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Targeting TEAD in cancer

Rohith Battina®, Raneen Rahhal'!, Anton Wellstein,
Anna T. Riegel and Ghada M. Sharif*

Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington
D.C., United States

The Hippo pathway is dysregulated in many cancers, leading to pro-oncogenic
effects. The transcription factor TEAD plays a critical role in early development,
tissue homeostasis, and cell proliferation, and it binds to the downstream Hippo
pathway co-activators YAP and TAZ. Numerous studies have examined the roles
of YAP/TAZ and TEAD in cancer, with their activity frequently linked to poor
clinical prognosis. This review discusses how targeting TEAD interactions with
coregulators—most notably YAP and TAZ—represents a promising therapeutic
strategy in oncology. Several pharmacological agents have been developed to
disrupt the YAP/TAZ-TEAD complex, and many are currently being evaluated for
clinical applicability across diverse cancer types. We review current knowledge
on the structure and homology of TEAD, emphasizing the protein—protein
interfaces that mediate binding to YAP/TAZ and other cofactors. Advances in
understanding the YAP/TAZ-TEAD complex have informed the development of
diverse strategies to inhibit downstream transcription of key oncogenic target
genes. Finally, we highlight TEAD inhibitors currently in clinical trials, outlining
their mechanisms of action, associated adverse effects, and potential impact on
the future therapeutic landscape.
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1 Introduction

The Hippo pathway is a tumor suppressor pathway that regulates cellular proliferation
and organ size. Dysregulation of the Hippo pathway and increased YAP/TAZ-TEAD
transcription plays an essential role in many human malignancies. It is involved in tumor
growth, metastasis, immune evasion, and resistance to therapy. Inhibition of the YAP/
TAZ-TEAD transcriptional complex using novel TEAD inhibitors have shown promising
results for therapeutic targeting in cancer. Currently, TEAD inhibitors are being clinically
investigated in cancers with inactivating upstream mutations in the Hippo pathway leading
to dysregulation of cellular proliferation.
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2 TEAD transcription factor family

TEADs (transcription enhancer with TEA domain) are a family
of transcription factors involved in early development, tissue
homeostasis, cell growth, and proliferation. The discovery of the
TEAD family began in the late 1980s with the purification of
TEAD1/TEF1, which was shown to specifically bind to the GT-
IIC and Sph motifs of the simian virus 40 (SV40) enhancer in HeLa
cells (1, 2). Importantly, TEAD also binds the M-CAT (muscle-
specific cytidine-adenosine-thymidine) motif, and has
demonstrated its necessity to proper cardiac and skeletal muscle
development (3). Further studies revealed that TEADs are
evolutionarily conserved transcription factors sharing homology
with AbaA and TECI in yeast, and Scalloped in Drosophila (4).
This high degree of conservation in the consensus sequence within
the DNA binding domain, spanning approximately 70 amino acid
residues, lead to the TEA domain also being referred to as the ATTS
domain (AbaA, TEC1, TEFI, Scalloped) (1, 5-7).

Mammals express genes that encode four members of the
TEAD transcription family, denoted TEADI1-4. Despite their
homology, expression of these TEADs varies between tissues
throughout different stages of development (8). TEAD1 has been
well established to be a key player in cardiogenesis, driving the
proliferation and differentiation of cardiomyocytes (9, 10). Notably,
mice harboring a TEADI1 loss of function mutation, are
embryonically lethal due to defects in cardiac development (11).
Interestingly, cardiomyocyte deletion of TEADI leads to perinatal
lethality, while overexpression of TEADI in striated muscle cells
resulted in cardiac dysfunction further demonstrating the
importance of TEADI1 in cardiac development and function (9,
12). Unlike other TEADs, TEAD?2 is almost completely absent from
adult tissues, and is selectively expressed during embryonic
development and can be found at the 2-cell zygotic stage (13, 14).
Inactivation of TEAD2 in mice led to an increased risk of
exencephaly, demonstrating the importance of TEAD2 for neural
development (15). Intriguingly, some groups have found that
TEAD2 knockout mice actually produced viable adult offspring,
suggesting further studies are required to better understand the
requirement of TEADs during development and potential
compensatory mechanisms (15). TEAD3 has not been widely
investigated, and there are no reported knockout studies to date.
However, in vitro studies have revealed that TEAD3 is expressed in
the labyrinthine region of the placenta and is upregulated during
the differentiation of cytotrophoblasts to syncytiotrophoblasts (16).
It is found in myoblastic tissue and regulates epidermal
proliferation in conjunction with TEADI (17, 18). TEAD4 plays a
crucial role in embryonic development, specifically in
trophectoderm lineage specification which influences the placenta
and inner cell mass (19). Inactivation of TEAD4 in mice disrupted
pre-implantation and was thus lethal (19). Conversely, ablation of
TEAD4 post-implantation, yielded normal mouse embryos (20). All
four members of the TEAD family appear to have tissue-specific
functions, playing an important role in development.
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3 The Hippo pathway

Although TEADs have been shown to play an important role in
development, they are most notably known for being a binding
partner of YAP/TAZ, the downstream transcriptional coactivators
of the Hippo signaling pathway. Together, the YAP/TAZ-TEAD
complex induces the transcription of genes regulating apoptosis, cell
proliferation, and organ size (21-25).

The Hippo pathway is a highly conserved pathway with core
components discovered in, but not limited to, Drosophila and
mammals (26). It involves a kinase cascade where proteins
phosphorylate and activate one another, ultimately regulating the
phosphorylation of YAP and TAZ and their interaction with
TEADs (Figure 1).

In mammalian cells, the Hippo pathway is triggered by
upstream factors such as cell-cell contact, cell polarity, metabolic
signals, cytoskeletal tension, and GPCR signaling cross-talk. An
important upstream factor that leads to activation of the Hippo
pathway is Neurofibromatosis type 2 (NF2). NF2 is a mediator of
cytoskeletal and membrane-derived signals in response to increased
cell-cell contact and it inhibits further cell proliferation by
recruiting MST1/2 (27). This upstream activation results in the
phosphorylation of MST1/2 (mammalian STE20-like kinase 1/2)
(28). MST1/2 and SAV1 (scaffold protein Salvador homologue 1)
phosphorylate LATS1/2 (large tumor suppressor kinase 1/2) and
MOBI (scaffold MOBKL1A/B). This activates LATS1/2, allowing it
to directly phosphorylate YAP and TAZ. This phosphorylation
sequesters YAP/TAZ in the cytoplasm, preventing localization to
the nucleus and eventual degradation (27). When the Hippo
pathway is inactivated, or “oft”, YAP/TAZ is shuttled to the
nucleus and forms a complex with TEAD, activating the
transcription of a number of genes including those associated
with cell proliferation. When the Hippo pathway is dysregulated,
there is increased transcriptional activation of downstream targets
which have been shown to play a role in metastatic growth and
tumor progression in various cancers (29). Importantly,
downstream signaling initiated by the Hippo pathway is highly
reliant on TEAD, making it an ideal target for therapy.

4 Relevance of the YAP/TAZ-TEAD
axis in cancer progression

TEADs are key regulators of the Hippo pathway, controlling the
transcription of genes involved in cell proliferation and apoptosis.
Dysregulation of the Hippo pathway leads to uncontrolled cell
growth, a hallmark of cancers, and the expression of oncoproteins
promoting invasion and metastasis (30). For example, NF2
mutations have been implicated in multiple cancers including
malignant mesothelioma, meningioma, and schwannomas and it
was found that YAP/TEAD pathway inhibition blocked growth and
survival of these NF2-deficient tumors (31-36). A comprehensive
analysis of over 10,000 cancer patient samples from The Cancer
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Graphical visualization of Hippo Pathway kinase cascade leading to activation or inactivation of downstream TEAD signaling. Created in BioRender.
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Genome Atlas revealed that over 30% of samples carried genetic
alterations in core components of the Hippo pathway (29).
However, no one gene was altered in more than 10% of patient
samples, indicating that the aberrant signaling of the Hippo
pathway can be caused by multiple members of the pathway or
even through interactions with other signaling pathways (29, 37).
For example, PI3K signaling blocks the phosphorylation and
activation of upstream Hippo proteins, allowing YAP to localize
to the nucleus, and promote the transcription of pro-tumorigenic
genes (38). Further pathways, notably the Wnt, TGFb, and EGFR
pathways have also been shown to promote dysregulation of the
Hippo pathway, promoting tumorigenesis, metastasis, and drug
resistance (39).

Most studies examining Hippo signaling in cancer have
predominantly focused on YAP/TAZ activity and their effect on
tumor initiation and growth. For example, initial studies on the
Hippo pathway in the liver demonstrated that high levels of
endogenous YAP can lead to hepatomegaly and tumorigenesis
(40, 41). Constitutively active TAZ induced breast cancer stem
cell properties and tumor formation to further triple negative breast
cancer (TNBC) proliferation (42). Interestingly, overexpression of
TAZ in low-expressing breast cancer cell lines promoted epithelial-
mesenchymal transition (EMT) and led to an increase in migration
and invasion (43, 44). An increase in invasion and CSC-like
tumorigenic properties was also observed in gastric epithelial cells
as a result of YAP/TAZ activation (45, 46). Silencing YAP or TAZ
activity in vitro has further demonstrated the importance of these
oncoproteins to promote tumorigenesis. Knockdown of YAP
expression in pancreatic cancer cell lines such as, PANC-1 and
BxPC3, led to a reduction in cellular proliferation (47, 48).
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Additionally, RNAi repression of YAP expression in prostate
cancer cell lines reduced proliferation and induced apoptosis (49).
Knocking down YAP/TAZ in osteosarcoma cell lines MG-63, HOS,
and U20S reduced cellular proliferation and invasion, while
depletion of TAZ in gastric carcinoma cell lines inhibited motility
and invasion (50-53). The suppression of YAP/TAZ activity in in
vivo studies of breast cancer, pancreatic cancer, and osteosarcoma
have also demonstrated the contribution of these downstream
Hippo proteins on tumorigenesis (51, 54, 55). Furthermore, YAP/
TAZ activation can overcome anti-proliferative effects of other
inhibitors such as KRAS®'*© inhibitors leading to resistance and
tumor growth (56). This indicates concurrent treatment with TEAD
inhibitors could enhance antitumor activity and prevent acquired
resistance to other pathway inhibitors.

In many cancers, increased levels of YAP/TAZ in the nucleus is
correlated with poor patient prognosis and an increase in
therapeutic resistance (57). In non-small cell lung cancer
(NSCLC), increased expression of YAP/TAZ was found to be
correlated with worse clinical outcomes, and a shorter overall
survival (OS) (58, 59). Inhibition of TEAD also led to increased
chemotherapeutic sensitivity in paclitaxel-resistant A549 cells (60).
High levels of YAP in small cell lung cancer (SCLC), is not only
associated with a shorter OS, but also with radiation and drug
resistance (61, 62). Within triple negative breast cancer (TNBC),
nuclear expression of YAP/TAZ is strongly associated with and
showed poorer clinical outcomes for disease-free survival (DFS) and
OS (63-65). Studies stratifying colorectal cancer patients based on
YAP activity found YAP activation was highly associated with lower
disease-free survival (DFS) and progression-free survival (PFS) (66—
68). Immunohistochemistry staining of YAP and TAZ in samples of
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patients with gastric cancer or hepatocellular carcinoma, also
revealed that YAP/TAZ expression was negatively correlated with
OS and PFS (69-71). Additionally, tissue microarray analysis of
over 17,000 prostate cancer samples showed that elevated YAP
protein levels were associated with more advanced tumor staging
and earlier biochemical recurrence (72, 73). Given that the majority
of YAP/TAZ transcriptional activity occurs through binding with
TEAD, this continues to highlight the importance of blocking a
single downstream target like TEAD in order to inhibit
cancer progression.

As noted above, the oncogenic activity of YAP/TAZ depends
largely on its direct binding with TEAD, therefore, it is important to
consider how the TEAD family itself contributes to tumorigenesis.
Overexpression and hyperactivation of TEAD has been associated
with tumorigenesis and cancer progression in a number of cancer
types (Figure 2) (39). Similar to YAP/TAZ, high levels of TEAD in
solid tumors is correlated with worse clinical outcomes (74-78).
High mRNA expression levels of TEAD4 in approximately 4,000
breast cancer patients were correlated with a worse OS (79).
Likewise, high nuclear protein levels of TEADs in tissues from
lung adenocarcinoma and PDAC patients was also linked to a

10.3389/fonc.2025.1692512

shorter OS (80, 81). Studies using mouse models have revealed the
importance of TEAD in tumorigenesis. For example, TEAD4
knockdown in HCT116, a colorectal cancer cell line, suppressed
proliferation and tumor growth in BALB/c mice (82). A TEAD2
dominant negative construct was used to inhibit YAP activity in
MSTO-211H cells, a mesothelioma line, by competing with
endogenous TEAD leading to loss of proliferation in vitro, and
tumor regression in vivo (83). YAP1 shRNA knockdown and
pharmacological inhibition using TEAD inhibitor K-975 in
MSTO-211H cells engrafted in a mouse model prevented tumor
initiation and induced tumor regression (83). Another group
developed a truncated variant TEAD2 lacking a DNA-binding
domain to inactivate TEAD activity in the liver (84). Surprisingly,
this did not affect normal liver growth, but did curb hepatomegaly
typically induced by YAP overexpression. In head and neck
squamous cell carcinoma (HNSCC), use of SW-682 to block
YAP/TAZ-TEAD binding led to an antitumor response in FAT1-
mutant HNSCC xenograft models (85). TEAD inhibitor,
NSC682769, was found to inhibit proliferation and migration
while enhancing anti-tumor response in a glioblastoma xenograft
mouse model (86). Another study demonstrated that gastric cancer
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Graphical visualization of expression changes in TEAD family members linked to oncogenesis, metastasis, and patient survival discussed in this
review. Created in BioRender. Battina, R. (2025) https://BioRender.com/1kkcq8x.

Frontiers in Oncology

04

frontiersin.org


https://BioRender.com/1kkcq8x
https://doi.org/10.3389/fonc.2025.1692512
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Battina et al.

proliferation is linked to PRIMI1 expression which is
transcriptionally regulated by TEAD4 (87). Through experiments
using TEAD inhibitors (mechanisms of TEAD inhibitors are
discussed in section 6), VT101, VT102, and VT103, it has been
shown that targeting the Hippo pathway is a potential therapeutic
strategy to block cell proliferation in NF2-null primary
schwannoma and meningioma cells from human tumors (36).
Periostin-CRE;NF2"" mice were treated with VT1 and VT2
leading to a shrinkage of schwannoma tumors in vivo (36).
However, it is important to note that YAP and TAZ can act as
tumor suppressors for certain cancers and thus disrupting their
interaction with TEAD will not necessarily be effective in all cancer
types or at all stages of cancer. In androgen receptor positive (AR")
prostate cancer, YAP impeded tumor growth by competing with AR
for binding and TEAD-mediated signaling (88). TEAD3 also
inhibited proliferation and metastasis in prostate cancer (89). In
primary small cell lung cancer (SCLC), IHC revealed low levels of
YAP/TAZ and gain-of-function studies demonstrated that
increasing YAP reduced tumor burden and increased survival
(90). In renal clear cell carcinoma, YAP has been shown to
repress proliferation that was driven by a TEAD-NFxB
transcriptional complex by competing for binding to TEAD (91).
In ER" breast cancer, high levels of YAP lead to a good prognosis

10.3389/fonc.2025.1692512

and inhibit ERa/TEAD interactions suggesting that YAP competes
with ERa to block cancer growth (92).

Hippo pathway signaling has been shown to greatly impact
cancer progression which is why it’s important to understand
structural components of TEAD to develop inhibitors that can
alter transcriptional regulation as an avenue for therapy.

5 Structure and homology of TEAD

Within the TEA domain, TEAD1-4 have greater than 95%
amino acid similarity (Figure 3) (94). Initial studies used nuclear
magnetic resonance spectroscopy to propose a model for the
protein structure (95). The DNA binding domain (DBD) also
known as the TEA domain consists of three alpha-helices
forming a globular structure. It was discovered that the L1 loop
was essential for TEAD loading to M-CAT sites and helix H3 was
the DNA-recognition helix of TEAD (95).

The other highly conserved domain in TEAD is the YAP
binding domain (YBD) which is in the C-terminal region. X-ray
crystallography shows YAP-TEADI1 binding in residues 194-411
forming three highly conserved protein-protein interfaces
(Figure 4) (96). The first interface (B-sheet) is mediated by seven
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FIGURE 3

Human TEAD1-4 proteins share two highly conserved regions with the DNA Binding Domain (DBD) and the YAP Binding Domain (YBD) and less
conserved regions including N-terminal domain (N) and the proline-rich domain (PRD). TEAD1 (Uniprot ID: P28347), TEAD2 (Uniprot ID: Q15562),
TEAD3 (Uniprot ID: Q99594), TEAD4 (Uniprot ID: Q15561) structural function is dependent on palmitoylation at Cys344, Cys380, Cys371, and
Cys360, respectively (93). Identity (DNA sequence) and similarity (amino acid sequence) percentage are relative to TEADL. Created in BioRender.

Battina, R. (2025) https://BioRender.com/8wzltok.
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(A) Ribbon model (PDB: 3KYS (96)) of TEAD1 (amino acids 191-411) in green with specific TEAD interfaces in blue and partial YAP structure (amino acids
52-100) in red to highlight three main interfaces for YAP-TEAD binding. (B) YAP-TEAD interface rotated 60° on the x-axis and -60° on the z-axis.

(C) Ribbon model (PDB: 5GNO (97)) of TEAD1 (amino acids 191-411) in green with specific TEAD interfaces in blue and partial TAZ structure (@amino
acids 26-57) in red to highlight the main interfaces for TAZ-TEAD binding. (D) TAZ-TEAD interface rotated rotated 60° on the x-axis and -60° on the
z-axis. Ribbon models created in Pymol and labeled using Biorender (98). Created in BioRender. Battina, R. (2025) https://BioRender.com/6ltz8nc.

hydrogen bonds between YAP B1 (residues 52-58) and TEAD1 7
(residues 318-324) which forms an antiparallel 3-sheet. The second
interface (0i-helix) is mainly mediated by hydrophobic interactions
between the YAP ol helix (residues 61-73) and a binding groove
formed by TEADI o3 and 04 (residues 345-369). The final interface
(Q-loop) is between the twisted-coil region of YAP and a deep
pocket in TEAD1 formed by B4, $11, 12, o1, and 04. This Q-loop
was also found when examining YAP-TEAD?2 binding indicating
that it plays a major role (99). Experiments repeated in mice
examining YAP-TEAD4 binding also found three interfaces of
binding (100). The [-sheet interface is between YAP (residues 65-
70) and the TEAD4 $6-B7 loop. The oi-helix interface is between the
a1 helix and a binding groove formed by TEAD4 03 and 04. The
Q-loop interface is between the 02 helix and strands 4, f11, and
B12 of TEAD4. The YAP binding domain sequence of TEAD?2 is 79-
91% similar in TEADI, 3, and 4 (101). There is a high level of
similarity between binding of YAP and TEAD across species and
family members indicating high conservation of YAP-TEAD

Frontiers in Oncology

interactions due to conservation in YAP-binding domain of
TEAD and TEAD-binding domain in YAP (102). However, the
hydrophobic proline-rich domain (PRD) and the N-terminal
regions of TEAD are not as highly conserved across family
members and different species. Initially, these domains were
demonstrated to play a role in protein-protein binding between
TEF-1 and scalloped in Drosophila (103). Another study found that
deletion of the proline-rich domain within amino acids 115 to 223
cut YAP-TEAD binding to 57% efficiency (101). However, all
deletions within the YBD showed an even stronger effect on
binding efficiency, which ranged from 1-18%, highlighting the
importance of interactions between YAP and the YBD.
Subsequent crystallography experiments further identified those
key interfaces within the YBD shown in Figure 4, but evidence
pertaining to the exact role of the PRD was not discovered during
these crystallography experiments. We suggest that the PRD may
help enhance binding between YAP and TEAD, but does not play a
major role which is why development of targeted therapeutics
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should be aimed against disrupting interactions between the
interfaces of the YBD and TEAD.

While YAP and TAZ both bind to similar binding sites on
TEAD, small alterations in protein structure affect the interactions
between the proteins (Figure 4). For example, the major interface
between the twisted-coil of YAP and the TEAD binding pocket is
altered in TAZ due to a shorter loop (13 residues in TAZ versus 19
residues in YAP) (97). This leads to two alternate binding
conformations between TAZ and TEAD. The first binding
conformation is similar to the YAP-TEAD binding previously
discussed. However, the main difference is the conformation of
the smaller loop in the TEAD binding pocket. This second
conformation is a heterotetramer conformation between two TAZ
and TEAD molecules where TAZ helix o1 binds to the first TEAD
while TAZ helix o2 binds to the second TEAD. The differential
binding of YAP and TAZ to TEAD offers the opportunity to
develop inhibitors that selectively disrupt either YAP-TEAD or
TAZ-TEAD interactions without affecting the other complex.
However, as we discussed previously, both YAP and TAZ have a
role in many cancer types progression. Further studies are needed to
indicate the benefit of developing selective inhibitors of these
paralogs to block their differential effects on cancer progression.

The vestigial-like (VGLL) family of coactivators consists of four
members, VGLL1-4 (see section 7) that interact with TEAD.
Structurally, VGLLI interacts with TEAD4 through two different
interfaces. The first interface is an antiparallel 3 sheet between (32 of
VGLLI1 and B7 of TEAD4 and the second interface is between an
alpha helix in VGLL1 and TEAD helices o3 and 04 (104). These
interfaces, also known as the TONDU domain, are well conserved
among the VGLL family (105). Despite the lack of primary
sequence similarity between VGLL1 and YAP/TAZ, these
proteins interact with the same two interfaces on TEAD though a
VGLLI analog to the Q-loop interface was not found. However,
further investigation by another group found that VGLL2 does have
the Q-loop interface unlike VGLL1/3 (106). VGLL4 is unique
among the VGLL family as it has a secondary TONDU domain
(104, 107). Interestingly, if this secondary TONDU domain is
deleted, it prevents VGLL4 from inhibiting lung cancer cell
growth by attenuating YAP/TAZ activity (108). As we will discuss
in section 7, this leads to VGLL proteins having highly context-
dependent effects on cancer progression.

Furthermore, it was found that TEAD undergoes
autopalmitoylation at conserved cysteine residues (see Figure 4).
One study mutated the conserved cysteine residue to an alanine in
human TEAD2 which decreased overall protein levels and
demonstrated that palmitoylation is important for protein
stability (93). Another study identified that loss of TEAD
palmitoylation significantly reduced co-immunoprecipitation
between TEAD and YAP/TAZ, but was dispensable for binding
to VGLL4 (109). Even after translation, TEAD proteins have been
shown to undergo phase separation and form condensates
intrinsically which serve to spatially regulate YAP/TAZ signalling
(110). These structural discoveries have helped immensely in the
development of TEAD inhibitors to prevent binding between
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TEAD and YAP/TAZ cofactors without potentially impacting
other TEAD binding partners.

6 Key downstream targets of TEAD
signaling in cancer

TEAD activation is implicated in tumorigenesis and cancer
progression by promoting the transcription of genes involved in
EMT, proliferation, cancer stem like (CSC) properties, drug
resistance, and metastasis (39). EMT is a well-established process
necessary for normal development, but is also exploited in cancers
to facilitate tumorigenesis and metastasis (111). TEAD activation
upregulates the expression of the canonical EMT markers Slug,
ZEB1, ZEB2, and Vimentin (42, 77, 112-114). This in turn
promotes the expression of mesenchymal genes, driving tumor
cell invasion and migration. In vitro studies disrupting TEAD
activity have further revealed this relationship. In ovarian cancer
cells, SKOV-3, pharmacological disruption of the YAP/TAZ-TEAD
complex resulted in a decrease in vimentin expression (115).

7352 mutant cell line,

Additionally, in a constitutively active TA
vimentin and N-cadherin were upregulated while epithelial markers
E-cadherin and occludin were downregulated (116). Collectively,
this data indicates the role of TEAD in regulating the gene
expression of EMT markers (115).

Two well-known downstream targets of TEAD are CTGF and
CYR61, both of which are part of the tissue growth factor family and
function to regulate cellular proliferation, migration and adhesion (117).
They have been implicated in multiple cancers as promoters of
carcinogenesis and metastasis (118-123). CTGF has been shown to
be upregulated in cancers of the brain, esophageal, breast, pancreas,
melanoma and prostate (124-128). YAP/TAZ/TEAD binding leads to
the transcription of CTGF, which promotes the activation of the FAK/
Src/NFxB p65 signaling axis leading to increased cellular proliferation
and migration through Glut3-mediated expression (129). CTGF has
also been linked to chemoresistance through upregulation of Bcl-xl and
cIAP1 in breast cancer (130). Upregulation of CYR61 induces
chemoresistance in triple-negative breast cancer by activating Wnt
signaling, EMT and a CSC-like phenotype (131).

A well-known pathway that drives cancer progression is the
PI3K/Akt pathway which has been shown to interact with YAP/
TAZ-TEAD. YAP analog, Yki, was found to require insulin-like
growth factor (IGF-1) signaling through PI3K in order to
translocate to the cytoplasm in Drosophila while inactivation of
Akt prevented nuclear localisation of Yki (132). This PI3K-
mediated activation of downstream Hippo signaling is
reciprocated by YAP which was found to inhibit translation of
tumor suppressor, PTEN, through miR-29 and overexpression of
YAP in transgenic mice was shown to have diminished PTEN
expression in IHC staining (133). A systematic gain-of-function
kinase screen identified PI3KCB to positively promote YAP/TAZ
function in vitro (134). A combination of PI3KCB and TAZ
coexpression also led to tumor formation in mice despite using
nontumorigenic human mammary cell line MCF10A (134).
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TEAD is also involved in regulation of MYC, one of the most
commonly activated oncoproteins in cancer (135). It has been
found that overexpression of MYC leads to a partial rescue of
cellular proliferation following YAP/TAZ depletion (136). Based on
this, MYC is not only a downstream regulator of oncogenesis
affected by TEAD activation, but can also play an important role
in YAP/TAZ-TEAD signaling leading to cancer progression. A
recent study has found that mesothelioma cells resistant to the
TEAD inhibitor, K-975, exhibited increased activation of MYC
signaling and continued to proliferate in a TEAD independent
manner (137). This indicates that MYC activation can bypass the
pharmacological inhibition of YAP/TAZ-TEAD signaling in
cancers where Hippo pathway is mutationally inactivated.
Interestingly, other studies have found that upregulation of MYC
can repress YAP/TAZ activity in triple-negative breast cancer,
indicating a need for further research to better understand these
interactions (138, 139).
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7 Mechanisms of action for TEAD
inhibitors

The correlation between the dysregulation of the Hippo
pathway and oncogenesis has been identified in multiple cancers
so multiple pharmacological agents have been developed to target
the interactions between YAP and TAZ with TEAD and reduce
further downstream activation of the related oncogenic genes. A few
different mechanisms of action have been developed to adequately
target this complex, including YAP phosphorylation agonists, YAP
nuclear localization inhibitors, protein-protein interaction
inhibitors, and TEAD binding pocket inhibitors (Figure 5).

(i) YAP phosphorylation agonists increase degradation of YAP/
TAZ, preventing localization into the nucleus and binding to
TEAD. A35 is a topoisomerase inhibitor that was able to decrease
YAP nuclear localization and inhibit growth in human leukemia
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Mechanisms of Action for TEAD inhibitors currently in development or clinical trials. Created in BioRender. Battina, R. (2025) https://BioRender.com/
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cells by increasing phosphorylation of YAP (140). Furthermore,
dasatinib and fluvastatin changed actin dynamics and induced
YAP/TAZ phosphorylation in breast cancer cell line, MDA-MB-
231 (141). MDA-MB-231 cells treated with dasatinib or fluvastatin
also demonstrated increased sensitivity to doxorubicin and
paclitaxel treatment.

(ii) YAP nuclear localization inhibitors can prevent or even
reverse the nuclear translocation of YAP. Statins such as cerivastatin
and simavastatin have been shown to inhibit nuclear localization of
YAP through re-localization of YAP from the nucleus to the
cytoplasm (142). Pazopabin plays a dual role as it can induce
proteasomal degradation of YAP/TAZ and also induce
phosphorylation of YAP/TAZ (141).

(iii) Protein-protein interaction (PPI) inhibitors block the YAP/
TAZ interface interactions with TEAD described previously.
IAG933 is a pan-TEAD PPI inhibitor. As a competitive
antagonist, it directly prevents the formation of a transcriptional
complex between YAP/TAZ and TEAD by blocking protein-protein
interactions at the third interface binding site (143). Another
successful PPI inhibitor is Super-TDU which is a peptide that
mimics VGLL4 and orthosterically competes with YAP/TAZ for
binding to TEAD. In a gastric carcinogenesis murine model, Super-
TDU reduced tumor volume and mRNA levels of CTGF and
CYR61 (144). A TEAD dominant-negative protein inhibitor
(TEADiv2) structurally based on the YBD strongly inhibited
transcriptional activity of TEAD in HEK293 cells by 5-fold (145).

While not a direct PPI inhibitor, GNE-7883 has been shown to
block TEAD allosterically at the lipid binding pocket causing
conformational changes that lead to tension between the two
TEAD helices that compose part of interface 2 (see Figure 4)
while also displacing a proximal residue, GIn410 (146). GNE-
7833 reduced growth in YAP/TAZ dependent or NF2-null cell
lines including OVCAR-8, MDA-MB-231, NCI-H226, and
HCC1576 (146). Furthermore, addition of GNE-7833 overcame
resistance to sotorasib in NSCLC in mice.

(iv) TEAD auto-palmitoylation inhibitors. Recently, it was
discovered that the TEAD family is palmitoylated at a universally
conserved cysteine allowing for proper TEAD folding and stability
(93). Multiple studies found that disrupting palmitoylation of
TEAD affects protein stability and function and can also prevent
binding to chromatin which would lead to reduced transcription in
both cases (93, 147). This led to development of several small
molecule TEAD binding pocket inhibitors that block palmitoylation
to impair TEAD function. K-975 covalently binds to the internal
cysteine in the palmitate-binding pocket and suppresses
proliferation in NF2-deficient mesothelioma cell lines and
xenograft models (148). MGH-CP1 blocks autopalmitoylation of
TEAD and showed significant overlap in gene expression changes
with YAP/TAZ siRNA in MDA-MB-231 cells. MGH-CP1 inhibited
tumor initiation in Huh7 and MDA-MB-231 xenograft models.
Furthermore, they found that MGH-CP1 led to AKT activation and
combination with an AKT inhibitor led to cancer cell death (149).
MYF-03-176 is a covalent inhibitor that binds to the key cysteine
residue within TEAD to prevent palmitoylation and was shown to
reduce proliferation in liposarcoma cell line, 94T778 (150). Another

Frontiers in Oncology

10.3389/fonc.2025.1692512

study was able to identify a small molecule inhibitor that
dysregulated TEAD palmitoylation and caused TEAD to act as a
transcriptional repressor and limited tumor growth in a Detroit X1-
562 mouse xenograft model (147).

(v) TEAD PROTAC inhibitors. Another mechanism developed
for targeting TEAD is the use of proteolysis targeting chimeras
(PROTAC) to promote degradation of the target protein through
binding to E3 ubiquitin ligase. HC278, a TEAD-specific PROTAC,
is able to degrade TEAD1/3 at nanomolar doses (151). Further
testing in HC226 mesothelioma cell lines also showed a reduction in
colony formation. Another set of PROTACs was developed by
linking a VT107 analog to a thalidomide ligand and optimized by
evaluating the antiproliferative effects against NF2-deficient HC226
cells (152). They found that compound 27 led to selective TEAD2
degradation and reduced transcription of YAP target genes. One
paper identified TEAD PROTAC, H122, that induced TEADI
degradation at nanomolar concentrations and had antitumor
response in a MSTO-211H mouse xenograft model (153).
Another PROTAC, Compound D, demonstrated significant
degradation of TEAD1/3 in MDA-MB-231 and OVCAR-8 cells
(154). Compound D also reduced accessibility to chromatin at
TEAD motifs and inhibited cell proliferation in OVCAR-8 cells.
Furthermore, there are patents out for more TEAD PROTACS
(W0/2021/178339 and W0/2023/031801) as well indicating that
this is a rapidly growing class of TEAD inhibitors and we expect to
see more preclinical and clinical data regarding their use in cancer.

Some of these TEAD inhibitors have reached clinical trials and
are currently being assessed for their effectiveness in metastatic
malignant mesothelioma and other solid tumors (Table 1).
Currently, there are several TEAD inhibitors in human clinical
trials including VT3989 (NCT04665206), IAG933 (NCT04857372),
ISM6331 (NCT06566079), SW-682 (NCT06251310), ION537
(NCT04659096), and BPI-460372 (NCT05789602). A previous
clinical trial (NCT05228015) and further research on TEADI-
selective inhibitor, IK-930, was discontinued based on a review of
the clinical data. As TEAD inhibitors are a newly developing drug
class, all current clinical trials are still in early phase trials and many
have not publicly reported their clinical findings at this time.

7.1VT3989

While the chemical structure of VI3989 has not been publicly
disclosed, a previous study has shown preclinical efficacy of
precursor small molecule inhibitors that also block TEAD auto-
palmitoylation, VT101-VT107 (157). Using a YAP reporter assay,
they were able to identify 153 compounds that reduced YAP/TAZ-
TEAD based luciferase signaling by >80% at 5umol/L and led to the
identification of VT101 and 102 which were able to downregulate
expression of CYR61 and AMOTL2. New analogs, VI'103-107 were
developed and VT104 and VT107, an enantiomer of VT104, were
found to block palmitoylation of all four TEAD members. VT103
and VT104 also reduced proliferation of NF2-deficiency
mesothelioma xenografts in mice and in multiple NF2-mutant or
NF2-deficient cell lines. Further optimization led to the
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TABLE 1 TEAD inhibitors being investigated in cancer clinical trials.

Developed

Clinical trial #
by

Phase

Drug name

10.3389/fonc.2025.1692512

Mechanism of

action Reference

Reported adverse events

1AG933 Novartis NCT04857372 Phase 1 Prote'in-Protf,ir? Preclinical albumi'm.lria and renal (143, 155, 156)
Pharmaceuticals Interaction Inhibitor tubular injury
VT3989 Vivace . NCT04665206 Phase 172 Auto»'pah'ni'toylation leinica.l proteinuria', albuminuria, (157-159)
Therapeutics inhibitor peripheral edema, fatigue, and nausea
- . Auto-palmitoylation
ISM6331 InSilico Medicine NCT06566079 Phase 1 inhibitor Safety profile not reported (160)
SpringWork Auto-palmitoylati
SW-682 Pring or. s NCT06251310 Phase 1 o Pa m1 OvRton N preclinical adverse events reported (85, 161)
Therapeutics inhibitor
IToni YAPI1 Anti
ION537 oS . NCT04659096 Phase 1 . n lseflse Safety profile not reported (162)
Pharmaceuticals Oligonucleotide
Bett: Auto-palmitoylati
BPI-460372 eta NCT05789602 Phase 1 HIOpAMIOYRAUON | No renal toxicity observed clinically (163, 164)
Pharmaceuticals inhibitor
Phase 1 Auto-palmitoylation Clinical proteinuria, fatigue, nausea,
1K-930 Tk Oncol NCT05228015 165-167
ena ncology (Discontinued) inhibitor and diarrhea ( )
ODM-212 Orion Pharma ISRCTN99739590 Phase 1 Not reported Safety profile not reported (168)
BridG
BGC-515 'n ) ene NCT06452160 Phase 1 Not reported Safety profile not reported (169)
Biosciences

development of VT3989 (structure unavailable) which is currently
being used in a phase 1/2 clinical trial indicating enhanced efficacy
in comparison to the earlier compounds which had already
demonstrated strong antitumor efficacy through loss of pan-
TEAD activity (158).

VT3989 is a small molecule pan-TEAD inhibitor that works by
inhibiting TEAD auto-palmitoylation (158). It has been shown to
block proliferation of NF2-deficient mesothelioma in vitro and in
vivo (159). Additionally, VT3989 enhanced effectiveness of EGFR
inhibitors, MEK inhibitors, BRAF inhibitors, MET inhibitors,
mTORC inhibitors and KRAS®'*C inhibitors compared to
monotherapy alone (158). In the ongoing phase 1/2 trial, they
have enrolled 172 patients for dose escalation (n = 85) and dose
expansion (n = 87) including 135 with mesothelioma that have
progressed on prior therapy regimens (158). The overall response
rate (ORR) reported was 26% in 47 patients treated with clinically
optimized dosing and ORR of 32% in 22 patients with
mesothelioma when using clinically optimized doses and
remaining within thresholds for urine albumin:creatinine ratio
(UACR). They found that intermittent dosing (100mg QD, 2
weeks on, 2 weeks off) of VT3989 led to lower albuminuria
(4.9%) when compared to continuous dosing (22.2%) (158). Some
common treatment-emergent adverse effects from VT3989
included fatigue (40.1%), increased UACR (32.6%), proteinuria
(28.5%), and nausea (28.5%) (158). Common treatment-related
adverse events included increased UACR (31.4%), proteinuria
(27.9%), fatigue (19.8%) and peripheral edema (23.3%)
(158).Grade % events were rare with increased UACR (1.7%) and
dyspnea (1.2%) occurring in more than one patient. Examination of
tumor biopsies from six patients also demonstrated that VI3989
was able to modulate expression of YAP-TEAD target genes
including CYR61 and CTGF. Notably, they found that VT3989
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was able to demonstrate antitumor activity regardless of NF2
mutation status. VT3989 has shown enhanced efficacy in
preclinical combination studies and has encouraging initial results
from the phase 1/2 study. We look forward to further clinical
reports regarding the efficacy and safety of this drug once the trial is
fully completed.

7.2 1AG933

TAG933 is a small molecule pan-TEAD inhibitor currently
being investigated in a phase 1 clinical trial (NCT04857372) that
directly blocks binding between YAP/TAZ and TEAD.
Interestingly, ITAG933 leads to an increase in VGLL4 repression
(see section 7) of TEAD demonstrating the selective nature of the
drug targeting YAP/TAZ-TEAD protein-protein interactions. In
human xenograft mouse models, oral TAG933 treatment led to
tumor regression at tolerable doses in mesothelioma (143). A
comparison to VT104 and K-975 showed that TAG933 had a
more potent effect on YAP/TAZ-TEAD target gene expression,
but had a shorter half life in the blood and tumor than VT104 (143).
Combination treatment with osimertinib, an EGFR inhibitor, also
improved efficacy of osimertinib in NSCLC (143). It also showed
promising results in combination with KRAS®'*“ inhibitors in CRC
and NSCLC tumors as well as BRAF inhibitor dabrafenib in
BRAFV?°E mutated tumors (143). The preclinical data
demonstrates selective inhibition of TEAD which is being further
investigated therapeutically in solid tumors. It also demonstrates an
alternative therapeutic use in conjunction with MAPK pathway
inhibitors to halt cancer progression (143, 155). In preclinical
studies, it was found that 60mg/kg QD led to elevated urine
kidney markers such as albuminuria due to renal tubular injury
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and protein-losing nephropathy, but when this weekly dose was
administered 3 days on/4 days off, there was a reduction in these
biomarkers within the urine (156). Based on the efficacy in
preclinical settings, we would expect IAG933 to have clinical
potential, but the phase 1 results are still unreported.

7.3 ISM6331

ISM6331 was developed using in silico modeling followed by
further optimization as a pan-TEAD inhibitor that blocks TEAD
palmitoylation to disrupt YAP/TAZ-TEAD transcription and is
currently being investigated in a phase 1 clinical trial
(NCT06566079) (160). It demonstrated strong antitumor efficacy
in NF2-deficient mesothelioma models as monotherapy (160).
Additionally, like TAG933 and VT3989, it showed synergistic
effects with EGFR and KRAS®'*€ inhibitors (160). However, there
are no preclinical or clinical reports on the safety of this drug to
date. Future reports on ISM6331 use in clinical trials could support
further use of in silico modeling to develop novel TEAD inhibitors.

7.4 SW-682

SW-682 (NCT06251310) is a pan-TEAD small molecule
inhibitor which blocks palmitoylation of TEAD to inhibit all
TEAD-dependent transcription (161). It was reported that SW-
682 inhibited proliferation of Hippo-mutant mesothelioma cells in
vitro and tumor regression in murine mesothelioma models. Like
other TEAD inhibitors, SW-682 synergized with EGFR and
KRASC'?€ inhibitors for NSCLC PDX models in vivo (161). SW-
682 was also shown to decrease cellular proliferation and
downregulated YAP/TAZ-TEAD target genes in HNSCC cell
lines Cal27 and Cal33 and in tumor xenograft models (85). It was
also reported that SW-682 has good oral bioavailability in mice and
did not lead to weight loss during treatment. However, there were
no reports on the potential effects of SW-682 on renal function and
urine biomarkers which have been reported with use of other TEAD
inhibitors which could indicate a better side effect profile clinically.

7.5 ION537

Unlike other TEAD inhibitors discussed, ION537 is an
antisense oligonucleotide that selectively targets YAP1 to cause a
marked reduction in YAPI protein level in HCC and HNSCC
tumor models (162). Interestingly, ION537 treatment also led to an
increase in T cell infiltration and enhanced efficacy of anti-PDI
antibody treatments. The results from the clinical trial
(NCT04659096) have not been reported at this time. The unique
nature of ION537 as an YAPI antisense oligonucleotide coupled
with an increase in immune infiltration indicate a novel mechanism
of targeting TEAD which could also potentially sidestep the renal
toxicity of other TEAD inhibitors.
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7.6 BPI-460372

BPI-460372 is a small molecule inhibitor that covalently binds
to the cysteine residue in the central binding pocket of TEAD thus
irreversibly inhibiting palmitoylation. In vivo testing demonstrated
reduction of tumor growth in NF2-deficient and LATS1/2-mutated
xenograft models (163). Further studies found that dose escalation
ranging from 10 to 80 mg per oral dose during the Phase 1 study
(NCT05789602) did not lead to any Grade 3 or higher adverse
events and did not observe any renal toxicity when administered
using the 3 days on/4 days oft schedule and improved renal injury
biomarkers while still maintaining efficacy (164). Reducing the
renal toxicity biomarkers while maintaining efficacy makes BPI-
460372 a viable candidate should its safety and efficacy be
validated clinically.

7.7 ODM-212

ODM-212 is a pan-TEAD inhibitor currently in Phase 1
(ISRCTN99739590) that is being evaluated for use in select
advanced solid tumors (168). There is currently no published data
regarding safety profile or preclinical results so future results from
the Phase 1 trial will be critical for further consideration.

7.8 BGC-515

BGC-515 is a TEAD inhibitor currently in Phase 1
(NCT06452160) being evaluated for use in metastatic
mesothelioma, epithelioid hemangioendothelioma, and other solid
tumors. There is currently no published data regarding the safety
profile of BGC-515. However, another TEAD inhibitor developed
by BridGene is BGI-9004. BGI-9004 treatment led to tumor
regression in xenograft models using mesothelioma cell lines,
H226 and MST-0211H (169). They also did not see any
deleterious effect on total body weight in mice during the 28 day
treatment course. Dose response matrices suggest that BGI-9004
could be used in combination therapy with KRAS inhibitors in
KRAS-mutant cell lines to overcome resistance (169). We
hypothesize that BGC-515 may be the result of further
optimization and preclinical testing following these discoveries
with BGI-9004 and look forward to results from the Phase 1 trial.

7.9 IK-930

IK-930 is a small molecule inhibitor that selectively blocks
autopalmitoylation of TEADI1 inhibiting proliferation of Hippo
pathway-mutated cancer cell lines and antitumor effects in
mesothelioma xenograft models (165). Furthermore, IK-930
enhanced the efficacy of EGFR and MEK inhibitors in vivo. It was
reported that IK-930 drove interactions between VGLL4 and
TEADI1 which repressed oncogenic activity and blocked

frontiersin.org


https://doi.org/10.3389/fonc.2025.1692512
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Battina et al.

chromatin association by other TEAD family members.
Additionally, treatment with IK-930 had limited renal toxicity in
rats and no renal issues in non-human primates (166). They
reported that proteinuria was only recorded in 3 out of 26
patients and was fully reversible without dose-limiting effects
(167). Other adverse effects reported were fatigue, nausea and
diarrhea. Unfortunately, as the phase 1 clinical trial for IK-930
was discontinued, it is unlikely that there will be further
investigation into its potential as a TEAD inhibitor despite the
favorable renal safety profile and TEAD1 selective activity.
Overall, TEAD inhibitors are a very novel drug class that is still
undergoing investigation, so there is a lack of extensive data
publically available, however we anticipate that completion of
these Phase 1 studies will provide greater insights on safety and
efficacy of TEAD inhibitors clinically. Even with the limited data
provided, a potential adverse effect generalized to TEAD inhibitors
seems to be some form of renal toxicity leading to elevated urine
biomarkers such as albuminuria. As discussed previously, different
members of the TEAD family have tissue-specific expression
patterns even as early as embryogenesis. High levels of YAP and
TEAD3 and TEAD4 motif enrichment have been discovered to be
important for podocytes differentiation and survival which could
explain why some pan-TEAD inhibitors may have stronger adverse
effects than paralog-specific inhibitors such as IK-930 which did not
find renal toxicity in non-human primates and very little
proteinuria in human patients (170-172). In all reports, it was
indicated that this toxicity is reversible and has been shown to be
mitigated through an altered dosing regimen in several drugs. This
would still indicate that any synergistic treatment plans between
TEAD inhibitors and other drugs that can increase renal toxicity
should be carefully evaluated to ensure that dosing does not hinder
patient survival and reduce long-term efficacy of treatment.

8 Alternate TEAD binding partners in
cancer

YAP and TAZ are the most heavily studied binding partners for
the transcription factor TEAD, but there are additional binding
partners that enhance or suppress transcription through binding to
the TEAD transcriptional complex.

8.1 AIB1/SRC3/NCOA3

Amplified in Breast Cancer 1 (AIB1) or the steroid receptor
coactivator (SRC3) is an oncogene overexpressed in cancer that acts
as a coactivator to enhance transcription through interactions with
several transcription factors including TEAD. Early reports
identified functional interactions between members of the SRC
family and TEAD2 leading to hypotheses that SRC could be a
coactivator for the TEAD family of transcription factors and bind
directly to TEAD (173). In fact, knockdown of AIB1 in MCF10A
reduced TEAD-mediated downstream expression of CTGF and
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ANKRDI1 (174). Furthermore, knockdown of AIB1 also led to a
reduction in TEAD-YAP luciferase reporter activity indicating its
role to bridge interactions between TEAD and YAP. Further studies
demonstrated that AIBI physically interacts with YAP and TEAD
in MCF10A and MCFDCIS breast cancer cells and that AIB1 can
recruit the tumor suppressor ANCOL, a repressor of the S100 and
SPRR gene families (175). ChIP-qPCR analysis showed that AIB1
was more enriched at ANKRD1 with TEAD and AP-1 occupancy
than with a TEAD4 peak with only TEAD occupancy in HCT116
cells (176).

8.2 NFxB

While the interactions between NFkB and TEAD are not yet
fully understood, it has been shown that TEADI can cause nuclear
sequestration of p65 leading to development of a TEAD/p65
complex in rat pulmonary epithelial cell line, L2 (177). This
complex regulates a subset of immune genes that were previously
believed to be solely NFxB-dependent (177). Co-
immunoprecipitation confirmed p65 formed complexes with
TEADI1 and TEAD4. Interestingly, YAP was found to have a
tumor suppressor role in clear cell renal carcinoma by competing
with p65 for TEAD binding and excluding other protein
interactions with TEAD (91). Furthermore, it was found that
cytoplasmic YAP can directly attenuate NFkB activity by binding
to TAK1 and IKK blocking downstream activation in primary
chondrocytes (178). Further investigation of the binding between
TEAD and NFkB in other cancers could potentially provide further
insights on YAP’s paradoxical role as a tumor suppressor.

8.3 MEF2

Myocyte enhancer factor-2 (MEF2) transcription factor is
involved in neural development, muscle formation, cardiac
development, and is implicated in carcinogenesis (179). A co-
immunoprecipitation assay in HeLa cells and cardiac myocytes
demonstrated that TEAD1 and MEF2 physically interact and can
interfere with MEF2-dependent activation of other
promoters (180).

8.4 FAM181A/B

FAM181 A/B play a role in murine embryonic development and
have also been found to interact with TEAD (181, 182). These proteins
were identified from protein databases by looking for sequences
mimicking the Q-loop region of YAP in other proteins. A co-
immunoprecipitation experiment demonstrated that FAM181A/B
were able to bind to TEAD4. However, they were unable to
determine if FAM181A/B exerts an eftect on TEAD transcriptional
activity in HEK293FT cells. Like YAP/TAZ, FAM181A was blocked
from TEAD binding after treatment with inhibitor IAG933 (110).
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8.5 AP-1

Activator protein 1 (AP-1) is a transcriptional complex that is
composed of multiple proteins including c-Fos, c-Jun, and ATF. De
novo motif analysis of YAP/TAZ-TEAD peaks in MDA-MB-231 breast
cancer cells found that AP-1 transcription factor was the next most
frequent motif (136). A dominant-negative mutant of Jun repressed AP-
1 signaling which consequently inhibited cellular proliferation and
transcription of downstream TEAD genes. Another study performed
ChIP-seq on A549, HCT116, and SK-N-SH cancer cell lines to find that
TEAD4 and AP-1 co-occupied peaks were enriched for genes that
regulate cellular migration and invasion (176). ChIP-qPCR analysis
showed that SRC3 was more enriched at ANKRD1 with TEAD and AP-
1 occupancy than with a TEAD4 peak with only TEAD occupancy
(176). Using ChIP-seq in MDA-MB-231 cells, it was found that AP-1,
STATS3, and TEAD co-localize at YAP/TAZ target sites suggesting that
an AP-1/STAT3/TEAD complex recruits YAP/TAZ and increases
expression of a AP-1 enriched motif gene subset that correlated with
poor overall survival in triple-negative breast cancer (183). YAP and
AP1 related transcription is activated during PDAC tumorigenesis and
loss of AP-1 suppressed YAP-dependent cellular proliferation
suggesting overlapping downstream targets (184). This was verified by
co-precipitation of YAP, TEAD, and AP-1 in dysplastic lesions. TEAD
and AP-1 motif enrichment have also been identified in ChIP-seq data
from patient-derived colorectal cancer organoids (185). Interestingly,
the YAP/TAZ-TEAD transcriptional complex induces FOS gene
expression in HEK293 cells (186). Since Fos is a subunit in AP-1, this
could increase presence of AP-1 to form a complex and increase
transcription of proliferation related genes (186).

8.6 VGLL

The vestigial-like (VGLL) family of coactivators consists of four
members, VGLL1-4. The interactions between VGLL and TEAD
are highly context-dependent as coactivation has been shown to
have both proliferative and anti-proliferative effects in cancer.
VGLL4 competes with YAP for binding to TEAD which inhibits
YAP/TAZ-TEAD target gene expression which has been shown to
be oncogenic in multiple cancers (108). On the other hand, VGLL1
and VGLL3 have been shown to promote cancer cell proliferation
through interactions with TEAD (104, 187). In endocrine therapy-
resistance breast cancer, the VGLL1-TEAD complex induced EGFR
expression and promoted growth of fulvestrant-resistance cancer
cells (188). A VGLL2-NCOA2 fusion protein found in spindle cell
rhabdomyosarcoma was found to strongly induce expression of
TEAD downstream target genes (189). VGLL3 knockdown
inhibited proliferation in myoblasts and soft-tissue sarcoma (18).
VGLLA4 gene expression is reduced in lung cancer and its increased
expression suppresses proliferation of lung cancer cells by
suppressing TEAD transcription (108). VGLL4 was also shown to
enhance multiple TEAD inhibitors such as VT104, IK-930, GNE-
7883, 1AG933, and MYF-03-178 in removing YAP from the TEAD
condensates while other members of the VGLL family did not
produce a similar effect (110).

Frontiers in Oncology

13

10.3389/fonc.2025.1692512

It is important to note that these binding partners do not bind to
TEAD exactly like paralogs YAP/TAZ. It is possible that inhibition of
YAP-TAZ/TEAD binding could even lead to greater binding to TEAD
and an increase in specific downstream transcription. Further research
is needed to fully investigate how these cofactors influence cancer
progression in the presence or absence of YAP/TAZ-TEAD signaling.

9 Discussion

From upstream components such as LATS1/2 to the TEAD
transcription factor and its co-activators, dysregulation in the Hippo
pathway plays a critical role in tumorigenesis. TEAD has a key role in
the Hippo pathway and can interact with multiple pathways, playing
an important role in driving cancer progression which makes it an
attractive therapeutic target. While the role of TEAD still needs to be
fully elucidated, it’s clear that disrupting the interactions through the
use of TEAD inhibitors is a promising clinical avenue.

TEAD inhibitors could play such a large role in the constantly
evolving landscape of cancer therapy as there is a significant correlation
between higher TEAD expression and decreased OS in numerous cancers
such as breast cancer, lung cancer, and many others that were previously
discussed. However, there is still more to learn regarding the role of Hippo
pathway signaling in cancer. It has been identified that Hippo signaling
can be protective in certain cancers suggesting that its downstream
pathways can counteract oncogenic signaling driven by other
commonly dysregulated pathways. The effects of TEAD inhibitors on
stromal responses in cancer particularly the immune system is also an
active area of investigation. We believe that this novel class of drugs should
be further evaluated to understand the best practices for future treatment
in patients expressing high levels of TEAD target gene transcription.

While no clinical trials have been completed, the safety and
toxicity profiles of TEAD inhibitors are encouraging. Adverse
effects such as nephrotoxicity were shown to be reversible with
altered dosing schedules. Further information from early phase
trials is needed before making any definitive statements on the
safety profile of TEAD inhibitors, but there do not seem to be any
major concerns. Despite the small number of patients, preliminary
clinical findings from early phase trials indicate that TEAD
inhibitors demonstrate activity against solid tumors so the
promise of these drugs is recognized. This is particularly relevant
because most current clinical trials focus on cancers with known
mutations in Hippo pathway components, such as NF2; however,
TEAD inhibitors may also suppress tumors independently of NF2
status. This suggests that blocking the oncogenic transcriptional
activity of TEAD alone may be sufficient to limit tumor progression.

In conclusion, we believe that TEAD inhibitors have a
promising potential and should continue to be pursued for
further preclinical investigation and clinical studies.
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