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Hyperpolarized magnetic resonance imaging (MRI) has emerged as a transformative
tool in cancer diagnostics, enabling real-time, non-invasive assessment of tumor
metabolism. By employing hyperpolarized molecular probes, such as [1-3*C]
pyruvate, energy metabolism and metabolic changes associated with malignancy
in tumors can be visualized, providing key insights into tumor aggressiveness,
heterogeneity, and treatment response. In addition to their preclinical and clinical
applications in cancer diagnostic imaging, some molecular probes can be used as
potentiators of cancer therapy. This perspective article explores the potential use of
hyperpolarized magnetic resonance spectroscopic imaging (MRSI) in conjunction
with cancer treatment. Notably, the direct application of hyperpolarized molecular
probes immediately after imaging to enhance DNA-targeted cancer therapies,
including chemotherapeutic drugs and radiotherapy, is termed "hyperpolarized
MRI theranostics in cancer.” In this novel approach, metabolic and physiological
intratumoral changes induced by biomolecular probes are used to enhance the
efficacy of subsequent therapeutic interventions. Additionally, future prospects for
advancements in oncology enabled by hyperpolarized MRI are discussed.

KEYWORDS

hyperpolarized MRI, theranostics, cancer, metabolism, radiotherapy

1 Introduction

Cancer remains a leading cause of mortality worldwide, necessitating the development
of advanced therapeutic strategies (1). Clinically, four major cancer treatment strategies are
employed: surgical resection, chemotherapy, immunotherapy, and radiotherapy.
Chemotherapeutic agents developed to target cancer cells include DNA cross-linking
compounds, topoisomerase inhibitors, mitotic inhibitors, and metabolic inhibitors (2, 3).
Molecular targeted agents such as imatinib markedly improve chronic leukemia treatment
outcomes (4). Similarly, multi-kinase inhibitors such as sunitinib extend progression-free
survival in metastatic renal cell carcinoma (5). Advancements in antibody engineering have
significantly enhanced the effectiveness of therapeutic antibodies, molecular targeted
therapy, and immunotherapy to significantly improve cancer treatment (6).
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Radiotherapy is a non-invasive strategy for eradicating cancer
cells using high-energy beams with a localized dose distribution.
Tonizing radiation induces DNA damage by interacting with DNA
and producing free radicals, resulting in cell death. Its efficacy is
limited by the hypoxic tumor microenvironment (TME) (i.e., the
oxygen effect) (7); however, the use of high-linear energy transfer
particles (e.g., o-particles and heavy ion particles) can overcome
this radioresistance (8). Some forms of radiation-induced cell death,
such as immunogenic cell death, stimulate anticancer immunity,
leading to radiotherapeutic effects even in distant, non-irradiated
tumors (e.g., metastatic lesions), a phenomenon termed the
abscopal effect (9-12). Furthermore, immune checkpoint
inhibitors can enhance radiation-induced anti-tumor immunity
(13, 14), supporting the use of strategies combining radiotherapy
with immunotherapy (15, 16).

Precise radiation dose distribution requires the use of imaging
techniques to visualize the tumor location, including computed
tomography (CT), positron emission tomography (PET), and
magnetic resonance imaging (MRI). Combining diagnostic
imaging with radiation exposure, such as in image-guided
radiotherapy (IGRT), tomotherapy, and MRI-guided linear
accelerators (MR-LINACs), markedly enhances tumor targeting
accuracy (17-19). Additionally, pharmaceutical imaging agents
are also employed therapeutically, an approach termed
theranostics (theragnostics), which combines diagnosis and
therapy. In nuclear medicine, companion diagnostics, particularly
in PET imaging, have been adopted as a theranostic approach. The
susceptibility of patients to radioligand therapy can be evaluated
using radiodiagnostics through the accumulation of tumor-avid
molecules or antibodies labeled with radioisotopes, such as 18F and
%%Ga, followed by treatment with similar drugs labeled with other
radioisotopes, such as '”’Lu and **’Ac (20, 21).

Recent multiomics analyses have revealed metabolic hallmarks
associated with malignancy (22-24). Traditional imaging modalities
often fail to provide comprehensive metabolic information crucial for
effective cancer management, underscoring the importance of
functional imaging. Hyperpolarized MRI enables real-time, non-
invasive assessment of tumor metabolism by employing
hyperpolarized molecular probes such as [1-"*Clpyruvate (25).
Unlike PET, a widespread imaging technique that visualizes
metabolic function based on probe uptake and accumulation (e.g.,
'"8E-FDG), hyperpolarized MRI enables assessment of the enzymatic
reaction of the probe (25). Thus, PET and hyperpolarized MRI provide
distinct yet complementary metabolic information, and both
modalities can be used for elucidating metabolic functions in cancer.

Beyond the diagnostic applications of '*C-probes in
hyperpolarized MRI, several studies have indicated that
hyperpolarized MRI probes show promise for enhancing
therapeutic efficacy. In this perspective article, we introduce the
novel concept of “hyperpolarized MRI theranostics in cancer,”
which is the direct application of hyperpolarized molecular
probes for potentiating cancer treatment immediately following
imaging. Compared to the above-mentioned PET-based
theranostics, this approach utilizes stable isotope-labeled
biomolecular probes that induce metabolic and physiological
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intratumoral changes, generating therapeutic or sensitizing
targets. First, cancer metabolism and the basics of hyperpolarized
MRI are outlined; then the potential of hyperpolarized MRI probes
for theranostics and their future clinical prospects in oncology
are explored.

2 Cancer metabolism
2.1 Metabolism as a hallmark of cancer

The “Hallmarks of Cancer” conceptual framework, originally
introduced in 2000, emphasizes the genetic and signaling alterations
underlying malignant traits (26). A 2011 update incorporated
dysregulated cellular energetics as a core hallmark, recognizing
metabolic reprogramming as a fundamental driver of tumorigenesis
(22, 23). Recent conceptual advancements have reframed cancer
metabolism as a system-level adaptation that extends beyond cell-
autonomous processes to encompass dynamic interactions with both
the TME and host (27, 28). Metabolic plasticity enables cancer cells to
transition between epithelial and mesenchymal states, acquire stem-
like properties, and adapt to fluctuating nutrient and oxygen
availability through the reprogramming of glucose, glutamine, and
lipid metabolism (29, 30).

The tumor-associated microbiome also influences cancer
metabolism, with microbial metabolites (e.g., short-chain fatty
acids and bile acids) modulating cancer cell signaling, immunity,
and therapeutic responses (31, 32). Additionally, metabolic
alterations are increasingly linked to the senescence-associated
secretory phenotype (SASP), where senescent stromal and
immune cells release bioactive factors that reshape TME
metabolism, promote immunosuppression, and drive tumor
progression (33, 34).

Competition for metabolic resources within the TME further
exacerbates immune evasion, as cancer cells consume key nutrients
(e.g., glucose and tryptophan) and release immunosuppressive
oncometabolites, such as lactate and kynurenine, thereby
impairing anti-tumor immunity (35, 36).

2.2 Metabolic reprogramming

Metabolic reprogramming is a hallmark of cancer that involves
changes in central carbon metabolism, lipid synthesis, and amino
acid use to provide the energy, building blocks, and redox balance
required for uncontrolled growth (Figure 1, 37). Beyond changes in
glycolysis, cancer cells rewire the tricarboxylic acid (TCA) cycle and
exhibit adaptive amino acid metabolism (38-40). This metabolic
reprogramming involves a shift in the glutamine-derived nitrogen
flux from anaplerotic pathways to nucleotide biosynthesis (41, 42).
This shift is facilitated by increased phosphoribosyl pyrophosphate
amidotransferase (PPAT) activity relative to that of glutaminase
(GLS1). Higher PPAT/GLS] ratios are linked to poor prognosis in
aggressive cancers such as small-cell lung cancer. Suppressing
PPAT significantly reduces tumor growth, highlighting glutamine
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FIGURE 1

Overview of metabolic pathways relevant to hyperpolarized MRI theranostics in cancer. Metabolic reprogramming is a key hallmark of cancer.
Cancer cells exhibit enhanced glucose consumption and rely on glycolysis regardless of oxygen concentration (Warburg effect). The most promising
hyperpolarized MRI probe, [1-**Clpyruvate, can be used to evaluate metabolic activities in glycolysis (lactate production), the TCA cycle (bicarbonate
production), and amino acid synthesis (alanine production). To compensate for the limited pyruvate entry into the TCA cycle owing to enhanced
lactate production, cancer cells utilize glutamine via the glutaminolysis pathway. The TCA cycle generates intermediate metabolites for biosynthesis
and reduced cofactors, such as NADH and FADH,, for ATP production via oxidative phosphorylation in the mitochondrial electron transport chain.
IDH gene mutations result in the abnormal production of the oncometabolite 2-HG from o.-ketoglutarate. Hyperpolarized MRI using o.-ketoglutarate
can monitor this reaction and thus serve as a probe for IDH mutation. Cellular metabolic pathways are coordinated beyond the plasma membrane
through transporters. Disrupting this orchestration represents a promising cancer treatment strategy. Metabolic changes triggered by hyperpolarized
MRI probes may potentially enhance therapeutic effectiveness. Notably, the metabolites, proteins, and pathways shown are excerpted
representatives, and not all participants are illustrated. The names of the enzymes are highlighted with a black background. Biologically important
processes are indicated by red characters. 2-HG, 2-hydroxyglutarate; ACLY, ATP citrate lyase; AGC, aspartate-glutamate carrier (SLC25A12/13);
a-KG, alpha-ketoglutarate; aKGDC, a-ketoglutarate dehydrogenase complex (2-oxoglutarate dehydrogenase complex, OGDHc, OGDC); aKGDD:
o-ketoglutarate dependent dioxygenase (2-oxoglutarate dependent dioxygenase, 20GDD); Ala, alanine; ASCT2, alanine serine cysteine transporter 2
(ASC transporter 2, SLC1A5); Asn, asparagine; ASNS, asparagine synthetase; Asp, aspartate; CA, carbonic anhydrase; CIC, mitochondrial citrate carrier
(SLC25A1); Cys: cysteine; FH, fumarate hydratase (fumarase); y-Glu-Cys, gamma glutamyl cysteine; G-6-P, glucose-6-phosphate; GDH, glutamate
dehydrogenase (GLDH); GlIn, glutamine; GLS, L-glutamine amidohydrolase (glutaminase); Glu, glutamate; GLUT, glucose transporter (SLC2A); Gly,
glycine; GOT, glutamic-oxaloacetic transaminase (aspartate transaminase, AST); GPT, glutamic-pyruvic transaminase (alanine transaminase, ALT); GS,
glutamine synthetase; GSH, reduced form of glutathione; GSSG, glutathione disulfide (oxidized form of glutathione); HK, hexokinase; IDH, isocitrate
dehydrogenase; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter (SLC16A); MDH, malate dehydrogenase; MPC, mitochondrial
pyruvate carrier (SLC54); mut-IDH, mutated isocitrate dehydrogenase; OAA, oxaloacetic acid; ODC, mitochondrial oxodicarboxylate carrier
(SLC25A21); OGC, mitochondrial oxoglutarate malate carrier (SLC25A11); PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP,
phosphoenolpyruvic acid; PK, pyruvate kinase; PPP, pentose-phosphate pathway; R-5-P, ribose-5-phosphate; ROS, reactive oxygen species; SDH,
succinate dehydrogenase (respiratory complex Il); Suc-CoA, succinyl-CoA; TCA cycle, tricarboxylic acid cycle (citric acid cycle, Krebs cycle).

nitrogen metabolism as a potential treatment target (41). Mutations
in driver genes, such as KRAS and TP53, play a significant role in
orchestrating these metabolic changes (43). Environmental factors
such as hypoxia and nutrient scarcity further promote metabolic
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flexibility (44, 45). Moreover, specific oncometabolites, such as 2-
hydroxyglutarate (2-HG), in isocitrate dehydrogenase (IDH)-
mutant cancers act as epigenetic modifiers and reinforce cancer-
promoting programs (43, 46).
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2.3 Relationship between cancer
metabolism and DNA damage/repair in
radiotherapy

Tonizing radiation induces radiation responses at the
intracellular, intratumoral, and systemic levels. DNA damage
activates signaling pathways that regulate DNA repair and cell
cycle arrest, ultimately inducing cell death (47). Dynamic metabolic
rewiring, which provides cells with metabolites involved in
antioxidant defense and DNA repair, occurs in irradiated cells to
support the DNA damage response (48, 49). Enhanced glycolysis
supplies ribonucleotides for nucleotide synthesis (DNA repair) and
NADPH for the reduction of oxidized glutathione via the pentose
phosphate pathway (50, 51). Additionally, increased glycolytic
capacity results in the acidification of the intratumoral pH
through lactate efflux (52, 53), an end product of glycolysis whose
production is essential for replenishing NAD" in cancer (54).
Activation of the mitochondrial electron transport chain increases
ATP production and oxygen consumption following irradiation,
and mitochondrial activation and/or dysfunction causes abnormal
reactive oxygen species (ROS) production, which disrupts redox
homeostasis (55-58). Given that DNA repair is highly energy-
intensive, insufficient ATP production is critical for irradiated cells
(59-61). Accordingly, considering the hallmarks of cancer and
therapy-induced changes, metabolism represents a potential target
for sensitizing treatments, including radiotherapy (3).

3 Hyperpolarized 1*C MRI

Hyperpolarized MRI has gained increased attention owing to
the need for direct monitoring of cancer metabolism in
radiotherapy. Hyperpolarization by dynamic nuclear polarization
(DNP) is a promising technique that enhances the magnetic
resonance signal by over 10,000-fold (62). This enables
hypersensitive NMR spectroscopy and magnetic resonance
spectroscopic imaging (MRSI) to directly probe enzymatic activity
and metabolic reprogramming, including the Warburg effect. This
technique can also assess therapeutic responses to chemotherapy or
radiotherapy during the early phase (63-65).

Molecular probes are central to the functionality of
hyperpolarized MRI. These probes, typically labeled with isotopes
such as "°C or "N, are hyperpolarized to enhance their MRI signals
(66). Upon administration, they undergo metabolic
transformations within the body, and their conversion products
are detected using MRI. For instance, [1-">C]pyruvate is typically
used to assess glycolytic activity, as it is rapidly converted to [1-'*C]
lactate and ["*C]bicarbonate in tumors (Figures 2A-C) (67-70).
The relative concentrations of these metabolites provide insights
into the metabolic state of the tumor, which can be indicative of
malignancy and aggressiveness. Therefore, hyperpolarized MRI can
be used as a non-invasive means to monitor the effects of novel
therapeutic agents and evaluate their impact on tumor metabolism.

Among "*C-labeled probes, clinical trials have predominantly
focused on [1-13 C]pyruvate, which enables real-time quantification
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of pyruvate-to-lactate flux (kpy) in prostate cancer (NCT04286386),
ischemic heart disease (NCT06054516), and primary central
nervous system lymphoma (NCT04656431). Several other '*C-
labeled probes are being explored in clinical trials to provide
complementary metabolic and physiological information. For
instance, [2-"’C]pyruvate has been used to evaluate TCA cycle
activity and mitochondrial function in prostate cancer
(NCT04346225). "*C-bicarbonate enables noninvasive imaging
of extracellular tumor pH (NCT05851365), while o-ketoglutarate
(0-KG) can be used for imaging IDH-mutant tumors through its
conversion to 2-HG (NCT05851378). '*C,">N-urea serves as a
metabolically inert perfusion marker that can be used to assess
renal and tumor vasculature and co-polarized with pyruvate to
simultaneously provide perfusion and metabolic information
(NCT06391034) (71). Additionally, 13C-fumarate detects necrotic
tissue via conversion to malate and can monitor therapeutic
responses, with translational studies supporting its clinical
applicability (ISRCTN49119680).

4 Representative hyperpolarized *C
molecular probes and theranostic
applications

Hyperpolarized '>C-labeled molecules are administered as a
bolus injection within a narrow time window (5-20 s) to obtain
metabolic images to preserve hyperpolarized '*C signals before they
decay. Using this standard rapid injection protocol, some molecular
probes have been found to induce physiological and pharmacological
changes within the TME and enhance therapeutic efficacy
against cancers.

4.1 Pyruvate

Pyruvate is currently the most promising clinical '>C molecular
probe and is used to evaluate the metabolic capacity of both the
glycolysis pathway and TCA cycle and monitor tumor progression
and treatment response (72-74). Although hyperpolarized [1-'>C]
pyruvate provides valuable metabolic information, intravenous
bolus pyruvate injection induces transient hypoxia that lasts for
several hours (75-77). Pyruvate administration results in increased
mitochondrial oxygen consumption, which contributes to an acute
decrease in tumor tissue oxygen pressure (pO,) (Figures 2D, E)
(76, 77). For instance, a mouse squamous cell carcinoma (SCC)
model exhibited resistance to radiotherapy within 5 h of pyruvate
injection attributable to this induced hypoxia (75). Notably, these
pharmacological effects only occur in living individuals (in vivo), as
they depend on the interplay between cancer cells and TME, and are
unlikely to be fully recapitulated in vitro due to the absence of
intratumor vasculature. This underscores that the direct analysis of
biological processes in vivo, including energy metabolism, is crucial
for advancing medical technology.

Although the physiological effects of pyruvate on the TME must
be considered in radiotherapy, they can also be exploited in
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hypoxia-targeted treatment strategies such as hypoxia-activated
prodrugs (HAPs). Evofosfamide (TH-302) can be activated
depending on the oxygen concentration (<76 mmHg),
particularly under severe hypoxic conditions (<10 mmHg) such
as in the TME, and releases a warhead to crosslink double-stranded
DNA, resulting in cell death (78-81). Pyruvate-induced hypoxia
enhances the anti-tumor effects of TH-302 in mouse SCC
(Figure 2F), human colon cancer, and human pancreatic ductal
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adenocarcinoma models (76, 77). Because TH-302 exhibits minimal
toxicity in aerobic tissues (76), a potential theranostic strategy
could involve combining transient tumor hypoxia (induced
by hyperpolarized [1-'>C]pyruvate MRI) with subsequent
HAP administration.

Moreover, the combination of TH-302 and X-ray irradiation yields
superior outcomes compared to either treatment alone (81-83).
Fundamentally, radiotherapy targets normoxic lesions but not
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FIGURE 2 (Continued)

Hyperpolarized MRI of pyruvate metabolism followed by hypoxia induction and its potential for augmenting cancer treatment. Panels (B—F) are cited
from the indicated references. (A) Diagram of [1-**Clpyruvate metabolism. [1-**Clpyruvate is metabolized to [1-**Cllactate, [1-*Clalanine, and [**C]
bicarbonate via **CO,. (B) Non-invasive evaluation of pyruvate metabolism using hyperpolarized MRI in SCC VIl tumor-bearing mice. Each signal
peak corresponds to [1-**Clpyruvate (right) and [1-**Cllactate (left). (C) Heatmap of the lactate-to-pyruvate ratio (Lac/Pyr) calculated based on (B)
overlaid on the anatomical image. Panels (B, C) were reproduced from (70) the publication Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J,
Devasahayam N, et al. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C
hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget (2018). 9:25089-25100. (doi: 10.18632/oncotarget.25317).
Creative Commons CC BY 3.0. (D) Non-invasive monitoring of tumor pO, distribution by electron paramagnetic resonance imaging before and 30
min after pyruvate injection in SCC VIl tumor-bearing mice. (E) In vitro monitoring of oxygen consumption rates (OCR) under treatment with
pyruvate and mitochondrial electron transport chain inhibitors (rotenone/antimycin A). (F) Tumor doubling time following treatment with pyruvate
and/or the hypoxia-activated prodrug TH-302. TH-302 (100 mg/kg) was intraperitoneally injected 30 min after pyruvate injection. **, P<0.01, ***,
P<0.001. Panels (D—F) were reproduced from (76) the publication Takakusagi Y, Matsumoto S, Saito K, Matsuo M, Kishimoto S, Wojtkowiak JW, et al.
Pyruvate Induces Transient Tumor Hypoxia by Enhancing Mitochondrial Oxygen Consumption and Potentiates the Anti-Tumor Effect of a Hypoxia-
Activated Prodrug TH-302. PLoS One. (2014) 9:e107995. (doi: 10.1371/journal.pone.0107995). Creative Commons CCO. Pyruvate was administered
intravenously at a consistent dose (1.15 mmol/kg) across Panels (B-D) and (F). (G) Workflow of hyperpolarized MRI theranostics for cancer
treatment. An example workflow is presented with the approximate time requirements for each step. (1) Preparation for hyperpolarization: A Be-
labeled probe and electron paramagnetic agent (EPA) are mixed with a glass-forming agent. The sterile fluid path is assembled. (2) Hyperpolarization
in a DNP hyperpolarizer: The probe mixture is inserted into a polarizer, where it is placed under a magnetic field at 0.8-1.4 K. Microwave irradiation
is applied to transfer the spin polarization from electrons to **C-nuclei. The time required to achieve sufficient polarization depends on the probe,
protocol, and polarizer (e.g., over 2 h for [1-*Clpyruvate). During this time, the patient is positioned in the MRI machine, and preliminary scans (e.g.,
'H anatomy imaging) for localization and calibration are performed. (3) Dissolution and quality control (QC): The hyperpolarized probe is rapidly
dissolved in superheated water, filtered to remove EPA, mixed with buffer, and sterile filtered into the administration syringe. The final solution is
automatically tested using a QC module to ensure it meets the release criteria (e.g., concentration, pH, sterility, polarization level, residual EPAs, and
temperature). (4) Intravenous injection: The syringe is transported to the MRI room, and the hyperpolarized probe is intravenously administered as a
bolus injection (e.g., 230 mM, 0.43 mL/kg body weight, 5 mL/s for [1-"*Clpyruvate). The duration from dissolution to injection is approximately 60 s.
(5) MR spectroscopic data acquisition: Data are acquired using pulse sequences specialized for **C MRI. Scanning begins within a few minutes after
dissolution to minimize signal loss due to relaxation. Metabolite images are reconstructed from the data. Data analysis (quantification and parameter
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calculation) provides translatable functional information. If necessary, additional MRI sequences can be performed, such as diffusion-weighted
imaging and dynamic contrast-enhanced MRI. (6) Therapeutic intervention: To potentiate efficacy, patients should receive therapies (such as
radiotherapy or chemotherapy) an appropriate duration after probe injection (e.g., 30 min for pyruvate-induced hypoxia). Treatment may continue
for several weeks depending on the procedure. (7) Treatment evaluation: Treatment outcomes are evaluated using imaging (X-rays/CT/MRI) to
assess tumor size reduction or elimination. Adverse events must be monitored during and after treatment.

hypoxic fractions; however, TH-302 functions in the opposite manner.
Thus, both therapeutic strategies are complementary and can function
synergistically. Additionally, TH-302 reduces intratumor oxygen levels
(i.e., reoxygenation) by eliminating hypoxic tumor cells and lowering
oxygen demand, thereby enhancing the effectiveness of subsequent
ionizing radiation (83). Overall, we anticipate that the theranostic
approach can be conducted as follows: First, metabolic diagnosis is
performed using hyperpolarized [1-">C]pyruvate, which induces
transient hypoxia. This can be exploited to potentiate the activity of
HAPs administered 30 min after pyruvate injection, which eliminate
tumor cells in the hypoxic fraction. Finally, 1-2 days after HAPs
administration, radiotherapy can be used to target normoxic tumor
cells, thereby complementing HAPs and leveraging their tumor
reoxygenation activity. For clinical applications, appropriate
combination therapy protocols must be developed. For instance,
pyruvate + HAP administration only once on the imaging day may
be insufficient for treatment. Therefore, the treatment days required to
eradicate hypoxic cells and achieve reoxygenation prior to radiotherapy
need to be established.

4.2 Alpha-ketoglutaric acid
Alpha-ketoglutarate, known as 2-oxoglutarate, is a TCA cycle

intermediate produced from glutamate via glutamate
dehydrogenase (GDH), thus linking the glutaminolysis pathway
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with the TCA cycle following glycolysis (84, 85). In hyperpolarized
MRI, 0-KG is used for probing IDHI mutations (e.g., glioma) by
monitoring the conversion of a-KG into the oncometabolite 2-HG
(86-88). 2-HG has multiple roles in tumor progression and immune
regulation (46, 89). 0-KG-dependent dioxygenase (0KGDD), also
known as 2-oxoglutarate-dependent dioxygenase (20GDD), is a
key target of 2-HG (90). The aKGDD superfamily comprises
enzymes with diverse biological functions, including oxygen
sensing, epigenetic regulation, and extracellular matrix formation
(91, 92). aKGDD enzymes require o-KG, divalent iron (Fe**), and
oxygen as co-substrates and produce hydroxylated substrates,
succinate, trivalent iron (Fe’*), and CO,. Dysregulation of
oKGDD has been observed in various cancers (91, 93).
Considering the importance of 2-HG, hyperpolarized o-KG MRI
provides valuable insights for precision medicine, and derivatives
with enhanced membrane permeability (e.g., diethyl-o-KG)
enhance its feasibility (94).

More recently, 0i-KG has been identified as a radiosensitizer for
lung cancer treatment in combination with CTPI-2, an inhibitor of
mitochondrial citrate carrier (SLC25A1; CIC), whereas o-KG alone
had no pharmacological effects (95). Although CTPI-2 alone can
increase p-2-HG levels and act as a radiosensitizer by modulating
DNA repair (96), the combination of o-KG and CTPI-2
significantly enhanced p-2-HG levels and radiosensitivity. This
effect did not solely depend on p-2-HG, suggesting that metabolic
alterations such as NAD*/NADH imbalance also contribute.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1693853
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yamashita et al.

Collectively, these findings demonstrate that hyperpolarized o-KG
probes can be used as theranostic agents to potentiate CTPI-2
efficacy in specific cancers following metabolic imaging.

oKGDD activity is also inhibited by TCA cycle intermediates,
including succinate and fumarate (91). Solute carriers (SLC) on the
mitochondrial membrane play key roles in transporting TCA
intermediates to the cytosol (97, 98). Therefore, metabolic
modulation, which impacts the production, consumption, and
transportation of TCA intermediates, can attenuate oncogenic
oKGDD activity and modulate biosynthesis and the ATP/ADP
and NAD(P)"/NAD(P)H balance (97, 99). Notably, the cell-
permeable derivative 1-trifluoromethyl benzyl-o-KG can disrupt
cellular energy metabolism and induce cell death under hypoxic
conditions (100). These observations further support combining
mitochondrial SLC inhibitors with cell-permeable a-KG to
modulate metabolism and thus enhance therapeutic efficacy.

Overall, the theranostic workflow can be summarized as
follows: First, metabolic diagnosis is performed using
hyperpolarized 0-KG, followed by CTPI-2 administration, and
finally, radiotherapy is applied. Preclinical studies have explored
administering drugs 2 h before radiotherapy both in vitro and in an
in vivo chick embryo chorioallantoic membrane model (95);
however, the feasibility and optimal protocol, including timing
after imaging and radiotherapeutic conditions, require further
investigation in animal experiments.

A workflow diagram of hyperpolarized MRI theranostics for
cancer is illustrated in Figure 2G.

5 Discussion
5.1 Metabolism as a therapeutic target

Insights into the systemic role of metabolism have revealed
novel therapeutic opportunities, including targeting metabolic
dependencies through enzymes such as lactate dehydrogenase
(LDH) and GLS, disrupting metabolic plasticity to inhibit
adaptive fuel switching under stress, and combining metabolic
inhibitors with immunotherapies such as anti-PD-1 to enhance
immune responses. By transcending the boundaries of a single
hallmark, metabolic reprogramming integrates genetic, epigenetic,
and environmental factors from cancer initiation and progression
to therapeutic resistance, holding significant promise for next-
generation therapies.

5.2 Advantages of radiotherapy in
hyperpolarized theranostics

The systemic effects of hyperpolarized MRI probes remain
unclear, although adverse events are rare in clinical metabolic
imaging (101). Nonetheless, some metabolic modulation may occur
even in normal tissues, potentially enhancing or triggering adverse
effects when combined with therapeutic interventions. Thus, it is
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anticipated that tumor-selective treatment strategies, such as HAPs
and radiotherapy, are better suited for hyperpolarized MRI
theranostics. To minimize radiation exposure to the surrounding
healthy organs, radiation beams are generally targeted at the tumor
region from multiple angles, with doses adjusted to match tumor
shape, in techniques known as intensity-modulated radiation therapy
(IMRT) and volumetric modulated arc therapy (VMAT) (17).
Delivering tumor-localized radiation can minimize the risk of
adverse events in the surrounding organs while leveraging the
physiological modulation accompanied by hyperpolarized MRI. To
this end, MR-LINAC is a promising radiotherapy platform owing to
its high contrast that enables soft tissue discrimination and precise
dose delivery through motion management during irradiation (102,
103). Performing, hyperpolarized MRI using MR-LINAC is an
attractive strategy; however, it faces challenges regarding limited
magnetic field strength (1.5 T in Elekta Unity MR-LINAC vs. 3 T
in most human hyperpolarized MRI studies) (101, 103), spatial
positioning accuracy, and the need to update MR-LINAC systems
to support multinuclear imaging.

5.3 Comparison of PET-based and
hyperpolarized MRI theranostics

Hyperpolarized MRI theranostics differs substantially from
PET-based radiotheranostics: 1) Hyperpolarized MRI employs
stable isotope ('’C)-labeled probes, thus avoiding the
administration of radioactive compounds, but requires an
external radiation source or DNA-damaging agent for therapy; 2)
therapeutically, hyperpolarized molecular probes induce
physiological and metabolic changes that potentiate therapeutic
efficacy; 3) radioligand imaging predicts the effectiveness of the
subsequent radioligand therapy, whereas the MRI results and
subsequent treatment outcomes are not necessarily correlated in
hyperpolarized MRI theranostics. As better optimized post-imaging
interventions are developed, the importance of this method will
increase; and 4) since synthetic radioligands accumulate by
targeting cell surface proteins or enhanced permeability and
retention (EPR) effects, off-target effects may occur depending on
the drug-delivery systems. Conversely, *C-labeled biomolecular
probe distribution relies on perfusion and cellular uptake,
which is less organ selective and may require tumor-targeted
therapeutic interventions.

5.4 Limitations of current hyperpolarized
MRI theranostic approaches

The concept of hyperpolarized MRI theranostics is based on the
chick embryo model (a-KG) and animal experiments (pyruvate),
whose conditions differ from those of humans. For example, the
dose of [1-">C]pyruvate used in hyperpolarized MRI experiments in
mice (1.15 mmol/kg; 300 uL/mouse; 96 mM) (75) is over 10 times
higher than doses required for humans (0.10 mmol/kg; 0.43 mL/kg;
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230 mM) (68). As there is no evidence for pyruvate-induced
hypoxia or radiosensitization from using the combination of o-
KG and CTPI-2 in humans, the clinical feasibility of hyperpolarized
MRI theranostics warrants further investigation.

Several clinical trials have investigated the use of TH-302 as a
single agent or in combination with chemotherapeutic drugs;
however, it has not yet been approved by the Food and Drug
Administration (FDA). Other HAPs have similarly encountered
challenges in clinical trials (104). Therefore, it is worth investigating
whether these drugs exhibit significant efficacy under pyruvate-
induced severe hypoxic conditions, as other HAPs beyond TH-302
may benefit from this strategy.

5.5 Future prospects for hyperpolarized
MRI theranostics

Currently, hyperpolarized MRI faces several barriers to clinical
translation, including regulatory hurdles, high costs, and
reproducibility challenges (101, 105, 106). The widespread
adoption of hyperpolarized MRI is crucial for realizing its
theranostic applications. The scarcity of preclinical and clinical
facilities equipped with dissolution DNP polarizers represents a
major limitation; thus, increasing this infrastructure is crucial. The
development of dissolution DNP techniques that enable
transportable hyperpolarized probes will substantially increase
clinical use and accessibility (107, 108). Furthermore, the
development of rapid and cost-effective hyperpolarization
techniques such as parahydrogen-induced polarization (PHIP)
(109) or signal amplification by reversible exchange (SABRE)
(110-112) is crucial for maximizing scalability (113, 114).

For the clinical application of hyperpolarized MRI theranostics,
the probe must be approved for both imaging and therapeutic
purposes. Research on their use as imaging probes in humans has
already been initiated (101, 115). The quality of the probe must be
guaranteed, and its preparation procedures resemble those of
radiopharmaceuticals, requiring an on-site pharmacy kit (116).
For use as a therapeutic sensitizer, additional clinical trials are
required. Once the probe has been approved and clinically used for
imaging, drug repositioning to expand its indications may
streamline and accelerate therapeutic approval (117). For a new
probe to obtain approval equivalent to an Investigational New Drug
prior to clinical trials, preclinical studies confirming safety and
efficacy are mandatory. '>C atoms on these probes enable preclinical
evaluation of their pharmacokinetics.

Among hyperpolarized MRI probes, pyruvate is anticipated to
lead in therapeutic applications. However, other probes evaluated in
clinical trials (introduced in Section 3) also demonstrate therapeutic
potential. Furthermore, previously developed probes, such as
dehydroascorbic acid (redox evaluation) (118, 119), have potential
application in this field in combination with radiotherapy, which
warrants further exploration. Mechanistically, since hyperpolarized
MRI targets the distinctive metabolism of cancer, preclinically
developed tumor probes may modulate cancer metabolism to
reveal novel targetable vulnerabilities.
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6 Conclusion

Hyperpolarized MRI theranostics may serve as an effective
approach for cancer therapy as well as metabolic diagnosis. By
providing real-time, non-invasive insights into tumor metabolism, this
approach facilitates early detection, personalized treatment planning,
and monitoring of therapeutic efficacy. By effectively integrating
treatment strategies, this approach can be used both for diagnosis and
also to intelligently enhance cancer treatment efficacy. Continued
research and development are crucial to fully realize the potential of
hyperpolarized MRI in oncology for future clinical applications.
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Glossary
2-HG
20GDD
ADP
a-KG
oKGDD
ATP
CIC

CSI

CT
DNA
DNP
EMT
EPR effect
FDA
GDH
GLS
HAP
IDH
IGRT
IMRT
kpr,

Lac/Pyr

2-hydroxyglutarate

2-oxoglutarate dependent dioxygenase
adenosine diphosphate

alpha-ketoglutaric acid

alpha-ketoglutarate dependent dioxygenase
adenosine triphosphate

mitochondrial citrate carrier

chemical shift imaging

computed tomography

deoxyribonucleic acid

dynamic nuclear polarization
epithelial-mesenchymal transition
enhanced permeability and retention effect
Food and Drug Administration

glutamate dehydrogenase

glutaminase

hypoxia-activated prodrug

isocitrate dehydrogenase

image-guided radiotherapy

intensity modulated radiation therapy
pharmacokinetic conversion rate for pyruvate-to-lactate flux

lactate to pyruvate ratio
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MRI
MR-LINAC
NAD"
NADH
NADP*
NADPH
MRSI
NMR
OCR

PET

PHIP

pO,

PPAT
ROS
SABRE
SASP

Neo

SLC

TCA cycle
TME

VMAT

10.3389/fonc.2025.1693853

magnetic resonance imaging

magnetic resonance linear accelerator

oxidized form of nicotinamide adenine dinucleotide
reduced form of nicotinamide adenine dinucleotide

oxidized form of nicotinamide adenine dinucleotide phosphate
reduced form of nicotinamide adenine dinucleotide phosphate
magnetic resonance spectroscopic imaging

nuclear magnetic resonance

oxygen consumption ratio

positron emission tomography

parahydrogen-induced polarization

partial pressure of oxygen

phosphoribosyl pyrophosphate amidotransferase

reactive oxygen species

signal amplification by reversible exchange
senescence-associated secretory phenotype

squamous cell carcinoma

solute carrier

tricarboxylic acid cycle

tumor microenvironment

volumetric modulated arc therapy.
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