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Non-small cell lung cancer (NSCLC) is a significant worldwide health concern,
requiring novel treatment strategies. This review presents the potential of CD44-
targeted functionalized nanocarriers as effective tools for treating NSCLC. CD44,
a glycoprotein found on surface of cells, is known for being excessively
expressed in NSCLC, making it a promising target for targeted drug delivery.
The review begins by examining CD44 as a crucial biomarker in NSCLC. The text
provides an overview of molecular features of NSCLC. These fundamental
concepts provide the framework for comprehending the reasoning behind the
focused strategy of medication delivery using nanocarriers. The review discusses
the importance of key factors, such as the dimensions, morphology, and
electrostatic properties of nanocarriers, in relation to their influence on
interactions with CD44 receptors. The review provides an assessment of
preclinical and clinical research that has examined the use of CD44-targeted
nanocarriers in the treatment of NSCLC. The review further provides an analysis
of safety concerns and possible difficulties, like immunogenicity and off-target
effects, in relation to CD44-targeted nanocarriers. This review provides helpful
guidance to researchers and clinicians who are interested in using CD44-
targeted nanocarriers for more precise and efficient therapies of NSCLC.
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1 Introduction

Lung cancer is the most common cause of cancer-related deaths globally with 2.5
million new cases and 1.8 million deaths in 2022, representing 12.4% of all cancer cases and
18.7% of all cancer deaths in the world (1). Non-small cell lung cancer (NSCLC) accounts
for around 85% of all lung cancer cases, making it the most common type of lung cancer
(2), the types of lung cancer are illustrated in Figure 1. The disease is most often diagnosed
in countries including China, United States and European countries, having the highest
incidence rates (4, 5).

Current treatment modalities in treating NSCLC include surgery, chemotherapy,
radiotherapy, targeted therapy, and immunotherapy (6). These treatments, however,
have some limiting factors. Chemotherapy, for example, is linked to systemic toxicity,
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Classification of lung cancer. There are two major types of lung tumors, which are Small-cell Lung Cancer (SCLC; 15% of cases) and Non-small cell
Lung Cancer (NSCLC; 85% of cases). An SCLC tumor is based on neuroendocrine cell lining. But in NSCLC the cell of origin of the tumor is varied

and the sub-types include Adenocarcinoma (LUAD; alveolar type Il epithelial cell), Squamous-cell Carcinoma (LUSC; basal epithelial cell)

as well as

Large-cell Carcinoma (LCC; various epithelial cells). Adapted from reference (3) under the terms of the Creative Commons Attribution License (CC

BY).

and though effective in early disease, it is often only helpful in
advanced disease, where drug resistance and propensity to
metastasize are common. Targeted therapies such as the use of
inhibitors of the epidermal growth factor receptor (EGFR) (7),
while they have some advantages, are being hampered by the
problem of mechanisms of resistance. Immunotherapies, which
have revolutionized treatment of patients with non-small cell lung
cancer (NSC), are not universally effective and can cause immune-
related adverse effects (8). Furthermore, the prognosis of patients
with advanced stage pretty much stage III or IV is poor, with a poor
prognosis and life expectancy below 30% of patients (9).
Conventional cancer therapies such as chemotherapy,
radiotherapy, surgery and hormone therapy all have their own
disadvantages. Chemotherapy, although effective, is often not
specific, and acts on both cancerous and healthy cells. This causes
systemic toxicity and serious side effects such as nausea, hair loss,
fatigue and bone marrow suppression (10). Over time, drug
resistance develops which makes it less effective in the long run.
Similarly, the radiotherapies although effective in killing the
cancerous cells, can also damage the healthy tissues surrounding
the cancer, and they may cause side effects such as burning of the
skin, tiring of the body and damage to the organs (11). Additionally,
it can cause the tumor to come back if it fails to kill all the cancerous
cells. Surgery is often used to remove localized tumors but is not
always a viable option for tumors in inaccessible spots or in the case
of metastatic disease. Moreover, even after surgery, there are
chances of recurrence if not all the cancer cells are removed (12).
Lastly, hormone therapy is primarily used for hormonal sensitive
cancers, such as breast and prostate cancer. But it is also possible for
it to lose efficacy as tumors develop resistance over time (13). These
conventional methods are limited by their nonspecific targeting,
toxicity, and resistance mechanisms, which highlight the need for
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more targeted therapies that can improve the precision of treatment
and minimize side effects. The challenges posed by existing
treatment options underscore the pressing need for innovative
therapeutic strategies that can improve efficacy, decrease side
effects, and overcome resistance. This review is focused on the
potential of CD44-targeted functionalized nanocarriers as a
promising solution for addressing these unmet needs related to
the treatment of NSCLC.

Nanotechnology has become an imminent solution to the
challenges of traditional chemotherapy that may be characterized
by limited drug specificity, systemic toxicity, and low therapeutic
efficacy (14). Drug delivery by use of nanocarriers enables targeted
therapy, which improves the specificity of chemotherapeutic
compounds against cancer cells with minimal side effects on
normal tissues. Some of the typical difficulties with chemotherapy
can be overcome through the design of nanocarriers that enhance the
bioavailability, stability, and controlled release of chemotherapeutic
drugs, including liposomes, polymeric nanoparticle, and dendrimers.
Recent nanomedical developments have demonstrated the possibility
to not only improve drug delivery mechanism but also mitigate such
negative outcomes as nausea, neurotoxicity, and bone marrow
suppression that usually accompany chemotherapy (15). Besides,
nanotechnology allows integrating therapies, including
chemotherapy and immunotherapy, via targeted delivery, which
offers a more personalized and efficient method of cancer therapy.

Furthermore, advanced nanocarriers are based on
nanotechnology that have been produced to address the problems
with traditional chemotherapy (16). Various nanocarriers,
including carbon nanotubes, liposomes, polymeric/non-polymeric
nanoparticles, nanogels, micelles, and quantum dots, have shown
significant promise in delivering chemotherapeutic drugs to specific
targets (17).
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Nanocarriers have the potential to increase the physicochemical
features of chemotherapeutic agents, minimize adverse effects,
enable targeted drug delivery, lower medication dosages, prolong
blood circulation time, and provide other benefits (18).
Nanoparticles (NPs) have the potential to be utilized in passive
and active targeting. However, passive targeting has certain
limitations. Therefore, it is crucial to develop actively targeting
NPs, also known as “intelligent” NPs, which can specifically deliver
their cargo to cancerous cells (19). It was previously stated; the
molecular composition of cancer cells differs from that of normal
cells. Tumor cells exhibit overexpression of several receptors,
including transferrin, integrin, folate receptors (FR), sigma,
EGFR, and CD44 (17). Hence, the creation of a technology to
specifically target these cells might be a means for the effective and
dynamic administration of chemotherapeutic drugs.

The biological marker implicated in carcinogenesis should be
regarded as a possible prognostic indicator for survival. CD44, a
transmembrane glycoprotein that is essential to cell structure, is
often used as a marker for cancer stem cells (CSCs). CD44 has been
shown to have a significant impact on cancer cell invasion and
metastasis, as well as on essential biological processes such as
lymphocyte homing, hematopoiesis, inflammation, wound
healing, and apoptosis (20).

CD44 has four distinct functional domains, as illustrated in
Figure 2. The CD44 mRNA undergoes alternative splicing in the
proximal extracellular domain, resulting in the generation of several
isoforms of CD44. Both the CD44 standard form (CD44s) and
CD44 variant (CD44v) are involved in interactions between cells
and between cells and the extracellular matrix. They play a role in
cell migration, the movement of lymphocytes to specific tissues, and
the development of tumors. CD44v6 has garnered more interest in
recent years. CD44v6 overexpression has been observed in several
types of epithelial malignancies, including head and neck, colon,
endometrium, and ovarian cancer. This overexpression likely
facilitates the adherence of cancer cells to the vascular
endothelium and base membranes, while also increasing the
motility of cancer cells (22-24).

CD44 has a crucial role in controlling many important signaling
pathways that regulate cancer invasion, metastasis, and resistance to
treatment. The modulation of cancer cells is influenced by several
substances, including transcription factors, microRNAs, and post-
translational changes. CD44 primarily influences cancers by
activating signaling pathways that are crucial for apoptosis,
epithelial-mesenchymal transition (EMT), and drug resistance (25).

Targeting CD44 has become a potential and feasible approach
for treating NSCLC. CD44 has been extensively studied as a flexible
therapeutic target in the field of NSCLC (26). The current therapy
options include a range of strategies, including neutralizing
antibodies, peptide mimetics, aptamers, natural medicines that
suppress CD44 synthesis, bioconjugates, and nanoparticles
targeted towards hyaluronic acid (HA), HA oligomers, and CD44
decoys (27). Many methods are now being rigorously evaluated in
preclinical and clinical settings at various stages, highlighting the
ongoing investigation of therapies that target CD44. Several studies
have emphasized the significant potential of CD44-targeted
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nanocarriers in the field of cancer therapy (17, 25, 28).
Researchers have identified the CD44 receptor as an important
target for anticancers due to its role in regulating tumor cell growth
(17). This acknowledgment provides a basis for continuous
research, showcasing the progress of scientific studies in
converting CD44-targeting approaches into concrete therapeutic
progress. Moreover, several research studies have shown fascinating
correlations between CD44 and the effectiveness of current
treatment options for NSCLC (27). An examination revealed that
miR-204, when used, suppresses the proliferation of cancer stem
cells and improves the efficacy of osimertinib—a well-established
and effective treatment for people struggling with advanced
NSCLC (27).

The purpose of this review is to provide a thorough examination
of the function of CD44-targeted nanocarriers in the context of
NSCLC treatment. The study includes an examination of the
biology and clinical importance of CD44 in NSCLC, the progress
and promise of CD44-targeted nanocarriers, and relevant
information from preclinical and clinical studies. Moreover, the
review examines the advantages, challenges, and potential outcomes
of using CD44-targeted nanocarriers for NSCLC therapy, aiming to
provide information and direction for the advancement of
groundbreaking and efficient treatment approaches for this
formidable ailment.

2 Nano carriers in cancer therapy

Nanocarriers have become revolutionary instruments for
transporting anticancer medications, providing a varied and
advanced method to tackle crucial obstacles in cancer treatment
(29). Nanocarriers include a wide variety of materials and
structures, including chemical and inorganic molecules, as well as
lipid and protein-based entities. These entities generally have sizes
ranging from 1 to 100 nm (30-32).

Nevertheless, nanocarriers demonstrate their success through
many of their properties including size, surface charge, drug
loading, and release, which are not consistently native and can
only be effectively changed through design alterations. Passive
targeting of nanocarriers is most effective at 10-100 nm, which is
the size of the nanocarriers, which are identified as nanocarriers, but
to maximize the ability to target tumors the size of nanocarriers
needs to be regulated. Among the design strategies, it is possible to
use materials that can be fabricated in the desired size (such as
PLGA or lipid-based carriers), and alter the shape of nanoparticles
(e.g., rod-like) to enhance cellular uptake and accumulation in
tumors (33). Also, the surface charge can be engineered to enhance
cell membrane interaction or reduce immune detection and surface
functionalization with ligands (e.g. antibodies and peptides) can be
used to target the particles to cancer cells. These systems are
biocompatible and stable by using techniques such as PEGylation
to increase circulation time and decrease immunogenicity (34).

Nanocarriers determine their drug loading and release through
the material composition and addition of tailored alterations to
achieve controlled drug release. Drugs can be delivered at the tumor
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D44 is a transmembrane molecule containing several domains. The N-terminal extracellular domain has the ability of binding a wide range of
ligands, among which are hyaluronan (HA), extracellular matrix (ECM) glycoproteins and proteoglycans, growth factors, cytokines and matrix
metalloproteins. Due to the proteolytic cleavage in the stem region, the extracellular domain is released in the extracellular space. The
transmembrane domain fixes and stabilizes the molecule onto the plasma membrane. Signal transduction is performed by binding to various
molecules, such as cytoskeleton elements, small Rho GTPases kinases and activators of guanine nucleotide exchange factors- GEFs. Adapted from

reference (21) under the terms of the Creative Commons Attribution License
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site specifically with the help of stimuli-responsive nanocarriers,
including pH-sensitive polymers, which reduce systemic toxicity.
High drug payload and controlled release is often used through
liposomes and polymeric micelles (35). Biocompatibility and
stability play an important role as well, with nanocarriers
frequently being made of biodegradable materials to reduce the
number of toxic proteins, as well as degrade safely in the body.
Passive and active mechanisms increase tumor targeting with
nanocarriers that are functionalized with special ligands binding
to overexpressed receptors on the tumor cells. This directional
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targeting enhances specificity of drug delivery with minimal effects
being done on normal tissues. Moreover, it is important to
overcome the multidrug resistance (MDR), and nanocarriers may
be designed to circumvent the efflux pumps by co-delivering drugs
with MDR inhibitors, enhancing the activity of chemotherapy
against drug-resistant cancer (36, 37). These design principles
empower nanocarriers to respond to the specific problem of
cancer treatment and achieve excellent treatment results.
Moreover, each nanocarrier has distinct characteristics that are
carefully adjusted for drug delivery purposes. This enables the
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encapsulation and precise release of therapeutic substances to
cancer cells, hence improving the accuracy of treatment (38).

Nanocarriers increase the bioavailability and solubility of
pharmaceuticals, resulting in enhanced pharmacokinetics and
decreased adverse effects. The enhanced solubility guarantees a
more efficient delivery of therapeutic drugs to cancer cells, hence
augmenting the overall efficacy of the treatment (39, 40). They
provide the precise targeting of cancerous tissues or cells, allowing
for selective treatment and minimal harm to healthy cells. This
tailored technique guarantees that therapeutic drugs are supplied
exactly to the location of the tumor, maximizing the therapeutic
ratio (41, 42). Nanocarriers enable the regulated and extended
release of medications, ensuring that cancer cells are consistently
exposed to therapeutic payloads. The sustained release mechanism
prolongs the therapeutic impact, which may lead to a decrease in
the frequency of administration and an improvement in patient
compliance (16, 43). They have a role in diminishing the harmful
effects on cells and improving the absorption of medications by
cancer cells (44). This not only enhances the overall therapeutic
effectiveness but also reduces unintended effects on non-target
areas, therefore tackling a major obstacle in traditional cancer
therapies (41). Moreover, nanocarriers have shown the ability to
surmount multidrug resistance in cancer cells, representing a
noteworthy advancement in tackling a prominent obstacle in
chemotherapy (45). This characteristic presents novel
opportunities for augmenting the efficacy of current anticancer
medications (46).
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3 Cancer therapy using CD44-
engineered nanocarriers

Nanoparticles (NPs) that have a strong attraction to the CD44
receptor can deliver therapeutic substances to certain cells in a
targeted manner while limiting any negative effects on normal cells
(47). Enhancing absorption and inducing apoptosis may be
achieved by modifying the nano-drug delivery system by surface
attachment of chemicals. Nanocarriers have many benefits, such as
easy production, large drug load capacity, greater solubility,
improved drug availability, efficient drug dispersion in the body,
higher permeability across physiological barriers, and decreased
drug toxicity (48), illustrated in Figure 3.

3.1 HA-modified nanocarriers for drug
delivery

Muntimadugu et al. conducted a study where they improved the
delivery of anticancer medications targeted at CD44 by utilizing a
nanoparticle made of HA-coated PLGA. The study demonstrated
higher effectiveness in trapping the drugs and increased cytotoxicity
in MCEF-7 cells, which was dependent on the concentration of the
pharmaceuticals (49). Additional research conducted by Saneja
et al. and Liu et al. provides evidence of the efficacy of ligand-
modified PEGylated PLGA nanoparticles in attaining precise drug

Dendrimer

Diagram depicting the targeted delivery of anticancer medicines using CD44.
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distribution and increased cellular uptake (50-52). HA-modified
nanoparticles have been used for the delivery of several anticancer
drugs, such as thio-tetrazoly analogues, 10-hydroxy camptothecin,
and green tea epigallocatechin-3-gallate (53, 54). In addition, Shi
et al. and Lee et al. have developed dual-targeting systems that
combine HA with other ligands. These systems have shown
encouraging outcomes in the active targeted delivery of
chemotherapeutic drugs (53-55).

3.2 Metallic and ceramic nanocarriers

Metallic nanoparticles, including magnetic iron oxide (Fe304)
and AuNPs, have attracted considerable interest due to their
distinctive characteristics in the field of biological applications.
The study done by Sargazi et al. demonstrates the efficacy of HA-
conjugated PEGylated MNPs for targeted delivery of mitoxantrone
to CD44 (56-58). Moreover, the use of Fe304@Ag-HA-NSs in
multifunctional theranostic methods has shown promise in the
fields of cancer diagnostics and photothermal treatment (56).

For example, there is a case study which focuses on the creative
use of folic acid-modified PEGylated paramagnetic nanoparticles as
drug delivery vehicles that specifically target CD44. Folic acid,
known for its strong attraction to cancer cells, particularly those
that have an excessive amount of CD44 receptors, is deliberately
selected as the ligand for the surface of the nanocarrier. This ligand
promotes receptor-mediated endocytosis, which guarantees
selective absorption by cancer cells that express CD44. The use of
polyethylene glycol (PEG) has a double effect—it improves the
stability and biocompatibility of the nanoparticles while extending
their duration in the bloodstream. PEGylation enhances the
nanoparticles’ half-life and reduces non-specific interactions,
leading to improved biodistribution and targeted accumulation at
the tumor location (59).

The experimental results obtained from investigations conducted
on NSCLC cell lines provide solid evidence for the efficacy of this
strategy. The cellular absorption of folic acid-modified PEGylated
paramagnetic nanoparticles shows a significant increase when
compared to their non-targeted counterparts. The nanoparticles
possess paramagnetic properties, which allow for their real-time
tracking by magnetic resonance imaging (MRI), adding an extra
level of usefulness. This imaging capacity offers vital information
into the geographical and temporal dynamics of the nanocarrier inside
the tumor microenvironment (59).

This nanocarrier that targets CD44 has a significant influence
on the therapeutic process. The loaded therapeutic payload, which
often consists of powerful anticancer medications like paclitaxel or
doxorubicin, demonstrates increased effectiveness because of the
accuracy of targeted administration. This multifarious CD44-
targeted nanocarrier has the potential to be useful in therapeutic
settings, as shown by the case study, which indicates that it inhibits
the development of tumors in preclinical models of non-small cell
lung cancer. This method is a potential route in the search for
effective therapies for NSCLC because it integrates imaging
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capabilities, targeted drug delivery, and increased therapeutic
results from a therapeutic perspective (59).

Ceramic nanoparticles, particularly mesoporous silica
nanoparticles (MSNs), have been investigated for their distinct
characteristics in delivering drugs, demonstrating combined
anticancer benefits against colon cancer (60). Nanoparticle-based
drug delivery systems, namely those enhanced with HA for precise
targeting, provide a hopeful approach in the field of cancer
treatment. Due to their passive tumor targeting and tiny size,
nanoparticles provide distinct benefits for effective and regulated
drug administration (61).

3.3 Carbon nanotubes and other
nanocarriers

In 1991, lijima made the pioneering observation of carbon
nanotubes (CNTs), tubular carbon structures, with two primary
types: single-walled carbon nanotubes (SWCNTs) and multi-walled
carbon nanotubes (MWCNTSs) (62). CNTs exhibits remarkable
properties such as excellent electrical conductivity, ordered
structure, low weight, and thermal conductivity, making them
potential candidates for various applications, including
biomedical. The unique needle-shaped structure of CNTs enables
them to easily penetrate the plasma membrane and directly reach
targeted cells (63). This, coupled with their targeted and controlled
drug delivery capabilities, positions them as promising carriers for
therapeutic purposes. The surface versatility of CNTs permits
conjugation with different targeting ligands, making them
particularly suitable for CD44 receptor-targeted drug delivery in
cancer treatment (64). Their one-of-a-kind tubular shape, carbon
nanotubes provide an unrivaled surface area, making them a perfect
platform for the loading and functionalization of medical drugs.
When it comes to CD44 receptors, HA, which is a naturally
occurring ligand, is selected because of its specificity and affinity
for these receptors (65). This design is based on several different
rationales: first, the tubular structure of carbon nanotubes makes it
possible to load therapeutic agents efficiently; second, the
functionalization of the nanocarrier with HA ensures that it will
selectively bind to CD44 receptors, which makes it easier to deliver
specifically targeted drugs to cancer cells. By in vitro tests, the
effectiveness of this nanocarrier design is thoroughly measured and
evaluated. The results of these experiments demonstrate that CD44-
positive non-small cell lung cancer cells can effectively internalize
HA-functionalized carbon nanotubes. The unique interaction that
occurs between HA and CD44 receptors leads to an increase in the
cellular absorption of the nanocarrier, which in turn leads to an
increase in the concentration of the medication inside the cell.
When it comes to obtaining accuracy in medication delivery and
reducing off-target effects, this targeted internalization is an
essential step that must ultimately be taken (65).

Furthermore, the outcomes of the experiments shed insight into
the drug release kinetics of the carbon nanotubes that have been
functionalized with amino acids (HA). Not only can the
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functionalization with HA improve targeting, but it also affects the
regulated release of medicinal drugs. The presence of this regulated
release profile indicates that there is the possibility of long-term
therapeutic benefits. One of the benefits of the progressive and
continuous release of medications is that it may contribute to the
extended exposure of cancer cells to the therapeutic payload, which
ultimately results in the enhanced effectiveness of the treatment. To
gain useful insights into the potential clinical uses of HA-
functionalized carbon nanotubes, the therapeutic effect of these
nanotubes is evaluated using models of NSCLC (65). In comparison
to their non-targeted equivalents, the evidence of lower systemic
toxicity is a discovery that deserves noteworthy attention. By
demonstrating a higher degree of selectivity, the nanocarriers that
have been functionalized with HA make it possible to deliver drugs
to cancer cells with more precision. This tailored method reduces
the possibility of systemic toxicity by minimizing the exposure of
healthy tissues to the therapeutic payload to limit the therapeutic
payload. When it comes to improving the safety profile of the
nanocarrier and its potential for clinical translation, achievements
of this kind are very essential (65).

Carbon nanotubes are a versatile substrate for CD44-targeted drug
delivery, as shown by this case study, which highlights their
adaptability. Carbon nanotubes are attractive prospects in the field of
nanomedicine due to their distinctive structural properties, which,
when combined with the selective binding that is made possible by HA
functionalization, position them as very promising possibilities. The
capability of the nanocarrier to load medications effectively, improve
cellular absorption, and give regulated drug release are all examples of
the many benefits that this technique offers (65). For CD44-targeted
drug delivery, the functionalization of carbon nanotubes with
hyaluronic acid ofters a complex technique that has intriguing
implications for the treatment of NSCLC (65). The outcomes of the
experiments provide evidence that this method is feasible. They
highlight the potential therapeutic benefit of this strategy, as well as
its decreased systemic toxicity and the adaptability of carbon nanotubes
as an excellent platform for targeted drug delivery in cancer therapies.
Targeting CD44 has emerged as a feasible approach for NSCLC
treatment, with various strategies like neutralizing antibodies,
peptides, aptamers, natural medicines, bioconjugates, and
nanoparticles. CD44-targeted nanocarriers have garnered attention
for their potential in cancer therapy (66). Studies utilizing HA-
functionalized CNTs exemplify this approach.

Singhai et al. employed MWCNTs functionalized with HA and
o-Tocopheryl succinate (o-TOS) for targeted doxorubicin (DOX)
delivery against triple-negative breast cancer (TNBC) cells. The
formulation exhibited high drug loading, and in vitro cytotoxicity
results demonstrated superior efficacy, showcasing the potential of
CD44-targeted nanocarriers (67). Additionally, nanoemulsions
(NEs) and micelles, as nanocarriers, were explored for targeted
drug delivery by incorporating HA, showing enhanced tumor
reduction and improved pharmacokinetic profiles (68-71).
Quantum dots (QDs) modified with HA emerged as effective
tools for bioimaging tumor cells, showcasing their potential in
diagnostic applications. The enhanced biocompatibility and CD44
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receptor-mediated cellular internalization demonstrated the
promising role of HA-modified QDs in targeted drug delivery
(72, 73).

Nanogels (NGs) are advanced nanocarriers made from
hydrogel and cross-linked hydrophilic polymers, with the
potential to drug delivery to cancer cells. They offer enhanced
functionality, ease of formation, improved release capability,
superior targetability, and customizable attributes. Wei and
colleagues developed NG drug conjugates based on hyaluronic
acid (HA) for targeted delivery of etoposide (ETO), salinomycin
(SAL), and curcumin (CUR). These formulations showed passive
accumulation in tumor cells through enhanced permeability
retention. In vitro cytotoxicity studies showed promising IC50
values for CHA-ETO, CHA-SAL, and CHA-CUR, surpassing
those of free drugs. Cholesterol moieties further improved tumor
accumulation, leading to enhanced drug bioavailability and
therapeutic efficacy against resistant cancer cells (74-76).

SiRNAs, due to their potent gene-silencing effects, hold promise
for treating various diseases, including cancers. However, their
clinical application faces challenges such as poor cellular
penetration, instability in biological fluids, and lack of
targetability. To address these issues, nanocarriers have been
designed, focusing on non-viral vectors like cationic liposomes,
polymers, and dendrimers. CD44-engineered nanocarriers,
particularly those incorporating HA as a targeting ligand, have
shown efficacy in delivering siRNAs (77). Yoon et al. developed a
biodegradable HA cross-linked poly (dimethyl amino ethyl
methacrylate) HPD conjugate for siRNA delivery. The cross-
linked siRNA-HPD complex demonstrated stable formation via
disulfide bonds, with in vitro cytotoxicity studies showing a
significant decrease in B16F10 cell viability.

Cellular uptake and gene silencing studies supported the
efficient CD44-mediated endocytosis of the cross-linked siRNA-
HPD complex (78). Shah et al. designed a CD44-targeted
nanocarrier for co-delivery of siRNA and the anticancer drug
paclitaxel (PTX) in ovarian cancer. The formulation involved
linking PTX to PPI dendrimers via succinic acid, conjugating
luteinizing hormone-releasing hormone (LHRH) peptide as the
targeting ligand to PEG polymers, and complexing PPI dendrimers
with siRNA (PPI-siRNA) (79), the schematic representation is
illustrated via Figure 4. Herrera et al. utilized ternary and
quaternary polyplexes consisting of siRNA-bPEI modified with
glycosaminoglycan (GAG) polysaccharides (HA, CS, and HA) for
silencing green fluorescent protein expression in human
mesenchymal stem cells (hMSCs). Xiong et al. designed a
codelivery system for the anticancer drug DOX and a gene
decorated with HA against hepatocellular carcinoma (80).

Chondroitin sulfate (CS)-modified nanocarriers have shown
significant promise in cancer therapy. Recent studies have reported
the development of docetaxel-loaded Zein nanoparticles modified
with CS for effective treatment against prostate cancer,
temozolomide-loaded albumin nanoparticles for brain-targeted
delivery, and CS and HA nanoparticles loaded with doxorubicin
for effective therapeutic outcomes (81-83).
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FIGURE 4
The schematic representation of C44-mediated SiRNA delivery.

4 Enhancing personalized treatment
NSCLC with nanocarriers that target
CD44

The future of cancer treatment is shifting towards personalized
medicine and CD44-targeted nanocarriers have become an
excellent option in the customization of interventions in non-
small cell lung cancer (NSCLC) patients. Recent research outlines
the opportunities of biomarker profiling e.g., genetic mutations and
protein expression levels to inform the individualized use of CD44-
targeted treatment. The CD-44 targeted nanocarriers used for
personalized treatment of NSCLC are given in Table 1. To
illustrate, Wickens et al. (2017) revealed that NSCLC patients
who were highly expressing CD44 responded more to HA-
conjugated nanoparticles, which underscored the need to profile
patients with biomarkers to respond to these therapies (28). The
presence of biomarkers such as CD44 receptor isoforms, genetic
mutations, or protein overexpression is very helpful to determine
the heterogeneity of tumors and to design more effective and less
side effects treatment approaches (17, 25, 90).

Including genetic and molecular profiling would be essential in
screening patients that would respond to CD44-targeted
nanocarrier therapies. Researchers like Tirella et al. (2019) have
found that patients with mutations in EGFR or KRAS respond
differently to therapy using CD44-targeted nanocarriers (52). The
design of nanocarriers fit the specifics of each tumor is another
important factor. As an example, nanocarriers can be tailored to
more accurately target individual CD44 isoforms or adapt to
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differences in tumor microenvironment, which would guarantee
improved delivery of drugs and effective treatment (17). In their
study, Limpikirati et al. (2025) demonstrated that adjusting the size
and surface properties of nanocarriers, depending on the vascular
architecture of the tumor and the level of CD44 expression,
enhanced the targeting ability of HA-conjugated nanoparticles to
NSCLC models (91).

Additionally, individual patient factors, including renal status,
tumor mass, and immune condition are important determinants of
nanocarrier efficacy of CD44-targeted nanocarriers. The therapeutic
effect of nanocarriers can be increased by adjusting the
pharmacokinetics and clearance rates of nanocarriers according to
these individual characteristics. Adapting the design of nanocarriers
according to specific patient features is vital progress in customizing
therapy for NSCLC (92). The effectiveness and safety of CD44-
targeted nanocarriers may be greatly influenced by individual
patient characteristics, such as the tumor microenvironment,
genetic composition, and general health condition. Multiple
recent research has examined the notion of customized
nanocarrier design (93-95). For example, knowing the particular
CD44 isoforms or expression levels in a patient’s tumor might help
in adjusting nanocarriers to improve their ability to attach and enter
cells (96).

Furthermore, taking into account the distinct physiological
characteristics of each patient, such as renal function or clearance
rates, enables the enhancement of nanocarrier qualities,
guaranteeing a customized and optimum treatment strategy (97).
The individualized strategy for designing nanocarriers has shown
encouraging findings in preclinical models, showcasing enhanced
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TABLE 1 Strategies for personalized treatment of NSCLC using CD44-targeted nanocarriers.

Nanocarrier Targeting Drug/RNA Administration Mechanism of CD44 Outcomes/ Patient-specific Reference
type ligand payload route targeting advantages variables
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therapeutic efficacy and decreased off-target effects. Through the
alignment of nanocarrier attributes with the specific biological and
physiological traits of each patient, medical practitioners may
optimize treatment accuracy, possibly resulting in improved
therapeutic outcomes and fewer negative impacts. The
incorporation of biomarker analysis and the tailoring of
nanocarrier design according to patient characteristics are crucial
advancements in the progression of tailored treatment for NSCLC
(98). CD44-targeted nanocarriers may be customized to optimize
effectiveness and minimize adverse effects by leveraging the distinct
characteristics of each patient’s cancer (85). This advancement
paves the way for a revolutionary age of precision medicine in the
treatment of NSCLC. Further investigation and rigorous clinical
validation are necessary to fully exploit the promise of this
individualized therapy strategy.

5 Immunotherapeutic uses of CD44-
targeted nanocarriers in NSCLC

CD44-targeted nanocarriers are emerging as flexible challengers in
the field of cancer therapies, namely in the promising area of
immunotherapy for lung cancer (99). In addition to its traditional
function, CD44 also displays inherent immunogenicity, which offers a
promising opportunity to enhance the body’s immune response
against NSCLC (100). To strategically exploit the immunogenic
features of CD44, it is necessary to create nanocarriers that can
transport therapeutic payloads and also actively regulate immune
responses inside the tumor environment (100, 101). CD44-targeted
nanocarriers seek to enhance the antitumor immune response by
either including immunostimulatory chemicals or facilitating the
activation of immune cells (102). This novel strategy shows
potential for promoting a more extensive and long-lasting
therapeutic impact, guiding the treatment of NSCLC towards a
strong immunotherapeutic model. Recent literature has been
conducted which shows that CD44 targeted nanocarriers can
enhance the delivery and effectiveness of checkpoint inhibitors,
including anti-PD-1, by specifically targeting CD44-overexpressing
tumor cells which are frequently resistant to traditional immune
checkpoint blockage treatments (17, 103-105). These nanocarriers
increase the penetration of immune cells into the tumor
microenvironment, especially cytotoxic T lymphocytes (CTLs),
therefore increasing the anti-tumor immune response (106).

Simultaneously, the nanocarriers are cleverly designed to act as
immunomodulatory agents in NSCLC (107). Incorporating
immune-modulating drugs directly into the nanocarrier design is
the novel technique that is being taken here. Recent studies look at
the possibility of incorporating immunomodulatory chemicals,
such as checkpoint inhibitors or cytokines, into nanocarriers that
are particularly designed to target CD44 (108). In addition to
checkpoint inhibitors, other immune stimulating agents such as
interleukins (e.g., IL-2, IL-12) or tumor necrosis factor-alpha (TNF
alpha) have been incorporated into the CD44-targeted nanocarriers
to boost T-cell activation and attraction of immune effector cells to
the tumor site (109-112). This combination of immune modulators
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and nanocarriers has been shown to synergically enhance the
immune response in models of NHL suggesting increased
endogenous tumor suppression and more durable response. To
combat the immunosuppressive circumstances that are
characteristic of NSCLC, the objective is to actively manage
immune responses. When immunomodulatory medicines are
combined with nanocarriers that are targeted to CD44, the goal is
to improve the effectiveness of immunotherapy in NSCLC, hence
supporting a therapeutic plan that is unified (107).

Engineering advancements in CD44-targeted nanocarriers
expand into the realm of biomimicry, creating platforms that
closely imitate the inherent traits of NSCLC cells. Biomimetic
nanocarriers, which draw inspiration from the complex biological
architecture, improve their interaction with cancer cells that
overexpress CD44 (113). Moreover, the emergence of new
designing of nanocarriers is in the direction of biomimetic
platforms which mimic the natural characteristics of tumor cells.
These biomimetic nanocarriers, which mimic the lipid make-up
and surface properties of the cell membrane of lung cancer, have
been shown to have enhanced cellular affinity for CD44 cancer-
overexpressing cells, leading to better uptake and immune
activation (114). The biomimetic nature of these nanocarriers
makes them better at avoiding being detected by the immune
system and guaranteeing good delivery to the site of the tumor.
Recent research has shown that biomimetic nanocarriers are very
effective in enhancing the accuracy of targeting and the absorption
of cells (115). These biomimetic devices improve the identification
and absorption of therapeutic payloads by imitating the
characteristics of NSCLC cell membranes, which might improve
treatment results. This sophisticated technique indicates a shift
away from traditional ways of administering drugs, adopting a more
customized and individualized manner (115). Responsive
nanocarriers revolutionize medication delivery by providing
adaptable modifications that respond to the unique requirements
of the NSCLC microenvironment (116). The advanced nanocarriers
adjust their drug release patterns in response to stimuli like as pH,
enzyme activity, or hypoxia, which are often seen in NSCLC tumors
(116, 117).

6 Mechanisms of action and
comparison

6.1 Mechanisms of action of CD44
targeted functionalized nanocarriers

The fundamental basis of the method is the precise contact
between CD44 receptors, which are highly expressed on the surface
of cancer cells, and the ligands that are integrated into the
nanocarriers (118). Ligands, such as HA, antibodies, peptides, or
folic acid, have a crucial function. This connection promotes
specific attachment and uptake of the nanocarriers into cancer
cells that express CD44, allowing for precise delivery of drugs (119).
Upon binding to CD44 receptors, the nanocarriers undergo
receptor-mediated endocytosis, which guarantees their
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internalization into the cancer cells (120). Inside the cellular
environment, the therapeutic cargo, which might consist of
anticancer medications such as paclitaxel or doxorubicin, is
released. The internalization selectivity guarantees the targeted
delivery of the therapeutic payload only to cancer cells, hence
reducing its exposure to healthy tissues (121). Paclitaxel (PTX), a
frequently used antineoplastic drug, is included in the
nanoparticles. The primary objective in providing PTX to NSCLC
is to get a knowledge of the therapeutic impact of CD44-targeted
nanoparticles (86). The design revolves around the incorporation of
ligands, such as antibodies or peptides, onto the surface of the
nanoparticles that exhibit great specificity towards CD44. Due to
this deliberate choice, the nanocarrier may specifically bind to
CD44 receptors that are present on the outer layer of cancer cells.
To showcase the potential of CD44-targeted nanoparticles in
delivering traditional chemotherapeutic medicines, PTX is used as
a representative therapeutic payload (86).

This case study is based on extensive in vitro research that
examines the behavior of nanoparticles specifically targeted at
CD44 in a controlled biological setting. Based on the results of
these inquiries, it has been shown that non-small cell lung cancer
cells have a predilection for internalizing nanoparticles that are
specifically designed to target CD44. This offers compelling
evidence of the nanocarrier’s specificity. An extensive
examination of cellular internalization mechanisms is underway
to gain insight into the molecular connections between
nanoparticles and cancer cells. Furthermore, the study assesses
the kinetics of drug release, providing insights into the controlled
release pattern of PTX from the nanoparticles. Considering all of
this evidence, it is evident that nanoparticles specifically designed to
target CD44 can greatly enhance the transportation of therapeutic
medications to cancer cells (86). Transitioning from in vitro
assessments to in vivo studies is a crucial step in assessing the
therapeutic value of CD44-targeted nanoparticles (86). Throughout
this case study, in vivo studies were conducted, and the findings
demonstrated a significant therapeutic effect. The efficacy of CD44-
targeted nanoparticles encapsulating PTX is shown by the efficient
inhibition of tumor growth. Additional proof of the potential
therapeutic efficacy of these nanoparticles is shown by their
ability to enhance survival rates in NSCLC models upon
treatment. The efficacy and versatility of CD44-targeted
nanoparticles in cancer treatments are shown by their capacity to
effectively deliver conventional chemotherapeutic agents such as
PTX (86).

Targeted administration of therapeutic drugs to cancer cells
using CD44-specific nanocarriers has a role in suppressing tumor
development and metastasis. Through the manipulation of the
signaling pathways linked to CD44 expression, these nanocarriers
have the potential to hinder the aggressive activity of cancer cells,
therefore inhibiting their capacity to multiply and move (96). CD44
is involved in drug resistance mechanisms, namely in cancer stem
cells (122). Nanocarriers that specifically target CD44 have shown
the potential to surmount this resistance by directly delivering
therapeutic medicines to these populations of drug-resistant cells
(123). CD44 is recognized for its involvement in several signaling
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pathways, including those related to cell viability, growth, and
movement (124). CD44-targeted nanocarriers can manipulate
these pathways, interrupting the complex cellular processes that
play a role in the advancement of cancer. This modification may
result in a decrease in the malignancy of cancer cells and make them
more responsive to treatment therapies (125). CD44 has a role in
modulating the immune system by influencing processes including
the recruitment and activation of immune cells (126). CD44-
targeted nanocarriers might potentially impact the immune
response to cancer by regulating the interactions between cancer
cells and immune cells. The combination of directly attacking
cancer cells and regulating the immune response may
synergistically boost the total anticancer impact (17).

6.2 Comparison with other targeted
therapies in NSCLC treatment

The addition of CD44-targeted functionalized nanocarriers into
the field of NSCLC therapy necessitates a detailed evaluation in
contrast to existing targeted treatments, highlighting unique
characteristics and possible collaborative effects (127), the
comparison is also mentioned via the Table 2. Unlike treatments
that focus on single molecular markers, CD44-targeted nanocarriers
use a complete targeting strategy that encompasses all aspects of
cancer development, going beyond individual indicators (128). Due
to their adaptability, these treatments have the potential to
effectively address several elements of NSCLC, setting them apart
from therapies that focus on particular molecular targets (129).

An important aspect of CD44-targeted nanocarriers is their
ability to potentially enhance the effectiveness of current targeted
treatments via synergistic combinations (17). Merging CD44
targeting with medicines focused on separate molecular markers
or pathways, such as EGFR or VEGF, there exists the potential of
establishing synergistic effects (130). This strategic merger targets
many mechanisms involved in the growth of NSCLC, providing a
chance to improve treatment results. CD44-targeted nanocarriers
provide a significant benefit by specifically targeting the desired
area, therefore reducing the risk of general toxicity compared to
treatments that are not targeted (119). This is especially noteworthy
when compared to traditional chemotherapy, which is well-known
for its adverse effects on healthy tissues. Targeting CD44 with
increased specificity minimizes the likelihood of off-target effects,
providing a safer and better-tolerated treatment choice (131).

Nevertheless, despite these benefits, the incorporation of CD44-
targeted nanocarriers into NSCLC therapy presents several
obstacles. The variation in CD44 expression across patients with
NSCLC is a challenge that has to be overcome by implementing
techniques that may effectively cater to the different patient groups
(132). Moreover, the ever-changing and intricate tumor
microenvironment presents challenges in the movement of
nanocarriers and the administration of drugs, necessitating
thoughtful deliberation. Ultimately, the examination of CD44-
targeted functionalized nanocarriers in relation to other targeted
therapeutics for NSCLC therapy highlights their distinct
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TABLE 2 Comparison of CD44 treatment with other targeted therapies in NSCLC.

Therapy type

CD44-Targeted
Nanocarriers

EGER Inhibitors (e.g.,
Gefitinib, Erlotinib)

Target

CD44 receptor
on tumor cells

EGFR mutation
in tumor cells

Mechanism

Nanocarriers targeting CD44 with conjugated
therapeutic agents (chemotherapeutic agents,
checkpoint inhibitors)

Small molecules that block EGFR signaling,
inhibiting tumor growth

Advantages

1. Tumor-specific targeting
2. Reduced systemic toxicity
3. Potential for combination with

immunotherapy

1. Effective in EGFR-mutant NSCLC
2. Improved survival in specific EGFR-

positive patients

Limitations

1. Tumor heterogeneity in CD44
expression
2. Limited clinical data on long-
term efficacy
3. Potential resistance
mechanisms

1. Acquired resistance (e.g.,
T790M mutation)
2. Limited to EGFR-mutant
tumors
3. Off-target toxicity

Current status in NSCLC

Early-stage preclinical studies, ongoing clinical
trials investigating combination with
chemotherapy and immunotherapy

Widely used in EGFR-mutant NSCLC, but
resistance is common

ALK Inhibitors (e.g.,
Crizotinib)

Immunotherapy (e.g.,
PD-1/PD-LI Inhibitors,
Nivolumab)

VEGF Inhibitors (e.g.,
Bevacizumab)

ALK gene
rearrangement in
tumor cells

PD-1/PD-L1
interaction in
immune cells

Vascular
endothelial
growth factor
(VEGEF)

Small molecules that target and inhibit the
activity of ALK gene rearrangement in NSCLC

Blockade of immune checkpoint proteins to
enhance T-cell response against cancer cells

Inhibit VEGF to reduce tumor angiogenesis
and improve oxygen delivery

1. Effective for ALK-positive NSCLC
2. Better response rates in ALK-positive

patients

1. Long-term survival benefits in PD-L1-

positive tumors

2. Potential for combination with other

therapies

1. Effective in combination with

chemotherapy

2. Improves tumor perfusion and drug

delivery

1. Acquired resistance (e.g.,
secondary mutations)
2. Limited use to ALK-positive
tumors
3. Systemic side effects

1. Low response rates in cold
tumors
2. Limited benefit for non-
squamous subtypes3. Immune-
related adverse events

1. High cost2. Potential for
serious side effects like bleeding
or hypertension

Approved for ALK-positive NSCLC, but
resistance can develop with prolonged use

FDA-approved for NSCLC treatment, but low
efficacy in certain subsets of patients

Used in combination with chemotherapy,
especially in non-squamous NSCLC

KRAS Inhibitors (e.g.,
Sotorasib)

KRAS mutations
in tumor cells

Small molecules that specifically inhibit mutant
KRAS, commonly found in NSCLC tumors

1. Effective in KRAS-mutant NSCLC
2. Targets previously “undruggable”

mutations

1. Limited to KRAS-mutant
tumors
2. Resistance may develop over
time

FDA-approved for KRAS G12C-mutant NSCLC,
but challenges remain with long-term efficacy

BRAF Inhibitors (e.g.,
Dabrafenib)

BRAF mutations
in tumor cells

Small molecules that inhibit mutant BRAF
signaling pathway in NSCLC tumors

1. Effective in BRAF V600E-mutant NSCLC
2. Combined with MEK inhibitors, shows

synergistic effect

1. Limited to BRAF-mutant
tumors2. Potential for drug
resistance

FDA-approved for BRAF V600E-mutant NSCLC

(Continued)
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Ultimately, the prospects for CD44-targeted nanocarriers in NSCLC
treatment are very promising and evolving, offering several possibilities
for future improvements and enhancements. The future trajectory of
this revolutionary profession will heavily rely on achieving a careful
equilibrium between technical innovation, thorough research to tackle
current difficulties, and a steadfast dedication to enhancing
patient outcomes.

There is a promising opportunity to investigate combination
treatments that use nanocarriers targeting CD44. The integration of
these nanocarriers with conventional chemotherapeutics,
immunotherapies, or targeted medicines has the potential to
enhance treatment outcomes by synergistically combining their
effects, therefore offering a more holistic approach to managing
NSCLC. The long-term consequences of CD44-targeted
nanocarriers on survivors of NSCLC have not been extensively
investigated. Research should prioritize the investigation of late-
onset side effects, the development of resistance mechanisms, and
the impacts on overall survival and quality of life. This will ensure a
thorough evaluation of the therapy’s consequences.

Interdisciplinary cooperation is crucial for advancing the limits
of understanding and promoting advancements in research on
CD44-targeted nanocarriers for NSCLC. Partnerships with
specialists in biomedical engineering and material science have
the potential to accelerate the development of innovative
nanocarrier platforms. Nanomaterial advancements, drug delivery
system improvements, and surface alterations have the potential to
increase the specificity, stability, and therapeutic payload of
nanocarriers that target CD44. To comprehend the complex
interaction between CD44 and the immune system, it is essential
to engage in cooperation with experts in immunology and cancer
biology. Investigating the ability of nanocarriers targeted at CD44 to
modulate the immune system and examining their influence on
immune responses against tumors might lead to the development of
more efficient immunotherapeutic approaches.

It is very necessary to have a strong partnership with clinical
researchers and oncologists to effectively apply laboratory
discoveries to real-world medical treatment. It is essential to
conduct carefully planned clinical studies to evaluate the safety
and effectiveness of CD44-targeted nanocarriers in various groups
of patients. This is necessary to confirm their potential as treatment.
Engaging patient advocacy organizations in research endeavors
guarantees a patient-centric approach. These partnerships may
provide valuable insights into the views, preferences, and goals of
patients, which can have a significant impact on the design of
clinical trials and enhance the entire patient’s experience with
CD44-targeted nanocarrier medicines. Ultimately, the potential of
CD44-targeted nanocarriers in treating NSCLC depends on the
exploration of new and unexplored areas, as well as the promotion
of cooperation across different disciplines. Researchers may advance
the development of better, customized, and patient-friendly
treatment approaches for NSCLC by filling information gaps,
adopting breakthrough technologies, and working together across
many disciplines. The collaboration of knowledge and skills from
many fields is crucial in unlocking the capabilities of CD44-targeted
nanocarriers and revolutionizing the landscape of NSCLC therapy.
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8 Conclusion

In conclusion, the investigation of CD44-targeted
functionalized nanocarriers for NSCLC is a compelling account of
advancements and breakthroughs in cancer treatment. The
upregulation of CD44 in NSCLC has played a crucial role in
developing the development of nanocarriers, offering a focused
strategy for drug administration that shows the potential to surpass
the constraints of traditional therapies. The examination of CD44 as
a biomarker revealed its diverse involvement in NSCLC, including
its molecular attributes, its correlation with cancer stem cells, and its
prognostic significance. The fundamental knowledge served as the
basis for the careful development and production of nanocarriers,
using a range of ligands such as hyaluronic acid, aptamers, and
antibodies. The evaluation of nanocarrier characteristics, including
dimensions, morphology, and electrostatic potential, highlights the
complexities associated with optimizing interactions with CD44
receptors to improve the accuracy of drug delivery. This review aims
to facilitate ongoing research and cooperation by connecting
molecular insights, nanocarrier design, and translational
advancements. The goal is to contribute to the development of
improved and targeted therapies for patients with NSCLC.
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