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Introduction: Electroporation (EP) is a technique that transiently increases the
permeability of the cell membrane through the application of high-voltage
electric pulses, facilitating the intracellular delivery of therapeutic agents or the
selective ablation of cells. Combination of EP with cytotoxic drugs—most
commonly bleomycin or cisplatin—is termed electrochemotherapy (ECT),
which markedly enhances drug efficacy and permits targeted, locally
controlled treatment with reduced systemic exposure. Currently, in addition to
microsecond (us) pulses, nanosecond (ns) pulses are being proposed for clinical
use to mitigate certain ECT-associated side effects. However, achieving robust
permeabilization with nsPEF typically requires higher electric fields. Nisin is a
polycyclic antibacterial peptide with anticancer potential that can be leveraged in
this context.

Methods: To date, the permeabilizing properties of nisin have been employed
alongside an external electric field exclusively in bacterial systems and artificial
membranes. In this study, we investigated the impact of nisin on membrane
permeabilization, resealing, and viability of 4T1 breast cancer cells exposed to
microsecond and nanosecond electric pulses of varying field strengths and
pulse frequencies.

Results: Across all experimental conditions, nisin reduced the threshold voltage
necessary for effective permeabilization and increased treatment-induced
cell mortality.

Discussion: Since nisin is non-toxic by itself, it represents a promising candidate
for electrochemotherapy, potentially supporting its wider clinical application in
the future.
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Highlights

* Nisin is a lantibiotic that interacts with membranes but is
new to ECT use.

* PEF-induced permeabilization to YO-PRO-1 was greatly
enhanced in nisin’s presence.

* Subtoxic nisin doses greatly reduced viability of
electroporated cells.

e The effect was seen across all tested pulse lengths
and frequencies.

* Nisin emerges as a novel candidate for either standalone or
adjuvant ECT agent.

1 Introduction

Nisin is a Type A lantibiotic produced by certain Gram-positive
bacteria, first identified in 1928 by Rogers and Whittier in fermented
milk cultures (1). Owing to its broad-spectrum antimicrobial efficacy
and stability under various food processing conditions (2-4), nisin
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has been evaluated and approved for use as a food additive by major
international health and regulatory agencies, including the World
Health Organization (WHO) (5), European Food Safety Authority
(EFSA) (6), and is recognized as Generally Recognized as Safe
(GRAS) by the US. Food and Drug Administration (FDA) (7).
Among all naturally occurring variants, nisin A and nisin Z are the
most extensively studied (8, 9). Both variants exhibit very similar
antimicrobial activity (10); however, the substitution of histidine with
asparagine at position 27 in nisin Z enhances its diffusion capacity
and solubility at neutral pH (11). The chemical structure of nisin Z is
shown in Figure 1A.

Nisin has been demonstrated to exert various effects on both
biological and artificial membranes (Figure 1B). Its most well-
characterized mechanism involves targeting lipid II, a membrane-
bound peptidoglycan precursor, which it utilizes as an anchor to
inhibit cell wall biosynthesis and induce pores in the cytoplasmic
membrane (12-15). A distinct mode of action has been detected in
head and neck squamous cell carcinoma (HNSCC) cells, in which nisin
highly upregulated the y-glutamyl cyclotransferase (CHAC1), a known
regulator of cation transport and apoptosis (16). Additionally, studies
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(A) Chemical structure of nisin Z (PubChem CID: 155489899), visualized using Avogadro software. (B) Representative mechanisms of nisin impact on
membrane permeability found in various models: i) binding to Lipid Il and assembling transmembrane pores (Prokaryota); ii) upregulation of CHACI,

disrupting redox and ion balance (Eukaryota), iii)
artificial membranes). Created in https://BioRender.com.
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using artificial membranes have shown that nisin can exert
permeabilizing effects independently of cellular machinery. In this
context, the cationic peptide is electrostatically attracted to negatively
charged phospholipids; upon insertion into the bilayer, it oligomerizes
to form transient, nonspecific pores (17-20).

The concept of the nisin application in anticancer protocols was
first explored by Maher and McClean (2006), who demonstrated its
activity against two human colorectal adenocarcinoma cell lines.
However, the effective concentrations required for anticancer activity
were significantly higher than those needed for its antimicrobial effects
(21). Ever since, the anticancer activity of nisin has been confirmed in
several other cancer types (22) evoking apoptosis both in vitro (23-25)
and in vivo (16, 26). Growing evidence suggests that nisin can inhibit
tumor growth and selectively exert cytotoxic effects on cancer cells (9).
Azmi et al. (2021) identified three key factors contributing to nisin’s
selectivity: 1) negative surface charge: cancer cell membranes are more
negatively charged due to loss of phospholipid symmetry, attracting the
positively charged nisin; ii) increased membrane fluidity: cancer cells
have more fluid and unstable membranes, enhancing nisin’s ability to
bind and disrupt them; iii) abundant microvilli: the high density of
microvilli on cancer cells increases the surface area for nisin interaction
(22). Altogether, it can be concluded that, unlike traditional
chemotherapeutic agents, nisin exerts its effects through interactions
with the cell surface rather than inducing DNA damage. Regardless of
whether it acts through lipid II binding, gene upregulation, or direct
electrostatic interactions, the mechanisms of nisin’s action on
membranes ultimately converge on the disruption of ionic
homeostasis, eventually leading to cell death.

The permeabilization effect of nisin resembles the phenomenon
observed in cells exposed to pulsed electric fields (PEF). Applying
an external voltage to cells positioned between electrodes results in
pulsed electric field, which induces cell transmembrane potential
(TMP) (27). If the TMP surpasses a critical threshold, hydrophilic
pores form in the cell membrane - a process known as
electroporation (EP) (28). Depending on the intensity of the
applied electric field, this process can be either irreversible or
reversible (29). The latter is used in a treatment modality called
electrochemotherapy (ECT), in which PEFs are applied to enhance
the transmembrane delivery of chemotherapeutic drugs (30, 31).
Current applications of ECT in cancer treatment adhere to the
ESOPE protocol, which utilizes microsecond pulsed electric field
(usPEF) to enhance the intracellular uptake of bleomycin, cisplatin
or calcium (32). Despite its advantages, the application of ECT is
still associated with several drawbacks including pain (33), muscle
contractions (32), the need for repeated procedures (34), and
profound tissue necrosis (35). A partial solution to these issues
has been achieved by shortening the duration of the electric pulse to
a few microseconds. For example, high-frequency microsecond
pulses (H-FIRE) have been shown to reduce muscle contractions
and pain compared with conventional IRE (36, 37). However, even
with H-FIRE, some residual stimulation persists.

Further shortening the pulse duration to nanoseconds provides
additional benefits. With ns pulsed electric fields (nsPEFs), the
plasma membrane does not fully charge (a regime often termed
supra-electroporation)-which means that higher field amplitudes
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are required to achieve permeabilization comparable to longer
pulses. Nevertheless, skeletal and cardiac excitation is even lower
than in H-FIRE, improving safety and tolerability (38, 39). At the
same time, when ns pulses are delivered at high repetition
frequencies, the plasma membrane cannot completely discharge
between successive pulses. When the interpulse interval approaches
the membrane charging constant, residual TMP accumulation
occurs, leading to a gradual increase in the effective TMP (40-
43). As a result, pulse trains delivered in the hundreds of kilohertz
(kHz) to megahertz (MHz) range can enhance membrane
permeabilization and lower the effective electroporation threshold
(42, 44, 45). Early studies on high-frequency nsPEF have shown that
pulse compression into the MHz range lowers excitation thresholds
and facilitates electroporation (42). Such high-frequency bursts also
help mitigate impedance effects, promoting a more uniform electric
field distribution within the tumor due to the frequency dependence
of bioimpedance (46). Importantly, nsPEF offer distinct biological
mode of action by reaching intracellular targets - they can
permeabilize internal membranes and trigger Ca*" release,
mitochondrial depolarization, reactive oxygen species (ROS)
signaling, and regulated cell death - effects that are weak or
absent with standard psPEF application (47, 48). Expanding
electroporation to include intracellular organelles and modulating
cellular stress responses represent a rational approach to enlarge the
effective treatment zone and enhance cytotoxicity when ablation is
incomplete, as sometimes observed with H-FIRE (49, 50).

The main drawback with nsPEF application is that high voltages
required to induce electroporation often exceed the operational limits
of most nsPEF generators and pose significant high-voltage safety risks,
thereby limiting the clinical applicability of submicrosecond pulses. In
this study, we propose the use of nisin to lower the threshold electric
field required for effective membrane permeabilization. Given that
multiple studies report greater toxicity of nisin toward cancer cells than
normal cells, combining nisin with pulsed electric fields provides an
additional, localized selectivity mechanism that may reduce off-target
cytotoxicity of ECT treatment. Moreover, transmembrane delivery via
electroporation could further enhance nisin’s selectivity and anticancer
activity. Finally, enhancing the controllability and efficacy of various
PEF modalities could significantly improve their application not only
in cancer treatment but also in various clinical and industrial settings.
This combined approach retains all the advantages of nsPEF-reduced
muscle excitation, intracellular modulation, lower energy requirements,
and improved field uniformity - while also decreasing the
electroporation threshold through the complementary action of MHz
bursts and nisin. Together, these effects establish a synergy that could
facilitate the translation of nsPEF-assisted ECT into clinical practice by
enabling simpler, safer, and more cost-effective pulse generators.

2 Materials and methods

2.1 Cell culture

The murine mammary carcinoma cell line 4T'1 (ATCC® CRL-
2539) was cultured in RPMI 1640 medium supplemented with 10%
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fetal bovine serum (FBS), L-glutamine, 25 mM HEPES, 100 U/mL
penicillin, and 100 pug/mL streptomycin (all from Gibco, Thermo
Fisher Scientific, New York, NY, USA). Cells were maintained as
monolayers at 37°C in a humidified atmosphere containing 5% CO,
and used for experiments upon reaching 80% confluency. All
experiments were performed using mycoplasma-free cells. The
4T1 cell line was routinely tested for mycoplasma contamination
using the MycoBlue® Mycoplasma Detection Kit (Vazyme,
Nanjing, China). Unless otherwise specified on the day of the
experiment, cells were enzymatically detached using trypsin-
EDTA (Thermo Fisher Scientific, Grand Island, NY, USA),
collected by centrifugation, and resuspended in electroporation
(EP) buffer (242 mM sucrose, 5.5 mM Na,HPO,, 3 mM
NaH,PO,4, 1.7 mM MgCly; pH 7.1) with or without the addition
of nisin.

2.2 Nisin incubation

A stock solution of nisin Z (Cas No. 137061-46-2, Cat. no.
T76264, TargetMol, Linz, Austria) was prepared at a concentration
of 0.5 mg/mL in sterile distilled water. Prior to electroporation, cells
were incubated with 50 ug/mL nisin in EP buffer for 20 minutes on
ice. The control cells were treated identically, except distilled water

10.3389/fonc.2025.1689261

without nisin was added to cell suspension to achieve the same
dilution. Following incubation, the cell suspension was transferred
into electroporation cuvettes for pulse application. The
experimental protocol is presented in Figure 2.

2.3 Electroporation setup and parameters

Pulsed electric field was delivered to cells with a custom-made
square-wave high-voltage pulse generator (VilniusTECH, Vilnius,
Lithuania) (51). Unless otherwise specified, pulses were applied to the
cells in commercially available electroporation cuvettes with a 1 mm
electrode gap (Biorad, Hercules, CA, USA), using a sample volume of
50 uL per cuvette. Voltages ranging from 0.06 to 1.2 kV were applied
to the cuvette, generating electric fields between 0.6 and 12 kV/cm,
respectively. For microsecond pulsed electric fields (usPEF), the
protocols used were: 0.6-1.5 kV/cm, 100 us pulse duration,
8 pulses, delivered at 1 Hz. Nanosecond pulsed electric fields
(nsPEF) consisted of 100 pulses (2-12 kV/cm, 300 ns pulse
duration), applied at frequencies of either 10 kHz or 1 MHz.
10 kHz (100 ps interpulse - full membrane relaxation) and 1 MHz
(1 us interpulse - near the PM charging time) were chosen to verify if
the partial charge accumulation in high pulse repetition frequency
bursts impacts the permeabilization threshold in the nisin’s presence.

(
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FIGURE 2

Schematic representation of the experimental workflow. 4T1 cells were incubated with or without nisin Z, subjected to pulsed electric field (PEF)
treatment, and subsequently analyzed for membrane permeability, resealing, and viability. Flow cytometry and metabolic assays were used to assess
treatment effects at defined time points. Created in https://BioRender.com.
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2.4 Viability assay

Cell viability was assessed 24 hours post-treatment using the
PrestoBlue® Cell Viability Reagent (Thermo Fisher Scientific,
Grand Island, NY, USA). Cells at a concentration of 2 x 10° cells/
mL were exposed to PEFs and transferred into a 96-well flat-bottom
plate (TPP, Trasadingen, Switzerland). After a 10-minute
incubation at room temperature, growth medium was added to
each well to a final volume of 200 uL, and the plate was incubated
for 24 hours at 37°C in a 5% CO, atmosphere. The next day, wells
were gently rinsed twice with 150 pL of phosphate-buffered saline
(PBS) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Each
well was then filled with 150 pL of PBS and 5 pL of PrestoBlue®
reagent. After a 2-hour incubation, metabolic activity was measured
using a Synergy 2 microplate reader equipped with Gen5 software
(PN 5321002, BioTek, Shoreline, WA, USA), with excitation at 540/
20 nm and emission at 620/40 nm.

2.5 Cell permeabilization

Cell permeabilization induced by electroporation in 4T1 cells
(2 x 10° cells/mL) was assessed using the green fluorescent dye YO-
PRO-1 (YP, Sigma-Aldrich, St. Louis, MO, USA). Following
incubation with nisin, cells were mixed with YP dye to achieve a
final concentration of 1 uM and transferred into EP cuvettes. After
PEF treatment, the cell suspensions were transferred to
FACS FlowTubes (Corning, New York, USA) or 3.5 mL
SampleTubes (Sysmex Partec GmbH, Goerlitz, Germany)
combined with the Small Volume Sample Tubes (Sysmex).
Following a 10-minute incubation at room temperature, 150 pL
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of a 0.9% NaCl solution (Chempur, Piekary éle}skie, Poland) was
added to each tube. Untreated control samples were used to
establish gating parameters. Samples were analyzed using a BD
Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA) or
CyFlow® Cube 6 (Sysmex). YP fluorescence was detected
in Channel FL1, with excitation at 491 nm and emission
collected at 533/30 nm bandpass filter (BPF). Flow cytometry
gating for YO-PRO-1 fluorescence was performed as shown in
Figure 3, allowing discrimination between permeabilized and
non-permeabilized cells across control, nisin-treated, and
electroporated samples.

2.6 Resealing assay

Similar to the permeability assay, cell membrane resealing was
evaluated using the green fluorescent dye YO-PRO-1. Following
incubation with nisin Z, cells were electroporated and immediately
transferred to FACS FlowTubes, where they were incubated at room
temperature for 30 minutes to allow membrane resealing.
Subsequently, YO-PRO-1 was added to a final concentration of 1
uM. After a 10-minute incubation at room temperature, 200 uL of
0.9% NaCl solution was added to each tube. YP fluorescence was
measured using the same flow cytometry protocol as described for
the permeability assay.

2.7 Morphological assessment

For the assessment of cell morphology, instead of 1 mm
cuvettes, a custom-made tweezer electrode with 1 mm gap was
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Flow cytometry gating strategy of YP dye, where (A, B) and (C, D) graph pairs are the untreated control and 1.2 kV/cm x 100 ps x 8 electroporation
protocol, respectively; (E, F) and (G, H) graph pairs are the nisin-treated and 1.2 kV/cm X 100 ps X 8 electroporation protocol with nisin, respectively.
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used to apply usPEF and nsPEF. For the experiments, cells were
harvested from culture flasks and seeded on ibidiTreat p-dishes
(Ibidi, Griéfelfing, Germany): 2.4 x 10* cells were seeded in each dish
48 hours prior to experiment. On the day of the experiment, cells
were incubated with an EP buffer with or without nisin for
20 minutes at 4°C and then subjected to PEF. Next, the EP
buffer was replaced with a fresh RPMI medium and the
holotomographic imaging was performed 10 minutes after PEF
application using a 3D Cell Explorer (Nanolive, Tolochenaz,
Switzerland). The data processing and 3D refractive index
distribution were determined using a commercially available
STEVE software (Nanolive).

2.8 Statistical analysis

Statistical analysis was performed using one-way analysis of
variance (ANOVA), with a significance threshold set at p < 0.05.
When ANOVA indicated significant differences among groups, post
hoc comparisons were conducted using the Tukey HSD multiple
comparison test (p < 0.05 considered statistically significant). All
data presented in graphs were analyzed and presented using
OriginPro software (version 18.0, OriginLab, Northampton, MA,
USA). To enhance clarity, graph colors were standardized
throughout the paper: nisin-alone treatments are represented
in blue, PEF treatments without nisin in green, and combined
PEF and nisin treatments in red. Each data point represents the
mean of at least three independent experiments and is expressed as
mean * standard deviation. The EF5, values were calculated based
on a nonlinear regression dose-response curve, using a GraphPad
Prism software (Boston, Massachusetts USA), version 10.5.0
for Windows.
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3 Results

3.1 Determination of non-toxic nisin
concentration for combined
electroporation treatment

The first step of the study was to determine a non-toxic
concentration of nisin that would remain biologically active when
combined with electroporation, while at the same time remaining
predominantly non-toxic for the cells when EP is not involved. The
results are summarized in Figure 4.

Based on cell viability assays, a concentration of 50 pug/mL (14.9
uM) was selected, as it did not cause a considerable decline in
viability in regard to non-treated control (Figure 4A). However,
when combined with pusPEF (according to the standard ESOPE
protocol), at 1.2 kV/cm cell viability decreased from ~84% to ~5.6%
(p < 0.001, n = 3), indicating a strong synergistic cytotoxic effect.
When the same PEFs were applied to adherent cells, pronounced
membrane irregularities were observed even in the absence of nisin
(Figure 4B). However, when nisin was added to the EP buffer, cells
showed morphological alterations, including loss of membrane
integrity. Some cells appeared swollen with irregular contours and
disrupted internal structure, consistent with membrane
destabilization and loss of cellular homeostasis.

3.2 The impact of nisin on permeabilization
and resealing following the ESOPE
protocol

The selected subtoxic nisin concentration of 50 pg/ml was used
to sensitize 4T1 cells to PEF. Cytometric measurements of YO-
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Cell viability (A) and morphology (B) after treatment with nisin Z alone or combined with pulsed electric field (PEF: 1.2 kV/cm, 8 pulses, 100 ps, 1 Hz).
Viability (% of control) was assessed following exposure to increasing nisin Z concentrations (0—-250 pg/mL), with (red circles) or without (blue
squares) PEF. Data shown as mean + SD (**p < 0.01). Cell morphology was assessed with holotomographic microscopy on adherent cells exposed

to 50 pg/mL nisin and PEF. Scale bar: 20 pm
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PRO-1 dye fluorescence demonstrated that incorporating nisin into
the ESOPE protocol significantly enhanced the permeabilization
efficacy of usPEF, allowing more dye to enter through
electroporated membrane (Figure 5A). The most pronounced
differences between groups with and without nisin were detected
for the electric field strength of 0.8 kV/cm (70% vs 8%, respectively)
and for 0.9 kV/cm (~88% vs 26%, respectively).

Similar measurements were conducted in cells subjected to usPEF
with or without nisin, with the YP dye added 30 minutes after the
electroporation protocol. This approach allowed the fluorescent signal
to be detected only in cells that failed to reseal after electroporation.
Within the tested range (0.6 — 1.5 kV/cm), none of the electric field
strengths significantly affected the cell resealing process (Figure 5B).
When nisin was included in the protocol, 42% of cell population was
not resealed even with the lowest tested electric field strength. At 1.2
kV/cm, almost entire cell population was permeable to YP 30 minutes
after PEF application. Notably, for lower tested electric field parameters
(0.6 and 0.7 kV/cm) the percentage of YO-PRO-1-positive cells was
higher in Resealing population vs Permeability population,
demonstrating that cell permeability was increased even 40 minutes
after the combined PEF + Nisin treatment.

3.3 The impact of nisin on permeabilization
and resealing following nsPEF at various
pulse frequencies

Similar to the ESOPE protocol, nisin markedly augmented the
bioeffects of PEFs in 4T1 cells exposed to nsPEFs for both tested
pulse frequencies 10 kHz (Figures 6A, B) and 1 MHz
(Figures 6C, D).

At both frequencies, membrane permeability and resealing
impairment increased with rising electric field intensities. For the
10 kHz condition (Figure 6A), a synergistic effect between PEF and
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nisin was particularly evident at electric fields >8 kV/cm, with a
significant enhancement in membrane permeability, as indicated by
increased YO-PRO-1 uptake (Figure 6B). In contrast, under the 1
MHz condition (Figure 6C), statistically significant differences
between treatments with and without nisin were observed
primarily at lower electric field strengths (=8 kV/cm). At higher
field strengths, nearly the entire cell population was permeabilized
even in the absence of nisin, minimizing the observed differential
effect. Notably, cells exposed to high electric fields without nisin
demonstrated an ability to reseal their membranes over time, as
reflected by a reduced proportion of cells stained with YO-PRO-1-
30 minutes after PEF protocol. Conversely to this, the addition of
nisin resulted in sustained membrane permeabilization and
impaired resealing capacity (Figure 6D), underscoring the
potentiating effect of nisin on PEF-induced cytotoxicity.

3.4 The impact of nisin on viability and
morphology following various PEFs
protocols

Previous experiments on 4T1 cell membrane resealing
demonstrated that the addition of nisin significantly impaired the
resealing capacity following PEF treatment. However, these
experiments did not clarify whether nisin prolongs the existence
of membrane pores or if the increased permeability leads to
irreversible damage and cell death. To address this, the viability
of 4T1 cells was assessed 24 hours after exposure to various PEF
protocols, both in the presence and absence of nisin (Figures 7A-C).
Additionally, cell morphology was examined in adherent cells right
after pulse delivery (Figure 7D).

In all tested PEF modalities, cell viability decreased with increasing
electric field strength, and the addition of nisin significantly enhanced
cytotoxicity. For usPEF, a moderate reduction in cell viability was
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noted (from ~90% to ~75%) in the electric field range of 0.8 - 1.5 kV/
cm (Figure 7A). However, with nisin, viability dropped sharply at even
the lowest field, reaching below 5% at 1.5 kV/cm. A similar pattern
was evident for nsPEF protocols. At 10 kHz frequency (Figure 7B), cell
viability dropped below 20% in the presence of nisin. In contrast, 1
MHz stimulation (Figure 7C) produced an even more pronounced
cytotoxic effect, reducing viability to below 5% at 12 kV/cm. These
findings underscore the potentiating effect of nisin on PEF-induced
cell death, particularly at higher field strengths and pulse frequencies.
To confirm that the observed nisin-nsPEF synergy occurs not only in
cells in suspension, we performed a visualization of adherent cells 10
minutes after PEF application (Figure 7D). In both tested nsPEF
modalities, we observed a loss of the membrane integrity and
subsequent formation of bubbles on the cell surface, consistent with
cytoplasmic leakage or cell blebbing. Notably, the morphology of cells
subjected to nsPEF differed from the morphology of cells treated with
ESOPE protocol (see Figure 4B for comparison). Cell membranes in
samples exposed to usPEF alone (without nisin) appeared to be more
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visibly disrupted than those treated with nsPEF. When nisin was
present in the electroporation buffer, all PEF-treated cells showed
membrane defects; however, the formation of bubbles was observed
exclusively in cells treated with pulses of nanosecond range.

3.5 The impact of nisin on the threshold
electric field required to evoke a biological
effect in 50% of the cell population (EFs).

To summarize various biological effects of nisin addition and to
facilitate the comparison between tested PEF modalities, the electric
field intensities allowing to affect 50% of the population (EFs,) were
calculated for each experiment separately: permeabilization,
resealing and viability (Table 1).

Nisin consistently reduced the EFs, for permeabilization,
resealing and viability across all tested protocols. The most
pronounced effects on membrane permeability after nisin
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FIGURE 7

The effect of pulsed electric fields (PEFs) with or without nisin on cell viability (A—C) and morphology (D). Cells were exposed to increasing electric
field strengths under three different pulse conditions: (A) Microsecond pulses: 100 pus X 8 at 1 Hz; (B) Nanosecond pulses (nsPEF): 300 ns x 100 at 10
kHz; (C) Nanosecond pulses: 300 ns x 100 at 1 MHz. Data shown as mean + SD (**p< 0.01). Cell morphology was assessed with holotomographic
microscopy on adherent cells exposed to 50 pg/mL nisin and nsPEF (8 kV/cm, 300 ns x 100 at 10 kHz or 1 MHz). Cell blebbing was marked with
white arrows. Scale bar: 20 pm.

TABLE 1 EF50 values (electric field strength required to affect 50% of cells) for membrane permeabilization, resealing, and viability under different
pulsed electric field (PEF) modalities, with and without the presence of nisin.

PEF modality Nisin presence EFso permeabilization = EFsq resealing EFso viability (kV/cm)

(without nisin: -, with  (kV/cm) (kV/cm)

nisin: +)
usPEF, - 1.00 >> 150 > 1.50
100 ps x 8 at 1 Hz

+ 071 0.66 0.61
nsPEF, - 1127 >>12.000 >> 12,00
300 ns x 100 at 10 kHz

+ 5.60 11.07 6.93
nsPEF, - 7.25 >>12.00 >> 12,00
300 ns x 100 at 1 MHz

+ 218 8.15 6.57

In some experiments, the calculated EF50 values significantly exceeded the experimental range; these values were marked as *>>’, indicating that they lie much higher than the highest field
strength tested.
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addition were detected for nsPEFs of 1 MHz, with 3.33-fold
reduction of the EFs, value with regard to the nisin-free samples.
As without nisin, almost entire cell population was able to reseal,
even with the highest tested PEF parameters, it was not possible to
determine exact reduction in EFs, values between nisin-treated and
nisin-free samples. However, a significant reduction in the electric
field affecting the resealing ability of 50% of population was noted
for all the tested PEF modalities. The further viability studies
indicate that the differences in cell resealing stem from the
irreversible cell damage rather than delayed cell resealing. In
terms of viability, all tested PEF modalities were enhanced by
nisin addition, reaching the 4.22, 3.87 and 3.4-fold reduction in
EFs, Viability in samples treated with 10 Hz nsPEFs, usPEFs and 1
MHz nsPEFs, respectively. These findings support the hypothesis
that nisin is a promising agent that can be used in ECT treatment
and at the same time can be part of the strategy to lower the PEF
amplitude requirements during nsPEF application, which is not the
case for conventional ECT agents.

4 Discussion

This study demonstrates that the antimicrobial peptide nisin
significantly enhances the bioeffects of pulsed electric fields (PEFs),
both microsecond (usPEF) and nanosecond (nsPEF), in murine
4T1 cancer cells. The concentration of 50 ug/mL nisin, identified as
non-toxic when used alone, was shown to produce a strong
synergistic effect when combined with psPEF, decreasing cell
viability from ~84% to ~5.6%. The combined treatment produced
a significantly greater reduction in cell viability than either modality
alone, indicating that nisin enhances the cytotoxic impact of PEF
beyond additive effects. This finding supports the concept that
membrane permeabilization facilitates nisin’s intracellular action
and strengthens the rationale for its use as an adjuvant or potential
standalone drug in electrochemotherapy. The observed synergy at
various sub-toxic nisin concentrations also suggests that therapeutic
efficacy might be achieved with lower drug doses, potentially
minimizing systemic side effects.

Given that nisin is an FDA-approved food preservative, there
has been natural interest in combining it with electroporation for
enhanced microbial control. As early as in 1999 Calderon-Miranda
et al. studied the sensitization of Listeria innocua to nisin liquid
whole egg and skimmed milk following PEF (52, 53). While additive
effects were observed at lower intensities, a synergistic effect
emerged with higher electric field strength, pulse numbers, and
nisin concentrations (53). Later, the favorable effect of PEF and
nisin (alone or encapsulated in nanoparticles) was demonstrated
also against Staphylococcus aureus (54), Salmonella typhimurium
(55), Bacillus cereus (56), and Escherichia coli (57). Numerous
studies demonstrated that Lipid II acts as a key docking molecule,
significantly enhancing nisin’s pore stability (15, 20, 58, 59).
However, studies on liposomes indicate that the presence of Lipid
II is not essential for inducing nisin-related membrane
permeabilization (19, 60). The idea to combine permeabilizing
properties of nisin with the electroporation technique has been
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explored before in bacterial and artificial membranes. For example,
the study by Yi et al. (2013) demonstrates that incorporating nisin
into liposomal membranes significantly enhances pore formation
and stabilization during EP, facilitating efficient release of
encapsulated cargo (5-6 carboxyfluorescein dye) (61). To our
knowledge, up to now, there has been no study demonstrating
the sensitization of cancer cells to electroporation following nisin
exposure. Permeabilization experiments using YO-PRO-1
highlighted nisin’s potentiating effect. Cells treated with nisin +
PEF showed markedly increased membrane permeability compared
to PEF alone, particularly at intermediate electric field strengths
(e.g., 0.8-0.9 kV/cm). This suggests that nisin may be involved in
the formation or stabilization of electropores. However, the increase
in the YO-PRO-1 uptake in cells even 40 minutes after pulse
delivery supports the notion that PEF and nisin synergy translates
into irreversible damage and cell death, rather than reversible
permeability changes alone.

Although synergistic effects of nisin and PEF were apparent for
both - usPEF and nsPEF, some differences were spotted in the mode
of action when pulses were delivered to the adherent cells. With
nsPEFs a formation of bubbles on the cell surface was observed in the
nisin’s presence. The membrane protrusions seen after nsPEF with
nisin likely result from the combined effects of ultrashort pulses and
peptide-induced membrane destabilization. Although they resemble
blebs, they more likely represent localized swelling or cytoplasmic
leakage caused by Ca**-mediated stress often accompanying nsPEF
application (62) or are attributed to nisin interaction with the bilayer
lipids. Thus, these bubbles are best interpreted as evidence of
membrane destabilization, rather than classical apoptotic blebbing.
Notably, these conclusions are based solely on qualitative
observations; quantitative image analysis of adherent cells exposed
to pusPEF and nsPEF across a range of field amplitudes is still required
to delineate nisin’s effects in this experimental setup.

Strikingly, the degree of cytotoxicity enhancement achieved
with nisin mirrors or even exceeds the clinical benchmarks from
ECT. The level of nisin cytotoxicity enhancement is comparable to
that achieved with clinically approved ECT’s cytostatic cisplatin.
For instance, the IC5, of cisplatin was decreased by 3— to 13—fold
when combined with electroporation, compared to cisplatin
treatment alone (63). In our study, nisin ICs, towards 4T1 cells
was decreased ~20-fold. This parallel highlights nisin’s potential to
be incorporated into ECT protocols, especially in scenarios where
alternative or lower-toxicity agents are desired. Importantly, the
observed interaction between nisin and pulsed electric fields was
bidirectional. Not only did nisin exhibit enhanced cytotoxicity when
combined with PEFs, but its presence also lowered the electric field
intensity required to achieve effective electroporation outcomes.
Although exact EFs, values for resealing could not be determined in
some conditions because most untreated cells were able to recover
even after high-voltage exposure, a clear downward shift in the
electric field affecting 50% of the population was observed for all
tested protocols. This reduction indicates that nisin sensitizes cells
to electric-field exposure, minimizing energy input.

Importantly, the frequency-dependent effects observed under
nsPEF conditions suggest that higher-frequency fields (1 MHz)
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produce more widespread electroporation, leaving less room for
nisin to exert an additive effect at higher field strengths. However, at
moderate intensities, the presence of nisin significantly lowered the
threshold required to achieve permeabilization or cytotoxicity
(reflected in EFs5, values), which could be leveraged
therapeutically to minimize the need for high-voltage application
and reduce off-target effects.

The main limitations to the practical application of nisin are its
variable activity under different conditions and its instability in
biological environments. The activity of nisin has been shown to be
significantly influenced by several factors, including the
phospholipid composition of the target membrane (64), the
ionization state of its histidine residues (19), and the peptide
concentration (17). Variations in membrane lipid composition
can modulate nisin’s ability to insert and form pores, while the
protonation state of histidine residues - dependent on pH - affects
its structural conformation and membrane interactions. At low pH
(~2.0), nisin can withstand autoclaving without losing its activity
(65). Furthermore, nisin exhibits concentration-dependent
behavior, where pore formation and antimicrobial activity
increase with higher peptide levels, often showing threshold
effects characteristic of cooperative binding and membrane
disruption. Therefore, careful evaluation using various cell types
is needed to fully reveal the therapeutic potential of nisin in
conjunction with EP and ECT. Importantly, the study did not
determine, if the increased permeability is attributed to the
increased number of pores or the delayed cell resealing. Except
for the pore formation and their lifespan, nisin may also influence
membrane repair kinetics, lipid organization, or other processes
affecting dye uptake and viability. Therefore, further studies using
spatially resolved approaches are needed to establish whether the
effect reflects a lowered electroporation threshold or altered
resealing dynamics.

5 Conclusion

We demonstrated that nisin markedly enhances the cytotoxic
effects of pulsed electric fields across a range of electric field
intensities, pulse durations, and frequencies. Collectively, the
results suggest that nisin can act as a potent sensitizer in
electroporation-based therapies by lowering the effective
thresholds for membrane disruption. This could improve the
applicability and controllability of PEFs, particularly when using
short pulses that typically require high voltages. Furthermore, nisin
shows potential as an electrochemotherapy agent in its own right.
Recognized as safe by the WHO, ESFA and FDA, nisin emerges as a
novel, natural ECT candidate. Future studies should explore the
molecular mechanisms underlying the increased permeability and
decreased viability, possibly involving nisin’s interactions with
membrane lipids or cytoskeletal elements, as well as a more in-
depth investigation of the type of cell death. It will be necessary to
confirm nisin’s efficacy against different types of cancer cells and, in
the context of ECT, to verify its activity in the presence of
commonly used drugs. Additionally, in vivo validation and
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investigation of tissue-specific effects will be essential for
translating these findings into clinical applications.
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