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Objective: This study systematically investigates radiotherapy-induced
metabolic remodeling across the TME, encompassing tumor cells, immune
cells, and tumor-draining lymph nodes (TDLNs), and establishes a prognostic
signature based on radioresistance-related metabolic genes (RRMGs) to
optimize therapeutic stratification and radiosensitizer discovery.

Methods: Bulk transcriptomic datasets of NSCLC tumor cells and tumor-draining
TDLNs were systematically integrated, along with single-cell RNA-seq data from
tumor tissues, to reconstruct metabolic flux maps using the single-cell Flux
Estimation Analysis (scFEA) algorithm. WGCNA and Cox regression modeling of
TCGA radiotherapy cohort were used to identify core RRMGs. A prognostic
nomogram was developed using risk scores derived from these genes, while
CIBERSORT and TIDE algorithms were used to evaluated TIME features and
immunotherapy responses. Candidate radiosensitizing agents were predicted via
the oncoPredict platform and validated by molecular docking, gRT-PCR and
western blotting in radioresistant NSCLC cells.

Results: Radiotherapy induced profound metabolic heterogeneity across the
NSCLC TIME: Tumor cells and draining TDLNs exhibited suppressed tricarboxylic
acid (TCA) cycle activity and N-glycan biosynthesis, while immune cells displayed
upregulated serine metabolism alongside divergent shifts in lymphoid subsets.
Seven RRMGs were identified as key prognostic determinants, including PGD,
IDH2, G6PD, ALDH3A1, UPP1, XYLT2, AACS. The RRMG-based risk model
robustly predicted poor overall survival (HR = 4.726, 95% CI: 2.154-10.371;
P<0.001), with high predictive accuracy (AUC for 1-, 3-, and 5-year: 0.752,
0.778, and 0.879). High-risk patients demonstrated an immunosuppressive
TIME marked by elevated tumor-promoting immune cell infiltration and TIDE
scores. The model's generalizability was verified in an independent
radioimmunotherapy cohort (AUC: 0.618). Experimental validation revealed
significant upregulation of high-risk RRMGs in radioresistant NSCLC cells.
Ouabain and two novel compounds (BRD-K28456706, BRD-K42260513) were
nominated as promising radiosensitizers.
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Conclusion: Radiotherapy-induced metabolic reprogramming in TIME drives
resistance of NSCLC. The RRMG signature predicts radioimmunotherapy
outcomes for patient stratification. Identifying ouabain and novel compounds
highlights targeting metabolic vulnerabilities as a translatable strategy to
overcome resistance.

non-small cell lung cancer, metabolic reprogramming, radioresistance, tumorimmune
microenvironment, radioresistance-related metabolic genes

1 Introduction

Lung cancer remains the leading cause of cancer-related mortality
worldwide, with non-small cell lung cancer (NSCLC) accounting for
the majority of cases. The high rates of recurrence and metastasis
contribute to its poor prognosis (1). Radiotherapy, a cornerstone
treatment for locally advanced NSCLC, exerts its antitumor effects by
directly inducing DNA damage or indirectly generating reactive oxygen
species (ROS) (2-4). In recent years, immunotherapy has
revolutionized cancer therapies, and radiotherapy has been shown to
synergize with immune checkpoint blockers (ICBs) by enhancing CD8
+ T-cell infiltration and antigen presentation, among other
mechanisms (5). The combination of these modalities holds promise
for converting “cold tumors” into “hot tumors.” However,
radioresistance remains a major cause of treatment failure,
underscoring the urgent need to develop predictive systems for
radiosensitivity. Conventional studies have primarily focused on
unidimensional mechanisms, such as DNA repair and the tumor
immune microenvironment, yet their clinical translation in
sensitivity prediction remains limited.

Tumor metabolic reprogramming influences radiotherapy
efficacy through a dual mechanism. On the one hand, it enhanced
oxidative phosphorylation (OXPHOS) and glutaminolysis to fuel
DNA repair; On the other hand, lactate accumulation drives
myeloid-derived suppressor cell (MDSC) infiltration, forming a
metabolic-immunosuppressive cycle (6, 7). Accumulated evidence

Abbreviations: NSCLC, Non-Small Nell Lung Cancer; DSBs, DNA Double-
Strand Breaks; OXPHOS, Oxidative Phosphorylation; scFEA, Single-cell Flux
Estimation Analysis; RRMGs, Radioresistance-Related Metabolic Genes; OS,
Overall Survival; PFS, Progression-Free Survival; GEO, Gene Expression
Omnibus; TCGA, The Cancer Genome Atlas; TCA, Tricarboxylic Acid;
WGCNA, Weighted Gene Co-expression Network Analysis; ROC, Receiver
Operating Characteristic; AUC, Area Under Curve; TIDE, Tumor Immune
Dysfunction and Exclusion; TIME, Tumor Immune Microenvironment;
scRNA-seq, Single-Cell RNA Sequencing; TDLN, Tumor-Draining Lymph
Node; CRT, Chemoradiotherapy; RR, Radioresistant; RS, Radiosensitive; CR,
Complete Remission; SD, Stable Disease; PD, Progressive Disease; MPR, Major
Pathological Response; SSP, Serine Synthesis Pathway; TAMs, Tumor-
Associated Macrophages.
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suggests that metabolic kinases pyruvate kinase M2 (PKM2) and
glucose transporter 1 (GLUT1) participate in hypoxia adaptation
and programmed death-ligand 1 (PD-L1) regulation, suggesting
that the metabolic network may serve as a critical nexus between
radiotherapy effects and immune microenvironment remodeling
(8-10). However, current research predominantly focuses on
isolated pathway analyses, lacking comprehensive understanding
of the systemic metabolic interaction networks underlying
radiotherapy response.

Transcriptomics and single-cell metabolic analysis play pivotal
roles in metabolic research. Conventional approaches such as
scMetabolism primarily rely on pathway-based scoring systems.
While these methods can identify alterations at the pathway level
(e.g., upregulation of fatty acid metabolic pathways), they fail to provide
precise information about specific metabolite transformations. This
limitation stems from the inherent low resolution of pathway scoring,
and the scarcity of publicly available single-cell metabolomics data. In
contrast, single-cell flux estimation analysis (scFEA) employs an
innovative computational framework to directly infer cell-specific
metabolic flux from single-cell transcriptomic data, enabling higher-
resolution metabolic state characterization. scFEA utilizes a
systematically reconstructed human metabolic map as a factor graph,
integrating probabilistic modeling with gradient descent algorithms to
accurately trace metabolite conversion pathways. In glutamine
metabolism studies, scFEA not only identified flux variations in the
glutamate-to-glutathione (Glu-GSH) pathway but also demonstrated
that this flux-rather than the glutamate-to-2-oxoglutarate conversion-
plays a critical role in modulating tumor immune response (11).
Notably, in validation experiments with matched metabolomics data,
scFEA-predicted flux changes showed significant concordance with
experimentally measured metabolite abundance alterations, providing
empirical support for its reliability in studying metabolic heterogeneity.

This study innovatively proposed that systematic analysis of
radioresistance-related metabolic genes (RRMGs) could untangle
the molecular determinants of radiotherapy response. Through the
synthesis and construction of an RRMG-based prognostic signature
model, we have achieved clinical translational value across three
dimensions for the first time: (1) In prognostic prediction, it
overcomes the limitations of the conventional TNM staging
system; (2) In immune microenvironment characterization, it
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reveals novel mechanisms of metabolism-reprogramming-
mediated immunosuppression; (3) In precision therapy, it
establishes a drug sensitivity prediction model. By systematically
elucidating the metabolic interaction network between tumor cells
and the microenvironment, this study provides a novel biomarker
system and radiosensitization strategy for precision radiotherapy in
NSCLC, advancing the transformation of radiation oncology
toward an integrated multi-omics precision medicine paradigm.

2 Materials and methods
2.1 Data acquisition and processing

We retrieved the GSE197236, GSE157881, and GSE239514
datasets from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) for scFEA. Data from
NSCLC patients was obtained from The Cancer Genome Atlas
(TCGA, https://cancergenome.nih.gov/=TCGA), including bulk
RNA-seq and clinical information (such as overall survival (OS),
progression-free survival (PES), treatment response, gender, age,
and stage). Ultimately, 51 NSCLC samples that had undergone
radiotherapy alone and complete available clinical data were
included. As a validation cohort, RNA-seq data, treatment
response, and survival information from the GEO database for
NSCLC patients who had received combined radiotherapy and
immunotherapy (GSE253564) were included.

2.2 Identification of co-expressed
metabolic modules associated with tumor
radiotherapy

Weighted gene co-expression network analysis (WGCNA) is a
systems biology approach used to characterize patterns of gene
relationships within samples. By leveraging central genes or module
eigengenes, WGCNA can identify tightly correlated gene clusters
and link these clusters to external sample traits. Based on the
TCGA-LUAD dataset, a co-expression network was constructed
using the WGCNA method. Through the dynamic tree-cutting
algorithm, 25 gene modules were identified, and the module
eigengenes (MEs) were calculated for each module. Module-trait
association analysis revealed three modules significantly correlated
with radioresistance (correlation coefficient r > 0.45, p < 0.01),
whose module eigengenes exhibited strong associations with the
radiotherapy response phenotype. Subsequently, the genes from
these three modules were intersected with the KEGG metabolic
pathway gene sets, ultimately yielding RRMGs.

2.3 Development of the prognostic model
based on RRMGs

Initially, we employed univariate Cox regression and stepwise
multivariate Cox regression analyses to determine the relationship
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between RRMGs and patient survival status. Genes with P < 0.05
were considered significantly associated with survival. The final set
of RRMGs was used to construct a prognostic risk model. The risk
score was calculated using the following formula: Risk score
=Y (expGenei x f3i), where expGenei is the relative expression of
the prognostic model gene, and i is the regression coeffecient.

2.4 Assessment and validation of the
RRMGs prognostic Model

Based on the median risk score, patients were stratified into high-
risk and low-risk groups. OS was evaluated using Kaplan-Meier
analysis, and patient survival status was visualized according to risk
scores using the “pheatmap” package in R software. Receiver operating
characteristic (ROC) curve analysis and area under the curve (AUC)
calculation were performed with the “timeROC” package in R.
Nomograms and linear charts were constructed by integrating clinical
characteristics and risk level to predict 1-year, 3-year, and 5-year overall
survival rates in lung adenocarcinoma (LUAD) patients. Calibration

» o«

curves were generated using the “rms,” “regplot,” and “survival”
packages in R, with closer proximity to the diagonal indicating higher
predictive accuracy. Furthermore, the prognostic and therapeutic
efficacy predictive capability of the RRMGs model was assessed in
validation cohorts GSE68465 receiving chemoradiotherapy and

GSE253564 receiving combined radiotherapy and immunotherapy.

2.5 Analysis of immune microenvironment
infiltration and immunotherapy response in
risk subgroups

The CIBERSORT algorithm was employed to evaluate differences
in immune infiltration between high- and low-risk groups by
calculating the proportions of 22 immune cell subtypes and
comparing their distribution patterns across risk subgroups.
Concurrently, the Tumor Immune Dysfunction and Exclusion
(TIDE) method was applied to predict individual response
probabilities to immunotherapy, reflecting the potential efficacy of
immune checkpoint blockers (ICBs). Wilcoxon rank-sum tests (P <
0.05) were performed to validate statistically significant differences
between risk subgroups regarding immune cell infiltration fractions,
TIDE scores, and immune checkpoint gene expression. Further
analyses were conducted to examine differential expression levels of
immune checkpoints between the two risk subtypes. The correlation
between TIDE scores and immune checkpoint expression was assessed
to elucidate the mechanistic association wherein the low-risk group
exhibited higher immune checkpoint expression levels and lower TIDE.

2.6 ldentification of candidate drugs for
high-risk NSCLC patients

The drug sensitivity of different risk groups was evaluated using
the oncoPredict R package. This tool integrates large-scale gene
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expression data (e.g.,, GDSC and CTRP databases) with drug
screening data to construct a ridge regression model for
predicting drug responses. In this study, the model was applied to
the TCGA-LUAD gene expression dataset for drug response
prediction. Further validation of the biological relevance of the
predictions was performed through immune infiltration analysis
(e.g., CIBERSORT, ssGSEA) and tumor microenvironment
assessment (e.g., ESTIMATE algorithm). The screening criteria
were set as follows: drugs with a log2 fold change (log2FC) > 0.15
and a P-value < 0.05 were considered potential therapeutic
candidates. Their clinical prognostic value was additionally
validated via survival analysis and risk modeling (e.g., LASSO-
Cox regression). All analytical parameters, including batch effect
correction using the ‘combat’ method and repeated calculation of
gene expression means, were set to default values.

2.7 scRNA-seq data processing and
analysis

Quality assessment of scRNA-seq (single-cell RNA sequencing)
data were performed using FastQC software. The sequencing reads
were aligned to the human GRCh38 reference genome via the STAR
alignment pipeline to obtain gene counts for each sample. During
subsequent analysis, cell samples with fewer than 250 or more than
10,000 expressed genes were excluded. Additionally, cells exhibiting
mitochondrial genome alignment rates exceeding 15% were
identified as low-quality cells and subsequently removed from
the analysis.

2.8 scFEA

scFEA leverages a comprehensively reorganized human
metabolic map as a factor graph and employs multi-layer neural
networks to capture the intricate information cascade from the
transcriptome to the metabolome. This approach enables the direct
quantification of specific metabolic pathway abundances, thereby
clarifying precisely which metabolites have undergone changes. For
instance, it can elucidate the transformation of glutamate to
glutamine, then to GABA, and subsequently to succinate. The
“scFEA” package (available at https://github.com/changwn/
scFEA) were utilized to analyze the metabolic differences between
radiotherapy-sensitive and radiotherapy-resistant NSCLC cells, as
well as the metabolic variations in the TIME and tumor-draining
lymph nodes before and after radiotherapy.

2.9 Cell culture

NSCLC cell lines (A549 and LLC) were obtained from the Cell
Resource Center of the Chinese Academy of Sciences (Beijing,
China) and authenticated using the STR profiling method. Cells
were cultured in DMEM (Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA) and
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maintained at 37 °C within a humidified atmosphere containing 5%
CO,. Regular screenings for cell mycoplasma infection were carried
out and all results were confirmed to be negative.

2.10 Development of radioresistant cell
models

The radioresistant cell models were established using a
calibrated 6-MV linear accelerator (RAD SOURCE RS2000-225)
with a dose rate of 17.7 Gy/min. Parental A549 and LLC cells were
subjected to 2 Gy per fraction, followed by 48-hour recovery in fresh
complete medium before passaging. The irradiation cycle was
repeated when cells re-entered logarithmic growth phase (with
recorded recovery time to normal proliferation kinetics averaging
24-48 hours post-irradiation, ensuring population synchrony). This
protocol was maintained through 30 fractionated doses until a
cumulative dose of 60 Gy was achieved. During model
establishment, clonogenic survival assays were performed to
quantify radioresistance using Survival Fraction at 2 Gy (SF2) as
the endpoint. Following each fraction, cells were harvested for 10-
day colony formation, with SF2 defined as the ratio of surviving
colonies post-2 Gy irradiation to untreated controls. The resultant
resistant lines (A549R and LLCR) demonstrated significantly
elevated SF2 values compared to parental cells. Clonogenic
stabilization was observed upon reaching 60 Gy total dose,
confirming stable phenotypic acquisition.

2.11 Quantitative real time polymerase
chain reaction

RNA was extracted from cells using TRIzol reagent (Vazyme,
Nanjing, China). RNA concentration was measured using a
spectrophotometer and stored the samples at -80 °C. cDNA was
synthesized using HiScript Il RT SuperMix for qPCR (Vazyme,
Nanjing, China). Bio 7500 Real-Time PCR System (Thermo Fisher
Scientific, Carlsbad, CA, USA) was used to perform qPCR in the
StepOne Plus real-time PCR System (Applied Biosystems). ACTB
was used as the internal reference gene for normalization. The
relative fold change in expression was calculated using the 2744

method. The sequences of target primers are detailed in Table 1.

2.12 Western blot

Whole cell mixtures were separated using cell complete lysis
buffer for western and IP (Beyotime, item number: P0037-100ml,
Shanghai, China), protease inhibitor, and protein phosphatase
inhibitor mixtures. The protein concentration was measured by
using BCA protein concentration rapid determination kit
(Beyotime, Shanghai, China). Equal amounts of proteins were
separated on 10% SDS-PAGE and transferred to a 0.45 um PVDF
membrane (Millipore, IPFL00005, Darmstadt, Germany). The
membranes were closed with 5% skimmed milk and incubated
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TABLE 1 Primer sequences of RT-qPCR.

Gene Forward primer (5'-3)
PGD_human GTGGCCCCACATCAAGACC
PGD_mouse CTTGTTGGACACGGGTGACAT
IDH2_human CGCCACTATGCCGACAAAAG
IDH2_mouse ATTTTGTGGTAGATCGAGCTGG
G6PD_human AACATCGCCTGCGTTATCCTC
G6PD_mouse CTCCAATCAACTGTCGAACCA

ALDH3A1_human TGTTCTCCAGCAACGACAAGG

10.3389/fonc.2025.1693277

Reverse primer (5'-3)

GTCCCCATACTCTATCCCGTT
GCTTGGAAGATCGCCTTGATG
ACTGCCAGATAATACGGGTCA
CCTCCGGCAGGGAAGTTATAC
ACGTCCCGGATGATCCCAA

TTGTCTCGATTCCAGATGGGG

AGGGCAGAGAGTGCAAGGT

ALDH3AI1_mouse AATATCAGTAGCATCGTGAACCG

GAGAGCCCCTTAATCGTGAAATC

AACS_human GATGACTTGTACCATTGGTCCG
AACS_mouse GTGGAATCGTCTACTCACGCA
UPP1_human CTGTCAGTCATGGTATGGGCA
UPP1_mouse TGAAGGAAGACGTGCTCTACC

XYLT2_human AGGTGGTACGGGCAGTAAC

ACGTGAGAAGACAATTCCACTG

TAAAGGGCGACTCTGTCGTTC

GAGCACCGGGCATAGTACA

GAAGGTGTTCATCCGGGAAGA

GCTCCCTGTATCTCCGTGT

XYLT2_mouse TTAAAGGACGTGGACTCGCTT

TGGGTGGAGTTAAACTGCCTC

ACTB_human GGCTGTATTCCCCTCCATCG

ACTB_mouse CATGTACGTTGCTATCCAGGC

with primary antibodies, including anti-PGD (Abways, DY1193,
Beijing, China), anti-IDH2 (Abways, CY7005), anti-G6PD
(Abways, CY6841), anti-ALDH3A1 (Proteintech, 20874-1-AP,
Wuhan, China), anti-AACS (Proteintech, 13815-1-AP) and anti-
B-tubulin (Cell Signaling Technology, #2146S, Danvers, MA, USA),
overnight at 4 °C. They were then incubated in secondary IgG
(ABclonal, AS014, Wuhan, China) for 1 h at room temperature.
Protein bands were visualized using Super ECL detection reagent
(Vazyme, Nanjing, China). Grayscale analysis of protein bands was
performed using Image ] software.

2.12 Statistical methods

Statistical analysis was performed using IBM SPSS Statistics 26
and R software (4.3.3). Bootstrapping was used to avoid over fitting.
The normal distribution variables were analyzed by Student’s ¢-test.
Non-normally distributed variables were analyzed using Wilcoxon
rank sum test. P<0.05 was considered statistically significant.

3 Results

3.1 Metabolic analysis of parental and
radioresistant A549 cells

Based on the bulk RNA-seq data from GSE197236, we used
scFEA to transform transcriptomics into metabolomics, analyzing
the metabolic differences between parental A549 cells and
radioresistant A549 cells. The lung cancer cell line A549 in
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CTCCTTAATGTCACGCACGAT

logarithmic growth phase was irradiated with 4 Gy for the first
time and cultured for subculture. After cell adherence growth, the
cells were irradiated again with 4 Gy, with a total dose of 60 Gy.
Figure 1A shows the differences in 168 metabolic fluxes and 22
metabolic supermodules between parental and radioresistant A549
cells. There were 25 significantly altered metabolic fluxes between
parental and radioresistant A549 cells, with 6 fluxes increased and
19 fluxes decreased in radioresistant cells (Figure 1B).

Compared with parental cells, most metabolic fluxes in
radioresistant cells demonstrated a downward trend. Specifically,
fluxes related to N-linked glycan synthesis, including M122
[(GIcNAc)4(Man)3(Asn)1—(Gal)2(GlcNAc)4(LFuc)1(Man)3
(Neu5Ac)2(Asn)1)],M124[(GlcNAc)4(Man) 3(Asn)1—(GIcNAc)5
(Man)3 (Asn)1)], and M113[(Acetyl-CoA—(E,E)-Farnesyl-PP)]
were decreased. Additionally, fluxes in the TCA cycle, such as M10
(Succinyl-CoA—Succinate), M8(Citrate—20G) and M14
(Pyruvate—Oxaloacetate) were also reduced. The intermediate
metabolite (GlcNAc)4(Man)3(Asn)l in the N-linked glycan
synthesis fluxes M122 and M124 was increased. Interestingly, the
enzymes regulating M122 and M124, including N-acetylglucosamine
transferases (MGAT1, MGAT3, and MGAT4A), were downregulated
in radioresistant A549 cells. In the TCA cycle fluxes M10 and M8, the
metabolites Succinyl-CoA and Citrate were increased, while
Succinate and 20G were decreased.

For purine synthesis metabolism, fluxes related to IMP
degradation and xanthine synthesis and transformation were
reduced, including M137(IMP—XMP), M145 (XMP—Xanthine)
and M147 (Xanthine—Guanine); while the flux of xanthine
degradation M146 (Xanthine—Uric acid) was increased. The
metabolite xanthine was decreased, while IMP was increased.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1693277
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhu et al.

10.3389/fonc.2025.1693277

E: Tyrosine_Fumarate
= Acid_
L
EE SM_anno Flux Group
i B, W oal Croein. Semaan
E- atty acids metabolism/synthesis 0 (GIcNAC)4 (Man)3 (Asn)1_(GICNAC)S (Man)3 (Asn)1
=4 mate i 24 Argininosuccinate_Arginine + Fumarate
2 ‘Succinyl-CoA_Succinate
Flu; Group
[és I1 -g;"
- 0
b [
s
s
=
E -CoA_(E_E)-Farnesyl-PP
= (GIcNAC) (Man)3 (Asn)1_(Gal)2 (GIcNAC)4 (LFuc)t (M-
E Glutathione_glutamate
I Methionine_Cysteine
g 83 g 8
§ 8§ 8 R
233¢%3¢
D celltype
50
25
«~ ® Becells
SM_anno Flux  sample il © Macrophage cells
1 Aspartate metabolism 3 oy z o0 S Monocyle/cells
ani bol ) 15 W4y @ : ;n;;le;ls
B —_— — —— - zmyaa?es me;s:;psmlsynmems 0 S—
— 1 = ] Fha 18 s
o — T —(— —— = Slvcoen synitesls Macrophage cells
o — ] i
Frmme e = T g cosmnogycansynmesis | [t
— e —— e il
[ | —— N-linked glycan synthesis
f—— e e S B O-inicd ghcan syihesis E
e —-— Propinnylp—coAmewawism 0 50
| P = Purine synthesis
——— —— W i metoion
— H Sialic acid synthesis 2 2
i [ Spermine metabolism
s = i M 5 u s Bow
- — ransporters Z o0 Q@ z o0 @ g
o 2 Hu I
R : 2
§ ¢ E § g g i & & @ 25
;o f ¢
=
8 S_=
R —— =
- —- — — —_—
= !: — -— isu_nmo Flm‘t Group Acetyl
= aE = a===—N" = B B " | tne o o
B = — B— = ids lismisynthesis 0 dCDP_dCTP
E = _1 — —= E‘ — -GI;ET::"I;:;:OI 5 ‘Succinate_in_Succinate
] = . Giycogen synthesis 4 Malate_in_Malate
E — =gm;°;fy;‘z"’ Aspartate_Pyrimidine Flux ::;r
= saminoglycan synthasis (GIcNAC) (Man)3 (Asn)1_(GICNAC)S (¢ (
Hi=] — B e uorP-Nc-mn;:luwsa':mne_cMP-N-;j%-eu.MA‘W
LB — N-linked glycan synthesis Dolichyl phosphate_Dolichyl phosphate | .mz
== Qlinked gvcan synhesis ‘Succinyi-CoA_Succinate ﬂm
— i "W-caAr:\:aboliwn Malate_Oxaloacetate
- Purine synthesis Glucose-8-phosphate_Glucose-1-phosphate
z:and:;:m::s 5-Phosphoribosylamine_AICAR
] I Sialic acid synthesis PREPUMP
- Spermine metabolism Orotidylic acid_UMP
§ = mu":i:“n:n,;\m synthesis Histidine_B-Alanine
UTP_COP
g Urea cycle 20G_in_20G
. ‘Succinate_Fumarate
- Glutathione_glutamate
FIGURE 1
Metabolic reprogramming in the TIME associated with radiotherapy. (A) Overview of all 168 metabolic flux pathways (divided into 22 supermodules)
in A549 parental and radioresistant cells. (B) Heatmap of the 25 significantly different metabolic fluxes between A549 parental and radioresistant cells
(P<0.05). (C) Heatmap of metabolic fluxes in various immune cells before and after radiotherapy. (D) Single-cell clusters of mouse HKP1 lung
orthotopic carcinoma before and after radiotherapy (3x4 Gy). (E) Cluster of metabolic flux changes in serine metabolism (M30 flux) in various
immune cells before and after radiotherapy. (F, G) Overview of all 168 metabolic flux pathways (divided into 22 supermodules) in tumor-draining
lymph nodes (TDLNs) from NSCLC patients with primary tumors that were untreated (nonCRT) or treated with chemoradiotherapy (CRT). Among
these, 21 metabolic fluxes showed significant differences between the two groups (P<0.05).

3.2 Metabolic differences in the TIME of
mouse HKP1 lung orthotopic carcinoma
before and after radiotherapy

Based on scRNA-seq data from the GSE157881 database, we
employed the scFEA method to evaluate metabolic flux alterations
in various immune cell populations within the TME and
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systematically compared metabolic differences before and after
radiotherapy. Single live cells sorted from HKPI-bearing lungs
which received 0Gy-RT or 4Gy-RT were sequenced. The mutant
HKP1 (Kras“**’p5377) orthotropic mouse model of lung cancer
develops adenocarcinoma with histopathological similarities to
human NSCLC in immunocompetent C57/BL6 mice. Figure 1C
demonstrates the differential metabolic fluxes across 168 metabolic
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pathways (22 supermodules) among distinct immune cell types pre-
and post-radiotherapy. The study revealed that different immune
cell subsets exhibited markedly heterogeneous metabolic responses
to radiotherapy: B cells displayed the most pronounced
upregulation of metabolic flux post-radiotherapy, whereas natural
killer (NK) cells showed the most significant metabolic suppression.
In contrast, T cells exhibited minimal changes in metabolic flux
before and after radiotherapy. Despite substantial overall metabolic
variations among immune cell populations, we observed that the
serine metabolic flux within the methionine/cysteine metabolic
pathway (M30 pathway) consistently demonstrated the most
prominent enhancement across all immune cell types following
radiotherapy (Figures 1D, E).

3.3 Metabolic differences in TDLNs of
patients before and after radiotherapy

Based on the GSE239514 dataset (which performed bulk RNA
sequencing on 25 TDLN samples from 16 NSCLC patients), we
employed scFEA to transform transcriptomic data into
metabolomic data. By comparing metabolic differences in TDLNs
between patients who were not subjected to chemoradiotherapy
(nonCRT) and those who received chemoradiotherapy (CRT), it
was found that most metabolic fluxes in TDLNs exhibited a
downregulating trend post-radiotherapy (Figure 1F). Figure 1G
demonstrates 21 significantly altered metabolic fluxes between the
two patient groups. Specifically: 1) The fluxes of malate —
oxaloacetate (M13) and acetyl-CoA + oxaloacetate — citrate
(M?7) in the tricarboxylic acid (TCA) cycle; 2) The flux of dolichyl
phosphate — dolichyl phosphate D-mannose (M118) in N-linked
glycan biosynthesis; and 3) The flux of aspartate — pyrimidine
(M36) in aspartate metabolism were all significantly reduced.
Notably, in the M7 pathway, increased levels of acetyl-CoA and
oxaloacetate were observed alongside decreased citrate, while in the
M118 pathway, elevated dolichyl phosphate was accompanied by
reduced dolichyl phosphate D-mannose. These results indicate that
radiotherapy can induce aberrant expression of metabolic enzymes
and accumulation of intermediate metabolites in the NSCLC tumor
microenvironment (including tumor cells, TIME, and local
TDLNs), thereby triggering metabolic reprogramming and
mediating radioresistance.

3.4 |dentification of metabolic genes
associated with radioresistance

Based on the TCGA database, we obtained data from 554
LUAD patients, and ultimately selected 51 patients who had
received radiotherapy alone. The RNA-seq data from these
patients included 11,105 genes. After filtering out genes with low
expression variability (standard deviation < 0.5), 4,570 genes
remained. These genes were then subjected to WGCNA. First, the
optimal soft threshold power for a scale-free network was calculated
to be 12, with a correlation coefficient greater than 0.8 (Figure 2A).
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Subsequently, 25 modules were identified based on average linkage
hierarchical clustering and the optimal soft threshold power
(Figure 2B). Those patients selected from the TCGA database
were divided into radioresistant (RR) and radiosensitive (RS)
groups. RR was defined as complete remission (CR) after
radiotherapy, while other types (such as stable disease (SD) and
progressive disease (PD)) were classified as RS. Correlation analysis
was conducted between the 25 modules and radiotherapy, revealing
that MEbrown (343 genes) and MEtan (150 genes) were positively
correlated with RR, while MEmagenta (153 genes) was negatively
correlated with RR (Figure 2C). The WGCNA module gene sets
associated with radioresistance included MEbrown, MEmagenta,
and MEtan, comprising 644 genes. The metabolic-related gene set
consisted of 663 genes, derived from all metabolic-related genes in
the 168 metabolic pathways identified in the first part using scFEA.
The intersection of the radioresistance-associated WGCNA module
gene sets and the metabolic-related genes yielded 50 genes, which
were used for further analysis (Figures 2D, E).

3.5 Development and validation of the
radiotherapy prognostic model

To investigate the prognostic value of RRMGs, we initially
performed univariate Cox regression analysis (stratified by RR and
RS subgroups) on 50 candidate genes, identifying 15 genes
significantly associated with survival. Subsequent stepwise Cox
regression analysis ultimately identified seven independent
prognostic biomarkers: phosphogluconate dehydrogenase (PGD),
isocitrate dehydrogenase 2 (IDH2), glucose-6-phosphate
dehydrogenase (G6PD), aldehyde dehydrogenase 3A1 (ALDH3A1),
uridine phosphorylase 1 (UPP1), xylosyltransferase 2 (XYLT2), and
acetyl-CoA synthetase (AACS). Among these, PGD, IDH2, G6PD,
ALDH3A1, and AACS were determined as risk factors, whereas
UPP1 and XYLT?2 exhibited protective effects (Figures 3A, B).

Based on these seven key RRMGs, a multivariate Cox regression
prognostic model was constructed. The risk score was calculated as
follows: Risk score = (0.3153 x PGD expression) + (0.7059 x IDH2
expression) + (0.4029 x G6PD expression) + (0.4784 x ALDH3Al
expression) + (0.8238 x AACS expression) - (0.3972 X
UPP1 expression) - (0.3711 x XYLT2 expression). Patients with
LUAD were stratified into high- and low-risk groups based on the
median risk score. Kaplan-Meier analysis demonstrated significantly
shorter overall survival in the high-risk group compared to the low-
risk group (HR = 4.726 [95% CI: 2.154-10.371], p < 0.001)
(Figure 3D). The AUC values for 1-, 3-, and 5-year follow-up were
0.752, 0.778, and 0.879, respectively (Figure 3E).

In addition, the prognostic performance of our RRMGs model
was validated using the independent dataset GSE68465 (Figures 3F,
G). This dataset originated from a large, multi-institutional, blinded
validation study that evaluated multiple gene expression-based
prognostic models in 442 lung adenocarcinoma cases. From this
cohort, we selected 65 patients who received radiotherapy and had
complete clinical and survival records for further validation.
Kaplan-Meier analysis revealed significantly worse overall survival
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FIGURE 2

Identification of co-expression gene modules associated with radioresistance. (A) Selection of soft threshold based on scale-free topology.
(B) Selection of soft threshold based on average connectivity. (C) Dendrogram of genes associated with radiotherapy. (D) Heatmap of the correlation
between gene co-expression modules and radiotherapy response. (E) Venn diagram illustrating the selection of radioresistance-related metabolic
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in the high-risk group compared to the low-risk group (HR = 4.163,
95% CI: 2.025-8.558, P < 0.001; Figure 3F). The RRMGs model
demonstrated strong predictive accuracy with 1-, 3-, and 5-year
AUC values of 0.743, 0.776, and 0.790, respectively, in the
GSE68465 dataset (Figure 3G). These results confirm the robust
prognostic capability of our model.
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Finally, the RRMGs prognostic model was integrated with

clinical parameters (age, gender, smoking history and stage) to
construct a prognostic nomogram (Figure 3H). ROC curve
showed that this prognostic model exhibited excellent
predictive performance with good probability (AUC = 0.811,
Figures 31, J).
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FIGURE 3

Construction and evaluation of the radiotherapy prognostic model. (A, B) Forest plots of univariate and multivariate Cox regression analyses for
survival-related genes. (C) Risk factor plot, with the upper panel showing the stratification of patients into high- and low-risk groups based on risk
scores, the middle panel displaying survival status in these two groups, and the lower panel further analyzing the differences in RRMGs expression
across different risk groups. (D, F) OS curves of risk subgroups for TCGA-LUAD and GSE68465 dataset. (E, G) Time-dependent ROC curves and area
under the curve (AUC) values of the RRMG-prognostic model for TCGA-LUAD and GSE68465 dataset. (H) Nomogram constructed by integrating
risk scores and clinical features. (I, J) Predictive ROC curves and calibration curves for the nomogram. *P<0.05, **P<0.01, ***P<0.001.
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3.6 Analysis of tumor immune
microenvironment infiltration, immune
therapy sensitivity, and prognosis in
radioimmunotherapy

Given that radiotherapy can remodel the tumor microenvironment
(TME) to either enhance or suppress anti-tumor immune responses,
we employed the CIBERSORT algorithm to analyze immune cell
infiltration patterns across risk subgroups. Significant differences in
infiltration levels of various immune cell types were observed
(Figures 4A, B). Specifically, the high-risk group exhibited reduced
infiltration of anti-tumor immune cells such as CD8+ T lymphocytes
and natural killer (NK) cells, while showing increased infiltration of
pro-tumor cells including M2 macrophages, regulatory T cells (Tregs),
and neutrophils. ESTIMATE algorithm analysis revealed elevated
Stromal Scores and ESTIMATE Scores but decreased ImmuneScores
in the high-risk group (Figures 4C-E), indicating an
immunosuppressive TME phenotype. To investigate differential
responses to immunotherapy among risk subgroups, we predicted
treatment efficacy using the TIDE algorithm (where higher TIDE
scores suggest greater likelihood of immune evasion). The high-risk
group demonstrated significantly higher TIDE scores (Figure 4F).
Furthermore, we examined expression differences of immune
checkpoint molecules - programmed cell death protein 1 (PDCD1),
programmed death-ligand 1 (CD274), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) - across subgroups (Figures 4G-I).
Downregulation of these immune checkpoint molecules was
observed in the high-risk group, suggesting potential immune
evasion mechanisms promoting tumor progression.

RNA-seq data from 16 patients in the GSE253564 dataset who
underwent combined radiotherapy and immunotherapy were
analyzed. Patients were stratified by pathological response into
major pathological response (MPR; >90% tumor regression,
n=10) and non-MPR (<£90% regression, n=6) groups. The MPR
group predominantly comprised low-risk patients, whereas the
non-MPR group consisted mainly of high-risk cases (Figure 4]).
Kaplan-Meier survival analysis and ROC curve evaluation
confirmed poorer prognosis in the high-risk group although there
was no significant difference (P = 0.516, AUC = 0.618; Figures 4K,
L). These results demonstrate that the RRMG prognostic model not
only effectively predicts outcomes for radiotherapy alone but also
shows significant value in predicting therapeutic efficacy for
combined radiotherapy and immunotherapy.

3.7 High-risk RRMGs were upregulated in
radioresistant NSCLC cells

To investigate the expression profiles of high-risk RRMGs in
radioresistant NSCLC cells, radiation-resistant cell lines A549R and
LLCR were successfully established by subjecting A549 and LLC
cells to fractionated irradiation with a cumulative dose of 60 Gy.
qRT-PCR and Western blot analyses demonstrated that both
mRNA and protein expression levels of PGD, IDH2, G6PD,
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ALDH3AI1, and AACS were significantly upregulated in the
radioresistant cells (Figures 5A-E). These findings not only
validate the reliability of our analytical results but also suggest
that these genes may play a critical regulatory role in the
development of radioresistance in NSCLC.

3.8 Identification and analysis of candidate
drugs for high-risk patients

To identify potential radiosensitizers and immunotherapy
sensitizers applicable to high-risk patients, we evaluated
differences in drug sensitivity among distinct risk subgroups
based on drug response data predicted by the “oncoPredict” R
package. By screening for drugs exhibiting higher sensitivity in the
high-risk population, differential drug response analysis was first
performed to identify compounds with significant differences,
retaining only those with lower half-maximal inhibitory
concentration (IC50) estimates in the high-risk group. Three
drugs/compounds demonstrating potential therapeutic value for
high-risk patients were ultimately identified: BRD-K42260513,
ouabain, and BRD-K28456706 (Figures 6A-D). Analysis of
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties revealed that ouabain exhibited the most
favorable overall profile, followed by BRD-K28456706 and BRD-
K42260513 (Table 2). For in-depth analysis of these three
candidates, molecular docking was performed between five high-
risk radioresistance-associated metabolic proteins (PGD, IDH2,
G6PD, ALDH3AIL, and AACS) and the candidate drugs.
Figures 6F, F illustrate the docking models of PGD and IDH2
with ouabain, demonstrating binding free energies of -7.9 kcal/mol
and -8.7 kcal/mol, respectively. These candidate drugs show
promise asradiosensitizers or radioimmunotherapy sensitizers for
NSCLC treatment.

4 Discussion

This study systematically untangled the metabolic
reprogramming characteristics of radioresistant lung cancer cells
and their dynamic changes within the tumor microenvironment
through multi-omics analysis, providing crucial evidence for
understanding radioresistance mechanisms and developing novel
metabolic intervention strategies. By systematically analyzing the
expression profiles of RRMGs in LUAD, we successfully established
and validated a prognostic prediction model based on seven key
RRMGs (PGD, IDH2, G6PD, ALDH3A1, AACS, UPPI, and
XYLT?2). This model not only effectively distinguished radiotherapy
sensitivity among LUAD patients but also predicted clinical
outcomes of combined radiotherapy and immunotherapy, offering
a novel molecular tool for personalized treatment decision-making.

There is currently a lack of comprehensive single-cell
metabolomics and TME analyses related to radiotherapy in
NSCLC. Therefore, we utilized scFEA to analyze the metabolic
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FIGURE 4

Tumor immune microenvironment, immune therapy sensitivity, and prognosis of the RRMG model in radioimmunotherapy. (A) Distribution of
immune cells in LUAD patients receiving radiotherapy. (B) Immune cell infiltration levels in different risk subgroups of LUAD patients.

(C—E) ESTIMATE analysis metrics (Stromal Score, Immune Score, and ESTIMATE Score) in different risk subgroups. (F) TIDE scores in different risk
subgroups. (G-1) Expression of immune checkpoints PDCD1, CD274, and CTLA4 in different risk subgroups. (J) Donut chart showing the proportion
of high- and low-risk groups in MRP and non-MRP. (K) PFS curves for high- and low-risk groups. (L) ROC curves and AUC values of the RRMG

prognostic model. *P<0.05, **P<0.01, ***P<0.001.

reprogramming differences in NSCLC tumor cells, immune
microenvironment, and tumor-draining lymph nodes based on
bulk and single-cell RNA-seq. We found that the metabolic
changes in these three areas are heterogeneous, allowing us to
more systematically and comprehensively understand the
radiotherapy-related metabolic reprogramming in the NSCLC
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TME. This approach overcomes the limitations of traditional
analyses that focus solely on specific metabolic pathways or
metabolites in tumor cells or certain immune cells.

In this study, the suppression of the IMP degradation pathway
(M137, M145) in radioresistant cells was accompanied by enhanced
xanthine/uric acid conversion, which aligns with the hypothesis that
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tumor cells remodel purine metabolism to regulate DNA damage
repair and inhibiting purine synthesis enhances radiosensitivity,
supporting the potential therapeutic implications of the metabolic
signatures identified in this study (12, 13). Single-cell analysis
uncovered significant heterogeneity in the metabolic responses of
immune cell subsets following radiotherapy. Notably, all immune
cell types demonstrated activation of the methionine/cysteine
pathway (M30), suggesting that radiotherapy may induce
oxidative stress, thereby forcing immune cells to upregulate
antioxidant metabolism (14). Collectively, these findings support
the hypothesis that dynamic changes in tumor microenvironment
metabolites may serve as predictive biomarkers for radiotherapy
response (15, 16).

The study revealed significant upregulation of high-risk genes
including PGD, IDH2, G6PD, ALDH3A1, and AACS in
radioresistant cell lines, which aligns with previous findings
demonstrating the close association between metabolic
reprogramming and radiotherapy resistance (17, 18). Notably,
G6PD and IDH2—key enzymes in the pentose phosphate
pathway and TCA cycle respectively—may protect tumor cells
from radiation-induced oxidative damage through enhanced
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NADPH production and antioxidant capacity (19). As a member
of the aldehyde dehydrogenase family, ALDH3A1 has been
associated with cancer stem cell properties and chemoresistance,
and this study is the first to confirm its role in radioresistance (20).
Of particular interest, the low expression of protective genes UPP1
and XYLT2 may enhance radiosensitivity by affecting pyrimidine
metabolism and extracellular matrix remodeling suggesting
potential targets for developing novel radiosensitizers (21, 22).
The multigene prognostic model developed in this study
demonstrated superior predictive performance in both the
development set and validation set (with 1-year, 3-year, and 5-
year AUC values of 0.752, 0.778, and 0.879, respectively),
significantly outperforming traditional clinical staging systems.
These findings align with recent studies on LUAD prognosis
based on metabolic genes (23-25), while the novelty of this work
lies in its pioneering association between metabolic characteristics
and radiotherapy response specificity. The predictive performance
was further enhanced when clinical parameters were integrated into
the nomogram, consistent with the current precision medicine
paradigm emphasizing multidimensional assessment (26, 27).
Notably, this model showed potential value in predicting
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Candidate radio-immunotherapy sensitizers for high-risk patients. (A) Drug response results for potential therapeutic agents (BRD-K42260513,
ouabain, and BRD-K28456706) across different risk subgroups. (B—D) Molecular structures of the three potential therapeutic agents (BRD-
K42260513, ouabain, and BRD-K28456706). (E) Predicted 3D docking models of IDH2 with the compound ouabain. (F) Predicted 3D docking
models of PGD with the compound ouabain. *P<0.05, **P<0.01.

outcomes of combined radiotherapy and immunotherapy, as  remained significantly associated with immune escape phenotypes

evidenced by the predominance of low-risk patients in the MPR  and trends in treatment response, indicating that metabolic features
group, suggesting that metabolic features may influence
immunotherapy response (28, 29). Although the RRMGs model

achieved an AUC of 0.618 in the radioimmunotherapy cohort, it

retain biological relevance in the combined therapy setting. Given
the added complexity introduced by immunotherapy, a
metabolism-focused model may have limited predictive power for

TABLE 2 ADMET analysis of three candidate radiosensitizers.

Absorption Distribution Metabolism Excretion Toxicity
Compounds
Caco-2 PPB CYP3A4 CL HERG
BRD-K28456706 -4.621 ‘ 98.713 0377 ‘ 4752 0.021
ouabain -7.045 ‘ 28.077 0 ‘ 1.064 0.595
BRD-K42260513 -5.624 ‘ 78.05 0.992 ‘ 6.164 0.531
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combination treatment outcomes. Future studies could explore
integrating metabolic and immune signatures to develop a more
comprehensive prognostic model for improved predictive accuracy.

Our study revealed that high-risk patients exhibited distinct
features of an inhospitable environment. These observations
corroborate the theoretical framework of metabolic reprogramming
shaping an immunosuppressive tumor microenvironment (TME)
(30, 31). ESTIMATE analysis demonstrated high stromal scores and
low immune scores, potentially indicating cancer-associated
fibroblast (CAF) activation and immune cell exclusion (32). The
low expression of immune checkpoint molecules PD-1/PD-L1 and
CTLA-4 in the high-risk group implies the existence of non-classical
immune evasion mechanisms (33, 34), providing new insights into
metabolism-immune interactions. The differential TIDE scores
further confirmed that high-risk patients were more prone to
immune evasion (35, 36), suggesting that these patients might
benefit from combined metabolic intervention and immunotherapy.

Drug repurposing, which involves identifying new therapeutic
targets for existing drugs, has gained increasing attention in the
development of treatments for various cancers, neurological
disorders, and infectious diseases. Our research identified
candidate drugs (ouabain, BRD-K42260513, and BRD-
K28456706) from pharmacogenomic databases that showed
enhanced therapeutic sensitivity in high-risk groups. Ouabain, a
cardiac glycoside, inhibits the Na+/K+-ATPase pump, increasing
intracellular calcium levels and activating multiple immune-related
signaling pathways. This compound has been shown to induce
apoptosis and inhibit proliferation in various cancer cell lines,
including breast, prostate, melanoma, pancreatic, lung, leukemia,
neuroblastoma, and renal cancers. Additionally, it has been
reported to enhance radiosensitivity in prostate, cervical, and
glioblastoma cancers (37, 38). While information on BRD-
K28456706 and BRD-K42260513 is limited, future studies will
further elucidate their potential value in radio-immunotherapy
for NSCLC.

This study has the following limitations. (1) The ex vivo
radioresistance model may not fully recapitulate the complexity of
the tumor microenvironment in vivo. (2) The metabolic flux
analysis was based on computational predictions and requires
further experimental validation. (3) This study represents an
exploratory investigation of biomarkers and prognostic modeling.
The developed RRMGs model would require prospective,
multi-center clinical trials to rigorously evaluate its clinical utility
in real-world decision-making. (4) This study was developed using a
lung adenocarcinoma (LUAD) cohort and has not yet been
validated in squamous cell carcinoma or other NSCLC subtypes.
Given the distinct metabolic reprogramming patterns, immune
microenvironment characteristics, and treatment responses across
different histological subtypes, the generalizability of the RRMGs
model beyond LUAD remains uncertain. Future studies should
assess its predictive performance and biological relevance in
independent cohorts of additional NSCLC subtypes, particularly
lung squamous cell carcinoma. (5) The specific molecular
mechanisms by which RRMGs (radioresistance-related molecular
groups) regulate radiotherapy resistance remain to be elucidated

Frontiers in Oncology

14

10.3389/fonc.2025.1693277

through ex vivo experiments. (6) While our computational drug
screening identified promising therapeutic candidates for high-risk
patients, the radiosensitizing effects of these compounds require
further experimental validation.

5 Conclusion

In conclusion, we have developed a promising RRGM-based
prognostic model for predicting therapeutic efficacy and outcomes
of radioimmunotherapy in NSCLC, while simultaneously
characterizing the tumor immune microenvironment.
Furthermore, we have identified three potential candidate drugs
(ouabain, BRD-K28456706, and BRD-K42260513) and conducted a
systematic analysis of TME metabolic features, providing
preliminary insights for stratification and personalized treatment
strategies in NSCLC patients.
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