pyruvate-to-lactate flux
Lac/Pyr lactate to pyruvate ratio
12
MRI magnetic resonance imaging
MR-LINAC magnetic resonance linear accelerator
NAD+ oxidized form of nicotinamide adenine dinucleotide
NADH reduced form of nicotinamide adenine dinucleotide
NADP+ oxidized form of nicotinamide adenine dinucleotide phosphate
NADPH reduced form of nicotinamide adenine dinucleotide phosphate
MRSI magnetic resonance spectroscopic imaging
NMR nuclear magnetic resonance
OCR oxygen consumption ratio
PET positron emission tomography
PHIP parahydrogen-induced polarization
pO2 partial pressure of oxygen
PPAT phosphoribosyl pyrophosphate amidotransferase
ROS reactive oxygen species
SABRE signal amplification by reversible exchange
SASP senescence-associated secretory phenotype
SCC squamous cell carcinoma
SLC solute carrier
TCA cycle tricarboxylic acid cycle
TME tumor microenvironment
VMAT volumetric modulated arc therapy.
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