

OPEN ACCESS

EDITED AND REVIEWED BY Liang Qiao, The University of Sydney, Australia

*CORRESPONDENCE
Yuchuan Jiang

Jiangych17@outlook.com

ndefy23386@ncu.edu.cn

RECEIVED 23 August 2025 ACCEPTED 03 October 2025 PUBLISHED 27 October 2025

CITATION

Jiang Y and Xiong K (2025) Editorial: Impact of the inflammatory microenvironment on immune infiltration in colorectal and liver cancers: insights for new immunotherapeutic strategies.

Front. Oncol. 15:1691488.

doi: 10.3389/fonc.2025.1691488

COPYRIGHT

© 2025 Jiang and Xiong. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Impact of the inflammatory microenvironment on immune infiltration in colorectal and liver cancers: insights for new immunotherapeutic strategies

Yuchuan Jiang* and Kai Xiong

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China

KEYWORDS

hepatocellular cancer, inflammatory microenvironment, colorectal cancer, immunotherapeutic strategies, immune infiltration

Editorial on the Research Topic

Impact of the inflammatory microenvironment on immune infiltration in colorectal and liver cancers: insights for new immunotherapeutic strategies

Together, colorectal cancer and liver cancer account for a substantial and increasing global cancer burden (1, 2). Over the past decade, immunotherapy has made significant progress in treating multiple malignancies, including these two diseases (3). However, the clinical benefit depends heavily on the immunological phenotype of the tumor microenvironment (TME). Commonly used categories include immune-enriched (activation), fibrotic/immune-enriched (immune residence), fibrotic (immune suppression), and immune-depleted (immune exclusion) states (4). To overcome primary and acquired resistance, combination regimens that pair immune checkpoint inhibitors (ICIs) with TME-remodeling agents have become a central strategy (5). Inflammation drives the initiation and evolution of colorectal and liver cancers. Beyond mutagenesis, chronic low-grade inflammation nonspecifically activates T cells, promotes exhaustion and anergy, recruits and skews immunosuppressive cells, and ultimately establishes tumor immune tolerance (6, 7). Clarifying how inflammatory cues enforce tolerance and building prognostic models anchored in inflammation-linked immune indices may improve outcomes and quality of life for patients with colorectal and liver cancers.

This Research Topic brings together original studies and a systematic review that advance mechanistic insight and translational readiness across spatial pathology, epigenetics, niche mapping, and functional prognostics. Chen et al. introduced tumor infiltration proportion within lymph nodes (TIPLN) as a pragmatic, pathology-embedded spatial biomarker for N1 colorectal cancer. Across training and validation cohorts, per–patient maximal TIPLN

Jiang and Xiong 10.3389/fonc.2025.1691488

independently predicted overall survival, and, when incorporated into a nomogram, TIPLN improved discrimination, reclassification, and net clinical benefit-operationalizing regional niche remodeling for postoperative risk stratification and prospective trial enrichment. Liang et al. delineated an epigenetic-immune escape axis in hepatocellular carcinoma centered on GINS1. Using transcriptomic, proteomic, and immunohistochemical evidence, the authors demonstrated GINS1 upregulation, sitespecific methylation associations with survival, broad coupling to m6A regulators, and positive correlations with multiple inhibitory checkpoints, nominating GINS1 and its methylome as companion biomarkers and supporting epigenetic-checkpoint combinations in HCC. He et al. provided a decade-spanning bibliometric synthesis of colorectal cancer TME research, documenting the field's rapid growth since 2019 and convergent hotspots in ICI therapeutics, CAF heterogeneity and macrophage polarization, intestinal microbiota, colorectal liver metastasis, drug resistance, and singlecell/spatial multi-omics. Their analysis identified China and the United States as major collaboration hubs and underscores the need for higher research quality, standardization, and deeper international partnerships. Ma et al. integrated 14 programmed cell death (PCD) pathways to derive a three-gene signature— FABP4 as a risk gene and AQP8 and NAT1 as protective—that robustly stratifies prognosis across multiple cohorts and aligns with an "immune-inflamed" versus "stroma-dominant" niche dichotomy. Low-risk tumors showed greater infiltration by B cells, CD4+ and CD8+ T cells, NK cells, and M1 macrophages; reduced stromal and endothelial signals; higher predicted and observed ICI responsiveness; and greater sensitivity to first-line chemotherapy. Functional assays further showed that NAT1 overexpression augments apoptosis, reinforcing the biological plausibility of the authors' findings.

Together, these studies outline a concise framework linking inflammation to niche states and clinical outcomes. Companion diagnostics should integrate spatial pathology (TIPLN, TLS maturation, immune topology, and CAF/stroma/vascular scores), molecular markers (GINS1 expression and methylation and multi-PCD scores), and dynamic readouts (ctDNA, circulating immune profiling, and radiomics fused with spatial omics). Therapeutically, niche-decompressing combinations—ICIs with anti-TGF-B or CSF1R blockade— should be prioritized with selective addition of LAG-3/TIGIT inhibition; epigenetic-ICI regimens should be added for GINS1/methylation-defined subsets; metabolic and vascular normalization should be paired with ICIs; and microbiome interventions, particularly for colorectal liver metastasis, should be applied. The perioperative and neoadjuvant windows are opportune times to reprogram niches and establish durable immune memory. The next steps include standardizing TIPLN and PCD cutoffs through multicenter, real-world validation; deploying integrated, single-cell/spatial, multi-omics with harmonized digital pathology to reduce bias; testing causality in organoid-immune co-cultures and humanized models; and designing trials that are stratified by spatial and molecular niche fingerprints, with biomarker-guided monitoring to balance efficacy and toxicity—especially in cirrhosis and microbiomemodulating contexts.

Author contributions

YJ: Supervision, Conceptualization, Visualization, Investigation, Methodology, Software, Funding acquisition, Resources, Project administration, Formal Analysis, Validation, Writing – review & editing, Data curation, Writing – original draft. KX: Writing – review & editing, Conceptualization.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative AI was used in the creation of this manuscript. The author(s) verify and take full responsibility for the use of generative AI in the preparation of this manuscript. Generative AI was used for language editing only. Specifically, the authors used GPT–5 (OpenAI, model version: GPT–5, source: OpenAI API) to improve grammar, clarity, and style. All content was reviewed by the authors for factual accuracy and originality.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Jiang and Xiong 10.3389/fonc.2025.1691488

References

- 1. Mauri G, Patelli G, Crisafulli G, Siena S, Bardelli A. Tumor "age" in early-onset colorectal cancer. Cell. (2025) 188:589–93. doi: 10.1016/j.cell.2024.12.003
- 2. Li Q, Cao M, Lei L, Yang F, Li H, Yan X, et al. Burden of liver cancer: From epidemiology to prevention. Chin J Cancer Res = Chung-kuo yen cheng yen chiu. (2022) 34:554-66. doi: 10.21147/j.issn.1000-9604.2022.06.02
- 3. Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, et al. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. *Mol Cancer.* (2025) 24:136. doi: 10.1186/s12943-025-02305-x
- 4. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature.~(2022)~612:141-7.~doi: 10.1038/s41586-022-05400-x
- 5. Qin S, Chan SL, Gu S, Bai Y, Ren Z, Lin X, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresecta ble hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. *Lancet (London England)*. (2023) 402:1133–46. doi: 10.1016/S0140-6736(23)00961-3
- 6. Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M, Szydlowska M, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. *Nature*. (2021) 592:450–6. doi: 10.1038/s41586-021-03362-0
- 7. Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, et al. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. *J Clin Invest.* (2020) 130:5380–96. doi: 10.1172/JCI137110