? frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Zhe-Sheng Chen,
St. John's University, United States

REVIEWED BY
Veenita Khare,

University of California, San Diego,
United States

Sai Manasa Varanasi,

Mayo Clinic Florida, United States

*CORRESPONDENCE
Lu Yu

yulu@mailjnmc.edu.cn
Guanjun Dong

guanjun0323@mail jnmc.edu.cn
Huabao Xiong

xionghbl@yahoo.com

RECEIVED 27 August 2025
REVISED 25 October 2025
AcCePTED 04 November 2025
PUBLISHED 21 November 2025

CITATION

Zhang J, Zhang Z, Xiong H, Dong G and Yu L
(2025) Norrin in cancer: from a promising
prognostic biomarker to a novel

therapeutic target.

Front. Oncol. 15:1692715.

doi: 10.3389/fonc.2025.1692715

COPYRIGHT

© 2025 Zhang, Zhang, Xiong, Dong and Yu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Oncology

TYPE Review
PUBLISHED 21 November 2025
D0110.3389/fonc.2025.1692715

Norrin in cancer: from a
promising prognostic biomarker
to a novel therapeutic target

Jiaqing Zhang'?, Zhengyi Zhang'?, Huabao Xiong™*,
Guanjun Dong** and Lu Yu**

*Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China, 2Jining
Key Laboratory of Immunology, Jining Medical University, Shandong, China

Cancer continues to pose significant risks to public health globally due to
incomplete therapeutic conquests even though significant advances have been
achieved in the field of oncology. Therefore, understanding the molecular
mechanisms driving tumorigenesis and progression is critical for developing
novel treatment strategies to achieve effective cancer treatment. Norrin, the
secreted cystine-knot protein originally recognized for its functional role in
retinal vascular development an neuronal protection, is now implicated in
oncogenic processes. This review synthesizes the existing evidence on Norrin's
involvement in tumors, highlighting its aberrant expression across multiple
malignancies and its functional role in cancer cell proliferation, migration,
invasion, and tumor-associated angiogenesis. The compelling data reported in
this review suggest that dysregulated Norrin signaling promotes oncogenesis in
various cancer types. Furthermore, the mechanistic basis of Norrin's tumorigenic
effect is discussed, and the therapeutic potential of targeting Norrin is evaluated
to provide novel insights for future diagnostic and therapeutic development
in oncology.
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1 Introduction

The cystine-knot protein Norrin (NDP), originally identified as the Norrie disease
protein, is a secreted factor that reportedly promotes vascular growth in the retina and
exhibits neuroprotective activity (1). NDP serves as a non-canonical ligand for the FD4R.
The pathogenic variants in the NDP gene lead to Norrie disease, a genetic disorder
primarily manifesting as abnormal retinal development and severe vision impairment
beginning from birth or early infancy (2). The missense mutation of the NDP gene can
trigger familial exudative vitreoretinopathy (FEVR) (3, 4). Pathogenic variants in the NDP
gene have been associated with multiple ocular pathologies, among which the notable ones
are Coats disease and retinopathy of prematurity (5, 6).
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Malignancies continue to pose a significant health burden
worldwide, ranking as the second most common cause of death
globally. Notably, malignancies are the predominant cause of death
in people aged less than 85 years (7, 8). According to the
International Agency for Research on Cancer (IARC), the global
cancer incidence reached about 20 million newly diagnosed cases in
2022, with projections suggesting that this number may rise to 35
million by 2050. Notably, lung cancer has the highest incidence
among all cancer types, accounting for 12.4% of cases (9, 10). The
existing treatment modalities mainly include traditional
radiotherapy, surgery, and chemotherapy, while the emerging
technologies, such as nanomedicine, are also being investigated
(11, 12). Nevertheless, all these treatment approaches have
drawbacks, including high medical expenses, severe adverse
reactions in patients, and poor treatment outcomes (13-15).
Consequently, research to identify novel therapeutic targets and
treatment strategies for cancer is necessary. Growing experimental
evidences support Norrin’s functional significance in multiple
neoplastic processes, spanning adenocarcinomas of the digestive
tract, lung carcinomas, and neurological tumors (16-19).
highlighting directions for future research. Clarifying these
mechanisms will help uncover Norrin’s potential as a therapeutic
target in oncology and facilitate its clinical translation, thereby
offering new strategies for cancer treatment.

2 The gene locus and expression
levels of Norrin

The NDP gene is located on the X chromosome(Xp11.4)and
comprises three exons, encoding Norrin, a protein composed of 133
amino acids (Figure 1) (20).

10.3389/fonc.2025.1692715

The Human Protein Atlas has revealed that NDP is expressed in
various tissues, mainly in the brain, eyes, reproductive, muscle, and
soft tissues (21). The integrated analysis of the Cancer Cell Line
Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA)
datasets revealed ubiquitous NDP expression across multiple
malignancies, with the highest expression levels observed in the
glioma cell lines and primary glioblastoma specimens (22, 23). The
cellular level expression of NDP is increased in gastric cancer
parenchymal cells, but it remains undetected or has the lowest
expression in endothelial cells (18). Similar to its differential
expression across various tissues, Norrin has variable intracellular
expression levels and is relatively highly expressed in the plasma
membrane and nucleus (https://www.genecards.org/) (24).

3 The role of norrin in normal cells

Norrin is a secreted cystine-knot growth factor initially
identified for its critical role in neuroprotective processes (2, 6,
25). Its physiological roles in normal tissues and cells throughout
the body are primarily mediated through angiogenesis and
neuroprotection, with other functions playing secondary roles. It
is also essential for angiogenesis, contributing to the development,
maintenance, and remodeling of the retinal vasculature.

Norrin also modulates vascular growth and organization during
ocular development and in mature vascular networks. Moreover,
Norrin prevents, to a large extent, hyperoxia-induced vascular
damage (2, 6, 20). Interestingly, during embryonic development,
Norrin is important for both neuroprotection and the regulation of
angiogenesis, processes essential for embryonic vascular
development and retinal neuron growth (26). In tissues other
than the eyes, Norrin helps maintain the blood-retinal and blood-
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Structural and genomic information of Norrin: (A) Complex structure of Norrin; (B) Gene structure of Norrin. Exons are indicated using yellow boxes,

and introns are indicated using the connected black lines.
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brain barriers, regulates angiogenesis in the cochlea and uterus, and
maintains the cerebellar vascular system (27-30). Furthermore,
studies have demonstrated that Norrin promotes cardiomyocyte
differentiation by enhancing the induction of the cardiac progenitor
cells derived from pluripotent stem cells (31).

In normal cells, Norrin functions as a ligand, and its B-sheet
structurally mimics the Wnt finger loop, enabling its binding to
FZD4. Upon recruitment of the coreceptor LRP5 and the auxiliary
protein TSPAN12, the ternary complex formed by Norrin, FZD4,
and LRP5 initiates B-catenin signaling, resulting in cytoplasmic -
catenin accumulation (32). Subsequently, the B-catenin is
translocated to the nucleus, where it interacts with the TCF/LEF
transcription factors, initiating and maintaining the transcriptional
activation of target genes (Figure 2) (34-36).

4 The role of Norrin in cancer cells

Ten distinct biological capabilities, to date, have been
established as fundamental hallmarks of cancer (37, 38), and

10.3389/fonc.2025.1692715

building upon these defining hallmarks of cancer, this article
elaborates on how Norrin affects cancer to provide an in-depth
understanding of its potential role in the pathways leading to the
development of malignancy in cancer (Figure 3). Norrin is
dysregulated across multiple malignancies and contributes to
tumorigenesis and cancer progression through specific
mechanisms (Table 1) (16-19, 40).

The mechanism of action of Norrin in tumors is highly context-
dependent, primarily determined by the specific signaling pathways
and cellular microenvironment. For example, Norrin exerts dual
effects on glioma stem cells (GSCs) in an ASCLI1-dependent
manner. Glioma Stem Cells (GSCs) are a small subpopulation of
self-renewing cells within gliomas. In ASCL1' GSCs, it suppresses
proliferation by activating the FZD4-mediated Wnt/B-catenin
cascade. Conversely, in ASCL1M GSCs, it promotes tumor
progression through a Wnt-independent activation of the Notch
signaling pathway (40, 41). Worthwhile, it exhibits a bidirectional
nature that depends on the cellular context. Genetic ablation of
Norrin in gastric cancer cells significantly impairs their invasive
capacity (16). Conversely, in pulmonary carcinoma models,
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The normal physiological function and mechanism of Norrin. Under physiological conditions, Norrin serves as an endogenous ligand for FZD4,
activating canonical Wnt/B-catenin signaling through receptor binding. Upon receptor stimulation, B-catenin accumulation and nuclear translocation
occur, following which B-catenin associates with the TCF/LEF transcription factors, forming a functional complex that modulates downstream gene
expression. Notably, emerging evidence suggests that Norrin may also perform B-catenin-independent functions through alternative signaling
pathways. Importin-o. mediates the nuclear translocation of Norrin, which enhances glioblastoma neural stem (GNS) cell proliferation and
potentiates Notch signaling activation. This figure was created using BioGDP.com (33).
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FIGURE 3

Effect of Norrin on cancer progression. The defining features of cancer include dysregulation of the tumor microenvironment, altered metabolic
pathways, genomic instability, enhanced migratory capacity, persistent growth signaling, pro-inflammatory responses, neovascularization, evasion of
apoptosis, unlimited replicative potential, and immune escape mechanisms. Norrin has been confirmed to promote sustained proliferation,
resistance to cell death, and inflammation in cancer cells while exerting both promoting and inhibitory effects on migration, invasion, and
angiogenesis. However, no study has demonstrated its effect on the remaining five hallmarks.

elevated Norrin expression activates the Wnt pathway and similarly
enhances the migratory and invasive capacities of A549 and H1299
cells (18).

Accumulating evidence suggests that Norrin influences multiple
hallmarks of cancer through diverse mechanisms, including sustaining
proliferative signaling, promoting genomic instability, circumventing
growth suppression, conferring resistance to apoptosis, enabling
replicative immortality, stimulating angiogenesis, facilitating invasion/
metastasis, metabolic reprogramming, immune evasion, and tumor
microenvironment (TME) modulation (Figure 4). Acumulative
evidences establish Norrin as a promising molecular target for novel
antineoplastic therapeutics. Therefore, the cancer characteristics
influenced by Norrin are highlighted and discussed ahead.

4.1 Effect of Norrin on the proliferation

Under normal physiological conditions, cell growth-promoting
signals are strictly controlled during the modulation of cellular
proliferation and cell cycle progression to maintain homeostasis
and the normal functioning of cell tissues and the entire organism.
The release and the regulation of these signals allow the autonomy
and uncontrolled growth of cancer cells. Cell proliferation is
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regulated by various signaling pathways, such as proto-oncogenes
and tumor suppressor genes (38).

Elevated NDP expression has been observed in multiple
malignancies, including gastric and neurological cancers. The
abundance of Norrin, which is encoded by the NDP gene,
modulates cancer cell proliferation (41, 42). In gastric cancer
(GC) cells, the cell proliferation ability decreases after Norrin is
knocked out (16). Research has shown that Norrin deficiency can
inhibit the phosphorylation of mTOR (16). As a central regulator of
cellular growth and proliferation, mTOR is tightly regulated
through signaling. Aberrant mTOR pathway activity is strongly
associated with dysregulated cell proliferation, as demonstrated by
extensive research (43). P27KIP1 is a regulator of cyclin-dependent
kinases (CDKs) and has the potential to trigger cell cycle checkpoint
activation (44). Loss of Norrin suppresses AKT pathway activity
while increasing P27KIP1 expression, ultimately impairing gastric
cancer cell proliferation (16, 45). Interestingly, the decrease in cell
proliferation caused by Norrin deficiency can be restored by
inducing the cytoplasmic activation of AKT using small
molecules (16). Norrin also regulates brain cancer progression in
humans, promoting tumor cell proliferation through multiple
signaling mechanisms. In glioblastoma (GBM), the most common
and aggressive malignant primary brain tumor, belongs to the
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TABLE 1 The role of Norrin on the hallmarks in different cancer cell lines.

Cancer type Hallmarks of cancer Cancer cell line Effect Reference
SGC7901, MGC803, AGS
. Proliferati s s 8 ! h

Gastric cancer roliferation XNO0422 Upregulate (16)

Glioblastoma Proliferation G523, G472, G440 Upregulate (38)

Glioblastoma Proliferation G411, G564 Downregulate (38)

Medulloblastoma Proliferation GNP, mMF Downregulate (39)
SGC7901, MGC803, AGS,

Gastric cancer Invasion and Metastasis Upregulate (16)

XN0422
Lung cancer Invasion and Metastasis A549, H1299 Upregulate (18)
Colon cancer Angiogenesis CaCO2 Upregulate (17)

family of astrocytic tumors, elevated NDP expression was
significantly associated with prolonged survival, especially in
patients with low ASCLI expression levels (40). In vitro studies

progenitor population and accelerated cycle progression, thereby
increasing growth (40). After NDP gene knockout, the proliferation
rate of GSCs decreased significantly (40).

revealed that Norrin activates distinct signaling pathways in cells
with different ASCL1 expression levels. In ASCL1' glioma stem
cells (GSCs), Norrin suppressed proliferation through the FZD4- 4.2 Effect of Norrin on cell death
mediated Wnt/B-catenin cascade. Conversely, in ASCL1™ GSCs,
Norrin enhances tumor progression by activating Notch signaling Apoptosis is an active and orderly process through which
in a Wnt-independent manner (40, 41). In proliferation and cell — multicellular organisms eliminate abnormal or damaged cells.

cycle assays conducted in previous studies, Norrin expanded the = Apoptosis is crucial for maintaining internal environmental
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The role and regulatory mechanism of Norrin. Norrin regulates various characteristics of tumors through multiple pathways. This figure illustrates the
regulatory mechanisms that have been studied relatively clearly, against the background of the tumor microenvironment, but it lacks the depiction
of some mechanisms that have not been reported. This figure was created using BioGDP.com (33).
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homeostasis. Conversely, malignant cells develop resistance to
apoptosis through the dysregulation of Bcl-2 family members,
inactivation of TP53, or reduced expression of apoptosis-promoting
mediators (16, 38). Clear Cell Renal Cell Carcinoma (ccRCC) is the
most common and aggressive subtype of renal cell carcinoma. The 5-
year survival rate of patients with apoptosis-resistant metastatic
ccRCC is just 5%, with curative outcomes virtually unattainable
(46, 47).

Bim, is a BH3-only protein, also a crucial regulator of apoptosis,
functions by interacting with the antiapoptotic Bcl-2 family
members or directly triggering the pro-apoptotic effectors. Bim
dysregulation is strongly implicated in tumorigenesis and cancer
progression (48). Norrin mediates AKT pathway activation, which
subsequently suppresses Bim expression, consequently attenuating
apoptotic cell death (16). Furthermore, the AKT pathway
intrinsically suppresses the apoptotic processes, and its
constitutive activation represents a hallmark feature of numerous
malignancies (49, 50). Therefore, it was speculated that Norrin is
involved in the inhibition of cancer apoptosis.

4.3 Effect of Norrin on the invasion and
metastasis

Most fatalities in oncology result from metastatic dissemination
(51). Patients who develop drug resistance after chemotherapy
experience metastasis and cancer cell spread to nearby tissues (52,
53). The metastatic potential of tumors fundamentally depends on
their acquired capacity for cellular migration and tissue invasion. This
process is initiated when neoplastic cells dissociate from the primary
tumor mass, traverse through extracellular matrices, and ultimately
infiltrate the adjacent tissues or disseminate to distant organs. Cellular
migration represents the critical first step in the development of full
invasive ability (54). The Extracellular Matrix (ECM) is a non-cellular,
three-dimensional network of macromolecules that provides essential
structural and biochemical support to surrounding cells. Cancer cell
invasion involves the proteolytic degradation of the basement
membrane and ECM components, which enables cancer cell
penetration into neighboring tissues (54).

Norrin is essential for cancer cell invasion (16) and serves as an
LGR4 agonist in malignant cells, stimulating Wnt/B-catenin
signaling to drive metastatic behavior through enhanced motility
and tissue infiltration, thereby facilitating tumor advancement (55).
In gastric cancer cells, knockout of Norrin significantly decreases
invasion ability (16). In pulmonary carcinoma models, elevated
Norrin expression induced Wnt pathway activation, markedly
enhancing the migratory and invasive capacities of the A549 and
H1299 cell lines (18).

Epithelial-mesenchymal transition (EMT) is a key mechanism
associated with tumor cell migration and invasion. In this process,
epithelial cells undergo a defined transformation to adopt
mesenchymal properties, and this is a critical step that facilitates
tumor metastasis (56, 57). Moreover, the EMT process is associated
with the drug resistance and stem cell characteristics of tumor cells
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(18, 38). A characteristic of EMT is the downregulation of E-
cadherin, which is a critical mediator of epithelial cell adhesion
(38, 58). Snail and Slug, two key transcriptional regulators involved
in EMT, suppress E-cadherin and the related genes by targeting the
conserved E-box sequence (59). Upon Norrin knockdown, the SPC-
induced reduction in E-cadherin expression is reversed and is
accompanied by a decreased expression of the EMT regulators
Snail and Slug, which ultimately suppresses tumor cell migration
and invasion (18).

4.4 Effect of Norrin on the replicative
immortality and DNA repair

Unlimited replicative potential is a hallmark feature of cancer
cells, and malignant cells achieve unlimited proliferation through
telomere maintenance mechanisms (TMMs), evading replicative
senescence and sustaining continuous cell division (60). Alternative
Lengthening of Telomeres (ALT) is a telomere-maintenance
mechanism used by some cancer cells to achieve immortality
(61). Replicative immortality is achieved mainly through the
telomerase and alternative lengthening of telomeres (ALT)
pathways (62). DNA lesions represent a major source of genomic
instability in cells (63). Telomerase plays a canonical role in
telomere elongation and maintenance, while also performing
extratelomeric functions, including its participation in the DNA
repair processes (38, 64). TERT interacts with the key signaling
components, including cMYC, NF-xB, and BRGI, enhancing
tumor aggressiveness (62, 65-68). Therefore, interventions
targeting DNA damage and DNA damage repair mechanisms
could provide novel ideas for cancer treatment (69).

Norrin has never been shown to directly modulate telomere
maintenance or telomerase function in cancer cells so far.
Nevertheless, existing evidence suggests Norrin’s role in
mediating Wnt/B-catenin pathway transduction (34, 70, 71).
Research on colorectal cancer has demonstrated that Wnt
pathway activation increases TERT expression, subsequently
increasing the telomerase activity and preserving telomere length
(72, 73). Therefore, we can analogical think that Norrin may affect
TERT by activating Wnt/B-catenin pathway in some cases,
however, no studies are available to provide direct evidence.

Genomic instability is an important characteristic of cancer,
and uncontrolled proliferation of malignant cells promotes genomic
instability, resulting in cumulative damage to key cell cycle
regulators and tumor suppressors, which drives tumorigenesis
and cancer progression (74-77). The role of p53, encoded by the
TP53 gene, as a critical growth inhibitor in malignant cells is well
known. This tumor suppressor gene has the highest mutation
frequency among all cancer-related genes and serves as a key
oncogenic driver in multiple tumor pathologies (78). Cancer
patients with mutations in the TP53 gene have a poor prognosis
(79, 80). The precise molecular mechanisms connecting Norrin
signaling to genomic instability in malignancies remain to be
elucidated to date. However, researchers have found, through
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STRING analysis, a protein-protein network interaction between
Norrin and TP53 (81). It was, therefore, speculated that Norrin may
affect genome instability through TP53 expression. However, some
studies have demonstrated that the knockout of NDP can increase
the mutation frequency of EC genes and contribute to the creation
of the TME (19).

4.5 Effect of Norrin on tumor metabolism

The remodeling of cellular metabolism is a defining feature of
aggressive cancers (82-84). In oxygenated environments, non-
transformed cells predominantly utilize oxidative phosphorylation
as their principal metabolic pathway for ATP generation. However,
under anaerobic conditions, a relatively abnormal energy metabolic
process called glycolysis may occur. Cancer cells, on the other hand,
exhibit metabolic flexibility and favor glycolysis over oxidative
phosphorylation even under normoxic conditions, and this is a
hallmark of tumor metabolism known as aerobic glycolysis (85).

The AKT pathway has been established as a critical modulator
of metabolic regulation in mammalian cells (86-88). After the AKT
pathway is activated, phosphorylation and activation of mTOR
occur, which promotes the expression of HIF-c, a key regulatory
factor of glycolysis (89). HIF-o binds to glycolytic gene promoters,
activating their transcription and upregulating the glycolysis-related
pathways (89). Studies have indicated that Norrin stimulates the
AKT/mTOR cascade (16). Hence, Norrin could be a key modulator
of metabolic pathways in cancer.

4.6 Effect of Norrin in tumor
microenvironments

Carcinogenesis is intricately linked to the alterations in the
TME. The tumor microenvironment harbors cancer stem cells and
bioactive factors that promote tumorigenesis by providing nutrients
and mitogenic signaling, and through circulatory and lymphatic
networks, the TME mediates the intercellular communication that
orchestrates carcinogenesis and tumor progression (90-92).
Traditional cancer treatment is based on targeting the tumor
cells; however, given the critical function of the TME, analyzing
the molecular and cellular dynamics of the TME during tumor
development and discovering the potential therapeutic targets has
gained significant attention in cancer research (93). TME drives the
key oncogenic processes of angiogenesis, inflammation, immune
evasion, and neural network integration. This report describes the
effect of Norrin on these cancer hallmarks to explore the
associations between Norrin and the TME (91, 94-96).

4.6.1 Effect of Norrin on the angiogenesis
Tumor-associated angiogenesis is widely recognized as a key
facilitator of malignant progression because it enables sustained
proliferation and clonal evolution. The NDP gene product Norrin is
a recognized regulator of vascular development. Clinical
investigations have revealed that tumor-derived Norrin in
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colorectal carcinoma actively modulates endothelial cell behavior,
with its presence observed alongside increased motility and the
progression of pathological angiogenesis (97). Emerging evidence
suggests that Norrin activates the Wnt/B-catenin signaling cascade,
thereby upregulating MMP-2 expression (97). MMP-2 can
hydrolyze type IV collagen and other connective tissue substrates
and stimulate endothelial cell motility, promoting endothelial cell
invasion of blood vessels through the basement membrane (17).
Notably, colorectal cancer microenvironments generate Norrin,
whereas local endothelial cells express their complete signaling
machinery, enabling the autocrine regulation of the tumor
vasculature (17, 98). However, the effects of Norrin on
vasculature are highly context-dependent. This is exemplified by
its opposing roles in medulloblastoma (19). In medulloblastoma
(MB) of the cerebellum, one kind of malignancy, activation of the
Norrin/FZD4-mediated vascular regulatory signaling axis inhibited
the initiation of MB in the Ptch *'~ mouse model. Loss of Norrin
increases the mutation frequency of the genes associated with
endothelial cells, including Esm1 (endothelial cell-specific
molecule 1), Plvap (plasmalemmal vesicle-associated protein), and
Emcn (endomucin), which form a precancerous matrix that is
characterized by vascular remodeling. This process establishes a
pro-tumorigenic niche during MB initiation, facilitating the
malignant transformation of premalignant lesions (19).
Additionally, in a study on ovarian cancer, Norrin was shown to
have an inhibitory effect on angiogenesis, but the mechanism
remains unclear to date (99). Collectively, these findings
demonstrate the context-dependent roles of Norrin in tumor
angiogenesis across developmental stages and tissue types.

4.6.2 Effect of Norrin on the inflammation
Inflammation has been described as the seventh hallmark of
tumors (100). Under normal conditions, the body’s inflammatory
response is a defensive reaction to the stimulation of various injury
factors, and this helps maintain the body’s normal physiological
functions (101, 102). A large amount of randomized controlled trial
and case study suggests that chronic inflammatory diseases mediated
by the immune system, which have not been eftectively controlled for
a long period, can increase the risk of specific malignant tumors (103,
104). Inflammatory bowel diseases (IBD), particularly ulcerative
colitis and Crohn’s disease, are well-established risk factors for
colorectal carcinogenesis. The risk of malignancy increases with
prolonged disease duration, increased inflammatory activity, and
increased severity of mucosal damage (104, 105). Tumor-associated
inflammation encompasses the inflammatory processes triggered by
tumor initiation and progression, which enhance the occurrence and
development of tumors by recruiting and activating inflammatory
cells, thereby helping the early tumors acquire their characteristic
capabilities (106). These findings suggest that innate immune cells, in
particular, exert functionally significant pro-tumor effects during
cancer development (38, 107). The inflammatory response
mediates the release of bioactive compounds into the neoplastic
niche, facilitating the ability of various markers, including growth
factors that maintain proliferative signaling, survival factors that limit
cell death, pro-angiogenic factors that promote angiogenesis, and
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enzymes that modify the extracellular matrix and drive angiogenesis,
invasion, and metastasis, as well as elicit signals that induce the
occurrence of EMT and activate other marker-promoting programs
(38, 107).

A study on medulloblastoma in mice reported that meningeal
macrophages regulate the initiation of tumors by participating in
the chemokine signaling of pre-tumor cells (108). It has also been
reported that Norrin regulates the genes with inflammatory
regulatory functions in meningeal macrophages (109, 110),
maintains the activation of meningeal macrophages during the
critical precancerous stage, and inhibits the chemokine signaling
of pre-tumor cells, thereby inhibiting the initiation of
medulloblastoma in mice. Norrin may, therefore, be related to the
occurrence of inflammation.

4.6.3 Effect of Norrin on the immune evasion

Numerous studies have demonstrated that cancer stem cells
achieve immune evasion through various means. Immune evasion
is important for tumor cells to circumvent immune-mediated
recognition and removal (39, 111). The abnormal metabolism of
tumors and the effect of Norrin on the metabolism of tumors have
been described above. Extensive research has demonstrated that the
metabolic reprogramming in tumors facilitates cancer immune
evasion (112, 113). No direct mechanistic evidence is, however,
available linking Norrin activity to the immune evasion processes
in cancer.

In glioblastoma, Norrin contributes to glioblastoma stem cell
maintenance by functionally engaging the Notch signaling cascade
(38). LGR4, a receptor for Norrin, is involved in immune
modulation within the tumor microenvironment. Activation of
the RSPOs/LGR4/ERK/STAT3 pathway by LGR4 drives the M2
polarization of Tumor-Associated Macrophages (TAMs). As the
most numerous leukocytes in this environment, TAMs are highly
plastic cells existing along a spectrum from pro-immunogenic M1
to immunosuppressive M2 phenotypes, with the latter facilitating
tumor immune evasion (55, 114).

Collectively, these findings suggest that Norrin may contribute
to tumor immune evasion mechanisms.

4.6.4 Effect of Norrin on the nerve connection
The nervous system is widely spread throughout the body.
Under normal conditions, the nervous system exhibits its
established roles in motor control and sensory processing, while
beyond these roles, neural regulation of the stem cell niches
constitutes an essential axis for controlling cellular behavior and
preserving homeostatic balance across tissues. The nervous system
also regulates the cancer phenotype in a similar way, usually
through neural mechanisms parallel to those in normal tissues
(115). The neural connection of cancer is a type of connection
established between the cancer cells and the nervous system, and
through long-range signaling mechanisms, the nervous system
facilitates tumor initiation, progression, and metastatic
dissemination (116). This linkage significantly contributes to
tumor initiation, progression, dissemination, and patient pain
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perception (115, 117-119). Currently, no research has confirmed
the specific impact of Norrin on the neural connections of tumors.
Norrin is essential for retinal neuron growth during embryonic
development (120), and tumorigenesis is similar to embryogenesis.
The hallmark features of stem cells include their proliferative
plasticity, which enables both self-maintenance and commitment
to diverse cellular phenotypes. Embryonic stem cells can develop
into various cells required for mammalian development (121), and
tumor stem cells have also been proven to have similar capabilities
(122). Thus, it was hypothesized that Norrin can influence tumor-
associated neural connectivity as well.

4.6.5 The context-dependency of the Norrin
signaling pathway

As described above, Norrin participates in multiple signaling
pathways, and it is important to note that the activation of these
pathways is highly context-dependent. The Norrin-related
pathways are influenced by factors such as tissue type and
fumor microenvironment.

The activation of these pathways exits tissue or microenvironment
specificity. A study on glioblastoma stem cells (GSCs) demonstrated
that Norrin signals through the intact FZD4-TSPAN12-LRP5 receptor
complex, which can be activated according to the expression level of
GSC subtypes, specifically the expression level of ASCL1 (123). In
colorectal cancer cells, however, Norrin signals through a simplified
receptor complex consisting of FZD4 and LRP5 without TSPAN12.
This simplified complex specifically activates the angiogenic branch of
the Wnt/B-catenin pathway (17).

Currently, there is a lack of direct and conclusive experimental
evidence to demonstrate that common factors in the tumor
microenvironment, such as hypoxia or inflammatory cytokines,
have a direct impact on Norrin expression. Further research in this
area is warranted, as establishing a clear relationship between tumor
microenvironment components and Norrin could reveal novel
targets for combined therapeutic interventions.

4.7 Regulation of downstream signaling
partners and post-translational
modifications of Norrin

Above, we have discussed the role of Norrin and its upstream
signaling pathways across various types of tumor cells. Here, we will
supplement this by elaborating on the downstream signaling
partners and post-translational modifications regulated by Norrin.
This will help clarify the precise molecular mechanisms driving its
oncogenic potential and contribute to a comprehensive
understanding of Norrin’s signaling network.

First, we systematically outline the downstream signaling
partners, identifying the FZD4-TSPANI12-LRP5/6 axis as the
core downstream signaling pathway of Norrin. In cancer cells,
Norrin’s downstream signaling partners exhibit dual specificity
based on both “cancer type” and “subtype”. For instance, in
glioblastoma, under low ASCL1 conditions, the FZD4-LRP5-
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TSPAN12 complex stimulates Wnt/[B-catenin signaling. In contrast,
under high ASCLI conditions, Norrin activates Notch signaling by
inducing the Notch intracellular domain (NICD), which represents
a less predominant signaling axis (40, 41). Gastric cancer relies on a
simplified FZD4 complex to signal through the PI3K/AKT
pathway (16).

Then, regarding post-translational modifications, we
specifically describe three key types that influence Norrin’s
activity, including glycosylation, disulfide bond formation and
polymerization/oligomerization (124, 125). Glycosylation, Norrin
possesses a conserved N-linked glycosylation site near its N-
terminus, where a glycan chain is attached to an asparagine
residue. This glycosylation modification is believed to contribute
to Norrin’s stability by protecting it from proteolytic degradation
and may also play a role in its efficient secretion and signaling
function (124). Disulfide Bond Formation, the amino acid sequence
of Norrin contains seven conserved cystine residues that form an
intricate network of intramolecular disulfide bonds. These disulfide
bonds are essential for the proper three-dimensional folding of
Norrin, its efficient secretion, and its binding to the receptor FZD4
and co-receptors LRP5/6. The formation of disulfide bonds ensures
both the stability and bioactivity of Norrin (125). Polymerization/
Oligomerization, Norrin can form homodimers or higher-order
oligomers via intermolecular disulfide bonds. This oligomerization
occurs following secretion or within the extracellular matrix.
Although the monomeric form of Norrin has been shown to
possess bioactivity, its oligomeric forms may represent a storage
state or serve to modulate signaling strength and duration by
increasing local concentration and stability (124). The above
descriptions supplement the previously dispersed introductions to
the pathway by providing a systematic and consolidated overview of
Norrin’s downstream signaling and regulatory mechanisms.

4.8 Mechanisms of interaction between
norrin and other potential oncogenic
pathways

Beyond the mechanisms discussed above, we hypothesize that
several other signaling pathways may also regulate Norrin expression,
such as the Hippo-YAP, TGF-B, Notch, and Hedgehog pathways.
Below, we outline the rationale for this hypothesis.

First, the Hippo-YAP pathway is an evolutionarily conserved
kinase cascade whose core effectors, YAP and the transcriptional
coactivator with PDZ-binding motif (TAZ), play pivotal roles in
regulating organ size, cell proliferation, differentiation, apoptosis, and
tissue regeneration (126). As established, Norrin exerts its biological
functions through the Wnt/B-catenin signaling pathway. Meanwhile,
TAZ has been shown to restrict Wnt/B-catenin signaling via direct
cytoplasmic interaction with Dishevelled (DVL), leading to
suppression of Wnt pathway activity (127). Based on this evidence,
we hypothesize that TAZ may interact with Norrin-mediated
signaling through its modulatory effect on the Wnt/B-catenin
pathway (128). Next, regarding the TGF- pathway, although there
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is no direct evidence indicating that TGF-B regulates Norrin
expression or Norrin directly modulates TGF-f3 signaling, high
levels of TGF-B in the eye have been observed to significantly
reduce the activity of the Wnt/B-catenin signaling pathway (129).
Therefore, we hypothesize that TGF-B may influence Norrin-
mediated signaling through this indirect mechanism. Norrin has
been shown to stimulate Notch signaling by inducing the Notch
intracellular domain (NICD) in glioblastoma (40), the specific
signaling mechanisms involved remain unclear, warranting further
investigation in future studies. Finally, concerning the Hedgehog
pathway, while direct evidence of interaction is similarly lacking, in
Norrie disease, expression of the NDP gene is initiated in retinal
progenitor cells in response to Hedgehog signaling, which induces
Gli2 binding to the NDP promoter (130). Based on this finding, we
hypothesize that a similar regulatory mechanism may operate in
tumor cells. The hypotheses outlined above merit further
investigation in future studies, as their validation could provide
insights valuable for leveraging Norrin signaling in clinical
cancer therapy.

Through the foregoing discussion, it becomes evident that
Norrin exhibits dual roles in regulating multiple hallmarks of
cancer. However, the key determinants underlying this functional
duality, specifically, the factors that drive the switch between its pro-
tumorigenic and anti-tumorigenic effects, have not yet been
comprehensively or conclusively elucidated in the existing
literature. Further investigation into Norrin’s context-dependent
functions is warranted, likely in relation to specific tumor
microenvironmental conditions. Elucidating the factors
responsible for these divergent outcomes is critical for guiding the
clinical translation of Norrin-related therapies.

5 Biomarker and potential therapeutic
options

5.1 Norrin as a biomarker

Norrin is highly expressed across multiple tissues (Table 2) and
is critical for preserving the normal physiological functions in the
body. For example, in normal cells, Norrin primarily modulates
angiogenesis and exerts neuroprotective effect, studies have shown
that recombinant Norrin markedly enhances vascular endothelial
cell proliferation, viability, migration, and angiogenic capacity (6).
So, the overexpression of Norrin may overwhelm these normal
regulatory mechanisms, thereby affecting angiogenesis and
indicating an abnormal pathological state, which directly
promotes the progression of cancer. Therefore, Norrin can serve
as a biomarker of cancer. As evidenced by its involvement in
conditions like diabetic retinopathy and retinal vascular
occlusion, the Norrin signaling pathway is crucial for retinal
vascular development. Consequently, its dysfunction represents a
promising therapeutic target for retinal vascular diseases (131).

Beyond cancer, Norrin has been implicated as a potential
biomarker in other diseases. Its biological function is primarily
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mediated through the activation of the Wnt/B-catenin signaling
pathway (40, 132, 133). Elevated Norrin expression frequently
correlates with the hyperactivation of the Wnt pathway,
demonstrating pathological dysregulation of this signaling cascade. In
kidney development and disease, Wnt signaling is rapidly reactivated
after adult kidney injury (134). These findings suggest that
overexpression of Norrin may activate the Wnt/B-catenin signaling
pathway. This indicates that overexpression of Norrin reflects
abnormal development or repair processes.

Clinically, elevated Norrin expression may function as a
biomarker for both disease initiation and progression under
specific pathological conditions. For example, the elevated
expression of Norrin in inner ear tissue is associated with
auditory pathology, including sudden sensorineural hearing loss,
which may indicate vascular or cochlear dysfunction (135). Elevated
Norrin expression can, therefore, be used as a biomarker in disease
monitoring and prognosis judgment.

5.2 Potential therapeutic options

The relevant roles of Norrin in cancers have been detailed
above, including the relevant receptors, several pathways, and
currently known mechanisms. The development of relevant
therapeutic drugs using Norrin as a therapeutic target is,
therefore, worthwhile. However, to date, limited research has
focused on identifying the specific inhibitors of Norrin, and no
marketed Norrin-targeting agents have been reported for clinical
application. Next, we will introduce some potential drugs that have
been developed as Norrin inhibitors, and describe their research
progress and drug toxicity. Here we propose a new concept: ICs,
which is the half inhibitory rate used to evaluate the toxicity of
compounds to cancer cells or other types of cells. And we have
compiled all the drugs mentioned in this review and summarized
them in a table to make them clear and concise (Table 3).

First, we focus on Norrin-targeted antibody therapy. The
extracellular localization of Norrin and its complex cystine knot
structure pose significant challenges for drug design, delivery, and
antibody targeting, representing a core bottleneck in advancing
Norrin-based therapies. The intricate cystine knot structure has
been clearly defined (130), consisting of two main components: a
signal peptide at the protein’s N-terminus that guides its
localization, and a region containing the canonical motif of six
cystines that form the cystine knot. Nanobodies may serve as
promising candidates for the therapeutic intervention of diseases
associated with dysregulated Norrin signaling. Based on the
structure of Norrin, researchers have now screened and identified
two relevant Norrin-targeting nanobodies: Nb 1C4 and Nb 2B10,
using flow cytometry, the binding affinity of selected nanobodies to
the Norrin-FZD4 complex was evaluated, providing quantitative
insights into their specificity. Furthermore, the study employed
luciferase reporter assays to assess the functional impact of these
nanobodies on Wnt/B-catenin signaling, enabling a comprehensive
evaluation of their potential as therapeutic modulators (136).
LMBRIL, a limb development membrane protein 1, it also lacks
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TABLE 2 Norrin overexpression in the different tissue types.

Samples Percentage of
Tissue overexpressed/ total samples
aamples tested overexpressed(%)
Breast 18/1104 1.63
1
Central 38/697 545
nervous system
Cervix 5/307 1.63
Endometrium 37/602 6.15
Hematopoietic
. 21/221 9.5
and lymphoid
Kidney 38/600 6.33
Large intestine 37/610 6.07
Liver 20/373 5.36
Lung 4/1019 0.39
Esophagus 56/125 44.8
Ovary 13/266 4.89
Pancreas 6/179 3.35
Skin 12/473 2.54
Soft tissue 12/263 4.56
Stomach 27/285 9.47
Thyroid 14/513 2.73
Upper
aerodigestive 17/522 3.26
tract
Urinary tract 47/408 11.52

(Data from https://cancer.sanger.ac.uk/cosmic).

relevant drug toxicity studies, and currently preclinical studies have
yielded results from in vitro experiments (137). Experiments in vitro
have shown that the deletion of LMBRIL leads to the abnormal
activation of the Norrin/B-catenin signaling pathway through the
reduction in the ubiquitination of FZD4 and an increase in the
expression levels of the Norrin coreceptor LRP5 and p-GSK3[3-Ser9,
indicating that LMBRIL has a regulatory effect on Norrin (137).
Ethacrynic, a loop diuretic (138) (ICso = 105.9 + 32.5 uM) (139), it
suppresses Norrin expression through the module of NDP
transcription and translation (18). Ethacrynic has ototoxicity and
has been found to cause edema and cellular changes in vascular
lines when used in high doses (160).

In addition, some pathway inhibitors may act on Norrin, and
although there is no specific research regarding this, these
compounds may be developed into novel targets for inhibiting
Norrin based on their known mechanisms of action. Considering
the effect of the existing pathway antagonists available in the market,
Norrin is highly important for cancer patients. In this report,
inhibitors are classified into three categories: antagonists of the
Wnt pathway, the AKT pathway, and the Notch pathway (Figure 5).

When the Frizzled receptor (FZD) and LRP5/6 coreceptor form a
complex upon Wnt ligand binding, the function of the destruction
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TABLE 3 Potential therapeutic options.

Classification Name ICs0 Reference
Norrin-targeted Nb 1C4 and Nb
. / (136)
antibody 2B10
limb development
membrane protein LMBRIL / (137)
1
loop diuretic Ethacrynic 105.9 + 32.5 uM (18, 138, 139)
Dickkopf / (140, 141)
SERP / (142)
Wnt pathway WIE-1 / (143)
Nitazoxanide 11.07 uM (144, 145)
Wnt-C59 74 pM (146, 147)
Wortmannin 30 nM (148-150)
1Y294002 10 uM (149, 151)
AZD5363 200 nM (152, 153)
AKT pathway
AKT1:5 nM,
MK-2206 AKT2:12 nM (154)
AKT3:65 nM
KRX-0401 / (155)
DAPT 140 nM (156, 157)
Notch pathway
LY411575 72 nM (158, 159)

complex is inhibited, which results in cytoplasmic B-catenin
stabilization and subsequent nuclear translocation. Following
nuclear translocation, [3-catenin associates with the TCF/LEF family
transcription factors to assemble a transcriptional activation complex
that drives the expression of Wnt target genes. These target genes
primarily regulate different cellular processes, including proliferation,
differentiation, and survival, thereby contributing to tumorigenesis
and cancer progression (161). Currently, there are multiple drugs that
act on different aspects of the Wnt pathway to inhibit Wnt signal
transduction. The Dickkopf protein family, one kind of immunomo
dulatory ligands (140) (Wnt pathway), can bind to LRP5, preventing
its interaction with the Wnt-FZD complex and thereby antagonizing
the canonical Wnt signaling pathway (141). The SFRP family, a FZD-
related protein (Wnt pathway), can bind to the Wnt proteins through
its N-terminal cystine-rich domain, inhibiting Wnt signal
transduction (142). The secreted protein WIF-1 (Wnt pathway)
binds to the Wnt proteins through its WIF domain, inhibiting Wnt
signaling (143). Nitazoxanide, a clinically approved secreted
mediators of Wnt/B-catenin signaling pathway (Wnt pathway)
(ICsp) = 11.07 uM) (144), induces B-catenin degradation, leading to
the suppression of Wnt/B-catenin signaling (145). However, this
effect is context-dependent. Wnt-C59, a Wnt signaling inhibitors
(Wnt pathway) (ICso = 74 pM) (146), reduces the interaction
between [3-catenin and NF-xB, acts as a Wnt signal inhibitor (147).
Whether these Wnt pathway antagonists can also act on Norrin
requires further research.
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In addition to Wnt pathway modulation, several pharmacological
agents have been identified as inhibitors of AKT pathway signaling.
Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase
(148) (AKT pathway) (ICso = 30 nM) (149), can inhibit the activity of
PI3K, thereby blocking the activation of the AKT pathway (150).
LY294002, a PI3K inhibitor (AKT pathway) (ICs, = 10 uM) (149),
also acts through PI3K. This compound binds the PI3K ATP-binding
pocket, thereby suppressing AKT pathway activation (151).
AZD5363, a novel, selective ATP-competitive pan-AKT kinase
inhibitor (AKT pathway) ((IC5, = 200 nM) (152), has also been
developed as an oral drug and can inhibit the three isoforms of AKT
(153). MK-2206, an allosteric AKT inhibitor that inhibits AKTI,
AKT2, and AKT3 (AKT pathway) (AKT1 [ICso = 5 nM], AKT2
[IC50 = 12 nM] and AKT3 [ICs, = 65 nM]) (154), also has a similar
effect (154). KRX-0401, an alkylphospholipid, is known as the first
allosteri AKT inhibitor to enter clinical development and is
mechanistically characterized as a PH-domain dependent inhibitor
(AKT pathway) (155).

DAPT (ICs, = 140 nM) (156) and LY411575 (ICs, = 72nM)
(158) are y-secretase inhibitors (Notch pathway) (157, 159). The
effects of these known pathway inhibitors on unknown targets may
present both opportunities and risks, and by combining
computational prediction and experimental validation, their
effects on Norrin can be studied, while their clinical potential can
be systematically explored to accelerate drug discovery and expand
therapeutic indications. However, safety and specificity studies need
to be conducted.

All potential drugs targeting Norrin mentioned earlier are
currently at the research stage, and clinical trials have not yet
commenced. In addition to the above compounds, despite
preclinical evidence that Norrin-targeting antibodies remain
unexplored in clinical cancer studies, monoclonal antibodies
against Norrin are currently being used in basic research (17).
Future investigations should explore Norrin’s therapeutic potential
in clinical disease management.

6 Conclusions and perspectives

In this study, Norrin’s clinical applicability as a cancer
biomarker as well as a therapeutic target is discussed, reviewing
its mechanistic contributions to tumor biology, which involves
cancer cell proliferation, death, migration and invasion,
replicative immortality, metabolism, the microenvironment,
angiogenesis, the inflammatory response, immune escape, and
neural connections. Norrin is significantly overexpressed across
multiple cancer types, with substantial clinical and experimental
evidence linking elevated Norrin levels to tumor initiation and
progression. However, to date, the effects of Norrin on several
hallmarks of cancer, such as its context-specific regulation within
the tumor microenvironment as discussed above, have not been
fully elucidated. Further research in these areas is warranted, as it
may uncover novel targets for cancer intervention. Although the
biological roles of Norrin in the tumor microenvironment are
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(A) Exerts its effect through the Wnt pathway; (B) Exerts its effect through the AKT pathway; (C) Exerts its effect through the Notch pathway.

increasingly understood, the regulatory mechanisms governing its
expression in tumors. Particularly how epigenetic regulation and
post-translational modifications influence its secretion, folding,
and receptor interactions. Remaining a “black box” requires
urgent exploration. Elucidating these mechanisms is of critical
importance. First, deciphering how epigenetic mechanisms such
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as DNA methylation and histone modifications control NDP gene
expression in tumor or stromal cells will help clarify the cell-type
specificity of Norrin expression and may reveal novel therapeutic
targets. Second, in-depth investigation into the post-translational
modifications of Norrin is essential. For instance, while the correct
formation of its seven disulfide bonds is known to be indispensable
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for its activity (125), the detailed folding process and potential variations
in glycosylation patterns remain largely unknown. Furthermore, could
dysregulation of these processes be linked to tumor heterogeneity and
therapy resistance? Addressing these knowledge gaps will not only
enhance our understanding of the dual roles of Norrin in cancer but also
establish a solid theoretical foundation for developing precision
strategies targeting this pathway, such as stabilizing or disrupting its
functional conformation. Further research in these areas is warranted, as
it may uncover novel targets for cancer intervention.

The considerable therapeutic value of Norrin as a molecular
target, therefore, warrants further investigation for precision cancer
medicine applications, especially research on nanobodies. No specific
Norrin inhibitor has been discovered to date. It is necessary to find
compounds that can specifically inhibit Norrin. These putative
Norrin inhibitors are crucial for revealing the exact mechanisms
and functions of Norrin, and such studies will simultaneously deepen
the understanding of oncogenic mechanisms while accelerating the
translation of Norrin-directed therapeutics into clinical applications.
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