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CricRNA in head and neck
squamous cell carcinoma:
biological functions and
clinical prospects
Anqi Li*, Zhen Dong and Chunming Zhang*

Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of Shanxi Medical
University, Taiyuan, Shanxi, China
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant

tumor globally, shows an unfavorable prognosis and has a five - year survival rate

lower than 50%. Circular RNA (circRNA) is defined as a type of non-coding RNA

molecule that forms a covalently closed circular structure through back-splicing,

characterized by tissue specificity, high stability, and stability in body fluid

detection. Recent research has frequently revealed marked alterations in

circRNA regulation in HNSCC and participates in tumor malignant behaviors

such as cell proliferation and apoptosis, invasion and metastasis, epithelial-

mesenchymal transition (EMT), chemoresistance, and immune evasion through

mechanisms like “miRNA sponges,” protein scaffolding, translation templates,

and epigenetic regulation. This review aims to provide a systematic and up-to-

date consolidation of the latest advances in circRNA research for HNSCC, from

its biogenesis and multifaceted functions to clinical translation. Our goal is to

uncover novel biomarkers and therapeutic targets for the precise diagnosis and

management of HNSCC. This review not only aids in elucidating the complex

regulatory networks orchestrated by circRNAs in HNSCC but also highlights their

immense potential as novel diagnostic and therapeutic agents, thereby paving

the way for future research and clinical application.
KEYWORDS

circular RNA, head and neck squamous cell carcinoma, biomarker, tumor progression,
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1 Overview of circRNA

1.1 Biogenesis and classification

Sanger et al. first detected circular RNA (circRNA) within viroids in 1976. RNA was

then classified as non-translational RNA (1). These molecules are characterized by

widespread distribution, strong structure, and remarkable conservatism (2). In the human

body, Circular RNAs are detected in almost all tissues. However, different circRNAs have

expression profiles that are specific to distinct tissues or different developmental stages (3).
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Circular RNAs (circRNAs) originate from precursor mRNA (pre-

mRNA) or lncRNA through a process known as back-splicing.

According to the differences in their splicing mechanisms, The

primary classification of circular RNAs (circRNAs) comprises

three categories. The first category is exon circular RNA, which is

commonly abbreviated as ecircRNA; the second type is exon-intron

circular RNA, with its typical abbreviation being EIciRNA; and the

third category is intron circular RNA, usually referred to as ciRNA

for short. Each of these three categories exhibits distinct structural

characteristics that are closely associated with their respective

splicing processes, thereby forming the main classification system

of circRNAs based on splicing mechanism differences (4). Figure 1

summarizes the biogenesis pathways and major functional

mechanisms of circRNAs.
1.2 Biological functions

1.2.1 miRNA sponge
Research has demonstrated that a single circRNA can function

as a sponge for miRNAs. Under certain circumstances, it can act not

only as a tumor suppressor but also as an oncogene. As a case in

point, circHIPK3 exhibits the capability to function as a molecular

sponge. Its target is miR-558, a type of microRNA. Through this
Frontiers in Oncology 02
sponging effect, circHIPK3 exerts an inhibitory impact

(5).Specifically, it suppresses the expression level of heparanase.

This regulatory pathway takes place in the context of bladder

cancer. Consequently, this elevation of STAT3 expression further

facilitates the initiation and development of lung cancer (6).

1.2.2 Protein scaffold
circRNA can also function as a protein scaffold, promoting

chemical reactions or inhibiting protein functions. For instance, in

mouse fibroblasts, circ-Foxo3 is able to interact with p21 (a cyclin-

dependent kinase [CDK] inhibitor) and cyclin-dependent kinase 2

(Cdk2), forming a three-component complex that suppresses cell

cycle progression (7). Furthermore, circ-Foxo3 can serve as a

scaffold for the mouse proteins Mdm2 and p53, in turn

facilitating the degradation of p53 (8).

1.2.3 Translation template
Research has demonstrated that numerous circRNAs contain

internal ribosome entry sites (IRES) or open reading frames (ORFs).

Through these elements, these circRNAs are involved in the

transcription and translation processes of functional proteins.

Zhang et al. has been reported that circ-SHPRH encodes the

protein SHPRH-146aa, which acts as a decoy, protecting the

SHPRH protein from ubiquitin-mediated degradation by retinoic
FIGURE 1

Biogenesis, classification, and functional mechanisms of circRNAs.
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acid-regulated nuclear matrix-associated protein (DTL), thereby

inhibiting glioma development (9).

1.2.4 Epigenetic regulation
Zhu et al. found a close association between CircSEPT9 and

miR-10a in LSCC samples. In LSCC cells, the overexpression of

circSEPT9 enhances the methylation level of the miR-10a gene. This

increase in miR-10a gene methylation, in turn, leads resulting in a

reduction in the expression of miR-10a.Both overexpression of

circSEPT9 and miR-10a increased cell proliferation in LSCC. Co-

transfection experiments suggested that the overexpression of

circSEPT9 diminished the effect of miR-10a overexpression. The

study concluded that circSEPT9 may increase miR-10a methylation,

thereby promoting cell proliferation in LSCC (10).
1.3 Stability and distribution advantages

The covalently closed loop confers resistance to exonucleases,

and several studies have reported prolonged half-lives for select

circRNAs compared with their linear host transcripts in cell-culture

and plasma settings; systematic comparative data across all circRNA

species are still lacking. CircRNA expression is highly conservative

and spatially and temporally specific, with its type and abundance

varying significantly across different tissues, cells, and developmental

stages (11),CircRNA exhibits distinct expression patterns that are

tissue-specific Besides, it also exhibits distinct expression patterns

related to developmental stages. Moreover, it (circRNA) can be

detected stably in a range of body fluids. Examples of such fluids

are plasma, serum, saliva, cerebrospinal fluid, and gastric juice. It

mainly occurs in the form of circular RNA encapsulated in exosomes

(exo-circRNA) or cell-free circular RNA (cf-circRNA), which creates

the conditions for non-invasive diagnosis (12).
2 Expression profiles of circRNA in
HNSCC

2.1 High-throughput sequencing results

Wang et al. (2018) conducted high-throughput microarray

analysis to detect circRNA and mRNA expression in HNSCC

tissues. In this study, microarray probes detected a total of 12,366

circRNAs and 35,252 mRNAs in 5 pairs of HNSCC and normal

tissues. Using a discovery microarray (5 tumor-normal pairs, FDR <

0.05), they detected 287 circRNAs and 1,053 mRNAs as differentially

expressed candidates; independent, larger cohorts are required to

confirm these findings. Of these mRNAs, 377 showed upregulated

expression and 676 displayed downregulated expression (13).

As an example, Wu et al. identified 139,643 human and 214,747

mouse circRNAs in single-cell RNA sequencing (scRNA-seq)

libraries. They then integrated 11 RNA-based bulk RNA-seq

resources to validate these detected circRNAs. Through this

validation, the single-cell cohorts allowed for the unique detection

of 216,602 high-confidence circRNAs. The research identified cell
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type-specific expression profiles of circRNAs across three distinct

biological contexts (developing embryos, brain specimens, and breast

tumor specimens) while also identifying circRNAs with unique

expression profiles in different cell types, and it further validated

the functional relevance of these uniquely expressed circRNAs—

specifically their utility in the deconvolution of immune cells

infiltrating tumors. By pushing the analysis of circRNA expression

at the single-cell resolution, this study provides a valuable resource

that supports the further investigation of circRNAs (14).
2.2 Database resources

MNDR v3.0 (Mammal ncRNA-Disease Repository version 3.0) is a

database specifically dedicated to collecting and organizing the

relationships between mammalian non-coding RNAs (ncRNAs) and

diseases. This database combines both experimentally confirmed and

predicted associations between circular RNAs (circRNAs) and diseases,

expanding the range of mammalian species covered in the study to 11.

This resource encompasses 6,301 non-redundant microRNAs

(miRNAs), 39,880 long non-coding RNAs (lncRNAs), 20,506 circular

RNAs (circRNAs), 10,894 Piwi-interacting RNAs (piRNAs), and 521

small nucleolar RNAs (snoRNAs), while the number of covered disease

types has been elevated to 1,614. In addition, this resource offers

comments on relevant drugs and incorporates four categories of non-

coding RNA (ncRNA)-drug relationships, namely drug targets, drug

sensitivity, drug resistance, and drug interactions (15).

MNDR v3.0 further offers three ncRNA-disease prediction tools

via its official website, with one of them being the structural

perturbation method (SPM)—a tool specifically designed for

miRNA-disease prediction, sparse inductive matrix completion

with latent Dirichlet allocations (SIMCLDA) for predicting

lncRNA diseases, and deep forest with positive unlabeled learning

(DeepDCR) for calculating the relationships between circRNAs and

diseases (16). Utilizing the RNADisease website (http://

www.rnadisease.org/prediction), we conducted a disease

association analysis for specific circRNAs. The results indicated

that hsa_circ_0000237 exhibited a score of 7.5200E-5 for oral

squamous cell carcinoma and 1.6800E-5 for laryngeal squamous

cell carcinoma. Additionally, hsa_circ_0000190 obtained a score of

8.7200E-5 for oral squamous cell carcinoma. It is crucial to note that

these data are derived from computational model predictions and

may be supported by limited experimental evidence. Therefore,

further experimental validation is imperative to substantiate these

associations and elucidate the underlying mechanisms.
3 Molecular mechanisms of circRNA-
driven malignant phenotypes in
HNSCC

3.1 Cell proliferation and cycle

Verduci L (2017) collected samples from 115 patients with

HNSCC and observed that circPVT1 exhibited significantly higher
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expression in tumor tissues than in their matched tumor-free

counterparts, with this overexpression being particularly

prominent in patients carrying TP53 mutations. The upregulation

or downregulation of circPVT1 in HNSCC cell lines was found to be

associated with a corresponding elevation or reduction in the

malignant phenotype of these cells. As documented in the study,

the mut-p53/YAP/TEAD complex was responsible for mediating an

increase in circPVT1 expression (17). Observational and functional

data suggest that circPVT1 may exert oncogenic activity in part

through relief of miR-497-5p-mediated growth inhibition;

prospective and loss-of-function studies in vivo are warranted to

establish causality.

In their 2020 study, Wang et al. first observed high expression

abundance of circRNA_103862 in LSCC tissues, which was

associated with LSCC patients’ prognosis and metastatic status;

subsequent functional experiments showed that silencing

circRNA_103862 impairs LSCC cell proliferation, migration, and

invasion potential, and rescue experiments validated that

circRNA_103862 exerts oncogenic effects through regulating miR-

493-5p—additionally, luciferase reporter assays confirmed Golgi

membrane protein 1 (GOLM1) acting as a downstream target of

miR-493-5p . Col lec t ive ly , these findings revea l tha t

circRNA_103862 drives LSCC progression and metastasis via

acting on the miR-493-5p/GOLM1 axis, highlighting its potential

to serve as a diagnostic biomarker and therapeutic target for LSCC

(18). As outlined in Figure 2, circRNAs contribute to HNSCC

progression through multiple interconnected mechanisms,

including modulation of oncogenic signaling pathways, immune

evasion, and therapeutic resistance.
Frontiers in Oncology 04
3.2 Apoptosis and autophagy

Gao et al. reported that in 100 LSCC patient samples, elevated

circPARD3 levels correlated with advanced T stage (p < 0.05), N

stage (p = 0.001), and clinical stage (p < 0.001) as well as with poor

tumor differentiation (p = 0.025) and poor patient prognosis (p =

0.002); in terms of function, circPARD3 suppresses autophagy and

enhances the prol i ferat ion, migrat ion, invasion, and

chemoresistance of LSCC cells, and additional investigations

suggested that the core mechanism underlying these roles of

circPARD3—inhibiting autophagy, promoting LSCC progression,

and triggering chemoresistance—involves the sponging of miR-

145-5p, thereby triggering the activation of the PRKCI-Akt-mTOR

signaling pathway (19).
3.3 Invasion-metastasis and EMT

Chen et al. (2022) reported that circSHKBP1 exhibited elevated

expression in both LSCC clinical specimens and LSCC cell lines.

Overexpression of circSHkbp1 was strongly associated with poor

prognosis. The overexpression of circshkbp1 was positively

correlated with Cellular processes including proliferation,

invasion, angiogenesis, the development of a stem-like phenotype,

and the progression of tumor growth. MIR-766-5p was

downregulated in LSCC samples and negatively correlated with

circshkbp1. HMGA2 was upregulated in LSCC samples and

positively correlated with circshkbp1Levels of circSHKBP1, miR-

766-5p, and HMGA2 were associated with clinical characteristics of
FIGURE 2

Mechanisms by which circRNAs regulate cell proliferation and cell cycle in HNSCC.
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tumor patients, including lymph node metastasis status and TNM

staging. Mechanistic investigations demonstrated that circSHKBP1

exerts a binding interaction with miR-766-5p, which in turn leads to

the inhibition of HMGA2—the target gene of miR-766-5p;

additionally, in LSCC models, the suppressive impact on cancer

cells induced by circSHKBP1 knockdown was rescued by two

interventions: the inhibit ion of miR-766-5p and the

overexpression of HMGA2 (20). In summary, circSHKBP1

promotes the occurrence of LSCC by targeting miR-766-5p.

Gong et al. (2022) observed that circBFAR expression was

elevated in both LSCC tissues and cell lines, and this upregulated

expression was associated with the progression of clinical stages and

overall survival outcomes in LSCC patients. Silencing circBFAR (via

knockdown) exerted inhibitory effects on LSCC cell viability and

proliferation, while also blocking the migratory and invasive

capabilities of these cells. Additionally, Silencing of circBFAR

suppressed tube formation in LSCC cells and decreased the

protein expression levels of Ki-67, matrix metalloproteinase 2

(MMP2), and vascular endothelial growth factor A (VEGFA).

Subsequent experiments identified miR-31-5p as a target molecule

of circBFAR; notably, downregulating miR-31-5p reversed the

inhibitory impacts induced by circBFAR deficiency—including

the suppression of LSCC cell viability, proliferation, migration,

invasion, and tube formation, as well as the reduced protein

expression of Ki-67, and VEGFA. Further investigations revealed

that collagen type V alpha 1 chain (COL5A1) is negatively regulated

by miR-31-5p and exhibits upregulated expression in LSCC tissues

and cells. Moreover, overexpressing COL5A1 was found to

counteract the inhibitory effect of miR-31-5p on LSCC cells

(21).The study concluded that circBFAR deficiency suppressed in

vivo tumor growth.
3.4 Cancer stem cell stemness

Rong L et al. (2022) first demonstrated that upregulated

circZDBF2 facilitates the malignant behaviors of OSCC cells,

including cell proliferation, invasion, migration, and EMT.

Furthermore, the study suggested that in OSCC cells, circZDBF2

acts as a competing endogenous RNA (ceRNA); it exerts this role by

sponging miR-362-5p and miR-500b-5p, a process that ultimately

leads to the upregulation of RNF145 expression levels. Moreover,

circZDBF2 recruits the transcription factor CEBPB to upregulate

RNF145 expression. The study also confirmed that RNF145

activates the NFkB signaling pathway and regulates IL-8

transcription in oral squamous cell carcinoma (OSCC) (22).
3.5 Immune evasion

In 2024, Ge and his colleagues identified a significant inverse

correlation between circE7—a circular RNA encoded by human

papillomavirus (HPV)—and the infiltration of CD8+ T cells in head

and neck squamous cell carcinoma (HNSCC) tumors. Through in

vitro and in vivo experimentation, the study demonstrated that
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circE7 transcriptionally represses LGALS9—the gene encoding

galectin-9—thereby impairing T cell functionality and viability.

Mechanistically, This process entails circE7 binding to acetyl-CoA

carboxylase 1 (ACC1), an interaction that induces the

dephosphorylation and activation of ACC1. Once activated,

ACC1 in turn diminishes H3K27 acetylation at the LGALS9

promoter region, ultimately resulting in reduced galectin-9

expression. Notably, galectin-9 interacts with the immune

checkpoint receptors TIM-3 and PD-1, in turn inhibiting the

secretion of cytotoxic cytokines by T cells and facilitating T cell

apoptosis. By delineating how HPV utilizes circE7 to induce

epigenetic reprogramming that facilitates immune evasion in

HNSCC, this work proposes a novel therapeutic strategy:

combining anti-PD-1 and anti-TIM-3 inhibitors to counteract

this immunosuppressive axis. This approach targets both the

galectin-9-mediated immune checkpoint blockade and the

underlying epigenetic dysregulation driven by HPV, offering a

potential avenue to enhance immunotherapy efficacy in HNSCC

(23). While the study by Ge et al. (2024) elucidates a novel immune

evasion mechanism, its findings are based on specific HPV-positive

models. Whether this mechanism is ubiquitous in HPV-negative

HNSCC, and how it interacts with other immune checkpoints,

remains an open question and a crucial area for future investigation.
3.6 Metabolic rewiring

In their 2022 research, Long and colleagues examined the

expression profiles of circ_0008068, Katanin p60 ATPase subunit

A-like 1 (KATNAL1) mRNA, miR-153-3p, and Acylglycerol kinase

(AGK) via quantitative real-time polymerase chain reaction (qRT-

PCR) andWestern blotting. They also conducted systematic in vitro

and in vivo assays to thoroughly investigate how circ_0008068

influences the biological behaviors of OSCC. For the assessment of

interactions between miR-153-3p and circ_0008068, as well as

between miR-153-3p and AGK, dual-luciferase reporter gene

experiments and RNA immunoprecipitation (RIP) assays were

applied. The study found that in OSCC tissues or cells,

circ_0008068 and AGK exhibited increased expression, whereas

miR-153-3p showed decreased expression. Moreover, the

knockdown of circ_0008068 led to inhibited proliferation,

migration, invasion, and tube formation of OSCC cells, and

promoted the apoptotic process of OSCC cells (24). It was

verified in the study that the binding of circ_0008068 to miR-

153-3p mediates the regulation of AGK expression—with AGK

being the target of miR-153-3p—and this regulatory cascade

ultimately drives an increase in glycolytic activity.
3.7 Chemoresistance

Beyond the well-established roles in proliferation and

metastasis, circRNAs are increasingly recognized as pivotal

regulators of chemoresistance in HNSCC, presenting a significant

barrier to successful treatment. They orchestrate resistance through
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a multifaceted network of mechanisms, primarily functioning as

miRNA sponges to de-repress pro-survival and anti-apoptotic

target genes. For instance, specific circRNAs (circRNA_100284)

have been shown to sequester miRNAs like miR-10a, subsequently

activating pathways involved in autophagy and DNA damage repair

that confer resistance to agents such as cisplatin (25). Additionally,

their interaction with RBPs and potential to encode functional

peptides further expand their arsenal in promoting drug efflux and

enhancing cell survival under therapeutic stress. The horizontal

transfer of exosomal circRNAs between tumor cells also

disseminates resistant phenotypes, highlighting a novel

mechanism of community-wide adaptation. Targeting these

therapy-induced circRNAs could therefore be a promising

strategy to re-sensitize tumors and improve clinical outcomes.

In summary, the multifaceted roles of circRNAs in driving

HNSCC malignancy are complex and extensive. To provide a

clearer overview, we have consolidated the key circRNAs, their

mechanisms of action, functional consequences, and clinical

relevance in Table 1.
4 circRNA as diagnostic and
prognostic biomarkers for HNSCC

4.1 Differential expression profiles at the
tissue level

Wang et al. (2018) conducted high-throughput microarray

analysis to detect circRNA and mRNA expression in HNSCC

tissues. A total of 12,366 circular RNAs (circRNAs) and 35,252

messenger RNAs (mRNAs) were detected in five pairs of HNSCC

and normal tissues. Among these identified molecules, 287 were

classified as differentially expressed circular RNAs (circRNAs);

specifically, 146 of these circRNAs showed upregulated

expression, while the remaining 141 exhibited downregulated

expression (13).

Wu et al. conducted gene ontology (GO) enrichment analysis

specifically for each individual cell cluster in their study. They found

that processes involving the proliferation of epithelial cells were

more prevalent in clusters with lower epithelial-mesenchymal

transition (EMT) scores. On the other hand, cell migration and

mesenchymal-related biological events were more prominent in

those cell clusters characterized by higher EMT levels (14). This

confirmed at the single-cell level that circRNA expression is

significantly heterogeneous among tumor-infiltrating immune cells.
4.2 Diagnostic efficacy

Guo et al. stated that when using hsa_circ_0036722 to

distinguish LSCC from adjacent normal tissues, the area under

the ROC curve (AUC) was 0.838 (95% CI: 0.750–0.925). With an

optimal threshold of 0.5, sensitivity was found to be 82.9%, while

specificity was found to be 75.0% (26). These pilot data suggest that

hsa_circ_0036722 warrants further evaluation as a candidate
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diagnostic biomarker for LSCC in larger, multicenter cohorts. Luo

et al. (2020) evaluated the diagnostic ability of salivary exosomal

circ_0000199 for OSCC using ROC curve analysis. The results

showed an area under the curve (AUC) of 0.825 (95% confidence

interval (CI): 0.752–0.898), with a sensitivity of 80.0% and a

specificity of 78.6% (27). This suggests that salivary exosomal

circ_0000199 could be a potential diagnostic biomarker for OSCC.
4.3 Prognostic value

Nath et al. included 9 high-quality studies in a meta-analysis.

The results showed that a meta-analysis of nine studies (1,368

patients) indicated an association between elevated expression of

seven circRNAs and shorter overall survival (pooled HR = 3.40, 95%

CI 2.66–4.36); however, heterogeneity and publication bias require

further assessment. The reduced expression of two circular RNAs,

namely circ0092125 and circ00072387, was correlated with an

unfavorable prognosis in patients diagnosed with HNSCC, with a

hazard ratio (HR) of 2.83 and a 95% confidence interval (CI)

ranging from 1.73 to 4.65 (29).
4.4 Association with clinicopathological
parameters

Gao et al. reported that high circPARD3 levels were positively

associated with two key clinicopathological features: the T stage of

the disease and cervical lymph node metastasis (referred to as N

stage). The expression level of circPARD3 gradually increased from

T1 to T4 stages. Furthermore, circPARD3 levels were higher in

poorly differentiated LSCC tissues than in well-differentiated

tissues. The data validated that increased circPARD3 expression

showed a positive correlation with three key clinical indicators:

tumor T stage, lymph node metastasis status, and shorter OS, where

the HR was 3.93 (19).
4.5 Non-invasive detection in body fluids

With features like widespread occurrence, evolutionary

conservation, and stable expression levels in saliva, blood, and

exosomes, circRNAs hold significant promise as biomarkers for

the early identification and prognostic evaluation of tumors (25).

One illustrative example is circMAN1A2: it exhibits high expression

in NPC cell lines, and its serum levels are markedly higher in NPC

patients compared to healthy individuals—hinting at its potential

role in the early detection of nasopharyngeal carcinoma (30).

Likewise, the expression of exosomal circMYC enables the

differentiation of radiation sensitivity in nasopharyngeal

carcinoma (NPC) patients (31), whereas the upregulation of

circSERPINA3 is linked to NPC progression—including lymph

node metastases and worse survival outcomes (32).

Kan et al. employed microarray analysis to investigate the

comprehensive circular RNA (circRNA) expression profile in LSCC
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TABLE 1 Key circular RNAs in HNSCC: mechanisms, functions, and clinical implications.

circRNA
Name

Regulation
Expression
in HNSCC

Molecular
mechanism

Functional role
in HNSCC

Clinical significance
Key

references

circPVT1 ↑ ↑ in tumor
tissues (esp.

with TP53 mut)

Sponges miR-497-5p
Interacts with mut-p53/YAP/
TEAD complex

Promotes cell
proliferation

Prognostic: Poor OS.
Therapeutic: siRNA/shRNA
silencing inhibits tumor

progression.

Verduci L,
et al., 2017

(17)

circRNA_103862 ↑ ↑ in LSCC
tissues

Sponges miR-493-5p to
upregulate GOLM1

Drives proliferation,
migration, invasion

Diagnostic/Prognostic:
Associated with metastasis and

poor prognosis in LSCC.

Wang X, et al.,
2020 (18)

circPARD3 ↑ ↑ in LSCC
tissues

Sponges miR-145-5p to
activate PRKCI-Akt-mTOR

pathway

Suppresses
autophagy, promotes

proliferation,
migration, invasion,
chemoresistance

Prognostic: Correlates with
advanced T/N stage, poor

differentiation, and poor OS.
Therapeutic: Potential target to
overcome chemoresistance.

Gao W, et al.,
2020 (19)

circSHKBP1 ↑ ↑ in LSCC
tissues and cell

lines

Sponges miR-766-5p to
upregulate HMGA2

Promotes
proliferation,
invasion,

angiogenesis,
stemness

Prognostic: Associated with
lymph node metastasis, TNM
stage, and poor prognosis.

Chen F, et al.,
2022 (20)

circBFAR ↑ ↑ in LSCC
tissues and cell

lines

Sponges miR-31-5p to
upregulate COL5A1

Promotes cell
viability,

proliferation,
migration, invasion,
tube formation

Prognostic: Associated with
advanced clinical stage and poor

OS.

Gong H, et al.,
2022 (21)

circZDBF2 ↑ ↑ in OSCC cells • Sponges miR-362-5p/miR-
500b-5p

• Recruits CEBPB to
upregulate RNF145

Promotes
proliferation,

invasion, migration,
EMT; Activates NF-

kB pathway

Functional: Key regulator of
cancer stem cell stemness and

tumor progression.

Rong L, et al.,
2022 (22)

circE7 (HPV-
encoded)

↑ ↑ in HPV+
HNSCC

Binds to ACC1, inducing
dephosphorylation →

reduces H3K27ac at LGALS9
promoter → suppresses

Galectin-9

Facilitates immune
evasion by impairing
CD8+ T cell function

and viability

Therapeutic: Novel target for
immunotherapy. Suggests combo
therapy with anti-PD-1 & anti-

TIM-3 inhibitors.

Ge J, et al.,
2024 (23)

circ_0008068 ↑ ↑ in OSCC
tissues/cells

Sponges miR-153-3p to
upregulate AGK

Promotes
proliferation,

migration, invasion,
tube formation,
glycolytic activity

Functional: Drives metabolic
rewiring (glycolysis) in OSCC.

Long Y, et al.,
2022 (24)

hsa_circ_0036722 ↑ ↑ in LSCC
tissues

– – High diagnostic efficacy (AUC =
0.838) for distinguishing LSCC

from normal tissues.

Guo Y, et al.,
2020 (26)

circ_0000199 ↓ ↓ in OSCC
plasma

exosomes

Sponges miR-135a-5p
(inferred from function)

Inhibits proliferation,
promotes apoptosis

(in vitro)

Diagnostic: Salivary exosomal
biomarker for OSCC (AUC =

0.825).
Prognostic: Low levels correlate

with poor survival.

Luo Y, et al.,
(27)

hsa_circ_100855 ↑ ↑ in LSCC
tissues

– – Prognostic: Associated with
lymph node metastasis and
advanced clinical stage.

Kan X, et al.,
2016 (28)

hsa_circ_104491 ↓ ↓ in LSCC
tissues

– – Prognostic: Low expression
linked to advanced T stage,

lymph node metastasis, advanced
clinical stage, and poor

differentiation.

Kan X, et al.,
2016 (28)
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↑, Upregulated; ↓, Downregulated; OS, Overall Survival; LSCC, Laryngeal Squamous Cell Carcinoma; OSCC, Oral Squamous Cell Carcinoma; -, Not specified in text.
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tissues, with adjacent non-tumor tissues serving as the control group

for comparison. They found that 698 circRNAs were present at

different levels in LSCC tissues (28). Subsequent qRT-PCR analysis

showed that has-circRNA-1008555 was the most upregulated, while

has-circRNA-1044912 was downregulated in LSCC. The levels of

has-circRNA-1008555 were significantly higher in laryngeal

squamous cell carcinoma (LSCC) patients with metastasis to the

cervical lymph nodes or at an advanced clinical stage. On the other

hand, has-circRNA-1044912 exhibited notably reduced expression in

LSCC patients with T3–4 stage tumors, cervical lymph node

metastasis, advanced clinical stages, or tumors with poor

differentiation (28). These findings point to an association between

circRNAs and LSCC staging as well as prognosis. In conclusion, the

discovery of circRNAs holds significant promise for disease diagnosis

and outcome prediction in HNSCC.
5 Therapeutic translation of circRNA

5.1 Targeted therapy

Preliminary in-vitro and mouse studies suggest that selected

circRNAs might be exploitable as therapeutic targets; efficacy,

delivery specificity and safety profiles remain to be established in

clinically relevant models. For instance, circ-Ccnb1 has been

identified to inhibit cell invasion and tumorigenesis through the

dissociation of the Ccnb1/Cdk1 complex. Furthermore, circ-

ZNF532 plays a key role in regulating processes such as pericyte

degradation and vascular dysfunction associated with diabetes (33).
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5.2 Gene silencing and RNA interference

Silencing specific circRNA using siRNA or shRNA technology

can inhibit tumor progression. For instance, silencing circPVT1 has

been demonstrated to markedly suppress tumour progression (34).

Moreover, CRISPR/Cas9 has been used to target and eliminate

circHIPK3 specifically in vitro without affecting its linear mRNA,

thus inhibiting cell proliferation (33).
5.3 Nanoliposome delivery system

Nanoliposomes can serve as a delivery system for circRNA

therapy, enhancing the stability and targeting of drugs. Du et al.

devised a treatment for breast cancer involving the delivery of gold

nanorods conjugated with siRNA that target circDnmt1. These

nanorods are able to interact with the Auf1 and p53 proteins (35).
5.4 Exosome-mediated therapy

Exosomes are currently being investigated for use as both

targeting agents and carriers of circRNA expression (36).

Exosomes naturally contain a diverse array of molecules, such as

circRNA, miRNA, long non-coding RNA, proteins, lipids, and

DNA fragments. It has been shown that exosomal circRNA

facilitates cancer development by promoting cell proliferation,

tumour metastasis and drug resistance (37). Exosomes can

transport circRNA for non-invasive diagnosis and therapeutic
FIGURE 3

Clinical translation potential of circRNAs in HNSCC.
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applications. For instance, in patients with OSCC, circulating

exosomal circ_0000199 levels are significantly elevated and

correlate with TNM staging. The overexpression of circ_0000199

has been shown to encourage cell growth and hinder cell death,

while the inhibition of circ_0000199 has the reverse effect. These

findings suggest that circulating exosomal circ_0000199 possesses

utility as a diagnostic marker and constitutes a feasible therapeutic

target for oral squamous cell carcinoma (OSCC) (27).
5.5 Translation regulation and protein
expression

The translational regulatory functions of circRNA have also

been investigated for therapeutic applications. Specific circular

RNAs (circRNAs)—including circZNF609, circMb1, circ-FBXW7,

circPINTexon2, and circ-SHPRH—are capable of exerting

regulatory functions by triggering translation in the untranslated

region (UTR). This translational initiation is facilitated either

through an internal ribosome entry site (IRES) or N6-

methyladenosine (m6A) modification (4). Figure 3 illustrates the

potential clinical translation of circRNAs in HNSCC.
6 Challenges and prospects

Current research on circRNA primarily focuses on its role as a

miRNA sponge, while its effects on key biological processes in HNSCC

—including transcription, splicing, protein-protein interactions, and

the ability to encode proteins or peptides—have not been sufficiently

investigated. For instance, circE7 inhibits the phosphorylation and

activation of ACC1, thereby reducing intracellular acetyl-CoA levels

and epigenetically suppressing the expression of the LGALS9 gene,

leading to tumor immune evasion. Given the complexity of these

actions, further investigation is necessary to confirm these

mechanisms (23). The upstream regulatory mechanisms underlying

circRNA expression dysregulation, such as alternative splicing and

post-transcriptional modifications, still require exploration. For

instance, circPVT1 promotes HNSCC by interacting with other

tumors and binding differently to the p53/YAP/TEAD transcribing

complex. However, the underlying regulatory processes are still

unclear (17). Moreover, most studies on circRNA biomarkers are

based on small sample sizes. While these preliminary findings are

promising, their value in early diagnosis and prognostic evaluation

needs to be confirmed through validation with larger, multicenter

clinical samples. CircRNA may hold potential for non-invasive

diagnosis in HNSCC, but this hypothesis requires rigorous testing.

circRNA may also emerge as a new target for immunotherapy.

CircF7 facilitates immune system evasion in HNSCC by inhibiting the

immune system checkpoint protein Galectin9. This suggests that the

combination of TIM-3 and PD-1 antibody immunotherapy could

potentially enhance the effectiveness of HNSCC treatment. However,

these findings are still in the early stages and need to be validated

through further experimental and clinical studies (23). Future studies

should combine multi-omics data, such as transcriptomics, proteomics
Frontiers in Oncology 09
and metabolomics, to thoroughly elucidate the role that circRNAs play

in HNSCC. Developing efficient circRNA delivery vehicles, such as

nanoliposomes and exosomes, will advance the clinical translation of

circRNA. Establishing multicenter, international HNSCC-circRNA

databases will help standardize circRNA detection and facilitate its

clinical translation. However, these efforts are still in the exploratory

phase and face significant challenges. Future research should leverage

the growing power of artificial intelligence and machine learning in

circRNA research. Integrating multi-omics data (transcriptomics,

proteomics) with predictive computational models, such as the

DeepDCR algorithm (38), will be essential for constructing

comprehensive circRNA-regulated networks in HNSCC,

systematically elucidating their roles in tumorigenesis, and identifying

the most therapeutically actionable targets.

In summary, research on circRNA in HNSCC faces significant

challenges, particularly in elucidating complex biological

mechanisms and achieving clinical translation. While technological

advancements and multidisciplinary integration offer promise, many

of the proposed mechanisms and applications of circRNA in

HNSCC remain hypothetical and require extensive experimental

validation. The current review highlights these potential roles and

underscores the need for further research to overcome the

limitations of existing studies and to fully realize the diagnostic

and therapeutic potential of circRNA in HNSCC.
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