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bioinformatics and machine
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Background: Lung cancer diagnosis requires cost-effective biomarkers.

Mitochondrial non-coding RNAs (mtRNAs) represent unexplored diagnostic targets.

Methods: We analyzed TCGA-LUAD/LUSC miRNA-seq data to identify mtRNAs

via mitochondrial genome alignment. Machine learning algorithms (SVM,

Random Forest, Logistic Regression) classified samples using differentially

expressed mtRNAs (P < 0.01, |log2FC| > 1). Top-ranked t00043332 was

functionally validated in A549/PC9 cells.

Results: Ten mtRNAs distinguished cancer from normal tissues. Random Forest

and Logistic Regression achieved superior classification (AUC > 0.92) versus SVM.

Nine mtRNAs were upregulated, one downregulated in cancer. No survival

associations were observed. t00043332 overexpression promoted proliferation,

migration, invasion, and apoptosis resistance.

Conclusion: mtRNAs serve as effective lung cancer diagnostic biomarkers

through integrated traditional and AI approaches. t00043332 functions as an

oncogene, providing therapeutic targets and advancing biomarker discovery.
KEYWORDS

lung cancer, machine learning, biomarker discovery, mitochondrial non-coding RNAs,
potential drug targets
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Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide, accounting for approximately 1.8 million

deaths annually and representing nearly 20% of all cancer deaths

(1, 2). Despite significant advances in therapeutic interventions and

diagnostic technologies over the past decades, the five-year survival

rate for lung cancer patients remains disappointingly low at

approximately 15-20%, primarily due to late-stage diagnosis when

curative treatments are no longer viable (3). The heterogeneous

nature of lung cancer, encompassing multiple histological subtypes

including adenocarcinoma, squamous cell carcinoma, and small cell

lung carcinoma, further complicates early detection and therapeutic

management (4, 5). Current screening methodologies, particularly

low-dose computed tomography (LDCT), have demonstrated

efficacy in reducing mortality rates by enabling earlier detection

in high-risk populations (6). However, these imaging-based

approaches are associated with substantial limitations including

high costs, limited accessibility, frequent false-positive results

leading to unnecessary invasive procedures, and radiation

exposure concerns that restrict their widespread implementation

as population-based screening tools (7, 8).

The urgent need for cost-effective, minimally invasive, and highly

accurate diagnostic biomarkers has driven extensive research into

liquid biopsy approaches, particularly focusing on circulating nucleic

acids in peripheral blood (9, 10). Small non-coding RNAs (sncRNAs)

have emerged as promising biomarker candidates due to their

remarkable stability in circulation, tissue-specific expression patterns,

and functional roles in cancer pathogenesis (11, 12). While microRNAs

(miRNAs) have been extensively studied as diagnostic and prognostic

biomarkers in various cancer types (13), recent investigations have

expanded to include other classes of sncRNAs such as small nucleolar

RNAs (snoRNAs) (14), PIWI-interacting RNAs (piRNAs) (15), and

transfer RNA-derived small RNAs (tsRNAs) (16). However, one

relatively unexplored class of regulatory sncRNAs with significant

potential for cancer biomarker discovery is mitochondria-derived

small RNAs (mtRNAs), which represent a novel category of non-

coding RNAs generated frommitochondrial tRNA precursors through

specific cleavage mechanisms (17).

Mitochondria play fundamental roles in cellular energy

metabolism, apoptosis regulation, and oxidative stress responses,

all of which are critically disrupted during cancer development

and progression (18, 19). The human mitochondrial genome

contains 37 genes encoding 13 protein-coding genes, 22 transfer

RNAs, and 2 ribosomal RNAs, all of which are essential for

mitochondrial respiratory chain function and ATP synthesis

(20, 21). Emerging evidence suggests that mitochondrial

dysfunction, characterized by altered metabolism, increased

reactive oxygen species production, and compromised

respiratory chain activity, represents a hallmark of cancer

pathophysiology (22–24). Recent discoveries have revealed that

mitochondrial tRNAs undergo specific endonucleolytic cleavage

to generate stable small RNA fragments, termed mtRNAs, which

exhibit tissue-specific expression patterns and potential regulatory

functions analogous to cytoplasmic miRNAs (25, 26). These
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mtRNAs have been implicated in various cellular processes

including stress responses, metabolic regulation, and potentially

cancer development, yet their diagnostic utility in human

malignancies remains largely unexplored (27, 28).

The integration of artificial intelligence and machine learning

approaches with traditional biomarker discovery methodologies

offers unprecedented opportunities to enhance the accuracy and

reliability of cancer diagnostic tools (29). Machine learning

algorithms, particularly ensemble methods such as Random

Forest, Support Vector Machines, and deep learning architectures,

have demonstrated superior performance in handling high-

dimensional genomic data and identifying complex biomarker

signatures that may not be apparent through conventional

statistical approaches (30, 31). These computational methods can

effectively manage the challenges associated with small sample sizes,

high-dimensional feature spaces, and the need for robust cross-

validation, making them ideally suited for biomarker discovery

applications (32). Furthermore, the development of ratio-based

normalization methods has addressed longstanding challenges in

sncRNA biomarker studies, particularly the issues related to

technical variability, batch effects, and the absence of reliable

reference genes for normalization (17).

In this study, we present a comprehensive investigation

combining traditional bioinformatics approaches with advanced

machine learning methodologies to identify and validate mtRNA

biomarkers for lung cancer diagnosis. Through systematic analysis of

TCGA datasets encompassing both lung adenocarcinoma and

squamous cell carcinoma, we aimed to characterize the mtRNA

expression landscape in lung cancer, develop robust machine

learning-based classification models, and validate the functional

significance of identified biomarkers through in vitro experimental

approaches. Our integrated strategy represents a novel application of

both traditional molecular biology techniques and artificial

intelligence approaches to advance the discovery of therapeutically

relevant biomarkers and elucidate novel therapeutic mechanisms in

lung cancer pathogenesis.
Methods

Data acquisition and processing

The miRNA-seq data from The Cancer Genome Atlas (TCGA)

database were obtained for lung adenocarcinoma (TCGA-LUAD,

n=513) and lung squamous cell carcinoma (TCGA-LUSC, n=478)

cohorts with their corresponding normal tissue samples

(Supplementary Table S1). Raw sequencing data in BAM format

were retrieved from the TCGA data portal and processed using

standardized bioinformatics pipelines. Quality control assessment

was performed using FastQC (Babraham Bioinformatics,

Cambridge, UK) to evaluate read quality, adapter contamination,

and sequence length distribution. Adapter sequences were trimmed

using Cutadapt version 3.4 (Marcel Martin, TU Dortmund

University, Germany) with stringent parameters to ensure high-

quality reads for downstream analysis.
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Mitochondrial RNA identification and
quantification

Mitochondrial non-coding RNAs (mtRNAs) were identified

and quantified using the methodology described by Yu et al.

(2023) (17). Briefly, trimmed sequencing reads were aligned to

the human mitochondrial genome (NC_012920.1) using STAR

aligner version 2.7.9a (Cold Spring Harbor Laboratory, NY, USA)

with optimized parameters for small RNA alignment. The

mitochondrial tRNA database (MitotRNAdb) was used as the

reference for mtRNA annotation and classification. Read counts

for each mtRNA were obtained using HTSeq-count from the

HTSeq package version 0.13.5 (European Molecular Biology

Laboratory, Heidelberg, Germany) with intersection-strict mode

to ensure accurate quantification. Raw count matrices were

normalized using the trimmed mean of M-values (TMM) method

implemented in the edgeR package version 3.38.4 (Bioconductor,

Fred Hutchinson Cancer Research Center, Seattle, WA, USA).
Differential expression analysis and
statistical testing

Differential expression analysis was conducted to identify

significantly altered mtRNAs between tumor and adjacent normal

tissue samples. Paired sample analysis was performed using the

limma package version 3.52.4 (Bioconductor) for linear modeling of

gene expression data. Statistical significance was determined using

empirical Bayes moderated t-statistics with Benjamini-Hochberg

false discovery rate (FDR) correction for multiple testing. mtRNAs

with adjusted p-values < 0.01 and absolute log2 fold change > 1 were

considered significantly differentially expressed. Principal

component analysis (PCA) was performed using the prcomp

function in R version 4.2.0 (R Foundation for Statistical

Computing, Vienna, Austria) to visualize sample clustering

patterns based on significantly dysregulated mtRNAs.
Machine learning classification and feature
selection

Multiple machine learning algorithms were employed to

evaluate the diagnostic potential of mtRNAs and identify optimal

feature combinations. Support Vector Machine (SVM)

classification was implemented using the e1071 package version

1.7-11 (Vienna University of Technology, Austria) with radial basis

function kernel and optimized hyperparameters determined

through 10-fold cross-validation. Random Forest classification

was performed using the randomForest package version 4.7-1.1

(University of California, Berkeley, CA, USA) with 1000 trees and

mtry parameter optimized for classification tasks. Logistic

regression modeling was conducted using the glm function in

base R with binomial family specification. Model performance

was evaluated using receiver operating characteristic (ROC) curve

analysis implemented in the pROC package version 1.18.0
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(University of Geneva, Switzerland). Feature importance ranking

was determined using the Random Forest variable importance

measures, specifically mean decrease in accuracy and mean

decrease in Gini impurity.
Cell culture and transfection

Human lung adenocarcinoma cell lines A549 (ATCC CCL-185)

and PC9 (RIKEN BioResource Research Center, Japan) were

cultured in RPMI-1640 medium (Gibco, Thermo Fisher Scientific,

Waltham, MA, USA) supplemented with 10% fetal bovine serum

(FBS, Gibco), 100 U/mL penicillin, and 100 mg/mL streptomycin

(Gibco) at 37 °C in a humidified atmosphere with 5% CO2. Cells

were routinely tested for mycoplasma contamination using the

MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland).

For overexpression experiments, custom mtRNA mimics targeting

t00043332 and negative control oligonucleotides were synthesized

by GenePharma Co., Ltd. (Shanghai, China). Transfections were

performed using Lipofectamine 3000 reagent (Invitrogen, Thermo

Fisher Scientific) according to the manufacturer’s protocol with a

final oligonucleotide concentration of 50 nM.
Cell proliferation and viability assays

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8, Dojindo Molecular Technologies, Kumamoto, Japan)

colorimetric assay. Cells were seeded in 96-well plates at a density

of 3,000 cells per well and transfected with mtRNA mimics or

negative controls. At designated time points (24, 48, 72, and 96

hours post-transfection), 10 mL of CCK-8 solution was added to

each well and incubated for 2 hours at 37 °C. Absorbance was

measured at 450 nm using a microplate reader (BioTek

Instruments, Winooski, VT, USA). Colony formation assays were

performed by seeding 500 transfected cells per well in 6-well plates

and culturing for 14 days. Colonies were fixed with 4%

paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) and

stained with 0.5% crystal violet solution (Beyotime Biotechnology,

Shanghai, China). Colonies containing more than 50 cells were

manually counted under light microscopy.
Cell migration and invasion assays

Cell migration capacity was evaluated using wound healing

scratch assays. Transfected cells were seeded in 6-well plates until

reaching 90% confluence, followed by creation of standardized

scratches using sterile pipette tips. Cells were then cultured in

serum-free medium, and wound closure was monitored at 0- and

48-hours using phase-contrast microscopy (Olympus Corporation,

Tokyo, Japan). Wound closure percentage was calculated using

ImageJ software version 1.53t (National Institutes of Health,

Bethesda, MD, USA). For invasion assays, Transwell chambers

with 8-mm pore size polycarbonate membranes (Corning Inc.,
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Corning, NY, USA) were coated with Matrigel (BD Biosciences,

Franklin Lakes, NJ, USA) diluted 1:8 in serum-free medium.

Transfected cells (2×10^4) in serum-free medium were added to

the upper chamber, while the lower chamber contained complete

medium with 10% FBS as a chemoattractant. After 24 hours of

incubation, non-invading cells on the upper surface were removed,

and invading cells on the lower surface were fixed with methanol

and stained with 0.1% crystal violet. Invading cells were counted in

five random fields per membrane under light microscopy.
Flow cytometry analysis

Apoptosis detection was performed using the Annexin V-FITC/

Propidium Iodide Apoptosis Detection Kit (BD Biosciences)

according to the manufacturer’s instructions. Transfected cells

were harvested 48 hours post-transfection, washed twice with

cold phosphate-buffered saline (PBS, Gibco), and resuspended in

binding buffer at a concentration of 1×10^6 cells/mL. Cells were

stained with 5 mL Annexin V-FITC and 5 mL propidium iodide for

15 minutes at room temperature in the dark. Flow cytometric

analysis was performed using a BD FACSCalibur flow cytometer

(BD Biosciences) with data acquisition of 10,000 events per sample.

Data analysis was conducted using FlowJo software version 10.8.1

(Becton, Dickinson and Company, Franklin Lakes, NJ, USA) to

determine the percentage of viable, early apoptotic, late apoptotic,

and necrotic cell populations.
Statistical analysis

All statistical analyses were performed using R version 4.2.0 and

GraphPad Prism version 9.0 (GraphPad Software, San Diego, CA,

USA). Data are presented as mean ± standard error of the mean

(SEM) from at least three independent experiments. Comparisons

between two groups were analyzed using unpaired two-tailed

Student’s t-tests for continuous variables. For survival analysis,

patients were stratified into high and low expression groups based

on median mtRNA expression levels, and overall survival was

analyzed using Kaplan-Meier curves with log-rank tests. A p-

value < 0.05 was considered statistically significant, and multiple

testing correction was applied where appropriate using the

Benjamini-Hochberg method.
Results

Differential expression analysis of
mitochondrial non-coding RNAs in lung
cancer

To investigate the role of mitochondrial non-coding RNAs

(mtRNAs) in lung cancer pathogenesis, we performed

comprehensive bioinformatics analysis using miRNA-seq data

from The Cancer Genome Atlas (TCGA) database, specifically
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TCGA-LUAD and TCGA-LUSC datasets. Through alignment to

the mitochondrial genome, we identified and quantified mtRNA

expression levels in paired tumor and adjacent normal tissue

samples. Differential expression analysis revealed significant

alterations in mtRNA profiles between cancer and normal tissues.

The enhanced volcano plot (Figure 1A) demonstrates the

distribution of mtRNAs based on their fold change and statistical

significance, with stringent criteria of P < 0.01 and |log2FC| > 1

applied to identify significantly dysregulated mtRNAs

(Supplementary Table S2). Principal component analysis (PCA)

of samples using significantly altered mtRNA expression profiles

(Figure 1B) revealed distinct clustering patterns between primary

tumor samples (red dots) and solid tissue normal samples (blue

dots), indicating that mtRNA expression signatures can effectively

discriminate between malignant and benign tissues with clear

separation trends along the first principal component, which

explained 42.95% of the total variance.
Machine learning-based classification and
feature selection of mtRNAs

To evaluate the diagnostic potential of mtRNAs and identify the

most discriminative features, we employed multiple machine

learning algorithms including Support Vector Machine (SVM),

Random Forest (RF), and Logistic Regression. The performance

evaluation through confusion matrices (Figures 2A-C)

demonstrated varying classification accuracies across different

algorithms. The Random Forest classifier achieved superior

performance with 23 true positives and 5 false negatives for

primary tumors, while the Logistic Regression model showed

comparable results with 24 true positives and 4 false negatives.

The SVM classifier exhibited the poorest performance with 16 true

positives and 12 false negatives. Receiver Operating Characteristic

(ROC) curve analysis (Figure 2D) confirmed these findings, with

Random Forest (AUC = 0.92) and Logistic Regression (AUC = 0.94)

demonstrating nearly equivalent and superior performance

compared to SVM. Feature importance analysis using the

Random Forest algorithm identified the top 10 most significant

mtRNAs contributing to cancer classification (Figure 2E), with

t00043332 emerging as the most influential biomarker with the

highest importance score, followed by t00000434 and t00021959.
Expression patterns and clinical
significance of top-ranked mtRNAs

Detailed expression analysis of the top 10 mtRNAs revealed

distinct expression patterns between tumor and normal tissues

(Figure 3). Among these biomarkers, nine mtRNAs including

t00043332 (p = 3.4e-04), t00000434 (p = 1.8e-07), t00021959 (p =

1.3e-03), t00003452 (p = 1.2e-03), t00000674 (p = 3.0e-10),

t00020025 (p = 8.3e-07), t00001349 (p = 1.5e-06), t00194962 (p =

3.2e-07), and t00001150 (p = 1.1e-05) showed significant

upregulation in tumor tissues compared to normal tissues.
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Notably, t00015589 was the only mtRNA demonstrating significant

downregulation in cancer tissues, though with marginal statistical

significance (p = 7.2e-01). The expression levels were normalized as

Z-scores, revealing substantial fold changes ranging from 2 to 8-fold
Frontiers in Oncology 05
increases in tumor samples. Survival analysis using the Kaplan-

Meier method for overall survival (OS) was performed for all top 10

mtRNAs (Figure 4), stratifying patients into high and low

expression groups based on median expression values.
FIGURE 1

Differential expression analysis of mitochondrial non-coding RNAs in lung cancer. (A) Enhanced volcano plot displaying the distribution of mtRNAs
based on fold change (x-axis) and statistical significance (-log10 P-value, y-axis) between lung cancer and normal tissue samples. Red dots represent
significantly upregulated mtRNAs, blue dots indicate significantly downregulated mtRNAs, and gray dots show non-significant changes. Horizontal
dashed line indicates P = 0.01 threshold, vertical dashed lines represent |log2FC| = 1 cutoffs. Selected mtRNAs with highest significance are labeled
with their identifiers. (B) Principal Component Analysis (PCA) plot showing sample clustering based on significantly dysregulated mtRNA expression
profiles. Red dots represent primary tumor samples; blue dots indicate solid tissue normal samples. PC1 explains 42.95% of total variance, PC2
explains 6.84% of total variance, demonstrating clear separation between cancer and normal tissue groups.
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Interestingly, none of the mtRNAs demonstrated statistically

significant associations with patient overall survival outcomes,

with p-values ranging from 0.096 to 0.805, suggesting that while

these mtRNAs serve as excellent diagnostic biomarkers, their

prognostic value may be limited in this cohort.
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Functional validation of t00043332 in lung
cancer cell lines

To investigate the biological significance of the most prominent

mtRNA biomarker, we performed functional studies by
FIGURE 2

Machine learning-based classification performance and feature selection. (A-C) Confusion matrices displaying classification performance for Logistic
Regression (A), Random Forest (B), and Support Vector Machine (C) algorithms. Numbers within matrices represent true positive, false positive, true
negative, and false negative classifications for primary tumor versus solid tissue normal samples. Color intensity corresponds to classification
frequency. (D) Receiver Operating Characteristic (ROC) curves comparing the three machine learning algorithms. Logistic Regression (AUC = 0.94),
Random Forest (AUC = 0.92), and SVM performance are shown with corresponding area under curve values. Diagonal dashed line represents
random classification baseline. (E) Feature importance ranking of the top 10 most discriminative mtRNAs identified by Random Forest algorithm.
Horizontal bar chart displays importance scores (x-axis) for each mtRNA identifier (y-axis), with t00043332 showing the highest importance score
followed by t00000434 and t00021959.
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overexpressing t00043332 in two lung cancer cell lines, A549 (lung

adenocarcinoma) and PC9 (lung adenocarcinoma with EGFR

mutation). Cell proliferation assays using CCK-8 demonstrated

that overexpression of t00043332 (MIMIC group) significantly

promoted cell growth compared to negative control (NC) in both

cell lines over a 96-hour time course (Figure 5A). The growth-

promoting effect was consistently observed at all time points, with

the most pronounced differences observed at 72 and 96 hours.

Colony formation assays revealed that t00043332 overexpression

substantially increased clonogenic capacity in both A549 and PC9

cells (Figure 5B), with colony numbers increasing from

approximately 45 to 75 colonies in A549 cells and from 55 to 80

colonies in PC9 cells, representing statistically significant

enhancements in cellular proliferation potential. Wound healing

assays demonstrated enhanced migratory capacity in t00043332-

overexpressing cells (Figure 5C), with wound closure percentages

significantly increased in both cell lines (approximately 40% wound

closure in MIMIC groups compared to 15-18% in control groups)

after 48 hours, indicating accelerated cell migration and potentially

enhanced metastatic potential.
Enhanced invasive capacity and apoptosis
resistance in t00043332-overexpressing
cells

Transwell invasion assays provided additional evidence for the

oncogenic role of t00043332 (Figure 6A). Overexpression of

t00043332 significantly increased the number of invading cells
Frontiers in Oncology 07
through Matrigel-coated membranes in both A549 and PC9 cell

lines. In A549 cells, the number of invading cells increased from

approximately 125 to 210 cells per field, while in PC9 cells, invasion

increased from about 150 to 220 cells per field, demonstrating

enhanced invasive capabilities that could contribute to metastatic

progression. Flow cytometry analysis using Annexin V and

propidium iodide staining was performed to assess the effect of

t00043332 on apoptosis (Figure 6B). The results revealed that

overexpression of t00043332 led to a significant reduction in

apoptotic cell populations. In A549 cells, the percentage of

Annexin V-positive cells decreased from approximately 12% in

the control group to 6% in the MIMIC group, while in PC9 cells,

apoptosis decreased from about 4% to 3%. These findings suggest

that t00043332 not only promotes proliferation and invasion but

also confers resistance to programmed cell death, thereby

contr ibut ing to tumor progress ion through mult ip le

oncogenic mechanisms.
Discussion

Our comprehensive investigation represents the first systematic

characterization of mitochondrial non-coding RNAs as diagnostic

biomarkers in lung cancer, demonstrating the successful integration

of traditional bioinformatics methodologies with advanced machine

learning approaches to identify novel therapeutic targets and

biomarkers. The identification of ten significantly dysregulated

mtRNAs between lung cancer tissues and adjacent normal

controls, with nine showing significant upregulation and one
FIGURE 3

Expression profiles of top-ranked mitochondrial RNAs. Box plots showing normalized expression levels (Z-score) of the ten most important mtRNAs
between tumor samples (n=91) and normal tissue samples (n=91). Each panel displays the mtRNA identifier, corresponding P-value, and sample size
distribution. Box plots show median (center line), interquartile range (box), whiskers extending to 1.5× IQR, and individual data points as dots. Nine
mtRNAs (t00043332, t00000434, t00021959, t00003452, t00000674, t00020025, t00001349, t00194962, t00001150) demonstrate significant
upregulation in tumor samples, while t00015589 shows non-significant expression changes. Statistical significance was determined by paired t-test
with P-values ranging from 1.1e-05 to 7.2e-01.
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demonstrating downregulation, aligns with emerging evidence

suggesting that mitochondrial dysfunction and altered

mitochondrial RNA metabolism represent fundamental

characteristics of cancer pathophysiology. These findings are

consistent with previous studies by Reznik et al., who

demonstrated that mitochondrial respiratory gene expression is

frequently suppressed across multiple cancer types (33), suggesting
Frontiers in Oncology 08
that disrupted mitochondrial RNA processing and metabolism may

contribute to the metabolic reprogramming characteristic of

malignant transformation.

The superior performance of Random Forest and Logistic

Regression algorithms compared to Support Vector Machines in

our classification analysis highlights the importance of algorithm

selection in biomarker discovery applications. The Random Forest
FIGURE 4

Survival analysis of top-ranked mitochondrial RNAs. Kaplan-Meier survival curves showing overall survival (OS) analysis for the ten most important
mtRNAs. Each panel displays survival probability (y-axis) versus time in days (x-axis) for patients stratified into high (orange) and low (blue) expression
groups based on median expression values. Sample sizes for each group are indicated in the legend. Log-rank test P-values are shown for each
mtRNA, ranging from 0.096 to 0.805, indicating no statistically significant associations between mtRNA expression levels and patient survival
outcomes. Survival curves demonstrate overlapping patterns between high and low expression groups across all analyzed mtRNAs.
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FIGURE 5

Functional validation of t00043332 in lung cancer cell lines - proliferation and migration. (A) Cell proliferation analysis using CCK-8 assays in A549
and PC9 cell lines over 96 hours. Gray squares represent negative control (NC), black triangles represent t00043332 mimic (MIMIC) treatment. Y-axis
shows absorbance at 450 nm, x-axis shows time points. Error bars represent standard error from three independent experiments. Overexpression of
t00043332 significantly promoted cell growth in both cell lines at all time points. (B) Colony formation assays showing representative colony images
and quantification. Left panels show crystal violet-stained colonies for A549 (top) and PC9 (bottom) cells under NC and MIMIC conditions. Right
panel shows colony number quantification with gray bars (NC) and black bars (MIMIC). Asterisk indicates P < 0.05 by t-test. (C) Wound healing assays
demonstrating cell migration capacity. Left panels show representative microscopic images of scratch wounds at 0 and 48 hours for A549 (top) and
PC9 (bottom) cells. Orange lines mark wound boundaries. Right panel shows wound closure percentage quantification with statistical significance
indicated by asterisks (** P < 0.01).
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algorithm’s ability to handle high-dimensional data with complex

feature interactions while providing interpretable variable

importance measures made it particularly well-suited for

identifying the most discriminative mtRNA features. The

identification of t00043332 as the most significant contributor to

cancer classification, derived from mitochondrial tRNA-Tyrosine,

suggests that specific mitochondrial tRNA processing pathways

may be preferentially disrupted in lung cancer. This finding is

supported by recent research demonstrating that stress-induced
Frontiers in Oncology 10
cleavage of cytoplasmic tRNAs generates functional small RNAs

that regulate cellular stress responses and metabolic adaptation

(34), suggesting that similar mechanisms may operate in

mitochondrial compartments during cancer development.

The absence of significant associations between mtRNA

expression levels and overall survival outcomes, despite their

excellent diagnostic performance, suggests that these biomarkers

may be more valuable for early detection rather than prognostic

stratification. This observation is consistent with the concept that
FIGURE 6

Enhanced invasive capacity and apoptosis resistance in t00043332-overexpressing cells. (A) Transwell invasion assays showing cell invasive capacity
through Matrigel-coated membranes. Left panels display representative microscopic images of crystal violet-stained invading cells for A549 (top)
and PC9 (bottom) under NC and MIMIC conditions. Right panels show quantification of invading cell numbers with gray bars (NC) and black bars
(MIMIC) for migration (top) and invasion (bottom) assays. Statistical significance indicated by ** P < 0.01. (B) Flow cytometry analysis of apoptosis
using Annexin V and propidium iodide staining. Left panels show representative flow cytometry scatter plots for A549-NC, A549-MIMIC, PC9-NC,
and PC9-MIMIC conditions. Quadrants indicate live cells (Q3), early apoptotic cells (Q4), late apoptotic cells (Q2), and necrotic cells (Q1). Right panel
shows quantification of Annexin V-positive cell percentages with gray bars (NC) and black bars (MIMIC). Statistical significance indicated by * P <
0.05 and ** P < 0.01, demonstrating reduced apoptosis in t00043332-overexpressing cells.
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different molecular mechanisms may drive cancer initiation versus

progression and metastasis. The diagnostic utility of mtRNAs may

reflect their involvement in early metabolic reprogramming events

that occur during malignant transformation, while survival outcomes

may be more influenced by later genetic and epigenetic alterations that

drive tumor progression and therapeutic resistance (35). Similar

patterns have been observed with other biomarker classes, where

diagnostic and prognostic biomarkers often represent distinct

molecular signatures reflecting different aspects of cancer biology.

Our functional validation studies demonstrating that t00043332

overexpression promotes proliferation, migration, invasion, and

apoptosis resistance in lung cancer cell lines provide compelling

evidence for the biological significance of mtRNAs in cancer

pathogenesis. The consistent oncogenic effects observed across

both A549 and PC9 cell lines, which represent different molecular

subtypes of lung adenocarcinoma with distinct genetic

backgrounds, suggest that mtRNA-mediated effects may represent

a broadly relevant mechanism in lung cancer biology. The

promotion of cell invasion and migration capabilities is

particularly significant given the critical role of metastasis in lung

cancer mortality. These findings are consistent with recent studies

by Larriba et al., who demonstrated that mitochondrial small non-

coding RNAs exhibit distinct expression patterns during different

stages of germ cell development (36), suggesting that mtRNAs may

function as important regulators of cellular differentiation and

transformation processes.

The apoptosis resistance phenotype conferred by t00043332

overexpression represents a particularly important finding given the

central role of apoptosis evasion in cancer development and

therapeutic resistance. Mitochondria serve as critical regulators of

intrinsic apoptotic pathways through cytochrome c release and

caspase activation, and disruption of normal mitochondrial RNA

metabolism may contribute to the apoptosis resistance characteristic

of cancer cells (37). This observation aligns with previous research

demonstrating that mitochondrial dysfunction can promote cancer

cell survival through multiple mechanisms including altered calcium

homeostasis, modified redox signaling, and disrupted apoptotic

machinery (38, 39). The ability of mtRNAs to modulate these

processes suggests that they may represent novel therapeutic targets

for overcoming apoptosis resistance in lung cancer treatment.

The ratio-based normalization methodology employed in our study

addresses a critical challenge in sncRNA biomarker research, where

traditional normalization approaches often fail due to the absence of

reliable reference genes and the susceptibility of small RNAs to technical

variability (40). The success of this approach, as demonstrated by Yu

et al. in their validation of mtRNA biomarkers in peripheral blood

samples (17), suggests that ratio-based methods may be broadly

applicable to other sncRNA classes and cancer types. This

methodology is particularly valuable for clinical translation, as it

reduces the impact of technical variables such as sample processing

conditions, RNA extraction efficiency, and PCR amplification variability

that can significantly affect biomarker reproducibility in clinical settings.

The integration of both tissue-based biomarker discovery and

functional validation approaches in our study represents an
Frontiers in Oncology 11
important strength that enhances the clinical relevance of our

findings. While many biomarker studies focus exclusively on

statistical associations without experimental validation, our

demonstration that identified mtRNAs exhibit functional

oncogenic properties provides strong evidence for their biological

significance and potential therapeutic relevance. This integrated

approach aligns with current trends in precision medicine research

that emphasize the importance of understanding the mechanistic

basis of biomarker associations to improve their clinical utility and

identify potential therapeutic targets.

Several limitations of our study warrant consideration in

interpreting these findings and planning future investigations. The

retrospective nature of the TCGA dataset analysis, while providing

access to large sample sizes with comprehensive clinical annotation,

may not fully capture the technical variability and pre-analytical

factors that influence biomarker performance in prospective clinical

settings. Additionally, the focus on two major lung cancer subtypes,

while representing the most common forms of the disease, may not

encompass the full spectrum of lung cancer heterogeneity,

particularly rare subtypes and emerging molecular classifications.

Future studies should incorporate prospective validation cohorts with

standardized sample collection protocols and expand the analysis to

include additional lung cancer subtypes and stages.

The mechanistic understanding of mtRNA function remains

limited, and additional research is needed to elucidate the specific

molecular pathways through which these small RNAs regulate cellular

processes. While our functional studies demonstrate clear oncogenic

effects of t00043332 overexpression, the identification of direct target

genes and downstream signaling pathways will be essential for

understanding the therapeutic potential of mtRNA modulation.

Based on its derivation from mitochondrial tRNA-Tyrosine and the

observed phenotypic effects, we hypothesize that t00043332 may

regulate cellular metabolism through interaction with cytoplasmic

RNA-binding proteins or by modulating mitochondrial-nuclear

communication pathways. Potential mechanisms may involve stress

response pathways and metabolic reprogramming characteristic of

cancer cells. Furthermore, the development of effective delivery

systems for therapeutic targeting of mtRNAs will require additional

research into mitochondrial-specific drug delivery approaches and the

pharmacokinetic properties of mitochondria-targeted therapeutics.

While traditional miRNA target prediction tools are not directly

applicable to mtRNAs due to their mitochondrial origin and distinct

biogenesis pathways, emerging approaches including structural

similarity analysis and pathway enrichment methods may be

adapted for mtRNA functional prediction in future studies. The

development of mtRNA-specific computational tools represents an

important avenue for advancing our understanding of these regulatory

molecules and their potential therapeutic applications.

In conclusion, our study demonstrates that mitochondrial non-

coding RNAs represent a promising new class of diagnostic

biomarkers and therapeutic targets in lung cancer, with the

potential to improve early detection and treatment outcomes. The

successful integration of traditional bioinformatics approaches with

machine learning methodologies highlights the value of
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computational approaches in biomarker discovery and validates the

importance of combining multiple analytical strategies to advance

cancer research. The functional significance of identified mtRNAs,

particularly their roles in promoting oncogenic phenotypes, suggests

that targeting mitochondrial RNA metabolism may represent a novel

therapeutic strategy worthy of further investigation. These findings

contribute to the growing understanding of mitochondrial

dysfunction in cancer and provide a foundation for future research

into mtRNA-based diagnostic and therapeutic applications across

multiple cancer types.
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