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Targeting TEAD in cancer
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Anna T. Riegel and Ghada M. Sharif*

Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington
D.C., United States
The Hippo pathway is dysregulated in many cancers, leading to pro-oncogenic

effects. The transcription factor TEAD plays a critical role in early development,

tissue homeostasis, and cell proliferation, and it binds to the downstream Hippo

pathway co-activators YAP and TAZ. Numerous studies have examined the roles

of YAP/TAZ and TEAD in cancer, with their activity frequently linked to poor

clinical prognosis. This review discusses how targeting TEAD interactions with

coregulators—most notably YAP and TAZ—represents a promising therapeutic

strategy in oncology. Several pharmacological agents have been developed to

disrupt the YAP/TAZ–TEAD complex, and many are currently being evaluated for

clinical applicability across diverse cancer types. We review current knowledge

on the structure and homology of TEAD, emphasizing the protein–protein

interfaces that mediate binding to YAP/TAZ and other cofactors. Advances in

understanding the YAP/TAZ–TEAD complex have informed the development of

diverse strategies to inhibit downstream transcription of key oncogenic target

genes. Finally, we highlight TEAD inhibitors currently in clinical trials, outlining

their mechanisms of action, associated adverse effects, and potential impact on

the future therapeutic landscape.
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1 Introduction

The Hippo pathway is a tumor suppressor pathway that regulates cellular proliferation

and organ size. Dysregulation of the Hippo pathway and increased YAP/TAZ-TEAD

transcription plays an essential role in many human malignancies. It is involved in tumor

growth, metastasis, immune evasion, and resistance to therapy. Inhibition of the YAP/

TAZ-TEAD transcriptional complex using novel TEAD inhibitors have shown promising

results for therapeutic targeting in cancer. Currently, TEAD inhibitors are being clinically

investigated in cancers with inactivating upstream mutations in the Hippo pathway leading

to dysregulation of cellular proliferation.
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2 TEAD transcription factor family

TEADs (transcription enhancer with TEA domain) are a family

of transcription factors involved in early development, tissue

homeostasis, cell growth, and proliferation. The discovery of the

TEAD family began in the late 1980s with the purification of

TEAD1/TEF1, which was shown to specifically bind to the GT-

IIC and Sph motifs of the simian virus 40 (SV40) enhancer in HeLa

cells (1, 2). Importantly, TEAD also binds the M-CAT (muscle-

specific cytidine-adenosine-thymidine) motif , and has

demonstrated its necessity to proper cardiac and skeletal muscle

development (3). Further studies revealed that TEADs are

evolutionarily conserved transcription factors sharing homology

with AbaA and TEC1 in yeast, and Scalloped in Drosophila (4).

This high degree of conservation in the consensus sequence within

the DNA binding domain, spanning approximately 70 amino acid

residues, lead to the TEA domain also being referred to as the ATTS

domain (AbaA, TEC1, TEF1, Scalloped) (1, 5–7).

Mammals express genes that encode four members of the

TEAD transcription family, denoted TEAD1-4. Despite their

homology, expression of these TEADs varies between tissues

throughout different stages of development (8). TEAD1 has been

well established to be a key player in cardiogenesis, driving the

proliferation and differentiation of cardiomyocytes (9, 10). Notably,

mice harboring a TEAD1 loss of function mutation, are

embryonically lethal due to defects in cardiac development (11).

Interestingly, cardiomyocyte deletion of TEAD1 leads to perinatal

lethality, while overexpression of TEAD1 in striated muscle cells

resulted in cardiac dysfunction further demonstrating the

importance of TEAD1 in cardiac development and function (9,

12). Unlike other TEADs, TEAD2 is almost completely absent from

adult tissues, and is selectively expressed during embryonic

development and can be found at the 2-cell zygotic stage (13, 14).

Inactivation of TEAD2 in mice led to an increased risk of

exencephaly, demonstrating the importance of TEAD2 for neural

development (15). Intriguingly, some groups have found that

TEAD2 knockout mice actually produced viable adult offspring,

suggesting further studies are required to better understand the

requirement of TEADs during development and potential

compensatory mechanisms (15). TEAD3 has not been widely

investigated, and there are no reported knockout studies to date.

However, in vitro studies have revealed that TEAD3 is expressed in

the labyrinthine region of the placenta and is upregulated during

the differentiation of cytotrophoblasts to syncytiotrophoblasts (16).

It is found in myoblastic tissue and regulates epidermal

proliferation in conjunction with TEAD1 (17, 18). TEAD4 plays a

crucial role in embryonic development, specifically in

trophectoderm lineage specification which influences the placenta

and inner cell mass (19). Inactivation of TEAD4 in mice disrupted

pre-implantation and was thus lethal (19). Conversely, ablation of

TEAD4 post-implantation, yielded normal mouse embryos (20). All

four members of the TEAD family appear to have tissue-specific

functions, playing an important role in development.
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3 The Hippo pathway

Although TEADs have been shown to play an important role in

development, they are most notably known for being a binding

partner of YAP/TAZ, the downstream transcriptional coactivators

of the Hippo signaling pathway. Together, the YAP/TAZ-TEAD

complex induces the transcription of genes regulating apoptosis, cell

proliferation, and organ size (21–25).

The Hippo pathway is a highly conserved pathway with core

components discovered in, but not limited to, Drosophila and

mammals (26). It involves a kinase cascade where proteins

phosphorylate and activate one another, ultimately regulating the

phosphorylation of YAP and TAZ and their interaction with

TEADs (Figure 1).

In mammalian cells, the Hippo pathway is triggered by

upstream factors such as cell-cell contact, cell polarity, metabolic

signals, cytoskeletal tension, and GPCR signaling cross-talk. An

important upstream factor that leads to activation of the Hippo

pathway is Neurofibromatosis type 2 (NF2). NF2 is a mediator of

cytoskeletal and membrane-derived signals in response to increased

cell-cell contact and it inhibits further cell proliferation by

recruiting MST1/2 (27). This upstream activation results in the

phosphorylation of MST1/2 (mammalian STE20-like kinase 1/2)

(28). MST1/2 and SAV1 (scaffold protein Salvador homologue 1)

phosphorylate LATS1/2 (large tumor suppressor kinase 1/2) and

MOB1 (scaffold MOBKL1A/B). This activates LATS1/2, allowing it

to directly phosphorylate YAP and TAZ. This phosphorylation

sequesters YAP/TAZ in the cytoplasm, preventing localization to

the nucleus and eventual degradation (27). When the Hippo

pathway is inactivated, or “off”, YAP/TAZ is shuttled to the

nucleus and forms a complex with TEAD, activating the

transcription of a number of genes including those associated

with cell proliferation. When the Hippo pathway is dysregulated,

there is increased transcriptional activation of downstream targets

which have been shown to play a role in metastatic growth and

tumor progression in various cancers (29). Importantly,

downstream signaling initiated by the Hippo pathway is highly

reliant on TEAD, making it an ideal target for therapy.
4 Relevance of the YAP/TAZ-TEAD
axis in cancer progression

TEADs are key regulators of the Hippo pathway, controlling the

transcription of genes involved in cell proliferation and apoptosis.

Dysregulation of the Hippo pathway leads to uncontrolled cell

growth, a hallmark of cancers, and the expression of oncoproteins

promoting invasion and metastasis (30). For example, NF2

mutations have been implicated in multiple cancers including

malignant mesothelioma, meningioma, and schwannomas and it

was found that YAP/TEAD pathway inhibition blocked growth and

survival of these NF2-deficient tumors (31–36). A comprehensive

analysis of over 10,000 cancer patient samples from The Cancer
frontiersin.org
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Genome Atlas revealed that over 30% of samples carried genetic

alterations in core components of the Hippo pathway (29).

However, no one gene was altered in more than 10% of patient

samples, indicating that the aberrant signaling of the Hippo

pathway can be caused by multiple members of the pathway or

even through interactions with other signaling pathways (29, 37).

For example, PI3K signaling blocks the phosphorylation and

activation of upstream Hippo proteins, allowing YAP to localize

to the nucleus, and promote the transcription of pro-tumorigenic

genes (38). Further pathways, notably the Wnt, TGFb, and EGFR

pathways have also been shown to promote dysregulation of the

Hippo pathway, promoting tumorigenesis, metastasis, and drug

resistance (39).

Most studies examining Hippo signaling in cancer have

predominantly focused on YAP/TAZ activity and their effect on

tumor initiation and growth. For example, initial studies on the

Hippo pathway in the liver demonstrated that high levels of

endogenous YAP can lead to hepatomegaly and tumorigenesis

(40, 41). Constitutively active TAZ induced breast cancer stem

cell properties and tumor formation to further triple negative breast

cancer (TNBC) proliferation (42). Interestingly, overexpression of

TAZ in low-expressing breast cancer cell lines promoted epithelial-

mesenchymal transition (EMT) and led to an increase in migration

and invasion (43, 44). An increase in invasion and CSC-like

tumorigenic properties was also observed in gastric epithelial cells

as a result of YAP/TAZ activation (45, 46). Silencing YAP or TAZ

activity in vitro has further demonstrated the importance of these

oncoproteins to promote tumorigenesis. Knockdown of YAP

expression in pancreatic cancer cell lines such as, PANC-1 and

BxPC3, led to a reduction in cellular proliferation (47, 48).
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Additionally, RNAi repression of YAP expression in prostate

cancer cell lines reduced proliferation and induced apoptosis (49).

Knocking down YAP/TAZ in osteosarcoma cell lines MG-63, HOS,

and U2OS reduced cellular proliferation and invasion, while

depletion of TAZ in gastric carcinoma cell lines inhibited motility

and invasion (50–53). The suppression of YAP/TAZ activity in in

vivo studies of breast cancer, pancreatic cancer, and osteosarcoma

have also demonstrated the contribution of these downstream

Hippo proteins on tumorigenesis (51, 54, 55). Furthermore, YAP/

TAZ activation can overcome anti-proliferative effects of other

inhibitors such as KRASG12C inhibitors leading to resistance and

tumor growth (56). This indicates concurrent treatment with TEAD

inhibitors could enhance antitumor activity and prevent acquired

resistance to other pathway inhibitors.

In many cancers, increased levels of YAP/TAZ in the nucleus is

correlated with poor patient prognosis and an increase in

therapeutic resistance (57). In non-small cell lung cancer

(NSCLC), increased expression of YAP/TAZ was found to be

correlated with worse clinical outcomes, and a shorter overall

survival (OS) (58, 59). Inhibition of TEAD also led to increased

chemotherapeutic sensitivity in paclitaxel-resistant A549 cells (60).

High levels of YAP in small cell lung cancer (SCLC), is not only

associated with a shorter OS, but also with radiation and drug

resistance (61, 62). Within triple negative breast cancer (TNBC),

nuclear expression of YAP/TAZ is strongly associated with and

showed poorer clinical outcomes for disease-free survival (DFS) and

OS (63–65). Studies stratifying colorectal cancer patients based on

YAP activity found YAP activation was highly associated with lower

disease-free survival (DFS) and progression-free survival (PFS) (66–

68). Immunohistochemistry staining of YAP and TAZ in samples of
FIGURE 1

Graphical visualization of Hippo Pathway kinase cascade leading to activation or inactivation of downstream TEAD signaling. Created in BioRender.
Battina, R. (2025) https://BioRender.com/1b0g0po.
frontiersin.org
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patients with gastric cancer or hepatocellular carcinoma, also

revealed that YAP/TAZ expression was negatively correlated with

OS and PFS (69–71). Additionally, tissue microarray analysis of

over 17,000 prostate cancer samples showed that elevated YAP

protein levels were associated with more advanced tumor staging

and earlier biochemical recurrence (72, 73). Given that the majority

of YAP/TAZ transcriptional activity occurs through binding with

TEAD, this continues to highlight the importance of blocking a

single downstream target like TEAD in order to inhibit

cancer progression.

As noted above, the oncogenic activity of YAP/TAZ depends

largely on its direct binding with TEAD, therefore, it is important to

consider how the TEAD family itself contributes to tumorigenesis.

Overexpression and hyperactivation of TEAD has been associated

with tumorigenesis and cancer progression in a number of cancer

types (Figure 2) (39). Similar to YAP/TAZ, high levels of TEAD in

solid tumors is correlated with worse clinical outcomes (74–78).

High mRNA expression levels of TEAD4 in approximately 4,000

breast cancer patients were correlated with a worse OS (79).

Likewise, high nuclear protein levels of TEADs in tissues from

lung adenocarcinoma and PDAC patients was also linked to a
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shorter OS (80, 81). Studies using mouse models have revealed the

importance of TEAD in tumorigenesis. For example, TEAD4

knockdown in HCT116, a colorectal cancer cell line, suppressed

proliferation and tumor growth in BALB/c mice (82). A TEAD2

dominant negative construct was used to inhibit YAP activity in

MSTO-211H cells, a mesothelioma line, by competing with

endogenous TEAD leading to loss of proliferation in vitro, and

tumor regression in vivo (83). YAP1 shRNA knockdown and

pharmacological inhibition using TEAD inhibitor K-975 in

MSTO-211H cells engrafted in a mouse model prevented tumor

initiation and induced tumor regression (83). Another group

developed a truncated variant TEAD2 lacking a DNA-binding

domain to inactivate TEAD activity in the liver (84). Surprisingly,

this did not affect normal liver growth, but did curb hepatomegaly

typically induced by YAP overexpression. In head and neck

squamous cell carcinoma (HNSCC), use of SW-682 to block

YAP/TAZ-TEAD binding led to an antitumor response in FAT1-

mutant HNSCC xenograft models (85). TEAD inhibitor,

NSC682769, was found to inhibit proliferation and migration

while enhancing anti-tumor response in a glioblastoma xenograft

mouse model (86). Another study demonstrated that gastric cancer
FIGURE 2

Graphical visualization of expression changes in TEAD family members linked to oncogenesis, metastasis, and patient survival discussed in this
review. Created in BioRender. Battina, R. (2025) https://BioRender.com/1kkcq8x.
frontiersin.org
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proliferation is linked to PRIM1 expression which is

transcriptionally regulated by TEAD4 (87). Through experiments

using TEAD inhibitors (mechanisms of TEAD inhibitors are

discussed in section 6), VT101, VT102, and VT103, it has been

shown that targeting the Hippo pathway is a potential therapeutic

strategy to block cell proliferation in NF2-null primary

schwannoma and meningioma cells from human tumors (36).

Periostin-CRE;NF2fl/fl mice were treated with VT1 and VT2

leading to a shrinkage of schwannoma tumors in vivo (36).

However, it is important to note that YAP and TAZ can act as

tumor suppressors for certain cancers and thus disrupting their

interaction with TEAD will not necessarily be effective in all cancer

types or at all stages of cancer. In androgen receptor positive (AR+)

prostate cancer, YAP impeded tumor growth by competing with AR

for binding and TEAD-mediated signaling (88). TEAD3 also

inhibited proliferation and metastasis in prostate cancer (89). In

primary small cell lung cancer (SCLC), IHC revealed low levels of

YAP/TAZ and gain-of-function studies demonstrated that

increasing YAP reduced tumor burden and increased survival

(90). In renal clear cell carcinoma, YAP has been shown to

repress proliferation that was driven by a TEAD-NFkB
transcriptional complex by competing for binding to TEAD (91).

In ER+ breast cancer, high levels of YAP lead to a good prognosis
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and inhibit ERa/TEAD interactions suggesting that YAP competes

with ERa to block cancer growth (92).

Hippo pathway signaling has been shown to greatly impact

cancer progression which is why it’s important to understand

structural components of TEAD to develop inhibitors that can

alter transcriptional regulation as an avenue for therapy.
5 Structure and homology of TEAD

Within the TEA domain, TEAD1–4 have greater than 95%

amino acid similarity (Figure 3) (94). Initial studies used nuclear

magnetic resonance spectroscopy to propose a model for the

protein structure (95). The DNA binding domain (DBD) also

known as the TEA domain consists of three alpha-helices

forming a globular structure. It was discovered that the L1 loop

was essential for TEAD loading to M-CAT sites and helix H3 was

the DNA-recognition helix of TEAD (95).

The other highly conserved domain in TEAD is the YAP

binding domain (YBD) which is in the C-terminal region. X-ray

crystallography shows YAP-TEAD1 binding in residues 194–411

forming three highly conserved protein-protein interfaces

(Figure 4) (96). The first interface (b-sheet) is mediated by seven
FIGURE 3

Human TEAD1–4 proteins share two highly conserved regions with the DNA Binding Domain (DBD) and the YAP Binding Domain (YBD) and less
conserved regions including N-terminal domain (N) and the proline-rich domain (PRD). TEAD1 (Uniprot ID: P28347), TEAD2 (Uniprot ID: Q15562),
TEAD3 (Uniprot ID: Q99594), TEAD4 (Uniprot ID: Q15561) structural function is dependent on palmitoylation at Cys344, Cys380, Cys371, and
Cys360, respectively (93). Identity (DNA sequence) and similarity (amino acid sequence) percentage are relative to TEAD1. Created in BioRender.
Battina, R. (2025) https://BioRender.com/8wzltok.
frontiersin.org
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hydrogen bonds between YAP b1 (residues 52-58) and TEAD1 b7
(residues 318-324) which forms an antiparallel b-sheet. The second
interface (a-helix) is mainly mediated by hydrophobic interactions

between the YAP a1 helix (residues 61–73) and a binding groove

formed by TEAD1 a3 and a4 (residues 345-369). The final interface
(W-loop) is between the twisted-coil region of YAP and a deep

pocket in TEAD1 formed by b4, b11, b12, a1, and a4. This W-loop

was also found when examining YAP-TEAD2 binding indicating

that it plays a major role (99). Experiments repeated in mice

examining YAP-TEAD4 binding also found three interfaces of

binding (100). The b-sheet interface is between YAP (residues 65-

70) and the TEAD4 b6-b7 loop. The a-helix interface is between the
a1 helix and a binding groove formed by TEAD4 a3 and a4. The
W-loop interface is between the a2 helix and strands b4, b11, and
b12 of TEAD4. The YAP binding domain sequence of TEAD2 is 79-

91% similar in TEAD1, 3, and 4 (101). There is a high level of

similarity between binding of YAP and TEAD across species and

family members indicating high conservation of YAP-TEAD
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interactions due to conservation in YAP-binding domain of

TEAD and TEAD-binding domain in YAP (102). However, the

hydrophobic proline-rich domain (PRD) and the N-terminal

regions of TEAD are not as highly conserved across family

members and different species. Initially, these domains were

demonstrated to play a role in protein-protein binding between

TEF-1 and scalloped in Drosophila (103). Another study found that

deletion of the proline-rich domain within amino acids 115 to 223

cut YAP-TEAD binding to 57% efficiency (101). However, all

deletions within the YBD showed an even stronger effect on

binding efficiency, which ranged from 1-18%, highlighting the

importance of interactions between YAP and the YBD.

Subsequent crystallography experiments further identified those

key interfaces within the YBD shown in Figure 4, but evidence

pertaining to the exact role of the PRD was not discovered during

these crystallography experiments. We suggest that the PRD may

help enhance binding between YAP and TEAD, but does not play a

major role which is why development of targeted therapeutics
FIGURE 4

(A) Ribbon model (PDB: 3KYS (96)) of TEAD1 (amino acids 191-411) in green with specific TEAD interfaces in blue and partial YAP structure (amino acids
52-100) in red to highlight three main interfaces for YAP-TEAD binding. (B) YAP-TEAD interface rotated 60° on the x-axis and -60° on the z-axis.
(C) Ribbon model (PDB: 5GN0 (97)) of TEAD1 (amino acids 191-411) in green with specific TEAD interfaces in blue and partial TAZ structure (amino
acids 26-57) in red to highlight the main interfaces for TAZ-TEAD binding. (D) TAZ-TEAD interface rotated rotated 60° on the x-axis and -60° on the
z-axis. Ribbon models created in Pymol and labeled using Biorender (98). Created in BioRender. Battina, R. (2025) https://BioRender.com/6ltz8nc.
frontiersin.org
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should be aimed against disrupting interactions between the

interfaces of the YBD and TEAD.

While YAP and TAZ both bind to similar binding sites on

TEAD, small alterations in protein structure affect the interactions

between the proteins (Figure 4). For example, the major interface

between the twisted-coil of YAP and the TEAD binding pocket is

altered in TAZ due to a shorter loop (13 residues in TAZ versus 19

residues in YAP) (97). This leads to two alternate binding

conformations between TAZ and TEAD. The first binding

conformation is similar to the YAP-TEAD binding previously

discussed. However, the main difference is the conformation of

the smaller loop in the TEAD binding pocket. This second

conformation is a heterotetramer conformation between two TAZ

and TEAD molecules where TAZ helix a1 binds to the first TEAD

while TAZ helix a2 binds to the second TEAD. The differential

binding of YAP and TAZ to TEAD offers the opportunity to

develop inhibitors that selectively disrupt either YAP-TEAD or

TAZ-TEAD interactions without affecting the other complex.

However, as we discussed previously, both YAP and TAZ have a

role in many cancer types progression. Further studies are needed to

indicate the benefit of developing selective inhibitors of these

paralogs to block their differential effects on cancer progression.

The vestigial-like (VGLL) family of coactivators consists of four

members, VGLL1-4 (see section 7) that interact with TEAD.

Structurally, VGLL1 interacts with TEAD4 through two different

interfaces. The first interface is an antiparallel b sheet between b2 of
VGLL1 and b7 of TEAD4 and the second interface is between an

alpha helix in VGLL1 and TEAD helices a3 and a4 (104). These

interfaces, also known as the TONDU domain, are well conserved

among the VGLL family (105). Despite the lack of primary

sequence similarity between VGLL1 and YAP/TAZ, these

proteins interact with the same two interfaces on TEAD though a

VGLL1 analog to the W-loop interface was not found. However,

further investigation by another group found that VGLL2 does have

the W-loop interface unlike VGLL1/3 (106). VGLL4 is unique

among the VGLL family as it has a secondary TONDU domain

(104, 107). Interestingly, if this secondary TONDU domain is

deleted, it prevents VGLL4 from inhibiting lung cancer cell

growth by attenuating YAP/TAZ activity (108). As we will discuss

in section 7, this leads to VGLL proteins having highly context-

dependent effects on cancer progression.

Furthermore, i t was found that TEAD undergoes

autopalmitoylation at conserved cysteine residues (see Figure 4).

One study mutated the conserved cysteine residue to an alanine in

human TEAD2 which decreased overall protein levels and

demonstrated that palmitoylation is important for protein

stability (93). Another study identified that loss of TEAD

palmitoylation significantly reduced co-immunoprecipitation

between TEAD and YAP/TAZ, but was dispensable for binding

to VGLL4 (109). Even after translation, TEAD proteins have been

shown to undergo phase separation and form condensates

intrinsically which serve to spatially regulate YAP/TAZ signalling

(110). These structural discoveries have helped immensely in the

development of TEAD inhibitors to prevent binding between
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TEAD and YAP/TAZ cofactors without potentially impacting

other TEAD binding partners.
6 Key downstream targets of TEAD
signaling in cancer

TEAD activation is implicated in tumorigenesis and cancer

progression by promoting the transcription of genes involved in

EMT, proliferation, cancer stem like (CSC) properties, drug

resistance, and metastasis (39). EMT is a well-established process

necessary for normal development, but is also exploited in cancers

to facilitate tumorigenesis and metastasis (111). TEAD activation

upregulates the expression of the canonical EMT markers Slug,

ZEB1, ZEB2, and Vimentin (42, 77, 112–114). This in turn

promotes the expression of mesenchymal genes, driving tumor

cell invasion and migration. In vitro studies disrupting TEAD

activity have further revealed this relationship. In ovarian cancer

cells, SKOV-3, pharmacological disruption of the YAP/TAZ-TEAD

complex resulted in a decrease in vimentin expression (115).

Additionally, in a constitutively active TAZ4SA-mutant cell line,

vimentin and N-cadherin were upregulated while epithelial markers

E-cadherin and occludin were downregulated (116). Collectively,

this data indicates the role of TEAD in regulating the gene

expression of EMT markers (115).

Two well-known downstream targets of TEAD are CTGF and

CYR61, both of which are part of the tissue growth factor family and

function to regulate cellular proliferation, migration and adhesion (117).

They have been implicated in multiple cancers as promoters of

carcinogenesis and metastasis (118–123). CTGF has been shown to

be upregulated in cancers of the brain, esophageal, breast, pancreas,

melanoma and prostate (124–128). YAP/TAZ/TEAD binding leads to

the transcription of CTGF, which promotes the activation of the FAK/

Src/NFkB p65 signaling axis leading to increased cellular proliferation

and migration through Glut3-mediated expression (129). CTGF has

also been linked to chemoresistance through upregulation of Bcl-xl and

cIAP1 in breast cancer (130). Upregulation of CYR61 induces

chemoresistance in triple-negative breast cancer by activating Wnt

signaling, EMT and a CSC-like phenotype (131).

A well-known pathway that drives cancer progression is the

PI3K/Akt pathway which has been shown to interact with YAP/

TAZ-TEAD. YAP analog, Yki, was found to require insulin-like

growth factor (IGF-1) signaling through PI3K in order to

translocate to the cytoplasm in Drosophila while inactivation of

Akt prevented nuclear localisation of Yki (132). This PI3K-

mediated activation of downstream Hippo signaling is

reciprocated by YAP which was found to inhibit translation of

tumor suppressor, PTEN, through miR-29 and overexpression of

YAP in transgenic mice was shown to have diminished PTEN

expression in IHC staining (133). A systematic gain-of-function

kinase screen identified PI3KCB to positively promote YAP/TAZ

function in vitro (134). A combination of PI3KCB and TAZ

coexpression also led to tumor formation in mice despite using

nontumorigenic human mammary cell line MCF10A (134).
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TEAD is also involved in regulation of MYC, one of the most

commonly activated oncoproteins in cancer (135). It has been

found that overexpression of MYC leads to a partial rescue of

cellular proliferation following YAP/TAZ depletion (136). Based on

this, MYC is not only a downstream regulator of oncogenesis

affected by TEAD activation, but can also play an important role

in YAP/TAZ-TEAD signaling leading to cancer progression. A

recent study has found that mesothelioma cells resistant to the

TEAD inhibitor, K-975, exhibited increased activation of MYC

signaling and continued to proliferate in a TEAD independent

manner (137). This indicates that MYC activation can bypass the

pharmacological inhibition of YAP/TAZ-TEAD signaling in

cancers where Hippo pathway is mutationally inactivated.

Interestingly, other studies have found that upregulation of MYC

can repress YAP/TAZ activity in triple-negative breast cancer,

indicating a need for further research to better understand these

interactions (138, 139).
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7 Mechanisms of action for TEAD
inhibitors
The correlation between the dysregulation of the Hippo

pathway and oncogenesis has been identified in multiple cancers

so multiple pharmacological agents have been developed to target

the interactions between YAP and TAZ with TEAD and reduce

further downstream activation of the related oncogenic genes. A few

different mechanisms of action have been developed to adequately

target this complex, including YAP phosphorylation agonists, YAP

nuclear localization inhibitors, protein-protein interaction

inhibitors, and TEAD binding pocket inhibitors (Figure 5).

(i) YAP phosphorylation agonists increase degradation of YAP/

TAZ, preventing localization into the nucleus and binding to

TEAD. A35 is a topoisomerase inhibitor that was able to decrease

YAP nuclear localization and inhibit growth in human leukemia
FIGURE 5

Mechanisms of Action for TEAD inhibitors currently in development or clinical trials. Created in BioRender. Battina, R. (2025) https://BioRender.com/
of9ygmt.
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cells by increasing phosphorylation of YAP (140). Furthermore,

dasatinib and fluvastatin changed actin dynamics and induced

YAP/TAZ phosphorylation in breast cancer cell line, MDA-MB-

231 (141). MDA-MB-231 cells treated with dasatinib or fluvastatin

also demonstrated increased sensitivity to doxorubicin and

paclitaxel treatment.

(ii) YAP nuclear localization inhibitors can prevent or even

reverse the nuclear translocation of YAP. Statins such as cerivastatin

and simavastatin have been shown to inhibit nuclear localization of

YAP through re-localization of YAP from the nucleus to the

cytoplasm (142). Pazopabin plays a dual role as it can induce

proteasomal degradation of YAP/TAZ and also induce

phosphorylation of YAP/TAZ (141).

(iii) Protein-protein interaction (PPI) inhibitors block the YAP/

TAZ interface interactions with TEAD described previously.

IAG933 is a pan-TEAD PPI inhibitor. As a competitive

antagonist, it directly prevents the formation of a transcriptional

complex between YAP/TAZ and TEAD by blocking protein-protein

interactions at the third interface binding site (143). Another

successful PPI inhibitor is Super-TDU which is a peptide that

mimics VGLL4 and orthosterically competes with YAP/TAZ for

binding to TEAD. In a gastric carcinogenesis murine model, Super-

TDU reduced tumor volume and mRNA levels of CTGF and

CYR61 (144). A TEAD dominant-negative protein inhibitor

(TEADiv2) structurally based on the YBD strongly inhibited

transcriptional activity of TEAD in HEK293 cells by 5-fold (145).

While not a direct PPI inhibitor, GNE-7883 has been shown to

block TEAD allosterically at the lipid binding pocket causing

conformational changes that lead to tension between the two

TEAD helices that compose part of interface 2 (see Figure 4)

while also displacing a proximal residue, Gln410 (146). GNE-

7833 reduced growth in YAP/TAZ dependent or NF2-null cell

lines including OVCAR-8, MDA-MB-231, NCI-H226, and

HCC1576 (146). Furthermore, addition of GNE-7833 overcame

resistance to sotorasib in NSCLC in mice.

(iv) TEAD auto-palmitoylation inhibitors. Recently, it was

discovered that the TEAD family is palmitoylated at a universally

conserved cysteine allowing for proper TEAD folding and stability

(93). Multiple studies found that disrupting palmitoylation of

TEAD affects protein stability and function and can also prevent

binding to chromatin which would lead to reduced transcription in

both cases (93, 147). This led to development of several small

molecule TEAD binding pocket inhibitors that block palmitoylation

to impair TEAD function. K-975 covalently binds to the internal

cysteine in the palmitate-binding pocket and suppresses

proliferation in NF2-deficient mesothelioma cell lines and

xenograft models (148). MGH-CP1 blocks autopalmitoylation of

TEAD and showed significant overlap in gene expression changes

with YAP/TAZ siRNA in MDA-MB-231 cells. MGH-CP1 inhibited

tumor initiation in Huh7 and MDA-MB-231 xenograft models.

Furthermore, they found that MGH-CP1 led to AKT activation and

combination with an AKT inhibitor led to cancer cell death (149).

MYF-03–176 is a covalent inhibitor that binds to the key cysteine

residue within TEAD to prevent palmitoylation and was shown to

reduce proliferation in liposarcoma cell line, 94T778 (150). Another
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study was able to identify a small molecule inhibitor that

dysregulated TEAD palmitoylation and caused TEAD to act as a

transcriptional repressor and limited tumor growth in a Detroit X1–

562 mouse xenograft model (147).

(v) TEAD PROTAC inhibitors. Another mechanism developed

for targeting TEAD is the use of proteolysis targeting chimeras

(PROTAC) to promote degradation of the target protein through

binding to E3 ubiquitin ligase. HC278, a TEAD-specific PROTAC,

is able to degrade TEAD1/3 at nanomolar doses (151). Further

testing in HC226 mesothelioma cell lines also showed a reduction in

colony formation. Another set of PROTACs was developed by

linking a VT107 analog to a thalidomide ligand and optimized by

evaluating the antiproliferative effects against NF2-deficient HC226

cells (152). They found that compound 27 led to selective TEAD2

degradation and reduced transcription of YAP target genes. One

paper identified TEAD PROTAC, H122, that induced TEAD1

degradation at nanomolar concentrations and had antitumor

response in a MSTO-211H mouse xenograft model (153).

Another PROTAC, Compound D, demonstrated significant

degradation of TEAD1/3 in MDA-MB-231 and OVCAR-8 cells

(154). Compound D also reduced accessibility to chromatin at

TEAD motifs and inhibited cell proliferation in OVCAR-8 cells.

Furthermore, there are patents out for more TEAD PROTACS

(WO/2021/178339 and WO/2023/031801) as well indicating that

this is a rapidly growing class of TEAD inhibitors and we expect to

see more preclinical and clinical data regarding their use in cancer.

Some of these TEAD inhibitors have reached clinical trials and

are currently being assessed for their effectiveness in metastatic

malignant mesothelioma and other solid tumors (Table 1).

Currently, there are several TEAD inhibitors in human clinical

trials including VT3989 (NCT04665206), IAG933 (NCT04857372),

ISM6331 (NCT06566079), SW-682 (NCT06251310), ION537

(NCT04659096), and BPI-460372 (NCT05789602). A previous

clinical trial (NCT05228015) and further research on TEAD1-

selective inhibitor, IK-930, was discontinued based on a review of

the clinical data. As TEAD inhibitors are a newly developing drug

class, all current clinical trials are still in early phase trials and many

have not publicly reported their clinical findings at this time.
7.1 VT3989

While the chemical structure of VT3989 has not been publicly

disclosed, a previous study has shown preclinical efficacy of

precursor small molecule inhibitors that also block TEAD auto-

palmitoylation, VT101-VT107 (157). Using a YAP reporter assay,

they were able to identify 153 compounds that reduced YAP/TAZ-

TEAD based luciferase signaling by >80% at 5umol/L and led to the

identification of VT101 and 102 which were able to downregulate

expression of CYR61 and AMOTL2. New analogs, VT103–107 were

developed and VT104 and VT107, an enantiomer of VT104, were

found to block palmitoylation of all four TEAD members. VT103

and VT104 also reduced proliferation of NF2-deficiency

mesothelioma xenografts in mice and in multiple NF2-mutant or

NF2-deficient cell lines. Further optimization led to the
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development of VT3989 (structure unavailable) which is currently

being used in a phase 1/2 clinical trial indicating enhanced efficacy

in comparison to the earlier compounds which had already

demonstrated strong antitumor efficacy through loss of pan-

TEAD activity (158).

VT3989 is a small molecule pan-TEAD inhibitor that works by

inhibiting TEAD auto-palmitoylation (158). It has been shown to

block proliferation of NF2-deficient mesothelioma in vitro and in

vivo (159). Additionally, VT3989 enhanced effectiveness of EGFR

inhibitors, MEK inhibitors, BRAF inhibitors, MET inhibitors,

mTORC inhibitors and KRASG12C inhibitors compared to

monotherapy alone (158). In the ongoing phase 1/2 trial, they

have enrolled 172 patients for dose escalation (n = 85) and dose

expansion (n = 87) including 135 with mesothelioma that have

progressed on prior therapy regimens (158). The overall response

rate (ORR) reported was 26% in 47 patients treated with clinically

optimized dosing and ORR of 32% in 22 patients with

mesothelioma when using clinically optimized doses and

remaining within thresholds for urine albumin:creatinine ratio

(UACR). They found that intermittent dosing (100mg QD, 2

weeks on, 2 weeks off) of VT3989 led to lower albuminuria

(4.9%) when compared to continuous dosing (22.2%) (158). Some

common treatment-emergent adverse effects from VT3989

included fatigue (40.1%), increased UACR (32.6%), proteinuria

(28.5%), and nausea (28.5%) (158). Common treatment-related

adverse events included increased UACR (31.4%), proteinuria

(27.9%), fatigue (19.8%) and peripheral edema (23.3%)

(158).Grade ¾ events were rare with increased UACR (1.7%) and

dyspnea (1.2%) occurring in more than one patient. Examination of

tumor biopsies from six patients also demonstrated that VT3989

was able to modulate expression of YAP-TEAD target genes

including CYR61 and CTGF. Notably, they found that VT3989
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was able to demonstrate antitumor activity regardless of NF2

mutation status. VT3989 has shown enhanced efficacy in

preclinical combination studies and has encouraging initial results

from the phase 1/2 study. We look forward to further clinical

reports regarding the efficacy and safety of this drug once the trial is

fully completed.
7.2 IAG933

IAG933 is a small molecule pan-TEAD inhibitor currently

being investigated in a phase 1 clinical trial (NCT04857372) that

directly blocks binding between YAP/TAZ and TEAD.

Interestingly, IAG933 leads to an increase in VGLL4 repression

(see section 7) of TEAD demonstrating the selective nature of the

drug targeting YAP/TAZ-TEAD protein-protein interactions. In

human xenograft mouse models, oral IAG933 treatment led to

tumor regression at tolerable doses in mesothelioma (143). A

comparison to VT104 and K-975 showed that IAG933 had a

more potent effect on YAP/TAZ-TEAD target gene expression,

but had a shorter half life in the blood and tumor than VT104 (143).

Combination treatment with osimertinib, an EGFR inhibitor, also

improved efficacy of osimertinib in NSCLC (143). It also showed

promising results in combination with KRASG12C inhibitors in CRC

and NSCLC tumors as well as BRAF inhibitor dabrafenib in

BRAFV600E mutated tumors (143). The preclinical data

demonstrates selective inhibition of TEAD which is being further

investigated therapeutically in solid tumors. It also demonstrates an

alternative therapeutic use in conjunction with MAPK pathway

inhibitors to halt cancer progression (143, 155). In preclinical

studies, it was found that 60mg/kg QD led to elevated urine

kidney markers such as albuminuria due to renal tubular injury
TABLE 1 TEAD inhibitors being investigated in cancer clinical trials.

Drug name
Developed

by
Clinical trial # Phase

Mechanism of
action

Reported adverse events Reference

IAG933
Novartis

Pharmaceuticals
NCT04857372 Phase 1

Protein-Protein
Interaction Inhibitor

Preclinical albuminuria and renal
tubular injury

(143, 155, 156)

VT3989
Vivace

Therapeutics
NCT04665206 Phase 1/2

Auto-palmitoylation
inhibitor

Clinical proteinuria, albuminuria,
peripheral edema, fatigue, and nausea

(157–159)

ISM6331 InSilico Medicine NCT06566079 Phase 1
Auto-palmitoylation

inhibitor
Safety profile not reported (160)

SW-682
SpringWorks
Therapeutics

NCT06251310 Phase 1
Auto-palmitoylation

inhibitor
No preclinical adverse events reported (85, 161)

ION537
Ionis

Pharmaceuticals
NCT04659096 Phase 1

YAP1 Antisense
Oligonucleotide

Safety profile not reported (162)

BPI-460372
Betta

Pharmaceuticals
NCT05789602 Phase 1

Auto-palmitoylation
inhibitor

No renal toxicity observed clinically (163, 164)

IK-930 Ikena Oncology NCT05228015
Phase 1

(Discontinued)
Auto-palmitoylation

inhibitor
Clinical proteinuria, fatigue, nausea,

and diarrhea
(165–167)

ODM-212 Orion Pharma ISRCTN99739590 Phase 1 Not reported Safety profile not reported (168)

BGC-515
BridGene
Biosciences

NCT06452160 Phase 1 Not reported Safety profile not reported (169)
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and protein-losing nephropathy, but when this weekly dose was

administered 3 days on/4 days off, there was a reduction in these

biomarkers within the urine (156). Based on the efficacy in

preclinical settings, we would expect IAG933 to have clinical

potential, but the phase 1 results are still unreported.
7.3 ISM6331

ISM6331 was developed using in silico modeling followed by

further optimization as a pan-TEAD inhibitor that blocks TEAD

palmitoylation to disrupt YAP/TAZ-TEAD transcription and is

currently being investigated in a phase 1 clinical trial

(NCT06566079) (160). It demonstrated strong antitumor efficacy

in NF2-deficient mesothelioma models as monotherapy (160).

Additionally, like IAG933 and VT3989, it showed synergistic

effects with EGFR and KRASG12C inhibitors (160). However, there

are no preclinical or clinical reports on the safety of this drug to

date. Future reports on ISM6331 use in clinical trials could support

further use of in silico modeling to develop novel TEAD inhibitors.
7.4 SW-682

SW-682 (NCT06251310) is a pan-TEAD small molecule

inhibitor which blocks palmitoylation of TEAD to inhibit all

TEAD-dependent transcription (161). It was reported that SW-

682 inhibited proliferation of Hippo-mutant mesothelioma cells in

vitro and tumor regression in murine mesothelioma models. Like

other TEAD inhibitors, SW-682 synergized with EGFR and

KRASG12C inhibitors for NSCLC PDX models in vivo (161). SW-

682 was also shown to decrease cellular proliferation and

downregulated YAP/TAZ-TEAD target genes in HNSCC cell

lines Cal27 and Cal33 and in tumor xenograft models (85). It was

also reported that SW-682 has good oral bioavailability in mice and

did not lead to weight loss during treatment. However, there were

no reports on the potential effects of SW-682 on renal function and

urine biomarkers which have been reported with use of other TEAD

inhibitors which could indicate a better side effect profile clinically.
7.5 ION537

Unlike other TEAD inhibitors discussed, ION537 is an

antisense oligonucleotide that selectively targets YAP1 to cause a

marked reduction in YAP1 protein level in HCC and HNSCC

tumor models (162). Interestingly, ION537 treatment also led to an

increase in T cell infiltration and enhanced efficacy of anti-PD1

antibody treatments. The results from the clinical trial

(NCT04659096) have not been reported at this time. The unique

nature of ION537 as an YAP1 antisense oligonucleotide coupled

with an increase in immune infiltration indicate a novel mechanism

of targeting TEAD which could also potentially sidestep the renal

toxicity of other TEAD inhibitors.
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7.6 BPI-460372

BPI-460372 is a small molecule inhibitor that covalently binds

to the cysteine residue in the central binding pocket of TEAD thus

irreversibly inhibiting palmitoylation. In vivo testing demonstrated

reduction of tumor growth in NF2-deficient and LATS1/2-mutated

xenograft models (163). Further studies found that dose escalation

ranging from 10 to 80 mg per oral dose during the Phase 1 study

(NCT05789602) did not lead to any Grade 3 or higher adverse

events and did not observe any renal toxicity when administered

using the 3 days on/4 days off schedule and improved renal injury

biomarkers while still maintaining efficacy (164). Reducing the

renal toxicity biomarkers while maintaining efficacy makes BPI-

460372 a viable candidate should its safety and efficacy be

validated clinically.
7.7 ODM-212

ODM-212 is a pan-TEAD inhibitor currently in Phase 1

(ISRCTN99739590) that is being evaluated for use in select

advanced solid tumors (168). There is currently no published data

regarding safety profile or preclinical results so future results from

the Phase 1 trial will be critical for further consideration.
7.8 BGC-515

BGC-515 is a TEAD inhibitor currently in Phase 1

(NCT06452160) being evaluated for use in metastatic

mesothelioma, epithelioid hemangioendothelioma, and other solid

tumors. There is currently no published data regarding the safety

profile of BGC-515. However, another TEAD inhibitor developed

by BridGene is BGI-9004. BGI-9004 treatment led to tumor

regression in xenograft models using mesothelioma cell lines,

H226 and MST-0211H (169). They also did not see any

deleterious effect on total body weight in mice during the 28 day

treatment course. Dose response matrices suggest that BGI-9004

could be used in combination therapy with KRAS inhibitors in

KRAS-mutant cell lines to overcome resistance (169). We

hypothesize that BGC-515 may be the result of further

optimization and preclinical testing following these discoveries

with BGI-9004 and look forward to results from the Phase 1 trial.
7.9 IK-930

IK-930 is a small molecule inhibitor that selectively blocks

autopalmitoylation of TEAD1 inhibiting proliferation of Hippo

pathway-mutated cancer cell lines and antitumor effects in

mesothelioma xenograft models (165). Furthermore, IK-930

enhanced the efficacy of EGFR and MEK inhibitors in vivo. It was

reported that IK-930 drove interactions between VGLL4 and

TEAD1 which repressed oncogenic activity and blocked
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chromatin association by other TEAD family members.

Additionally, treatment with IK-930 had limited renal toxicity in

rats and no renal issues in non-human primates (166). They

reported that proteinuria was only recorded in 3 out of 26

patients and was fully reversible without dose-limiting effects

(167). Other adverse effects reported were fatigue, nausea and

diarrhea. Unfortunately, as the phase 1 clinical trial for IK-930

was discontinued, it is unlikely that there will be further

investigation into its potential as a TEAD inhibitor despite the

favorable renal safety profile and TEAD1 selective activity.

Overall, TEAD inhibitors are a very novel drug class that is still

undergoing investigation, so there is a lack of extensive data

publically available, however we anticipate that completion of

these Phase 1 studies will provide greater insights on safety and

efficacy of TEAD inhibitors clinically. Even with the limited data

provided, a potential adverse effect generalized to TEAD inhibitors

seems to be some form of renal toxicity leading to elevated urine

biomarkers such as albuminuria. As discussed previously, different

members of the TEAD family have tissue-specific expression

patterns even as early as embryogenesis. High levels of YAP and

TEAD3 and TEAD4 motif enrichment have been discovered to be

important for podocytes differentiation and survival which could

explain why some pan-TEAD inhibitors may have stronger adverse

effects than paralog-specific inhibitors such as IK-930 which did not

find renal toxicity in non-human primates and very little

proteinuria in human patients (170–172). In all reports, it was

indicated that this toxicity is reversible and has been shown to be

mitigated through an altered dosing regimen in several drugs. This

would still indicate that any synergistic treatment plans between

TEAD inhibitors and other drugs that can increase renal toxicity

should be carefully evaluated to ensure that dosing does not hinder

patient survival and reduce long-term efficacy of treatment.
8 Alternate TEAD binding partners in
cancer

YAP and TAZ are the most heavily studied binding partners for

the transcription factor TEAD, but there are additional binding

partners that enhance or suppress transcription through binding to

the TEAD transcriptional complex.
8.1 AIB1/SRC3/NCOA3

Amplified in Breast Cancer 1 (AIB1) or the steroid receptor

coactivator (SRC3) is an oncogene overexpressed in cancer that acts

as a coactivator to enhance transcription through interactions with

several transcription factors including TEAD. Early reports

identified functional interactions between members of the SRC

family and TEAD2 leading to hypotheses that SRC could be a

coactivator for the TEAD family of transcription factors and bind

directly to TEAD (173). In fact, knockdown of AIB1 in MCF10A

reduced TEAD-mediated downstream expression of CTGF and
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ANKRD1 (174). Furthermore, knockdown of AIB1 also led to a

reduction in TEAD-YAP luciferase reporter activity indicating its

role to bridge interactions between TEAD and YAP. Further studies

demonstrated that AIB1 physically interacts with YAP and TEAD

in MCF10A and MCFDCIS breast cancer cells and that AIB1 can

recruit the tumor suppressor ANCO1, a repressor of the S100 and

SPRR gene families (175). ChIP-qPCR analysis showed that AIB1

was more enriched at ANKRD1 with TEAD and AP-1 occupancy

than with a TEAD4 peak with only TEAD occupancy in HCT116

cells (176).
8.2 NFkB

While the interactions between NFkB and TEAD are not yet

fully understood, it has been shown that TEAD1 can cause nuclear

sequestration of p65 leading to development of a TEAD/p65

complex in rat pulmonary epithelial cell line, L2 (177). This

complex regulates a subset of immune genes that were previously

be l i e v ed to be so l e l y NFkB-dependen t (177 ) . Co -

immunoprecipitation confirmed p65 formed complexes with

TEAD1 and TEAD4. Interestingly, YAP was found to have a

tumor suppressor role in clear cell renal carcinoma by competing

with p65 for TEAD binding and excluding other protein

interactions with TEAD (91). Furthermore, it was found that

cytoplasmic YAP can directly attenuate NFkB activity by binding

to TAK1 and IKK blocking downstream activation in primary

chondrocytes (178). Further investigation of the binding between

TEAD and NFkB in other cancers could potentially provide further

insights on YAP’s paradoxical role as a tumor suppressor.
8.3 MEF2

Myocyte enhancer factor-2 (MEF2) transcription factor is

involved in neural development, muscle formation, cardiac

development, and is implicated in carcinogenesis (179). A co-

immunoprecipitation assay in HeLa cells and cardiac myocytes

demonstrated that TEAD1 and MEF2 physically interact and can

inter fere wi th MEF2-dependent ac t iva t ion of other

promoters (180).
8.4 FAM181A/B

FAM181 A/B play a role in murine embryonic development and

have also been found to interact with TEAD (181, 182). These proteins

were identified from protein databases by looking for sequences

mimicking the W‐loop region of YAP in other proteins. A co-

immunoprecipitation experiment demonstrated that FAM181A/B

were able to bind to TEAD4. However, they were unable to

determine if FAM181A/B exerts an effect on TEAD transcriptional

activity in HEK293FT cells. Like YAP/TAZ, FAM181A was blocked

from TEAD binding after treatment with inhibitor IAG933 (110).
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8.5 AP-1

Activator protein 1 (AP-1) is a transcriptional complex that is

composed of multiple proteins including c-Fos, c-Jun, and ATF. De

novomotif analysis of YAP/TAZ-TEAD peaks in MDA-MB-231 breast

cancer cells found that AP-1 transcription factor was the next most

frequent motif (136). A dominant-negativemutant of Jun repressed AP-

1 signaling which consequently inhibited cellular proliferation and

transcription of downstream TEAD genes. Another study performed

ChIP-seq on A549, HCT116, and SK-N-SH cancer cell lines to find that

TEAD4 and AP-1 co-occupied peaks were enriched for genes that

regulate cellular migration and invasion (176). ChIP-qPCR analysis

showed that SRC3wasmore enriched at ANKRD1with TEAD andAP-

1 occupancy than with a TEAD4 peak with only TEAD occupancy

(176). Using ChIP-seq in MDA-MB-231 cells, it was found that AP-1,

STAT3, and TEAD co-localize at YAP/TAZ target sites suggesting that

an AP-1/STAT3/TEAD complex recruits YAP/TAZ and increases

expression of a AP-1 enriched motif gene subset that correlated with

poor overall survival in triple-negative breast cancer (183). YAP and

AP1 related transcription is activated during PDAC tumorigenesis and

loss of AP-1 suppressed YAP-dependent cellular proliferation

suggesting overlapping downstream targets (184). This was verified by

co-precipitation of YAP, TEAD, and AP-1 in dysplastic lesions. TEAD

and AP-1 motif enrichment have also been identified in ChIP-seq data

from patient-derived colorectal cancer organoids (185). Interestingly,

the YAP/TAZ-TEAD transcriptional complex induces FOS gene

expression in HEK293 cells (186). Since Fos is a subunit in AP-1, this

could increase presence of AP-1 to form a complex and increase

transcription of proliferation related genes (186).
8.6 VGLL

The vestigial-like (VGLL) family of coactivators consists of four

members, VGLL1-4. The interactions between VGLL and TEAD

are highly context-dependent as coactivation has been shown to

have both proliferative and anti-proliferative effects in cancer.

VGLL4 competes with YAP for binding to TEAD which inhibits

YAP/TAZ-TEAD target gene expression which has been shown to

be oncogenic in multiple cancers (108). On the other hand, VGLL1

and VGLL3 have been shown to promote cancer cell proliferation

through interactions with TEAD (104, 187). In endocrine therapy-

resistance breast cancer, the VGLL1-TEAD complex induced EGFR

expression and promoted growth of fulvestrant-resistance cancer

cells (188). A VGLL2-NCOA2 fusion protein found in spindle cell

rhabdomyosarcoma was found to strongly induce expression of

TEAD downstream target genes (189). VGLL3 knockdown

inhibited proliferation in myoblasts and soft-tissue sarcoma (18).

VGLL4 gene expression is reduced in lung cancer and its increased

expression suppresses proliferation of lung cancer cells by

suppressing TEAD transcription (108). VGLL4 was also shown to

enhance multiple TEAD inhibitors such as VT104, IK-930, GNE-

7883, IAG933, and MYF-03–178 in removing YAP from the TEAD

condensates while other members of the VGLL family did not

produce a similar effect (110).
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It is important to note that these binding partners do not bind to

TEAD exactly like paralogs YAP/TAZ. It is possible that inhibition of

YAP-TAZ/TEAD binding could even lead to greater binding to TEAD

and an increase in specific downstream transcription. Further research

is needed to fully investigate how these cofactors influence cancer

progression in the presence or absence of YAP/TAZ-TEAD signaling.
9 Discussion

From upstream components such as LATS1/2 to the TEAD

transcription factor and its co-activators, dysregulation in the Hippo

pathway plays a critical role in tumorigenesis. TEAD has a key role in

the Hippo pathway and can interact with multiple pathways, playing

an important role in driving cancer progression which makes it an

attractive therapeutic target. While the role of TEAD still needs to be

fully elucidated, it’s clear that disrupting the interactions through the

use of TEAD inhibitors is a promising clinical avenue.

TEAD inhibitors could play such a large role in the constantly

evolving landscape of cancer therapy as there is a significant correlation

between higher TEAD expression and decreasedOS in numerous cancers

such as breast cancer, lung cancer, and many others that were previously

discussed. However, there is still more to learn regarding the role of Hippo

pathway signaling in cancer. It has been identified that Hippo signaling

can be protective in certain cancers suggesting that its downstream

pathways can counteract oncogenic signaling driven by other

commonly dysregulated pathways. The effects of TEAD inhibitors on

stromal responses in cancer particularly the immune system is also an

active area of investigation.We believe that this novel class of drugs should

be further evaluated to understand the best practices for future treatment

in patients expressing high levels of TEAD target gene transcription.

While no clinical trials have been completed, the safety and

toxicity profiles of TEAD inhibitors are encouraging. Adverse

effects such as nephrotoxicity were shown to be reversible with

altered dosing schedules. Further information from early phase

trials is needed before making any definitive statements on the

safety profile of TEAD inhibitors, but there do not seem to be any

major concerns. Despite the small number of patients, preliminary

clinical findings from early phase trials indicate that TEAD

inhibitors demonstrate activity against solid tumors so the

promise of these drugs is recognized. This is particularly relevant

because most current clinical trials focus on cancers with known

mutations in Hippo pathway components, such as NF2; however,

TEAD inhibitors may also suppress tumors independently of NF2

status. This suggests that blocking the oncogenic transcriptional

activity of TEAD alone may be sufficient to limit tumor progression.

In conclusion, we believe that TEAD inhibitors have a

promising potential and should continue to be pursued for

further preclinical investigation and clinical studies.
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