
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Valentina Lancellotta,
Agostino Gemelli University Polyclinic
(IRCCS), Italy

REVIEWED BY

Fang Wu,
Central South University, China
Anna Ivanina Foureau,
Levine Cancer Institute, United States

*CORRESPONDENCE

Guanglu Dong

DGL64@163.com

Dawei Chen

dave0505@yeah.net

Ran Zhang

ran9112@163.com

RECEIVED 26 August 2025

ACCEPTED 20 October 2025
PUBLISHED 11 November 2025

CITATION

Zhu Z, Zan Y, Jiang M, Zhang R, Chen D and
Dong G (2025) A metabolic-radioimmune
signature predicts therapy response and
immune reprogramming in non-small cell
lung cancer.
Front. Oncol. 15:1693277.
doi: 10.3389/fonc.2025.1693277

COPYRIGHT

© 2025 Zhu, Zan, Jiang, Zhang, Chen and
Dong. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 November 2025

DOI 10.3389/fonc.2025.1693277
A metabolic-radioimmune
signature predicts therapy
response and immune
reprogramming in non-small
cell lung cancer
Zihong Zhu1,2,3, Yichen Zan1,2,3, Mengqian Jiang2,4, Ran Zhang2*,
Dawei Chen2* and Guanglu Dong1,3*

1Harbin Medical University, Harbin, Heilongjiang, China, 2Department of Radiation Oncology and
Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan,
Shandong, China, 3Department of Radiation Oncology, the Second Affiliated Hospital of Harbin
Medical University, Harbin, Heilongjiang, China, 4School of Clinical Medicine, Shandong Second
Medical University, Weifang, Shandong, China
Objective: This study systematically investigates radiotherapy-induced

metabolic remodeling across the TME, encompassing tumor cells, immune

cells, and tumor-draining lymph nodes (TDLNs), and establishes a prognostic

signature based on radioresistance-related metabolic genes (RRMGs) to

optimize therapeutic stratification and radiosensitizer discovery.

Methods: Bulk transcriptomic datasets of NSCLC tumor cells and tumor-draining

TDLNs were systematically integrated, along with single-cell RNA-seq data from

tumor tissues, to reconstruct metabolic flux maps using the single-cell Flux

Estimation Analysis (scFEA) algorithm. WGCNA and Cox regression modeling of

TCGA radiotherapy cohort were used to identify core RRMGs. A prognostic

nomogram was developed using risk scores derived from these genes, while

CIBERSORT and TIDE algorithms were used to evaluated TIME features and

immunotherapy responses. Candidate radiosensitizing agents were predicted via

the oncoPredict platform and validated by molecular docking, qRT-PCR and

western blotting in radioresistant NSCLC cells.

Results: Radiotherapy induced profound metabolic heterogeneity across the

NSCLC TIME: Tumor cells and draining TDLNs exhibited suppressed tricarboxylic

acid (TCA) cycle activity and N-glycan biosynthesis, while immune cells displayed

upregulated serine metabolism alongside divergent shifts in lymphoid subsets.

Seven RRMGs were identified as key prognostic determinants, including PGD,

IDH2, G6PD, ALDH3A1, UPP1, XYLT2, AACS. The RRMG-based risk model

robustly predicted poor overall survival (HR = 4.726, 95% CI: 2.154-10.371;

P<0.001), with high predictive accuracy (AUC for 1-, 3-, and 5-year: 0.752,

0.778, and 0.879). High-risk patients demonstrated an immunosuppressive

TIME marked by elevated tumor-promoting immune cell infiltration and TIDE

scores. The model ’s generalizability was verified in an independent

radioimmunotherapy cohort (AUC: 0.618). Experimental validation revealed

significant upregulation of high-risk RRMGs in radioresistant NSCLC cells.

Ouabain and two novel compounds (BRD-K28456706, BRD-K42260513) were

nominated as promising radiosensitizers.
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Conclusion: Radiotherapy-induced metabolic reprogramming in TIME drives

resistance of NSCLC. The RRMG signature predicts radioimmunotherapy

outcomes for patient stratification. Identifying ouabain and novel compounds

highlights targeting metabolic vulnerabilities as a translatable strategy to

overcome resistance.
KEYWORDS

non-small cell lung cancer, metabolic reprogramming, radioresistance, tumorimmune
microenvironment, radioresistance-related metabolic genes
1 Introduction

Lung cancer remains the leading cause of cancer-related mortality

worldwide, with non-small cell lung cancer (NSCLC) accounting for

the majority of cases. The high rates of recurrence and metastasis

contribute to its poor prognosis (1). Radiotherapy, a cornerstone

treatment for locally advanced NSCLC, exerts its antitumor effects by

directly inducing DNAdamage or indirectly generating reactive oxygen

species (ROS) (2–4). In recent years, immunotherapy has

revolutionized cancer therapies, and radiotherapy has been shown to

synergize with immune checkpoint blockers (ICBs) by enhancing CD8

+ T-cell infiltration and antigen presentation, among other

mechanisms (5). The combination of these modalities holds promise

for converting “cold tumors” into “hot tumors.” However,

radioresistance remains a major cause of treatment failure,

underscoring the urgent need to develop predictive systems for

radiosensitivity. Conventional studies have primarily focused on

unidimensional mechanisms, such as DNA repair and the tumor

immune microenvironment, yet their clinical translation in

sensitivity prediction remains limited.

Tumor metabolic reprogramming influences radiotherapy

efficacy through a dual mechanism. On the one hand, it enhanced

oxidative phosphorylation (OXPHOS) and glutaminolysis to fuel

DNA repair; On the other hand, lactate accumulation drives

myeloid-derived suppressor cell (MDSC) infiltration, forming a

metabolic-immunosuppressive cycle (6, 7). Accumulated evidence
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suggests that metabolic kinases pyruvate kinase M2 (PKM2) and

glucose transporter 1 (GLUT1) participate in hypoxia adaptation

and programmed death-ligand 1 (PD-L1) regulation, suggesting

that the metabolic network may serve as a critical nexus between

radiotherapy effects and immune microenvironment remodeling

(8–10). However, current research predominantly focuses on

isolated pathway analyses, lacking comprehensive understanding

of the systemic metabolic interaction networks underlying

radiotherapy response.

Transcriptomics and single-cell metabolic analysis play pivotal

roles in metabolic research. Conventional approaches such as

scMetabolism primarily rely on pathway-based scoring systems.

While these methods can identify alterations at the pathway level

(e.g., upregulation of fatty acidmetabolic pathways), they fail to provide

precise information about specific metabolite transformations. This

limitation stems from the inherent low resolution of pathway scoring,

and the scarcity of publicly available single-cell metabolomics data. In

contrast, single-cell flux estimation analysis (scFEA) employs an

innovative computational framework to directly infer cell-specific

metabolic flux from single-cell transcriptomic data, enabling higher-

resolution metabolic state characterization. scFEA utilizes a

systematically reconstructed human metabolic map as a factor graph,

integrating probabilistic modeling with gradient descent algorithms to

accurately trace metabolite conversion pathways. In glutamine

metabolism studies, scFEA not only identified flux variations in the

glutamate-to-glutathione (Glu-GSH) pathway but also demonstrated

that this flux-rather than the glutamate-to-2-oxoglutarate conversion-

plays a critical role in modulating tumor immune response (11).

Notably, in validation experiments with matched metabolomics data,

scFEA-predicted flux changes showed significant concordance with

experimentally measured metabolite abundance alterations, providing

empirical support for its reliability in studying metabolic heterogeneity.

This study innovatively proposed that systematic analysis of

radioresistance-related metabolic genes (RRMGs) could untangle

the molecular determinants of radiotherapy response. Through the

synthesis and construction of an RRMG-based prognostic signature

model, we have achieved clinical translational value across three

dimensions for the first time: (1) In prognostic prediction, it

overcomes the limitations of the conventional TNM staging

system; (2) In immune microenvironment characterization, it
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reveals novel mechanisms of metabolism-reprogramming-

mediated immunosuppression; (3) In precision therapy, it

establishes a drug sensitivity prediction model. By systematically

elucidating the metabolic interaction network between tumor cells

and the microenvironment, this study provides a novel biomarker

system and radiosensitization strategy for precision radiotherapy in

NSCLC, advancing the transformation of radiation oncology

toward an integrated multi-omics precision medicine paradigm.
2 Materials and methods

2.1 Data acquisition and processing

We retrieved the GSE197236, GSE157881, and GSE239514

datasets from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) for scFEA. Data from

NSCLC patients was obtained from The Cancer Genome Atlas

(TCGA, https://cancergenome.nih.gov/=TCGA), including bulk

RNA-seq and clinical information (such as overall survival (OS),

progression-free survival (PFS), treatment response, gender, age,

and stage). Ultimately, 51 NSCLC samples that had undergone

radiotherapy alone and complete available clinical data were

included. As a validation cohort, RNA-seq data, treatment

response, and survival information from the GEO database for

NSCLC patients who had received combined radiotherapy and

immunotherapy (GSE253564) were included.
2.2 Identification of co-expressed
metabolic modules associated with tumor
radiotherapy

Weighted gene co-expression network analysis (WGCNA) is a

systems biology approach used to characterize patterns of gene

relationships within samples. By leveraging central genes or module

eigengenes, WGCNA can identify tightly correlated gene clusters

and link these clusters to external sample traits. Based on the

TCGA-LUAD dataset, a co-expression network was constructed

using the WGCNA method. Through the dynamic tree-cutting

algorithm, 25 gene modules were identified, and the module

eigengenes (MEs) were calculated for each module. Module-trait

association analysis revealed three modules significantly correlated

with radioresistance (correlation coefficient r > 0.45, p < 0.01),

whose module eigengenes exhibited strong associations with the

radiotherapy response phenotype. Subsequently, the genes from

these three modules were intersected with the KEGG metabolic

pathway gene sets, ultimately yielding RRMGs.
2.3 Development of the prognostic model
based on RRMGs

Initially, we employed univariate Cox regression and stepwise

multivariate Cox regression analyses to determine the relationship
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between RRMGs and patient survival status. Genes with P < 0.05

were considered significantly associated with survival. The final set

of RRMGs was used to construct a prognostic risk model. The risk

score was calculated using the following formula: Risk score

=∑(expGenei × bi), where expGenei is the relative expression of

the prognostic model gene, and bi is the regression coeffecient.
2.4 Assessment and validation of the
RRMGs prognostic Model

Based on the median risk score, patients were stratified into high-

risk and low-risk groups. OS was evaluated using Kaplan-Meier

analysis, and patient survival status was visualized according to risk

scores using the “pheatmap” package in R software. Receiver operating

characteristic (ROC) curve analysis and area under the curve (AUC)

calculation were performed with the “timeROC” package in R.

Nomograms and linear charts were constructed by integrating clinical

characteristics and risk level to predict 1-year, 3-year, and 5-year overall

survival rates in lung adenocarcinoma (LUAD) patients. Calibration

curves were generated using the “rms,” “regplot,” and “survival”

packages in R, with closer proximity to the diagonal indicating higher

predictive accuracy. Furthermore, the prognostic and therapeutic

efficacy predictive capability of the RRMGs model was assessed in

validation cohorts GSE68465 receiving chemoradiotherapy and

GSE253564 receiving combined radiotherapy and immunotherapy.
2.5 Analysis of immune microenvironment
infiltration and immunotherapy response in
risk subgroups

The CIBERSORT algorithm was employed to evaluate differences

in immune infiltration between high- and low-risk groups by

calculating the proportions of 22 immune cell subtypes and

comparing their distribution patterns across risk subgroups.

Concurrently, the Tumor Immune Dysfunction and Exclusion

(TIDE) method was applied to predict individual response

probabilities to immunotherapy, reflecting the potential efficacy of

immune checkpoint blockers (ICBs). Wilcoxon rank-sum tests (P <

0.05) were performed to validate statistically significant differences

between risk subgroups regarding immune cell infiltration fractions,

TIDE scores, and immune checkpoint gene expression. Further

analyses were conducted to examine differential expression levels of

immune checkpoints between the two risk subtypes. The correlation

between TIDE scores and immune checkpoint expression was assessed

to elucidate the mechanistic association wherein the low-risk group

exhibited higher immune checkpoint expression levels and lower TIDE.
2.6 Identification of candidate drugs for
high-risk NSCLC patients

The drug sensitivity of different risk groups was evaluated using

the oncoPredict R package. This tool integrates large-scale gene
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expression data (e.g., GDSC and CTRP databases) with drug

screening data to construct a ridge regression model for

predicting drug responses. In this study, the model was applied to

the TCGA-LUAD gene expression dataset for drug response

prediction. Further validation of the biological relevance of the

predictions was performed through immune infiltration analysis

(e.g., CIBERSORT, ssGSEA) and tumor microenvironment

assessment (e.g., ESTIMATE algorithm). The screening criteria

were set as follows: drugs with a log2 fold change (log2FC) > 0.15

and a P-value < 0.05 were considered potential therapeutic

candidates. Their clinical prognostic value was additionally

validated via survival analysis and risk modeling (e.g., LASSO-

Cox regression). All analytical parameters, including batch effect

correction using the ‘combat’ method and repeated calculation of

gene expression means, were set to default values.
2.7 scRNA-seq data processing and
analysis

Quality assessment of scRNA-seq (single-cell RNA sequencing)

data were performed using FastQC software. The sequencing reads

were aligned to the human GRCh38 reference genome via the STAR

alignment pipeline to obtain gene counts for each sample. During

subsequent analysis, cell samples with fewer than 250 or more than

10,000 expressed genes were excluded. Additionally, cells exhibiting

mitochondrial genome alignment rates exceeding 15% were

identified as low-quality cells and subsequently removed from

the analysis.
2.8 scFEA

scFEA leverages a comprehensively reorganized human

metabolic map as a factor graph and employs multi-layer neural

networks to capture the intricate information cascade from the

transcriptome to the metabolome. This approach enables the direct

quantification of specific metabolic pathway abundances, thereby

clarifying precisely which metabolites have undergone changes. For

instance, it can elucidate the transformation of glutamate to

glutamine, then to GABA, and subsequently to succinate. The

“scFEA” package (available at https://github.com/changwn/

scFEA) were utilized to analyze the metabolic differences between

radiotherapy-sensitive and radiotherapy-resistant NSCLC cells, as

well as the metabolic variations in the TIME and tumor-draining

lymph nodes before and after radiotherapy.
2.9 Cell culture

NSCLC cell lines (A549 and LLC) were obtained from the Cell

Resource Center of the Chinese Academy of Sciences (Beijing,

China) and authenticated using the STR profiling method. Cells

were cultured in DMEM (Gibco, Carlsbad, CA, USA) supplemented

with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA) and
Frontiers in Oncology 04
maintained at 37 °C within a humidified atmosphere containing 5%

CO2. Regular screenings for cell mycoplasma infection were carried

out and all results were confirmed to be negative.
2.10 Development of radioresistant cell
models

The radioresistant cell models were established using a

calibrated 6-MV linear accelerator (RAD SOURCE RS2000-225)

with a dose rate of 17.7 Gy/min. Parental A549 and LLC cells were

subjected to 2 Gy per fraction, followed by 48-hour recovery in fresh

complete medium before passaging. The irradiation cycle was

repeated when cells re-entered logarithmic growth phase (with

recorded recovery time to normal proliferation kinetics averaging

24–48 hours post-irradiation, ensuring population synchrony). This

protocol was maintained through 30 fractionated doses until a

cumulative dose of 60 Gy was achieved. During model

establishment, clonogenic survival assays were performed to

quantify radioresistance using Survival Fraction at 2 Gy (SF2) as

the endpoint. Following each fraction, cells were harvested for 10-

day colony formation, with SF2 defined as the ratio of surviving

colonies post-2 Gy irradiation to untreated controls. The resultant

resistant lines (A549R and LLCR) demonstrated significantly

elevated SF2 values compared to parental cells. Clonogenic

stabilization was observed upon reaching 60 Gy total dose,

confirming stable phenotypic acquisition.
2.11 Quantitative real time polymerase
chain reaction

RNA was extracted from cells using TRIzol reagent (Vazyme,

Nanjing, China). RNA concentration was measured using a

spectrophotometer and stored the samples at -80 °C. cDNA was

synthesized using HiScript Ill RT SuperMix for qPCR (Vazyme,

Nanjing, China). Bio 7500 Real-Time PCR System (Thermo Fisher

Scientific, Carlsbad, CA, USA) was used to perform qPCR in the

StepOne Plus real-time PCR System (Applied Biosystems). ACTB

was used as the internal reference gene for normalization. The

relative fold change in expression was calculated using the 2-DDCt

method. The sequences of target primers are detailed in Table 1.
2.12 Western blot

Whole cell mixtures were separated using cell complete lysis

buffer for western and IP (Beyotime, item number: P0037-100ml,

Shanghai, China), protease inhibitor, and protein phosphatase

inhibitor mixtures. The protein concentration was measured by

using BCA protein concentration rapid determination kit

(Beyotime, Shanghai, China). Equal amounts of proteins were

separated on 10% SDS-PAGE and transferred to a 0.45 mm PVDF

membrane (Millipore, IPFL00005, Darmstadt, Germany). The

membranes were closed with 5% skimmed milk and incubated
frontiersin.org

https://github.com/changwn/scFEA
https://github.com/changwn/scFEA
https://doi.org/10.3389/fonc.2025.1693277
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2025.1693277
with primary antibodies, including anti-PGD (Abways, DY1193,

Beijing, China), anti-IDH2 (Abways, CY7005), anti-G6PD

(Abways, CY6841), anti-ALDH3A1 (Proteintech, 20874–1-AP,

Wuhan, China), anti-AACS (Proteintech, 13815-1-AP) and anti-

b-tubulin (Cell Signaling Technology, #2146S, Danvers, MA, USA),

overnight at 4 °C. They were then incubated in secondary IgG

(ABclonal, AS014, Wuhan, China) for 1 h at room temperature.

Protein bands were visualized using Super ECL detection reagent

(Vazyme, Nanjing, China). Grayscale analysis of protein bands was

performed using Image J software.
2.12 Statistical methods

Statistical analysis was performed using IBM SPSS Statistics 26

and R software (4.3.3). Bootstrapping was used to avoid over fitting.

The normal distribution variables were analyzed by Student’s t-test.

Non-normally distributed variables were analyzed using Wilcoxon

rank sum test. P<0.05 was considered statistically significant.
3 Results

3.1 Metabolic analysis of parental and
radioresistant A549 cells

Based on the bulk RNA-seq data from GSE197236, we used

scFEA to transform transcriptomics into metabolomics, analyzing

the metabolic differences between parental A549 cells and

radioresistant A549 cells. The lung cancer cell line A549 in
Frontiers in Oncology 05
logarithmic growth phase was irradiated with 4 Gy for the first

time and cultured for subculture. After cell adherence growth, the

cells were irradiated again with 4 Gy, with a total dose of 60 Gy.

Figure 1A shows the differences in 168 metabolic fluxes and 22

metabolic supermodules between parental and radioresistant A549

cells. There were 25 significantly altered metabolic fluxes between

parental and radioresistant A549 cells, with 6 fluxes increased and

19 fluxes decreased in radioresistant cells (Figure 1B).

Compared with parental cells, most metabolic fluxes in

radioresistant cells demonstrated a downward trend. Specifically,

fluxes related to N-linked glycan synthesis, including M122

[(GlcNAc)4(Man)3(Asn)1→(Gal)2(GlcNAc)4(LFuc)1(Man)3

(Neu5Ac)2(Asn)1)],M124[(GlcNAc)4(Man) 3(Asn)1→(GlcNAc)5

(Man)3 (Asn)1)], and M113[(Acetyl-CoA→(E,E)-Farnesyl-PP)]

were decreased. Additionally, fluxes in the TCA cycle, such as M10

(Succinyl-CoA→Succinate), M8(Citrate→2OG) and M14

(Pyruvate→Oxaloacetate) were also reduced. The intermediate

metabolite (GlcNAc)4(Man)3(Asn)1 in the N-linked glycan

synthesis fluxes M122 and M124 was increased. Interestingly, the

enzymes regulating M122 and M124, including N-acetylglucosamine

transferases (MGAT1,MGAT3, andMGAT4A), were downregulated

in radioresistant A549 cells. In the TCA cycle fluxes M10 andM8, the

metabolites Succinyl-CoA and Citrate were increased, while

Succinate and 2OG were decreased.

For purine synthesis metabolism, fluxes related to IMP

degradation and xanthine synthesis and transformation were

reduced, including M137(IMP→XMP), M145 (XMP→Xanthine)

and M147 (Xanthine→Guanine); while the flux of xanthine

degradation M146 (Xanthine→Uric acid) was increased. The

metabolite xanthine was decreased, while IMP was increased.
TABLE 1 Primer sequences of RT-qPCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

PGD_human GTGGCCCCACATCAAGACC GTCCCCATACTCTATCCCGTT

PGD_mouse CTTGTTGGACACGGGTGACAT GCTTGGAAGATCGCCTTGATG

IDH2_human CGCCACTATGCCGACAAAAG ACTGCCAGATAATACGGGTCA

IDH2_mouse ATTTTGTGGTAGATCGAGCTGG CCTCCGGCAGGGAAGTTATAC

G6PD_human AACATCGCCTGCGTTATCCTC ACGTCCCGGATGATCCCAA

G6PD_mouse CTCCAATCAACTGTCGAACCA TTGTCTCGATTCCAGATGGGG

ALDH3A1_human TGTTCTCCAGCAACGACAAGG AGGGCAGAGAGTGCAAGGT

ALDH3A1_mouse AATATCAGTAGCATCGTGAACCG GAGAGCCCCTTAATCGTGAAATC

AACS_human GATGACTTGTACCATTGGTCCG ACGTGAGAAGACAATTCCACTG

AACS_mouse GTGGAATCGTCTACTCACGCA TAAAGGGCGACTCTGTCGTTC

UPP1_human CTGTCAGTCATGGTATGGGCA GAGCACCGGGCATAGTACA

UPP1_mouse TGAAGGAAGACGTGCTCTACC GAAGGTGTTCATCCGGGAAGA

XYLT2_human AGGTGGTACGGGCAGTAAC GCTCCCTGTATCTCCGTGT

XYLT2_mouse TTAAAGGACGTGGACTCGCTT TGGGTGGAGTTAAACTGCCTC

ACTB_human GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT

ACTB_mouse CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
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3.2 Metabolic differences in the TIME of
mouse HKP1 lung orthotopic carcinoma
before and after radiotherapy

Based on scRNA-seq data from the GSE157881 database, we

employed the scFEA method to evaluate metabolic flux alterations

in various immune cell populations within the TME and
Frontiers in Oncology 06
systematically compared metabolic differences before and after

radiotherapy. Single live cells sorted from HKP1-bearing lungs

which received 0Gy-RT or 4Gy-RT were sequenced. The mutant

HKP1 (KrasG12Dp53−/−) orthotropic mouse model of lung cancer

develops adenocarcinoma with histopathological similarities to

human NSCLC in immunocompetent C57/BL6 mice. Figure 1C

demonstrates the differential metabolic fluxes across 168 metabolic
FIGURE 1

Metabolic reprogramming in the TIME associated with radiotherapy. (A) Overview of all 168 metabolic flux pathways (divided into 22 supermodules)
in A549 parental and radioresistant cells. (B) Heatmap of the 25 significantly different metabolic fluxes between A549 parental and radioresistant cells
(P<0.05). (C) Heatmap of metabolic fluxes in various immune cells before and after radiotherapy. (D) Single-cell clusters of mouse HKP1 lung
orthotopic carcinoma before and after radiotherapy (3×4 Gy). (E) Cluster of metabolic flux changes in serine metabolism (M30 flux) in various
immune cells before and after radiotherapy. (F, G) Overview of all 168 metabolic flux pathways (divided into 22 supermodules) in tumor-draining
lymph nodes (TDLNs) from NSCLC patients with primary tumors that were untreated (nonCRT) or treated with chemoradiotherapy (CRT). Among
these, 21 metabolic fluxes showed significant differences between the two groups (P<0.05).
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pathways (22 supermodules) among distinct immune cell types pre-

and post-radiotherapy. The study revealed that different immune

cell subsets exhibited markedly heterogeneous metabolic responses

to radiotherapy: B cells displayed the most pronounced

upregulation of metabolic flux post-radiotherapy, whereas natural

killer (NK) cells showed the most significant metabolic suppression.

In contrast, T cells exhibited minimal changes in metabolic flux

before and after radiotherapy. Despite substantial overall metabolic

variations among immune cell populations, we observed that the

serine metabolic flux within the methionine/cysteine metabolic

pathway (M30 pathway) consistently demonstrated the most

prominent enhancement across all immune cell types following

radiotherapy (Figures 1D, E).
3.3 Metabolic differences in TDLNs of
patients before and after radiotherapy

Based on the GSE239514 dataset (which performed bulk RNA

sequencing on 25 TDLN samples from 16 NSCLC patients), we

employed scFEA to transform transcriptomic data into

metabolomic data. By comparing metabolic differences in TDLNs

between patients who were not subjected to chemoradiotherapy

(nonCRT) and those who received chemoradiotherapy (CRT), it

was found that most metabolic fluxes in TDLNs exhibited a

downregulating trend post-radiotherapy (Figure 1F). Figure 1G

demonstrates 21 significantly altered metabolic fluxes between the

two patient groups. Specifically: 1) The fluxes of malate →

oxaloacetate (M13) and acetyl-CoA + oxaloacetate → citrate

(M7) in the tricarboxylic acid (TCA) cycle; 2) The flux of dolichyl

phosphate → dolichyl phosphate D-mannose (M118) in N-linked

glycan biosynthesis; and 3) The flux of aspartate → pyrimidine

(M36) in aspartate metabolism were all significantly reduced.

Notably, in the M7 pathway, increased levels of acetyl-CoA and

oxaloacetate were observed alongside decreased citrate, while in the

M118 pathway, elevated dolichyl phosphate was accompanied by

reduced dolichyl phosphate D-mannose. These results indicate that

radiotherapy can induce aberrant expression of metabolic enzymes

and accumulation of intermediate metabolites in the NSCLC tumor

microenvironment (including tumor cells, TIME, and local

TDLNs), thereby triggering metabolic reprogramming and

mediating radioresistance.
3.4 Identification of metabolic genes
associated with radioresistance

Based on the TCGA database, we obtained data from 554

LUAD patients, and ultimately selected 51 patients who had

received radiotherapy alone. The RNA-seq data from these

patients included 11,105 genes. After filtering out genes with low

expression variability (standard deviation ≤ 0.5), 4,570 genes

remained. These genes were then subjected to WGCNA. First, the

optimal soft threshold power for a scale-free network was calculated

to be 12, with a correlation coefficient greater than 0.8 (Figure 2A).
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Subsequently, 25 modules were identified based on average linkage

hierarchical clustering and the optimal soft threshold power

(Figure 2B). Those patients selected from the TCGA database

were divided into radioresistant (RR) and radiosensitive (RS)

groups. RR was defined as complete remission (CR) after

radiotherapy, while other types (such as stable disease (SD) and

progressive disease (PD)) were classified as RS. Correlation analysis

was conducted between the 25 modules and radiotherapy, revealing

that MEbrown (343 genes) and MEtan (150 genes) were positively

correlated with RR, while MEmagenta (153 genes) was negatively

correlated with RR (Figure 2C). The WGCNA module gene sets

associated with radioresistance included MEbrown, MEmagenta,

and MEtan, comprising 644 genes. The metabolic-related gene set

consisted of 663 genes, derived from all metabolic-related genes in

the 168 metabolic pathways identified in the first part using scFEA.

The intersection of the radioresistance-associated WGCNA module

gene sets and the metabolic-related genes yielded 50 genes, which

were used for further analysis (Figures 2D, E).
3.5 Development and validation of the
radiotherapy prognostic model

To investigate the prognostic value of RRMGs, we initially

performed univariate Cox regression analysis (stratified by RR and

RS subgroups) on 50 candidate genes, identifying 15 genes

significantly associated with survival. Subsequent stepwise Cox

regression analysis ultimately identified seven independent

prognostic biomarkers: phosphogluconate dehydrogenase (PGD),

isocitrate dehydrogenase 2 (IDH2), glucose-6-phosphate

dehydrogenase (G6PD), aldehyde dehydrogenase 3A1 (ALDH3A1),

uridine phosphorylase 1 (UPP1), xylosyltransferase 2 (XYLT2), and

acetyl-CoA synthetase (AACS). Among these, PGD, IDH2, G6PD,

ALDH3A1, and AACS were determined as risk factors, whereas

UPP1 and XYLT2 exhibited protective effects (Figures 3A, B).

Based on these seven key RRMGs, a multivariate Cox regression

prognostic model was constructed. The risk score was calculated as

follows: Risk score = (0.3153 × PGD expression) + (0.7059 × IDH2

expression) + (0.4029 × G6PD expression) + (0.4784 × ALDH3A1

expression) + (0.8238 × AACS expression) - (0.3972 ×

UPP1 expression) - (0.3711 × XYLT2 expression). Patients with

LUAD were stratified into high- and low-risk groups based on the

median risk score. Kaplan-Meier analysis demonstrated significantly

shorter overall survival in the high-risk group compared to the low-

risk group (HR = 4.726 [95% CI: 2.154-10.371], p < 0.001)

(Figure 3D). The AUC values for 1-, 3-, and 5-year follow-up were

0.752, 0.778, and 0.879, respectively (Figure 3E).

In addition, the prognostic performance of our RRMGs model

was validated using the independent dataset GSE68465 (Figures 3F,

G). This dataset originated from a large, multi-institutional, blinded

validation study that evaluated multiple gene expression-based

prognostic models in 442 lung adenocarcinoma cases. From this

cohort, we selected 65 patients who received radiotherapy and had

complete clinical and survival records for further validation.

Kaplan-Meier analysis revealed significantly worse overall survival
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in the high-risk group compared to the low-risk group (HR = 4.163,

95% CI: 2.025-8.558, P < 0.001; Figure 3F). The RRMGs model

demonstrated strong predictive accuracy with 1-, 3-, and 5-year

AUC values of 0.743, 0.776, and 0.790, respectively, in the

GSE68465 dataset (Figure 3G). These results confirm the robust

prognostic capability of our model.
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Finally, the RRMGs prognostic model was integrated with

clinical parameters (age, gender, smoking history and stage) to

construct a prognostic nomogram (Figure 3H). ROC curve

showed that this prognostic model exhibited excellent

predictive performance with good probability (AUC = 0.811,

Figures 3I, J).
FIGURE 2

Identification of co-expression gene modules associated with radioresistance. (A) Selection of soft threshold based on scale-free topology.
(B) Selection of soft threshold based on average connectivity. (C) Dendrogram of genes associated with radiotherapy. (D) Heatmap of the correlation
between gene co-expression modules and radiotherapy response. (E) Venn diagram illustrating the selection of radioresistance-related metabolic
genes (RRMGs). (F) Heatmap showing the expression levels of RRMGs in the RR group and the RS group.
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FIGURE 3

Construction and evaluation of the radiotherapy prognostic model. (A, B) Forest plots of univariate and multivariate Cox regression analyses for
survival-related genes. (C) Risk factor plot, with the upper panel showing the stratification of patients into high- and low-risk groups based on risk
scores, the middle panel displaying survival status in these two groups, and the lower panel further analyzing the differences in RRMGs expression
across different risk groups. (D, F) OS curves of risk subgroups for TCGA-LUAD and GSE68465 dataset. (E, G) Time-dependent ROC curves and area
under the curve (AUC) values of the RRMG-prognostic model for TCGA-LUAD and GSE68465 dataset. (H) Nomogram constructed by integrating
risk scores and clinical features. (I, J) Predictive ROC curves and calibration curves for the nomogram. *P<0.05, **P<0.01, ***P<0.001.
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3.6 Analysis of tumor immune
microenvironment infiltration, immune
therapy sensitivity, and prognosis in
radioimmunotherapy

Given that radiotherapy can remodel the tumormicroenvironment

(TME) to either enhance or suppress anti-tumor immune responses,

we employed the CIBERSORT algorithm to analyze immune cell

infiltration patterns across risk subgroups. Significant differences in

infiltration levels of various immune cell types were observed

(Figures 4A, B). Specifically, the high-risk group exhibited reduced

infiltration of anti-tumor immune cells such as CD8+ T lymphocytes

and natural killer (NK) cells, while showing increased infiltration of

pro-tumor cells including M2 macrophages, regulatory T cells (Tregs),

and neutrophils. ESTIMATE algorithm analysis revealed elevated

Stromal Scores and ESTIMATE Scores but decreased ImmuneScores

in the high-risk group (Figures 4C–E), indicating an

immunosuppressive TME phenotype. To investigate differential

responses to immunotherapy among risk subgroups, we predicted

treatment efficacy using the TIDE algorithm (where higher TIDE

scores suggest greater likelihood of immune evasion). The high-risk

group demonstrated significantly higher TIDE scores (Figure 4F).

Furthermore, we examined expression differences of immune

checkpoint molecules - programmed cell death protein 1 (PDCD1),

programmed death-ligand 1 (CD274), and cytotoxic T-lymphocyte-

associated protein 4 (CTLA4) - across subgroups (Figures 4G–I).

Downregulation of these immune checkpoint molecules was

observed in the high-risk group, suggesting potential immune

evasion mechanisms promoting tumor progression.

RNA-seq data from 16 patients in the GSE253564 dataset who

underwent combined radiotherapy and immunotherapy were

analyzed. Patients were stratified by pathological response into

major pathological response (MPR; >90% tumor regression,

n=10) and non-MPR (≤90% regression, n=6) groups. The MPR

group predominantly comprised low-risk patients, whereas the

non-MPR group consisted mainly of high-risk cases (Figure 4J).

Kaplan-Meier survival analysis and ROC curve evaluation

confirmed poorer prognosis in the high-risk group although there

was no significant difference (P = 0.516, AUC = 0.618; Figures 4K,

L). These results demonstrate that the RRMG prognostic model not

only effectively predicts outcomes for radiotherapy alone but also

shows significant value in predicting therapeutic efficacy for

combined radiotherapy and immunotherapy.
3.7 High-risk RRMGs were upregulated in
radioresistant NSCLC cells

To investigate the expression profiles of high-risk RRMGs in

radioresistant NSCLC cells, radiation-resistant cell lines A549R and

LLCR were successfully established by subjecting A549 and LLC

cells to fractionated irradiation with a cumulative dose of 60 Gy.

qRT-PCR and Western blot analyses demonstrated that both

mRNA and protein expression levels of PGD, IDH2, G6PD,
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ALDH3A1, and AACS were significantly upregulated in the

radioresistant cells (Figures 5A–E). These findings not only

validate the reliability of our analytical results but also suggest

that these genes may play a critical regulatory role in the

development of radioresistance in NSCLC.
3.8 Identification and analysis of candidate
drugs for high-risk patients

To identify potential radiosensitizers and immunotherapy

sensitizers applicable to high-risk patients, we evaluated

differences in drug sensitivity among distinct risk subgroups

based on drug response data predicted by the “oncoPredict” R

package. By screening for drugs exhibiting higher sensitivity in the

high-risk population, differential drug response analysis was first

performed to identify compounds with significant differences,

retaining only those with lower half-maximal inhibitory

concentration (IC50) estimates in the high-risk group. Three

drugs/compounds demonstrating potential therapeutic value for

high-risk patients were ultimately identified: BRD-K42260513,

ouabain, and BRD-K28456706 (Figures 6A–D). Analysis of

absorption, distribution, metabolism, excretion, and toxicity

(ADMET) properties revealed that ouabain exhibited the most

favorable overall profile, followed by BRD-K28456706 and BRD-

K42260513 (Table 2). For in-depth analysis of these three

candidates, molecular docking was performed between five high-

risk radioresistance-associated metabolic proteins (PGD, IDH2,

G6PD, ALDH3A1, and AACS) and the candidate drugs.

Figures 6E, F illustrate the docking models of PGD and IDH2

with ouabain, demonstrating binding free energies of -7.9 kcal/mol

and -8.7 kcal/mol, respectively. These candidate drugs show

promise asradiosensitizers or radioimmunotherapy sensitizers for

NSCLC treatment.
4 Discussion

This study systematically untangled the metabolic

reprogramming characteristics of radioresistant lung cancer cells

and their dynamic changes within the tumor microenvironment

through multi-omics analysis, providing crucial evidence for

understanding radioresistance mechanisms and developing novel

metabolic intervention strategies. By systematically analyzing the

expression profiles of RRMGs in LUAD, we successfully established

and validated a prognostic prediction model based on seven key

RRMGs (PGD, IDH2, G6PD, ALDH3A1, AACS, UPP1, and

XYLT2). This model not only effectively distinguished radiotherapy

sensitivity among LUAD patients but also predicted clinical

outcomes of combined radiotherapy and immunotherapy, offering

a novel molecular tool for personalized treatment decision-making.

There is currently a lack of comprehensive single-cell

metabolomics and TME analyses related to radiotherapy in

NSCLC. Therefore, we utilized scFEA to analyze the metabolic
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reprogramming differences in NSCLC tumor cells, immune

microenvironment, and tumor-draining lymph nodes based on

bulk and single-cell RNA-seq. We found that the metabolic

changes in these three areas are heterogeneous, allowing us to

more systematically and comprehensively understand the

radiotherapy-related metabolic reprogramming in the NSCLC
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TME. This approach overcomes the limitations of traditional

analyses that focus solely on specific metabolic pathways or

metabolites in tumor cells or certain immune cells.

In this study, the suppression of the IMP degradation pathway

(M137, M145) in radioresistant cells was accompanied by enhanced

xanthine/uric acid conversion, which aligns with the hypothesis that
FIGURE 4

Tumor immune microenvironment, immune therapy sensitivity, and prognosis of the RRMG model in radioimmunotherapy. (A) Distribution of
immune cells in LUAD patients receiving radiotherapy. (B) Immune cell infiltration levels in different risk subgroups of LUAD patients.
(C–E) ESTIMATE analysis metrics (Stromal Score, Immune Score, and ESTIMATE Score) in different risk subgroups. (F) TIDE scores in different risk
subgroups. (G–I) Expression of immune checkpoints PDCD1, CD274, and CTLA4 in different risk subgroups. (J) Donut chart showing the proportion
of high- and low-risk groups in MRP and non-MRP. (K) PFS curves for high- and low-risk groups. (L) ROC curves and AUC values of the RRMG
prognostic model. *P<0.05, **P<0.01, ***P<0.001.
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tumor cells remodel purine metabolism to regulate DNA damage

repair and inhibiting purine synthesis enhances radiosensitivity,

supporting the potential therapeutic implications of the metabolic

signatures identified in this study (12, 13). Single-cell analysis

uncovered significant heterogeneity in the metabolic responses of

immune cell subsets following radiotherapy. Notably, all immune

cell types demonstrated activation of the methionine/cysteine

pathway (M30), suggesting that radiotherapy may induce

oxidative stress, thereby forcing immune cells to upregulate

antioxidant metabolism (14). Collectively, these findings support

the hypothesis that dynamic changes in tumor microenvironment

metabolites may serve as predictive biomarkers for radiotherapy

response (15, 16).

The study revealed significant upregulation of high-risk genes

including PGD, IDH2, G6PD, ALDH3A1, and AACS in

radioresistant cell lines, which aligns with previous findings

demonstrating the close association between metabolic

reprogramming and radiotherapy resistance (17, 18). Notably,

G6PD and IDH2—key enzymes in the pentose phosphate

pathway and TCA cycle respectively—may protect tumor cells

from radiation-induced oxidative damage through enhanced
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NADPH production and antioxidant capacity (19). As a member

of the aldehyde dehydrogenase family, ALDH3A1 has been

associated with cancer stem cell properties and chemoresistance,

and this study is the first to confirm its role in radioresistance (20).

Of particular interest, the low expression of protective genes UPP1

and XYLT2 may enhance radiosensitivity by affecting pyrimidine

metabolism and extracellular matrix remodeling suggesting

potential targets for developing novel radiosensitizers (21, 22).

The multigene prognostic model developed in this study

demonstrated superior predictive performance in both the

development set and validation set (with 1-year, 3-year, and 5-

year AUC values of 0.752, 0.778, and 0.879, respectively),

significantly outperforming traditional clinical staging systems.

These findings align with recent studies on LUAD prognosis

based on metabolic genes (23–25), while the novelty of this work

lies in its pioneering association between metabolic characteristics

and radiotherapy response specificity. The predictive performance

was further enhanced when clinical parameters were integrated into

the nomogram, consistent with the current precision medicine

paradigm emphasizing multidimensional assessment (26, 27).

Notably, this model showed potential value in predicting
FIGURE 5

Experimental validation of high-risk RRMGs in parental and radioresistant NSCLC cells. (A, B) RNA expression levels of high-risk RRMGs in parental
(A549 and LLC) and radioresistant NSCLC cells (A549R and LLCR). (C–E) Protein expression levels of high-risk RRMGs in parental and radioresistant
NSCLC cells. ***P<0.001.
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outcomes of combined radiotherapy and immunotherapy, as

evidenced by the predominance of low-risk patients in the MPR

group, suggesting that metabolic features may influence

immunotherapy response (28, 29). Although the RRMGs model

achieved an AUC of 0.618 in the radioimmunotherapy cohort, it
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remained significantly associated with immune escape phenotypes

and trends in treatment response, indicating that metabolic features

retain biological relevance in the combined therapy setting. Given

the added complexity introduced by immunotherapy, a

metabolism-focused model may have limited predictive power for
FIGURE 6

Candidate radio-immunotherapy sensitizers for high-risk patients. (A) Drug response results for potential therapeutic agents (BRD-K42260513,
ouabain, and BRD-K28456706) across different risk subgroups. (B–D) Molecular structures of the three potential therapeutic agents (BRD-
K42260513, ouabain, and BRD-K28456706). (E) Predicted 3D docking models of IDH2 with the compound ouabain. (F) Predicted 3D docking
models of PGD with the compound ouabain. *P<0.05, **P<0.01.
TABLE 2 ADMET analysis of three candidate radiosensitizers.

Compounds
Absorption Distribution Metabolism Excretion Toxicity

Caco-2 PPB CYP3A4 CL HERG

BRD-K28456706 -4.621 98.713 0.377 4.752 0.021

ouabain -7.045 28.077 0 1.064 0.595

BRD-K42260513 -5.624 78.05 0.992 6.164 0.531
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combination treatment outcomes. Future studies could explore

integrating metabolic and immune signatures to develop a more

comprehensive prognostic model for improved predictive accuracy.

Our study revealed that high-risk patients exhibited distinct

features of an inhospitable environment. These observations

corroborate the theoretical framework of metabolic reprogramming

shaping an immunosuppressive tumor microenvironment (TME)

(30, 31). ESTIMATE analysis demonstrated high stromal scores and

low immune scores, potentially indicating cancer-associated

fibroblast (CAF) activation and immune cell exclusion (32). The

low expression of immune checkpoint molecules PD-1/PD-L1 and

CTLA-4 in the high-risk group implies the existence of non-classical

immune evasion mechanisms (33, 34), providing new insights into

metabolism-immune interactions. The differential TIDE scores

further confirmed that high-risk patients were more prone to

immune evasion (35, 36), suggesting that these patients might

benefit from combined metabolic intervention and immunotherapy.

Drug repurposing, which involves identifying new therapeutic

targets for existing drugs, has gained increasing attention in the

development of treatments for various cancers, neurological

disorders, and infectious diseases. Our research identified

candidate drugs (ouabain, BRD-K42260513, and BRD-

K28456706) from pharmacogenomic databases that showed

enhanced therapeutic sensitivity in high-risk groups. Ouabain, a

cardiac glycoside, inhibits the Na+/K+-ATPase pump, increasing

intracellular calcium levels and activating multiple immune-related

signaling pathways. This compound has been shown to induce

apoptosis and inhibit proliferation in various cancer cell lines,

including breast, prostate, melanoma, pancreatic, lung, leukemia,

neuroblastoma, and renal cancers. Additionally, it has been

reported to enhance radiosensitivity in prostate, cervical, and

glioblastoma cancers (37, 38). While information on BRD-

K28456706 and BRD-K42260513 is limited, future studies will

further elucidate their potential value in radio-immunotherapy

for NSCLC.

This study has the following limitations. (1) The ex vivo

radioresistance model may not fully recapitulate the complexity of

the tumor microenvironment in vivo. (2) The metabolic flux

analysis was based on computational predictions and requires

further experimental validation. (3) This study represents an

exploratory investigation of biomarkers and prognostic modeling.

The developed RRMGs model would require prospective,

multi-center clinical trials to rigorously evaluate its clinical utility

in real-world decision-making. (4) This study was developed using a

lung adenocarcinoma (LUAD) cohort and has not yet been

validated in squamous cell carcinoma or other NSCLC subtypes.

Given the distinct metabolic reprogramming patterns, immune

microenvironment characteristics, and treatment responses across

different histological subtypes, the generalizability of the RRMGs

model beyond LUAD remains uncertain. Future studies should

assess its predictive performance and biological relevance in

independent cohorts of additional NSCLC subtypes, particularly

lung squamous cell carcinoma. (5) The specific molecular

mechanisms by which RRMGs (radioresistance-related molecular

groups) regulate radiotherapy resistance remain to be elucidated
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through ex vivo experiments. (6) While our computational drug

screening identified promising therapeutic candidates for high-risk

patients, the radiosensitizing effects of these compounds require

further experimental validation.
5 Conclusion

In conclusion, we have developed a promising RRGM-based

prognostic model for predicting therapeutic efficacy and outcomes

of radioimmunotherapy in NSCLC, while simultaneously

characterizing the tumor immune microenvironment.

Furthermore, we have identified three potential candidate drugs

(ouabain, BRD-K28456706, and BRD-K42260513) and conducted a

systematic analysis of TME metabolic features, providing

preliminary insights for stratification and personalized treatment

strategies in NSCLC patients.
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