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Background: Lung cancer diagnosis requires cost-effective biomarkers.
Mitochondrial non-coding RNAs (mtRNAs) represent unexplored diagnostic targets.
Methods: We analyzed TCGA-LUAD/LUSC miRNA-seq data to identify mtRNAs
via mitochondrial genome alignment. Machine learning algorithms (SVM,
Random Forest, Logistic Regression) classified samples using differentially
expressed mtRNAs (P < 0.01, [log2FC| > 1). Top-ranked t00043332 was
functionally validated in A549/PC9 cells.

Results: Ten mtRNAs distinguished cancer from normal tissues. Random Forest
and Logistic Regression achieved superior classification (AUC > 0.92) versus SVM.
Nine mtRNAs were upregulated, one downregulated in cancer. No survival
associations were observed. t00043332 overexpression promoted proliferation,
migration, invasion, and apoptosis resistance.

Conclusion: mtRNAs serve as effective lung cancer diagnostic biomarkers
through integrated traditional and Al approaches. t00043332 functions as an
oncogene, providing therapeutic targets and advancing biomarker discovery.
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Introduction

Lung cancer remains the leading cause of cancer-related
mortality worldwide, accounting for approximately 1.8 million
deaths annually and representing nearly 20% of all cancer deaths
(1, 2). Despite significant advances in therapeutic interventions and
diagnostic technologies over the past decades, the five-year survival
rate for lung cancer patients remains disappointingly low at
approximately 15-20%, primarily due to late-stage diagnosis when
curative treatments are no longer viable (3). The heterogeneous
nature of lung cancer, encompassing multiple histological subtypes
including adenocarcinoma, squamous cell carcinoma, and small cell
lung carcinoma, further complicates early detection and therapeutic
management (4, 5). Current screening methodologies, particularly
low-dose computed tomography (LDCT), have demonstrated
efficacy in reducing mortality rates by enabling earlier detection
in high-risk populations (6). However, these imaging-based
approaches are associated with substantial limitations including
high costs, limited accessibility, frequent false-positive results
leading to unnecessary invasive procedures, and radiation
exposure concerns that restrict their widespread implementation
as population-based screening tools (7, 8).

The urgent need for cost-effective, minimally invasive, and highly
accurate diagnostic biomarkers has driven extensive research into
liquid biopsy approaches, particularly focusing on circulating nucleic
acids in peripheral blood (9, 10). Small non-coding RNAs (sncRNAs)
have emerged as promising biomarker candidates due to their
remarkable stability in circulation, tissue-specific expression patterns,
and functional roles in cancer pathogenesis (11, 12). While microRNAs
(miRNAs) have been extensively studied as diagnostic and prognostic
biomarkers in various cancer types (13), recent investigations have
expanded to include other classes of sncRNAs such as small nucleolar
RNAs (snoRNAs) (14), PIWI-interacting RNAs (piRNAs) (15), and
transfer RNA-derived small RNAs (tsRNAs) (16). However, one
relatively unexplored class of regulatory sncRNAs with significant
potential for cancer biomarker discovery is mitochondria-derived
small RNAs (mtRNAs), which represent a novel category of non-
coding RNAs generated from mitochondrial tRNA precursors through
specific cleavage mechanisms (17).

Mitochondria play fundamental roles in cellular energy
metabolism, apoptosis regulation, and oxidative stress responses,
all of which are critically disrupted during cancer development
and progression (18, 19). The human mitochondrial genome
contains 37 genes encoding 13 protein-coding genes, 22 transfer
RNAs, and 2 ribosomal RNAs, all of which are essential for
mitochondrial respiratory chain function and ATP synthesis
(20, 21). Emerging evidence suggests that mitochondrial
dysfunction, characterized by altered metabolism, increased
reactive oxygen species production, and compromised
respiratory chain activity, represents a hallmark of cancer
pathophysiology (22-24). Recent discoveries have revealed that
mitochondrial tRNAs undergo specific endonucleolytic cleavage
to generate stable small RNA fragments, termed mtRNAs, which
exhibit tissue-specific expression patterns and potential regulatory
functions analogous to cytoplasmic miRNAs (25, 26). These
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mtRNAs have been implicated in various cellular processes
including stress responses, metabolic regulation, and potentially
cancer development, yet their diagnostic utility in human
malignancies remains largely unexplored (27, 28).

The integration of artificial intelligence and machine learning
approaches with traditional biomarker discovery methodologies
offers unprecedented opportunities to enhance the accuracy and
reliability of cancer diagnostic tools (29). Machine learning
algorithms, particularly ensemble methods such as Random
Forest, Support Vector Machines, and deep learning architectures,
have demonstrated superior performance in handling high-
dimensional genomic data and identifying complex biomarker
signatures that may not be apparent through conventional
statistical approaches (30, 31). These computational methods can
effectively manage the challenges associated with small sample sizes,
high-dimensional feature spaces, and the need for robust cross-
validation, making them ideally suited for biomarker discovery
applications (32). Furthermore, the development of ratio-based
normalization methods has addressed longstanding challenges in
sncRNA biomarker studies, particularly the issues related to
technical variability, batch effects, and the absence of reliable
reference genes for normalization (17).

In this study, we present a comprehensive investigation
combining traditional bioinformatics approaches with advanced
machine learning methodologies to identify and validate mtRNA
biomarkers for lung cancer diagnosis. Through systematic analysis of
TCGA datasets encompassing both lung adenocarcinoma and
squamous cell carcinoma, we aimed to characterize the mtRNA
expression landscape in lung cancer, develop robust machine
learning-based classification models, and validate the functional
significance of identified biomarkers through in vitro experimental
approaches. Our integrated strategy represents a novel application of
both traditional molecular biology techniques and artificial
intelligence approaches to advance the discovery of therapeutically
relevant biomarkers and elucidate novel therapeutic mechanisms in
lung cancer pathogenesis.

Methods
Data acquisition and processing

The miRNA-seq data from The Cancer Genome Atlas (TCGA)
database were obtained for lung adenocarcinoma (TCGA-LUAD,
n=513) and lung squamous cell carcinoma (TCGA-LUSC, n=478)
cohorts with their corresponding normal tissue samples
(Supplementary Table S1). Raw sequencing data in BAM format
were retrieved from the TCGA data portal and processed using
standardized bioinformatics pipelines. Quality control assessment
was performed using FastQC (Babraham Bioinformatics,
Cambridge, UK) to evaluate read quality, adapter contamination,
and sequence length distribution. Adapter sequences were trimmed
using Cutadapt version 3.4 (Marcel Martin, TU Dortmund
University, Germany) with stringent parameters to ensure high-
quality reads for downstream analysis.
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Mitochondrial RNA identification and
quantification

Mitochondrial non-coding RNAs (mtRNAs) were identified
and quantified using the methodology described by Yu et al.
(2023) (17). Briefly, trimmed sequencing reads were aligned to
the human mitochondrial genome (NC_012920.1) using STAR
aligner version 2.7.9a (Cold Spring Harbor Laboratory, NY, USA)
with optimized parameters for small RNA alignment. The
mitochondrial tRNA database (MitotRNAdb) was used as the
reference for mtRNA annotation and classification. Read counts
for each mtRNA were obtained using HTSeq-count from the
HTSeq package version 0.13.5 (European Molecular Biology
Laboratory, Heidelberg, Germany) with intersection-strict mode
to ensure accurate quantification. Raw count matrices were
normalized using the trimmed mean of M-values (TMM) method
implemented in the edgeR package version 3.38.4 (Bioconductor,
Fred Hutchinson Cancer Research Center, Seattle, WA, USA).

Differential expression analysis and
statistical testing

Differential expression analysis was conducted to identify
significantly altered mtRNAs between tumor and adjacent normal
tissue samples. Paired sample analysis was performed using the
limma package version 3.52.4 (Bioconductor) for linear modeling of
gene expression data. Statistical significance was determined using
empirical Bayes moderated t-statistics with Benjamini-Hochberg
false discovery rate (FDR) correction for multiple testing. mtRNAs
with adjusted p-values < 0.01 and absolute log2 fold change > 1 were
considered significantly differentially expressed. Principal
component analysis (PCA) was performed using the prcomp
function in R version 4.2.0 (R Foundation for Statistical
Computing, Vienna, Austria) to visualize sample clustering
patterns based on significantly dysregulated mtRNAs.

Machine learning classification and feature
selection

Multiple machine learning algorithms were employed to
evaluate the diagnostic potential of mtRNAs and identify optimal
feature combinations. Support Vector Machine (SVM)
classification was implemented using the e1071 package version
1.7-11 (Vienna University of Technology, Austria) with radial basis
function kernel and optimized hyperparameters determined
through 10-fold cross-validation. Random Forest classification
was performed using the randomForest package version 4.7-1.1
(University of California, Berkeley, CA, USA) with 1000 trees and
mtry parameter optimized for classification tasks. Logistic
regression modeling was conducted using the glm function in
base R with binomial family specification. Model performance
was evaluated using receiver operating characteristic (ROC) curve
analysis implemented in the pROC package version 1.18.0
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(University of Geneva, Switzerland). Feature importance ranking
was determined using the Random Forest variable importance
measures, specifically mean decrease in accuracy and mean
decrease in Gini impurity.

Cell culture and transfection

Human lung adenocarcinoma cell lines A549 (ATCC CCL-185)
and PC9 (RIKEN BioResource Research Center, Japan) were
cultured in RPMI-1640 medium (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with 10% fetal bovine serum
(FBS, Gibco), 100 U/mL penicillin, and 100 pug/mL streptomycin
(Gibco) at 37 °C in a humidified atmosphere with 5% CO2. Cells
were routinely tested for mycoplasma contamination using the
MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland).
For overexpression experiments, custom mtRNA mimics targeting
t00043332 and negative control oligonucleotides were synthesized
by GenePharma Co., Ltd. (Shanghai, China). Transfections were
performed using Lipofectamine 3000 reagent (Invitrogen, Thermo
Fisher Scientific) according to the manufacturer’s protocol with a
final oligonucleotide concentration of 50 nM.

Cell proliferation and viability assays

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8, Dojindo Molecular Technologies, Kumamoto, Japan)
colorimetric assay. Cells were seeded in 96-well plates at a density
of 3,000 cells per well and transfected with mtRNA mimics or
negative controls. At designated time points (24, 48, 72, and 96
hours post-transfection), 10 pL of CCK-8 solution was added to
each well and incubated for 2 hours at 37 °C. Absorbance was
measured at 450 nm using a microplate reader (BioTek
Instruments, Winooski, VT, USA). Colony formation assays were
performed by seeding 500 transfected cells per well in 6-well plates
and culturing for 14 days. Colonies were fixed with 4%
paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) and
stained with 0.5% crystal violet solution (Beyotime Biotechnology,
Shanghai, China). Colonies containing more than 50 cells were
manually counted under light microscopy.

Cell migration and invasion assays

Cell migration capacity was evaluated using wound healing
scratch assays. Transfected cells were seeded in 6-well plates until
reaching 90% confluence, followed by creation of standardized
scratches using sterile pipette tips. Cells were then cultured in
serum-free medium, and wound closure was monitored at 0- and
48-hours using phase-contrast microscopy (Olympus Corporation,
Tokyo, Japan). Wound closure percentage was calculated using
Image] software version 1.53t (National Institutes of Health,
Bethesda, MD, USA). For invasion assays, Transwell chambers
with 8-um pore size polycarbonate membranes (Corning Inc.,
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Corning, NY, USA) were coated with Matrigel (BD Biosciences,
Franklin Lakes, NJ, USA) diluted 1:8 in serum-free medium.
Transfected cells (2x1074) in serum-free medium were added to
the upper chamber, while the lower chamber contained complete
medium with 10% FBS as a chemoattractant. After 24 hours of
incubation, non-invading cells on the upper surface were removed,
and invading cells on the lower surface were fixed with methanol
and stained with 0.1% crystal violet. Invading cells were counted in
five random fields per membrane under light microscopy.

Flow cytometry analysis

Apoptosis detection was performed using the Annexin V-FITC/
Propidium Iodide Apoptosis Detection Kit (BD Biosciences)
according to the manufacturer’s instructions. Transfected cells
were harvested 48 hours post-transfection, washed twice with
cold phosphate-buftered saline (PBS, Gibco), and resuspended in
binding buffer at a concentration of 1x1076 cells/mL. Cells were
stained with 5 UL Annexin V-FITC and 5 puL propidium iodide for
15 minutes at room temperature in the dark. Flow cytometric
analysis was performed using a BD FACSCalibur flow cytometer
(BD Biosciences) with data acquisition of 10,000 events per sample.
Data analysis was conducted using Flow]Jo software version 10.8.1
(Becton, Dickinson and Company, Franklin Lakes, NJ, USA) to
determine the percentage of viable, early apoptotic, late apoptotic,
and necrotic cell populations.

Statistical analysis

All statistical analyses were performed using R version 4.2.0 and
GraphPad Prism version 9.0 (GraphPad Software, San Diego, CA,
USA). Data are presented as mean + standard error of the mean
(SEM) from at least three independent experiments. Comparisons
between two groups were analyzed using unpaired two-tailed
Student’s t-tests for continuous variables. For survival analysis,
patients were stratified into high and low expression groups based
on median mtRNA expression levels, and overall survival was
analyzed using Kaplan-Meier curves with log-rank tests. A p-
value < 0.05 was considered statistically significant, and multiple
testing correction was applied where appropriate using the
Benjamini-Hochberg method.

Results

Differential expression analysis of
mitochondrial non-coding RNAs in lung
cancer

To investigate the role of mitochondrial non-coding RNAs
(mtRNAs) in lung cancer pathogenesis, we performed
comprehensive bioinformatics analysis using miRNA-seq data
from The Cancer Genome Atlas (TCGA) database, specifically
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TCGA-LUAD and TCGA-LUSC datasets. Through alignment to
the mitochondrial genome, we identified and quantified mtRNA
expression levels in paired tumor and adjacent normal tissue
samples. Differential expression analysis revealed significant
alterations in mtRNA profiles between cancer and normal tissues.
The enhanced volcano plot (Figure 1A) demonstrates the
distribution of mtRNAs based on their fold change and statistical
significance, with stringent criteria of P < 0.01 and [log2FC| > 1
applied to identify significantly dysregulated mtRNAs
(Supplementary Table S2). Principal component analysis (PCA)
of samples using significantly altered mtRNA expression profiles
(Figure 1B) revealed distinct clustering patterns between primary
tumor samples (red dots) and solid tissue normal samples (blue
dots), indicating that mtRNA expression signatures can effectively
discriminate between malignant and benign tissues with clear
separation trends along the first principal component, which
explained 42.95% of the total variance.

Machine learning-based classification and
feature selection of mtRNAs

To evaluate the diagnostic potential of mtRNAs and identify the
most discriminative features, we employed multiple machine
learning algorithms including Support Vector Machine (SVM),
Random Forest (RF), and Logistic Regression. The performance
evaluation through confusion matrices (Figures 2A-C)
demonstrated varying classification accuracies across different
algorithms. The Random Forest classifier achieved superior
performance with 23 true positives and 5 false negatives for
primary tumors, while the Logistic Regression model showed
comparable results with 24 true positives and 4 false negatives.
The SVM classifier exhibited the poorest performance with 16 true
positives and 12 false negatives. Receiver Operating Characteristic
(ROC) curve analysis (Figure 2D) confirmed these findings, with
Random Forest (AUC = 0.92) and Logistic Regression (AUC = 0.94)
demonstrating nearly equivalent and superior performance
compared to SVM. Feature importance analysis using the
Random Forest algorithm identified the top 10 most significant
mtRNAs contributing to cancer classification (Figure 2E), with
t00043332 emerging as the most influential biomarker with the
highest importance score, followed by t00000434 and t00021959.

Expression patterns and clinical
significance of top-ranked mtRNAs

Detailed expression analysis of the top 10 mtRNAs revealed
distinct expression patterns between tumor and normal tissues
(Figure 3). Among these biomarkers, nine mtRNAs including
100043332 (p = 3.4e-04), t00000434 (p = 1.8e-07), t00021959 (p =
1.3e-03), 00003452 (p = 1.2¢-03), t00000674 (p = 3.0e-10),
100020025 (p = 8.3e-07), t00001349 (p = 1.5e-06), t00194962 (p =
3.2e-07), and t00001150 (p = 1l.le-05) showed significant
upregulation in tumor tissues compared to normal tissues.
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FIGURE 1

Differential expression analysis of mitochondrial non-coding RNAs in lung cancer. (A) Enhanced volcano plot displaying the distribution of mtRNAs
based on fold change (x-axis) and statistical significance (-log10 P-value, y-axis) between lung cancer and normal tissue samples. Red dots represent
significantly upregulated mtRNAs, blue dots indicate significantly downregulated mtRNAs, and gray dots show non-significant changes. Horizontal
dashed line indicates P = 0.01 threshold, vertical dashed lines represent |log2FC| = 1 cutoffs. Selected mtRNAs with highest significance are labeled
with their identifiers. (B) Principal Component Analysis (PCA) plot showing sample clustering based on significantly dysregulated mtRNA expression
profiles. Red dots represent primary tumor samples; blue dots indicate solid tissue normal samples. PC1 explains 42.95% of total variance, PC2
explains 6.84% of total variance, demonstrating clear separation between cancer and normal tissue groups.

Notably, t00015589 was the only mtRNA demonstrating significant ~ increases in tumor samples. Survival analysis using the Kaplan-
downregulation in cancer tissues, though with marginal statistical ~ Meier method for overall survival (OS) was performed for all top 10
significance (p = 7.2e-01). The expression levels were normalized as ~ mtRNAs (Figure 4), stratifying patients into high and low
Z-scores, revealing substantial fold changes ranging from 2 to 8-fold ~ expression groups based on median expression values.
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Machine learning-based classification performance and feature selection. (A-C) Confusion matrices displaying classification performance for Logistic
Regression (A), Random Forest (B), and Support Vector Machine (C) algorithms. Numbers within matrices represent true positive, false positive, true
negative, and false negative classifications for primary tumor versus solid tissue normal samples. Color intensity corresponds to classification
frequency. (D) Receiver Operating Characteristic (ROC) curves comparing the three machine learning algorithms. Logistic Regression (AUC = 0.94),
Random Forest (AUC = 0.92), and SVM performance are shown with corresponding area under curve values. Diagonal dashed line represents
random classification baseline. (E) Feature importance ranking of the top 10 most discriminative mtRNAs identified by Random Forest algorithm.
Horizontal bar chart displays importance scores (x-axis) for each mtRNA identifier (y-axis), with t00043332 showing the highest importance score
followed by t00000434 and t00021959.

Interestingly, none of the mtRNAs demonstrated statistically Fynctional validation of t00043332 in [ung
significant associations with patient overall survival outcomes, cgncer cell lines

with p-values ranging from 0.096 to 0.805, suggesting that while
these mtRNAs serve as excellent diagnostic biomarkers, their To investigate the biological significance of the most prominent
prognostic value may be limited in this cohort. mtRNA biomarker, we performed functional studies by
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Expression profiles of top-ranked mitochondrial RNAs. Box plots showing normalized expression levels (Z-score) of the ten most important mtRNAs
between tumor samples (n=91) and normal tissue samples (n=91). Each panel displays the mtRNA identifier, corresponding P-value, and sample size
distribution. Box plots show median (center line), interquartile range (box), whiskers extending to 1.5x IQR, and individual data points as dots. Nine
mtRNAs (t00043332, t00000434, t00021959, t00003452, t00000674, t00020025, t00001349, t00194962, t00001150) demonstrate significant
upregulation in tumor samples, while t00015589 shows non-significant expression changes. Statistical significance was determined by paired t-test

with P-values ranging from 1.1e-05 to 7.2e-01.

overexpressing t00043332 in two lung cancer cell lines, A549 (lung
adenocarcinoma) and PC9 (lung adenocarcinoma with EGFR
mutation). Cell proliferation assays using CCK-8 demonstrated
that overexpression of t00043332 (MIMIC group) significantly
promoted cell growth compared to negative control (NC) in both
cell lines over a 96-hour time course (Figure 5A). The growth-
promoting effect was consistently observed at all time points, with
the most pronounced differences observed at 72 and 96 hours.
Colony formation assays revealed that t00043332 overexpression
substantially increased clonogenic capacity in both A549 and PC9
cells (Figure 5B), with colony numbers increasing from
approximately 45 to 75 colonies in A549 cells and from 55 to 80
colonies in PCY cells, representing statistically significant
enhancements in cellular proliferation potential. Wound healing
assays demonstrated enhanced migratory capacity in t00043332-
overexpressing cells (Figure 5C), with wound closure percentages
significantly increased in both cell lines (approximately 40% wound
closure in MIMIC groups compared to 15-18% in control groups)
after 48 hours, indicating accelerated cell migration and potentially
enhanced metastatic potential.

Enhanced invasive capacity and apoptosis
resistance in t00043332-overexpressing
cells

Transwell invasion assays provided additional evidence for the
oncogenic role of t00043332 (Figure 6A). Overexpression of
t00043332 significantly increased the number of invading cells
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through Matrigel-coated membranes in both A549 and PC9 cell
lines. In A549 cells, the number of invading cells increased from
approximately 125 to 210 cells per field, while in PC9 cells, invasion
increased from about 150 to 220 cells per field, demonstrating
enhanced invasive capabilities that could contribute to metastatic
progression. Flow cytometry analysis using Annexin V and
propidium iodide staining was performed to assess the effect of
t00043332 on apoptosis (Figure 6B). The results revealed that
overexpression of t00043332 led to a significant reduction in
apoptotic cell populations. In A549 cells, the percentage of
Annexin V-positive cells decreased from approximately 12% in
the control group to 6% in the MIMIC group, while in PC9 cells,
apoptosis decreased from about 4% to 3%. These findings suggest
that t00043332 not only promotes proliferation and invasion but
also confers resistance to programmed cell death, thereby
contributing to tumor progression through multiple
oncogenic mechanisms.

Discussion

Our comprehensive investigation represents the first systematic
characterization of mitochondrial non-coding RNAs as diagnostic
biomarkers in lung cancer, demonstrating the successful integration
of traditional bioinformatics methodologies with advanced machine
learning approaches to identify novel therapeutic targets and
biomarkers. The identification of ten significantly dysregulated
mtRNAs between lung cancer tissues and adjacent normal
controls, with nine showing significant upregulation and one
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FIGURE 4

Survival analysis of top-ranked mitochondrial RNAs. Kaplan-Meier survival curves showing overall survival (OS) analysis for the ten most important
mtRNAs. Each panel displays survival probability (y-axis) versus time in days (x-axis) for patients stratified into high (orange) and low (blue) expression
groups based on median expression values. Sample sizes for each group are indicated in the legend. Log-rank test P-values are shown for each
mMtRNA, ranging from 0.096 to 0.805, indicating no statistically significant associations between mtRNA expression levels and patient survival
outcomes. Survival curves demonstrate overlapping patterns between high and low expression groups across all analyzed mtRNAs.

demonstrating downregulation, aligns with emerging evidence
suggesting that mitochondrial dysfunction and altered
mitochondrial RNA metabolism represent fundamental
characteristics of cancer pathophysiology. These findings are
consistent with previous studies by Reznik et al., who
demonstrated that mitochondrial respiratory gene expression is
frequently suppressed across multiple cancer types (33), suggesting
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that disrupted mitochondrial RNA processing and metabolism may
contribute to the metabolic reprogramming characteristic of
malignant transformation.

The superior performance of Random Forest and Logistic
Regression algorithms compared to Support Vector Machines in
our classification analysis highlights the importance of algorithm
selection in biomarker discovery applications. The Random Forest
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FIGURE 5

Functional validation of t00043332 in lung cancer cell lines - proliferation and migration. (A) Cell proliferation analysis using CCK-8 assays in A549
and PC9 cell lines over 96 hours. Gray squares represent negative control (NC), black triangles represent t00043332 mimic (MIMIC) treatment. Y-axis
shows absorbance at 450 nm, x-axis shows time points. Error bars represent standard error from three independent experiments. Overexpression of
t00043332 significantly promoted cell growth in both cell lines at all time points. (B) Colony formation assays showing representative colony images
and quantification. Left panels show crystal violet-stained colonies for A549 (top) and PC9 (bottom) cells under NC and MIMIC conditions. Right
panel shows colony number quantification with gray bars (NC) and black bars (MIMIC). Asterisk indicates P < 0.05 by t-test. (C) Wound healing assays
demonstrating cell migration capacity. Left panels show representative microscopic images of scratch wounds at 0 and 48 hours for A549 (top) and
PC9 (bottom) cells. Orange lines mark wound boundaries. Right panel shows wound closure percentage quantification with statistical significance
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T
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APC-A

Enhanced invasive capacity and apoptosis resistance in t00043332-overexpressing cells. (A) Transwell invasion assays showing cell invasive capacity
through Matrigel-coated membranes. Left panels display representative microscopic images of crystal violet-stained invading cells for A549 (top)
and PC9 (bottom) under NC and MIMIC conditions. Right panels show quantification of invading cell numbers with gray bars (NC) and black bars
(MIMIC) for migration (top) and invasion (bottom) assays. Statistical significance indicated by ** P < 0.01. (B) Flow cytometry analysis of apoptosis
using Annexin V and propidium iodide staining. Left panels show representative flow cytometry scatter plots for A549-NC, A549-MIMIC, PC9-NC,
and PC9-MIMIC conditions. Quadrants indicate live cells (Q3), early apoptotic cells (Q4), late apoptotic cells (Q2), and necrotic cells (Q1). Right panel
shows quantification of Annexin V-positive cell percentages with gray bars (NC) and black bars (MIMIC). Statistical significance indicated by * P <
0.05 and ** P < 0.01, demonstrating reduced apoptosis in t00043332-overexpressing cells.

algorithm’s ability to handle high-dimensional data with complex
feature interactions while providing interpretable variable
importance measures made it particularly well-suited for
identifying the most discriminative mtRNA features. The
identification of 00043332 as the most significant contributor to
cancer classification, derived from mitochondrial tRNA-Tyrosine,
suggests that specific mitochondrial tRNA processing pathways
may be preferentially disrupted in lung cancer. This finding is
supported by recent research demonstrating that stress-induced
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cleavage of cytoplasmic tRNAs generates functional small RNAs
that regulate cellular stress responses and metabolic adaptation
(34), suggesting that similar mechanisms may operate in
mitochondrial compartments during cancer development.

The absence of significant associations between mtRNA
expression levels and overall survival outcomes, despite their
excellent diagnostic performance, suggests that these biomarkers
may be more valuable for early detection rather than prognostic
stratification. This observation is consistent with the concept that
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different molecular mechanisms may drive cancer initiation versus
progression and metastasis. The diagnostic utility of mtRNAs may
reflect their involvement in early metabolic reprogramming events
that occur during malignant transformation, while survival outcomes
may be more influenced by later genetic and epigenetic alterations that
drive tumor progression and therapeutic resistance (35). Similar
patterns have been observed with other biomarker classes, where
diagnostic and prognostic biomarkers often represent distinct
molecular signatures reflecting different aspects of cancer biology.

Our functional validation studies demonstrating that t00043332
overexpression promotes proliferation, migration, invasion, and
apoptosis resistance in lung cancer cell lines provide compelling
evidence for the biological significance of mtRNAs in cancer
pathogenesis. The consistent oncogenic effects observed across
both A549 and PC9 cell lines, which represent different molecular
subtypes of lung adenocarcinoma with distinct genetic
backgrounds, suggest that mtRNA-mediated effects may represent
a broadly relevant mechanism in lung cancer biology. The
promotion of cell invasion and migration capabilities is
particularly significant given the critical role of metastasis in lung
cancer mortality. These findings are consistent with recent studies
by Larriba et al., who demonstrated that mitochondrial small non-
coding RNAs exhibit distinct expression patterns during different
stages of germ cell development (36), suggesting that mtRNAs may
function as important regulators of cellular differentiation and
transformation processes.

The apoptosis resistance phenotype conferred by t00043332
overexpression represents a particularly important finding given the
central role of apoptosis evasion in cancer development and
therapeutic resistance. Mitochondria serve as critical regulators of
intrinsic apoptotic pathways through cytochrome c release and
caspase activation, and disruption of normal mitochondrial RNA
metabolism may contribute to the apoptosis resistance characteristic
of cancer cells (37). This observation aligns with previous research
demonstrating that mitochondrial dysfunction can promote cancer
cell survival through multiple mechanisms including altered calcium
homeostasis, modified redox signaling, and disrupted apoptotic
machinery (38, 39). The ability of mtRNAs to modulate these
processes suggests that they may represent novel therapeutic targets
for overcoming apoptosis resistance in lung cancer treatment.

The ratio-based normalization methodology employed in our study
addresses a critical challenge in sncRNA biomarker research, where
traditional normalization approaches often fail due to the absence of
reliable reference genes and the susceptibility of small RNAs to technical
variability (40). The success of this approach, as demonstrated by Yu
et al. in their validation of mtRNA biomarkers in peripheral blood
samples (17), suggests that ratio-based methods may be broadly
applicable to other sncRNA classes and cancer types. This
methodology is particularly valuable for clinical translation, as it
reduces the impact of technical variables such as sample processing
conditions, RNA extraction efficiency, and PCR amplification variability
that can significantly affect biomarker reproducibility in clinical settings.

The integration of both tissue-based biomarker discovery and
functional validation approaches in our study represents an
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important strength that enhances the clinical relevance of our
findings. While many biomarker studies focus exclusively on
statistical associations without experimental validation, our
demonstration that identified mtRNAs exhibit functional
oncogenic properties provides strong evidence for their biological
significance and potential therapeutic relevance. This integrated
approach aligns with current trends in precision medicine research
that emphasize the importance of understanding the mechanistic
basis of biomarker associations to improve their clinical utility and
identify potential therapeutic targets.

Several limitations of our study warrant consideration in
interpreting these findings and planning future investigations. The
retrospective nature of the TCGA dataset analysis, while providing
access to large sample sizes with comprehensive clinical annotation,
may not fully capture the technical variability and pre-analytical
factors that influence biomarker performance in prospective clinical
settings. Additionally, the focus on two major lung cancer subtypes,
while representing the most common forms of the disease, may not
encompass the full spectrum of lung cancer heterogeneity,
particularly rare subtypes and emerging molecular classifications.
Future studies should incorporate prospective validation cohorts with
standardized sample collection protocols and expand the analysis to
include additional lung cancer subtypes and stages.

The mechanistic understanding of mtRNA function remains
limited, and additional research is needed to elucidate the specific
molecular pathways through which these small RNAs regulate cellular
processes. While our functional studies demonstrate clear oncogenic
effects of t00043332 overexpression, the identification of direct target
genes and downstream signaling pathways will be essential for
understanding the therapeutic potential of mtRNA modulation.
Based on its derivation from mitochondrial tRNA-Tyrosine and the
observed phenotypic effects, we hypothesize that t00043332 may
regulate cellular metabolism through interaction with cytoplasmic
RNA-binding proteins or by modulating mitochondrial-nuclear
communication pathways. Potential mechanisms may involve stress
response pathways and metabolic reprogramming characteristic of
cancer cells. Furthermore, the development of effective delivery
systems for therapeutic targeting of mtRNAs will require additional
research into mitochondrial-specific drug delivery approaches and the
pharmacokinetic properties of mitochondria-targeted therapeutics.
While traditional miRNA target prediction tools are not directly
applicable to mtRNAs due to their mitochondrial origin and distinct
biogenesis pathways, emerging approaches including structural
similarity analysis and pathway enrichment methods may be
adapted for mtRNA functional prediction in future studies. The
development of mtRNA-specific computational tools represents an
important avenue for advancing our understanding of these regulatory
molecules and their potential therapeutic applications.

In conclusion, our study demonstrates that mitochondrial non-
coding RNAs represent a promising new class of diagnostic
biomarkers and therapeutic targets in lung cancer, with the
potential to improve early detection and treatment outcomes. The
successful integration of traditional bioinformatics approaches with
machine learning methodologies highlights the value of
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computational approaches in biomarker discovery and validates the
importance of combining multiple analytical strategies to advance
cancer research. The functional significance of identified mtRNAs,
particularly their roles in promoting oncogenic phenotypes, suggests
that targeting mitochondrial RNA metabolism may represent a novel
therapeutic strategy worthy of further investigation. These findings
contribute to the growing understanding of mitochondrial
dysfunction in cancer and provide a foundation for future research
into mtRNA-based diagnostic and therapeutic applications across
multiple cancer types.
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