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Application of nisin as a
potential drug candidate
for electrochemotherapy
Olga Michel1,2*†, Barbora Lekešytė2,3†,
Veronika Malyško-Ptašinskė2,3, Arnoldas Morozas2,
Paulina Malakauskaitė 1,2,3, Eglė Mickevičiūtė-Zinkuvienė2,3,
Augustinas Želvys1,2,3, Justinas Ivaška2,4, Julita Kulbacka1,2

and Vitalij Novickij 1,2,3*

1Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University,
Wrocław, Poland, 2Department of Immunology and Bioelectrochemistry, State Research Institute
Centre of Innovative Medicine, Vilnius, Lithuania, 3Faculty of Electronics, Vilnius Gediminas Technical
University, Vilnius, Lithuania, 4Faculty of Medicine, Vilnius University, Vilnius, Lithuania
Introduction: Electroporation (EP) is a technique that transiently increases the

permeability of the cell membrane through the application of high-voltage

electric pulses, facilitating the intracellular delivery of therapeutic agents or the

selective ablation of cells. Combination of EP with cytotoxic drugs—most

commonly bleomycin or cisplatin—is termed electrochemotherapy (ECT),

which markedly enhances drug efficacy and permits targeted, locally

controlled treatment with reduced systemic exposure. Currently, in addition to

microsecond (µs) pulses, nanosecond (ns) pulses are being proposed for clinical

use to mitigate certain ECT-associated side effects. However, achieving robust

permeabilization with nsPEF typically requires higher electric fields. Nisin is a

polycyclic antibacterial peptide with anticancer potential that can be leveraged in

this context.

Methods: To date, the permeabilizing properties of nisin have been employed

alongside an external electric field exclusively in bacterial systems and artificial

membranes. In this study, we investigated the impact of nisin on membrane

permeabilization, resealing, and viability of 4T1 breast cancer cells exposed to

microsecond and nanosecond electric pulses of varying field strengths and

pulse frequencies.

Results: Across all experimental conditions, nisin reduced the threshold voltage

necessary for effective permeabilization and increased treatment-induced

cell mortality.

Discussion: Since nisin is non-toxic by itself, it represents a promising candidate

for electrochemotherapy, potentially supporting its wider clinical application in

the future.
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Highlights
Fron
• Nisin is a lantibiotic that interacts with membranes but is

new to ECT use.

• PEF-induced permeabilization to YO-PRO-1 was greatly

enhanced in nisin’s presence.

• Subtoxic nisin doses greatly reduced viability of

electroporated cells.

• The effect was seen across all tested pulse lengths

and frequencies.

• Nisin emerges as a novel candidate for either standalone or

adjuvant ECT agent.
1 Introduction

Nisin is a Type A lantibiotic produced by certain Gram-positive

bacteria, first identified in 1928 by Rogers and Whittier in fermented

milk cultures (1). Owing to its broad-spectrum antimicrobial efficacy

and stability under various food processing conditions (2–4), nisin
tiers in Oncology 02
has been evaluated and approved for use as a food additive by major

international health and regulatory agencies, including the World

Health Organization (WHO) (5), European Food Safety Authority

(EFSA) (6), and is recognized as Generally Recognized as Safe

(GRAS) by the U.S. Food and Drug Administration (FDA) (7).

Among all naturally occurring variants, nisin A and nisin Z are the

most extensively studied (8, 9). Both variants exhibit very similar

antimicrobial activity (10); however, the substitution of histidine with

asparagine at position 27 in nisin Z enhances its diffusion capacity

and solubility at neutral pH (11). The chemical structure of nisin Z is

shown in Figure 1A.

Nisin has been demonstrated to exert various effects on both

biological and artificial membranes (Figure 1B). Its most well-

characterized mechanism involves targeting lipid II, a membrane-

bound peptidoglycan precursor, which it utilizes as an anchor to

inhibit cell wall biosynthesis and induce pores in the cytoplasmic

membrane (12–15). A distinct mode of action has been detected in

head and neck squamous cell carcinoma (HNSCC) cells, in which nisin

highly upregulated the g-glutamyl cyclotransferase (CHAC1), a known

regulator of cation transport and apoptosis (16). Additionally, studies
FIGURE 1

(A) Chemical structure of nisin Z (PubChem CID: 155489899), visualized using Avogadro software. (B) Representative mechanisms of nisin impact on
membrane permeability found in various models: i) binding to Lipid II and assembling transmembrane pores (Prokaryota); ii) upregulation of CHAC1,
disrupting redox and ion balance (Eukaryota), iii) electrostatic interactions destabilizing lipid bilayers, increasing permeability (found in biological and
artificial membranes). Created in https://BioRender.com.
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using artificial membranes have shown that nisin can exert

permeabilizing effects independently of cellular machinery. In this

context, the cationic peptide is electrostatically attracted to negatively

charged phospholipids; upon insertion into the bilayer, it oligomerizes

to form transient, nonspecific pores (17–20).

The concept of the nisin application in anticancer protocols was

first explored by Maher and McClean (2006), who demonstrated its

activity against two human colorectal adenocarcinoma cell lines.

However, the effective concentrations required for anticancer activity

were significantly higher than those needed for its antimicrobial effects

(21). Ever since, the anticancer activity of nisin has been confirmed in

several other cancer types (22) evoking apoptosis both in vitro (23–25)

and in vivo (16, 26). Growing evidence suggests that nisin can inhibit

tumor growth and selectively exert cytotoxic effects on cancer cells (9).

Azmi et al. (2021) identified three key factors contributing to nisin’s

selectivity: i) negative surface charge: cancer cell membranes are more

negatively charged due to loss of phospholipid symmetry, attracting the

positively charged nisin; ii) increased membrane fluidity: cancer cells

have more fluid and unstable membranes, enhancing nisin’s ability to

bind and disrupt them; iii) abundant microvilli: the high density of

microvilli on cancer cells increases the surface area for nisin interaction

(22). Altogether, it can be concluded that, unlike traditional

chemotherapeutic agents, nisin exerts its effects through interactions

with the cell surface rather than inducing DNA damage. Regardless of

whether it acts through lipid II binding, gene upregulation, or direct

electrostatic interactions, the mechanisms of nisin’s action on

membranes ultimately converge on the disruption of ionic

homeostasis, eventually leading to cell death.

The permeabilization effect of nisin resembles the phenomenon

observed in cells exposed to pulsed electric fields (PEF). Applying

an external voltage to cells positioned between electrodes results in

pulsed electric field, which induces cell transmembrane potential

(TMP) (27). If the TMP surpasses a critical threshold, hydrophilic

pores form in the cell membrane - a process known as

electroporation (EP) (28). Depending on the intensity of the

applied electric field, this process can be either irreversible or

reversible (29). The latter is used in a treatment modality called

electrochemotherapy (ECT), in which PEFs are applied to enhance

the transmembrane delivery of chemotherapeutic drugs (30, 31).

Current applications of ECT in cancer treatment adhere to the

ESOPE protocol, which utilizes microsecond pulsed electric field

(µsPEF) to enhance the intracellular uptake of bleomycin, cisplatin

or calcium (32). Despite its advantages, the application of ECT is

still associated with several drawbacks including pain (33), muscle

contractions (32), the need for repeated procedures (34), and

profound tissue necrosis (35). A partial solution to these issues

has been achieved by shortening the duration of the electric pulse to

a few microseconds. For example, high-frequency microsecond

pulses (H-FIRE) have been shown to reduce muscle contractions

and pain compared with conventional IRE (36, 37). However, even

with H-FIRE, some residual stimulation persists.

Further shortening the pulse duration to nanoseconds provides

additional benefits. With ns pulsed electric fields (nsPEFs), the

plasma membrane does not fully charge (a regime often termed

supra-electroporation)-which means that higher field amplitudes
Frontiers in Oncology 03
are required to achieve permeabilization comparable to longer

pulses. Nevertheless, skeletal and cardiac excitation is even lower

than in H-FIRE, improving safety and tolerability (38, 39). At the

same time, when ns pulses are delivered at high repetition

frequencies, the plasma membrane cannot completely discharge

between successive pulses. When the interpulse interval approaches

the membrane charging constant, residual TMP accumulation

occurs, leading to a gradual increase in the effective TMP (40–

43). As a result, pulse trains delivered in the hundreds of kilohertz

(kHz) to megahertz (MHz) range can enhance membrane

permeabilization and lower the effective electroporation threshold

(42, 44, 45). Early studies on high-frequency nsPEF have shown that

pulse compression into the MHz range lowers excitation thresholds

and facilitates electroporation (42). Such high-frequency bursts also

help mitigate impedance effects, promoting a more uniform electric

field distribution within the tumor due to the frequency dependence

of bioimpedance (46). Importantly, nsPEF offer distinct biological

mode of action by reaching intracellular targets - they can

permeabilize internal membranes and trigger Ca2+ release,

mitochondrial depolarization, reactive oxygen species (ROS)

signaling, and regulated cell death - effects that are weak or

absent with standard msPEF application (47, 48). Expanding

electroporation to include intracellular organelles and modulating

cellular stress responses represent a rational approach to enlarge the

effective treatment zone and enhance cytotoxicity when ablation is

incomplete, as sometimes observed with H-FIRE (49, 50).

The main drawback with nsPEF application is that high voltages

required to induce electroporation often exceed the operational limits

of most nsPEF generators and pose significant high-voltage safety risks,

thereby limiting the clinical applicability of submicrosecond pulses. In

this study, we propose the use of nisin to lower the threshold electric

field required for effective membrane permeabilization. Given that

multiple studies report greater toxicity of nisin toward cancer cells than

normal cells, combining nisin with pulsed electric fields provides an

additional, localized selectivity mechanism that may reduce off-target

cytotoxicity of ECT treatment. Moreover, transmembrane delivery via

electroporation could further enhance nisin’s selectivity and anticancer

activity. Finally, enhancing the controllability and efficacy of various

PEF modalities could significantly improve their application not only

in cancer treatment but also in various clinical and industrial settings.

This combined approach retains all the advantages of nsPEF-reduced

muscle excitation, intracellular modulation, lower energy requirements,

and improved field uniformity - while also decreasing the

electroporation threshold through the complementary action of MHz

bursts and nisin. Together, these effects establish a synergy that could

facilitate the translation of nsPEF-assisted ECT into clinical practice by

enabling simpler, safer, and more cost-effective pulse generators.
2 Materials and methods

2.1 Cell culture

The murine mammary carcinoma cell line 4T1 (ATCC® CRL-

2539) was cultured in RPMI 1640 medium supplemented with 10%
frontiersin.org
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fetal bovine serum (FBS), L-glutamine, 25 mM HEPES, 100 U/mL

penicillin, and 100 µg/mL streptomycin (all from Gibco, Thermo

Fisher Scientific, New York, NY, USA). Cells were maintained as

monolayers at 37°C in a humidified atmosphere containing 5% CO2

and used for experiments upon reaching 80% confluency. All

experiments were performed using mycoplasma-free cells. The

4T1 cell line was routinely tested for mycoplasma contamination

using the MycoBlue® Mycoplasma Detection Kit (Vazyme,

Nanjing, China). Unless otherwise specified on the day of the

experiment, cells were enzymatically detached using trypsin-

EDTA (Thermo Fisher Scientific, Grand Island, NY, USA),

collected by centrifugation, and resuspended in electroporation

(EP) buffer (242 mM sucrose, 5.5 mM Na2HPO4, 3 mM

NaH2PO4, 1.7 mM MgCl2; pH 7.1) with or without the addition

of nisin.
2.2 Nisin incubation

A stock solution of nisin Z (Cas No. 137061-46-2, Cat. no.

T76264, TargetMol, Linz, Austria) was prepared at a concentration

of 0.5 mg/mL in sterile distilled water. Prior to electroporation, cells

were incubated with 50 µg/mL nisin in EP buffer for 20 minutes on

ice. The control cells were treated identically, except distilled water
Frontiers in Oncology 04
without nisin was added to cell suspension to achieve the same

dilution. Following incubation, the cell suspension was transferred

into electroporation cuvettes for pulse application. The

experimental protocol is presented in Figure 2.
2.3 Electroporation setup and parameters

Pulsed electric field was delivered to cells with a custom-made

square-wave high-voltage pulse generator (VilniusTECH, Vilnius,

Lithuania) (51). Unless otherwise specified, pulses were applied to the

cells in commercially available electroporation cuvettes with a 1 mm

electrode gap (Biorad, Hercules, CA, USA), using a sample volume of

50 µL per cuvette. Voltages ranging from 0.06 to 1.2 kV were applied

to the cuvette, generating electric fields between 0.6 and 12 kV/cm,

respectively. For microsecond pulsed electric fields (µsPEF), the

protocols used were: 0.6–1.5 kV/cm, 100 µs pulse duration,

8 pulses, delivered at 1 Hz. Nanosecond pulsed electric fields

(nsPEF) consisted of 100 pulses (2–12 kV/cm, 300 ns pulse

duration), applied at frequencies of either 10 kHz or 1 MHz.

10 kHz (100 µs interpulse - full membrane relaxation) and 1 MHz

(1 µs interpulse - near the PM charging time) were chosen to verify if

the partial charge accumulation in high pulse repetition frequency

bursts impacts the permeabilization threshold in the nisin’s presence.
FIGURE 2

Schematic representation of the experimental workflow. 4T1 cells were incubated with or without nisin Z, subjected to pulsed electric field (PEF)
treatment, and subsequently analyzed for membrane permeability, resealing, and viability. Flow cytometry and metabolic assays were used to assess
treatment effects at defined time points. Created in https://BioRender.com.
frontiersin.org
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2.4 Viability assay

Cell viability was assessed 24 hours post-treatment using the

PrestoBlue® Cell Viability Reagent (Thermo Fisher Scientific,

Grand Island, NY, USA). Cells at a concentration of 2 × 106 cells/

mL were exposed to PEFs and transferred into a 96-well flat-bottom

plate (TPP, Trasadingen, Switzerland). After a 10-minute

incubation at room temperature, growth medium was added to

each well to a final volume of 200 µL, and the plate was incubated

for 24 hours at 37°C in a 5% CO2 atmosphere. The next day, wells

were gently rinsed twice with 150 µL of phosphate-buffered saline

(PBS) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Each

well was then filled with 150 µL of PBS and 5 µL of PrestoBlue®

reagent. After a 2-hour incubation, metabolic activity was measured

using a Synergy 2 microplate reader equipped with Gen5 software

(PN 5321002, BioTek, Shoreline, WA, USA), with excitation at 540/

20 nm and emission at 620/40 nm.
2.5 Cell permeabilization

Cell permeabilization induced by electroporation in 4T1 cells

(2 × 106 cells/mL) was assessed using the green fluorescent dye YO-

PRO-1 (YP, Sigma–Aldrich, St. Louis, MO, USA). Following

incubation with nisin, cells were mixed with YP dye to achieve a

final concentration of 1 µM and transferred into EP cuvettes. After

PEF treatment, the cell suspensions were transferred to

FACS FlowTubes (Corning, New York, USA) or 3.5 mL

SampleTubes (Sysmex Partec GmbH, Goerlitz, Germany)

combined with the Small Volume Sample Tubes (Sysmex).

Following a 10-minute incubation at room temperature, 150 µL
Frontiers in Oncology 05
of a 0.9% NaCl solution (Chempur, Piekary Ślas̨kie, Poland) was

added to each tube. Untreated control samples were used to

establish gating parameters. Samples were analyzed using a BD

Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA) or

CyFlow® Cube 6 (Sysmex). YP fluorescence was detected

in Channel FL1, with excitation at 491 nm and emission

collected at 533/30 nm bandpass filter (BPF). Flow cytometry

gating for YO-PRO-1 fluorescence was performed as shown in

Figure 3, allowing discrimination between permeabilized and

non-permeabilized cells across control, nisin-treated, and

electroporated samples.
2.6 Resealing assay

Similar to the permeability assay, cell membrane resealing was

evaluated using the green fluorescent dye YO-PRO-1. Following

incubation with nisin Z, cells were electroporated and immediately

transferred to FACS FlowTubes, where they were incubated at room

temperature for 30 minutes to allow membrane resealing.

Subsequently, YO-PRO-1 was added to a final concentration of 1

µM. After a 10-minute incubation at room temperature, 200 µL of

0.9% NaCl solution was added to each tube. YP fluorescence was

measured using the same flow cytometry protocol as described for

the permeability assay.
2.7 Morphological assessment

For the assessment of cell morphology, instead of 1 mm

cuvettes, a custom-made tweezer electrode with 1 mm gap was
FIGURE 3

Flow cytometry gating strategy of YP dye, where (A, B) and (C, D) graph pairs are the untreated control and 1.2 kV/cm × 100 µs × 8 electroporation
protocol, respectively; (E, F) and (G, H) graph pairs are the nisin-treated and 1.2 kV/cm × 100 µs × 8 electroporation protocol with nisin, respectively.
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used to apply µsPEF and nsPEF. For the experiments, cells were

harvested from culture flasks and seeded on ibidiTreat µ-dishes

(Ibidi, Gräfelfing, Germany): 2.4 × 104 cells were seeded in each dish

48 hours prior to experiment. On the day of the experiment, cells

were incubated with an EP buffer with or without nisin for

20 minutes at 4°C and then subjected to PEF. Next, the EP

buffer was replaced with a fresh RPMI medium and the

holotomographic imaging was performed 10 minutes after PEF

application using a 3D Cell Explorer (Nanolive, Tolochenaz,

Switzerland). The data processing and 3D refractive index

distribution were determined using a commercially available

STEVE software (Nanolive).
2.8 Statistical analysis

Statistical analysis was performed using one-way analysis of

variance (ANOVA), with a significance threshold set at p < 0.05.

When ANOVA indicated significant differences among groups, post

hoc comparisons were conducted using the Tukey HSD multiple

comparison test (p < 0.05 considered statistically significant). All

data presented in graphs were analyzed and presented using

OriginPro software (version 18.0, OriginLab, Northampton, MA,

USA). To enhance clarity, graph colors were standardized

throughout the paper: nisin-alone treatments are represented

in blue, PEF treatments without nisin in green, and combined

PEF and nisin treatments in red. Each data point represents the

mean of at least three independent experiments and is expressed as

mean ± standard deviation. The EF50 values were calculated based

on a nonlinear regression dose-response curve, using a GraphPad

Prism software (Boston, Massachusetts USA), version 10.5.0

for Windows.
Frontiers in Oncology 06
3 Results

3.1 Determination of non-toxic nisin
concentration for combined
electroporation treatment

The first step of the study was to determine a non-toxic

concentration of nisin that would remain biologically active when

combined with electroporation, while at the same time remaining

predominantly non-toxic for the cells when EP is not involved. The

results are summarized in Figure 4.

Based on cell viability assays, a concentration of 50 µg/mL (14.9

µM) was selected, as it did not cause a considerable decline in

viability in regard to non-treated control (Figure 4A). However,

when combined with µsPEF (according to the standard ESOPE

protocol), at 1.2 kV/cm cell viability decreased from ~84% to ~5.6%

(p < 0.001, n = 3), indicating a strong synergistic cytotoxic effect.

When the same PEFs were applied to adherent cells, pronounced

membrane irregularities were observed even in the absence of nisin

(Figure 4B). However, when nisin was added to the EP buffer, cells

showed morphological alterations, including loss of membrane

integrity. Some cells appeared swollen with irregular contours and

disrupted internal structure, consistent with membrane

destabilization and loss of cellular homeostasis.
3.2 The impact of nisin on permeabilization
and resealing following the ESOPE
protocol

The selected subtoxic nisin concentration of 50 µg/ml was used

to sensitize 4T1 cells to PEF. Cytometric measurements of YO-
FIGURE 4

Cell viability (A) and morphology (B) after treatment with nisin Z alone or combined with pulsed electric field (PEF: 1.2 kV/cm, 8 pulses, 100 µs, 1 Hz).
Viability (% of control) was assessed following exposure to increasing nisin Z concentrations (0–250 µg/mL), with (red circles) or without (blue
squares) PEF. Data shown as mean ± SD (**p < 0.01). Cell morphology was assessed with holotomographic microscopy on adherent cells exposed
to 50 µg/mL nisin and PEF. Scale bar: 20 µm.
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PRO-1 dye fluorescence demonstrated that incorporating nisin into

the ESOPE protocol significantly enhanced the permeabilization

efficacy of µsPEF, allowing more dye to enter through

electroporated membrane (Figure 5A). The most pronounced

differences between groups with and without nisin were detected

for the electric field strength of 0.8 kV/cm (70% vs 8%, respectively)

and for 0.9 kV/cm (~88% vs 26%, respectively).

Similar measurements were conducted in cells subjected to µsPEF

with or without nisin, with the YP dye added 30 minutes after the

electroporation protocol. This approach allowed the fluorescent signal

to be detected only in cells that failed to reseal after electroporation.

Within the tested range (0.6 – 1.5 kV/cm), none of the electric field

strengths significantly affected the cell resealing process (Figure 5B).

When nisin was included in the protocol, 42% of cell population was

not resealed even with the lowest tested electric field strength. At 1.2

kV/cm, almost entire cell population was permeable to YP 30 minutes

after PEF application. Notably, for lower tested electric field parameters

(0.6 and 0.7 kV/cm) the percentage of YO-PRO-1-positive cells was

higher in Resealing population vs Permeability population,

demonstrating that cell permeability was increased even 40 minutes

after the combined PEF + Nisin treatment.
3.3 The impact of nisin on permeabilization
and resealing following nsPEF at various
pulse frequencies

Similar to the ESOPE protocol, nisin markedly augmented the

bioeffects of PEFs in 4T1 cells exposed to nsPEFs for both tested

pulse frequencies 10 kHz (Figures 6A, B) and 1 MHz

(Figures 6C, D).

At both frequencies, membrane permeability and resealing

impairment increased with rising electric field intensities. For the

10 kHz condition (Figure 6A), a synergistic effect between PEF and
Frontiers in Oncology 07
nisin was particularly evident at electric fields ≥8 kV/cm, with a

significant enhancement in membrane permeability, as indicated by

increased YO-PRO-1 uptake (Figure 6B). In contrast, under the 1

MHz condition (Figure 6C), statistically significant differences

between treatments with and without nisin were observed

primarily at lower electric field strengths (≥8 kV/cm). At higher

field strengths, nearly the entire cell population was permeabilized

even in the absence of nisin, minimizing the observed differential

effect. Notably, cells exposed to high electric fields without nisin

demonstrated an ability to reseal their membranes over time, as

reflected by a reduced proportion of cells stained with YO-PRO-1–

30 minutes after PEF protocol. Conversely to this, the addition of

nisin resulted in sustained membrane permeabilization and

impaired resealing capacity (Figure 6D), underscoring the

potentiating effect of nisin on PEF-induced cytotoxicity.
3.4 The impact of nisin on viability and
morphology following various PEFs
protocols

Previous experiments on 4T1 cell membrane resealing

demonstrated that the addition of nisin significantly impaired the

resealing capacity following PEF treatment. However, these

experiments did not clarify whether nisin prolongs the existence

of membrane pores or if the increased permeability leads to

irreversible damage and cell death. To address this, the viability

of 4T1 cells was assessed 24 hours after exposure to various PEF

protocols, both in the presence and absence of nisin (Figures 7A–C).

Additionally, cell morphology was examined in adherent cells right

after pulse delivery (Figure 7D).

In all tested PEFmodalities, cell viability decreased with increasing

electric field strength, and the addition of nisin significantly enhanced

cytotoxicity. For µsPEF, a moderate reduction in cell viability was
FIGURE 5

The permeabilization (A) and resealing (B) of 4T1 cells as a function of YP fluorescence in cells subjected to microsecond pulses (ESOPE protocol)
with or without nisin. Data shown as mean ± SD (*p < 0.05, **p < 0.01, ns, non-significant). For better clarity, only selected statistically significant
differences are highlighted on the graph.
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noted (from ~90% to ~75%) in the electric field range of 0.8 – 1.5 kV/

cm (Figure 7A). However, with nisin, viability dropped sharply at even

the lowest field, reaching below 5% at 1.5 kV/cm. A similar pattern

was evident for nsPEF protocols. At 10 kHz frequency (Figure 7B), cell

viability dropped below 20% in the presence of nisin. In contrast, 1

MHz stimulation (Figure 7C) produced an even more pronounced

cytotoxic effect, reducing viability to below 5% at 12 kV/cm. These

findings underscore the potentiating effect of nisin on PEF-induced

cell death, particularly at higher field strengths and pulse frequencies.

To confirm that the observed nisin-nsPEF synergy occurs not only in

cells in suspension, we performed a visualization of adherent cells 10

minutes after PEF application (Figure 7D). In both tested nsPEF

modalities, we observed a loss of the membrane integrity and

subsequent formation of bubbles on the cell surface, consistent with

cytoplasmic leakage or cell blebbing. Notably, the morphology of cells

subjected to nsPEF differed from the morphology of cells treated with

ESOPE protocol (see Figure 4B for comparison). Cell membranes in

samples exposed to µsPEF alone (without nisin) appeared to be more
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visibly disrupted than those treated with nsPEF. When nisin was

present in the electroporation buffer, all PEF-treated cells showed

membrane defects; however, the formation of bubbles was observed

exclusively in cells treated with pulses of nanosecond range.
3.5 The impact of nisin on the threshold
electric field required to evoke a biological
effect in 50% of the cell population (EF50).

To summarize various biological effects of nisin addition and to

facilitate the comparison between tested PEF modalities, the electric

field intensities allowing to affect 50% of the population (EF50) were

calculated for each experiment separately: permeabilization,

resealing and viability (Table 1).

Nisin consistently reduced the EF50 for permeabilization,

resealing and viability across all tested protocols. The most

pronounced effects on membrane permeability after nisin
FIGURE 6

The permeabilization (left column) and resealing (right column) of 4T1 cells as measured by YO-PRO-1 (YP) fluorescence in cells subjected to 100 ×
300-nanosecond pulses with electric field intensities ranging from 2 to 12 kV/cm and pulse frequencies of 10 Hz (A, B) or 1 MHz (C, D). Data shown
as mean ± SD (**p < 0.01, ns, non-significant).
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FIGURE 7

The effect of pulsed electric fields (PEFs) with or without nisin on cell viability (A–C) and morphology (D). Cells were exposed to increasing electric
field strengths under three different pulse conditions: (A) Microsecond pulses: 100 ms × 8 at 1 Hz; (B) Nanosecond pulses (nsPEF): 300 ns × 100 at 10
kHz; (C) Nanosecond pulses: 300 ns × 100 at 1 MHz. Data shown as mean ± SD (**p< 0.01). Cell morphology was assessed with holotomographic
microscopy on adherent cells exposed to 50 µg/mL nisin and nsPEF (8 kV/cm, 300 ns × 100 at 10 kHz or 1 MHz). Cell blebbing was marked with
white arrows. Scale bar: 20 µm.
TABLE 1 EF50 values (electric field strength required to affect 50% of cells) for membrane permeabilization, resealing, and viability under different
pulsed electric field (PEF) modalities, with and without the presence of nisin.

PEF modality Nisin presence
(without nisin: -, with
nisin: +)

EF50 permeabilization
(kV/cm)

EF50 resealing
(kV/cm)

EF50 viability (kV/cm)

µsPEF,
100 ms × 8 at 1 Hz

– 1.00 >> 1.50 > 1.50

+ 0.71 0.66 0.61

nsPEF,
300 ns × 100 at 10 kHz

– 11.27 >>12.000 >> 12.00

+ 5.60 11.07 6.93

nsPEF,
300 ns × 100 at 1 MHz

– 7.25 >>12.00 >> 12.00

+ 2.18 8.15 6.57
F
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In some experiments, the calculated EF50 values significantly exceeded the experimental range; these values were marked as ‘>>’, indicating that they lie much higher than the highest field
strength tested.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1689261
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Michel et al. 10.3389/fonc.2025.1689261
addition were detected for nsPEFs of 1 MHz, with 3.33-fold

reduction of the EF50 value with regard to the nisin-free samples.

As without nisin, almost entire cell population was able to reseal,

even with the highest tested PEF parameters, it was not possible to

determine exact reduction in EF50 values between nisin-treated and

nisin-free samples. However, a significant reduction in the electric

field affecting the resealing ability of 50% of population was noted

for all the tested PEF modalities. The further viability studies

indicate that the differences in cell resealing stem from the

irreversible cell damage rather than delayed cell resealing. In

terms of viability, all tested PEF modalities were enhanced by

nisin addition, reaching the 4.22, 3.87 and 3.4-fold reduction in

EF50 Viability in samples treated with 10 Hz nsPEFs, µsPEFs and 1

MHz nsPEFs, respectively. These findings support the hypothesis

that nisin is a promising agent that can be used in ECT treatment

and at the same time can be part of the strategy to lower the PEF

amplitude requirements during nsPEF application, which is not the

case for conventional ECT agents.
4 Discussion

This study demonstrates that the antimicrobial peptide nisin

significantly enhances the bioeffects of pulsed electric fields (PEFs),

both microsecond (µsPEF) and nanosecond (nsPEF), in murine

4T1 cancer cells. The concentration of 50 µg/mL nisin, identified as

non-toxic when used alone, was shown to produce a strong

synergistic effect when combined with µsPEF, decreasing cell

viability from ~84% to ~5.6%. The combined treatment produced

a significantly greater reduction in cell viability than either modality

alone, indicating that nisin enhances the cytotoxic impact of PEF

beyond additive effects. This finding supports the concept that

membrane permeabilization facilitates nisin’s intracellular action

and strengthens the rationale for its use as an adjuvant or potential

standalone drug in electrochemotherapy. The observed synergy at

various sub-toxic nisin concentrations also suggests that therapeutic

efficacy might be achieved with lower drug doses, potentially

minimizing systemic side effects.

Given that nisin is an FDA-approved food preservative, there

has been natural interest in combining it with electroporation for

enhanced microbial control. As early as in 1999 Calderón-Miranda

et al. studied the sensitization of Listeria innocua to nisin liquid

whole egg and skimmed milk following PEF (52, 53). While additive

effects were observed at lower intensities, a synergistic effect

emerged with higher electric field strength, pulse numbers, and

nisin concentrations (53). Later, the favorable effect of PEF and

nisin (alone or encapsulated in nanoparticles) was demonstrated

also against Staphylococcus aureus (54), Salmonella typhimurium

(55), Bacillus cereus (56), and Escherichia coli (57). Numerous

studies demonstrated that Lipid II acts as a key docking molecule,

significantly enhancing nisin’s pore stability (15, 20, 58, 59).

However, studies on liposomes indicate that the presence of Lipid

II is not essential for inducing nisin-related membrane

permeabilization (19, 60). The idea to combine permeabilizing

properties of nisin with the electroporation technique has been
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explored before in bacterial and artificial membranes. For example,

the study by Yi et al. (2013) demonstrates that incorporating nisin

into liposomal membranes significantly enhances pore formation

and stabilization during EP, facilitating efficient release of

encapsulated cargo (5–6 carboxyfluorescein dye) (61). To our

knowledge, up to now, there has been no study demonstrating

the sensitization of cancer cells to electroporation following nisin

exposure. Permeabilization experiments using YO-PRO-1

highlighted nisin’s potentiating effect. Cells treated with nisin +

PEF showed markedly increased membrane permeability compared

to PEF alone, particularly at intermediate electric field strengths

(e.g., 0.8–0.9 kV/cm). This suggests that nisin may be involved in

the formation or stabilization of electropores. However, the increase

in the YO-PRO-1 uptake in cells even 40 minutes after pulse

delivery supports the notion that PEF and nisin synergy translates

into irreversible damage and cell death, rather than reversible

permeability changes alone.

Although synergistic effects of nisin and PEF were apparent for

both - µsPEF and nsPEF, some differences were spotted in the mode

of action when pulses were delivered to the adherent cells. With

nsPEFs a formation of bubbles on the cell surface was observed in the

nisin’s presence. The membrane protrusions seen after nsPEF with

nisin likely result from the combined effects of ultrashort pulses and

peptide-induced membrane destabilization. Although they resemble

blebs, they more likely represent localized swelling or cytoplasmic

leakage caused by Ca2+-mediated stress often accompanying nsPEF

application (62) or are attributed to nisin interaction with the bilayer

lipids. Thus, these bubbles are best interpreted as evidence of

membrane destabilization, rather than classical apoptotic blebbing.

Notably, these conclusions are based solely on qualitative

observations; quantitative image analysis of adherent cells exposed

to µsPEF and nsPEF across a range offield amplitudes is still required

to delineate nisin’s effects in this experimental setup.

Strikingly, the degree of cytotoxicity enhancement achieved

with nisin mirrors or even exceeds the clinical benchmarks from

ECT. The level of nisin cytotoxicity enhancement is comparable to

that achieved with clinically approved ECT’s cytostatic cisplatin.

For instance, the IC50 of cisplatin was decreased by 3− to 13−fold

when combined with electroporation, compared to cisplatin

treatment alone (63). In our study, nisin IC50 towards 4T1 cells

was decreased ~20-fold. This parallel highlights nisin’s potential to

be incorporated into ECT protocols, especially in scenarios where

alternative or lower-toxicity agents are desired. Importantly, the

observed interaction between nisin and pulsed electric fields was

bidirectional. Not only did nisin exhibit enhanced cytotoxicity when

combined with PEFs, but its presence also lowered the electric field

intensity required to achieve effective electroporation outcomes.

Although exact EF50 values for resealing could not be determined in

some conditions because most untreated cells were able to recover

even after high-voltage exposure, a clear downward shift in the

electric field affecting 50% of the population was observed for all

tested protocols. This reduction indicates that nisin sensitizes cells

to electric-field exposure, minimizing energy input.

Importantly, the frequency-dependent effects observed under

nsPEF conditions suggest that higher-frequency fields (1 MHz)
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produce more widespread electroporation, leaving less room for

nisin to exert an additive effect at higher field strengths. However, at

moderate intensities, the presence of nisin significantly lowered the

threshold required to achieve permeabilization or cytotoxicity

(reflected in EF50 values) , which could be leveraged

therapeutically to minimize the need for high-voltage application

and reduce off-target effects.

The main limitations to the practical application of nisin are its

variable activity under different conditions and its instability in

biological environments. The activity of nisin has been shown to be

significantly influenced by several factors, including the

phospholipid composition of the target membrane (64), the

ionization state of its histidine residues (19), and the peptide

concentration (17). Variations in membrane lipid composition

can modulate nisin’s ability to insert and form pores, while the

protonation state of histidine residues - dependent on pH - affects

its structural conformation and membrane interactions. At low pH

(~2.0), nisin can withstand autoclaving without losing its activity

(65). Furthermore, nisin exhibits concentration-dependent

behavior, where pore formation and antimicrobial activity

increase with higher peptide levels, often showing threshold

effects characteristic of cooperative binding and membrane

disruption. Therefore, careful evaluation using various cell types

is needed to fully reveal the therapeutic potential of nisin in

conjunction with EP and ECT. Importantly, the study did not

determine, if the increased permeability is attributed to the

increased number of pores or the delayed cell resealing. Except

for the pore formation and their lifespan, nisin may also influence

membrane repair kinetics, lipid organization, or other processes

affecting dye uptake and viability. Therefore, further studies using

spatially resolved approaches are needed to establish whether the

effect reflects a lowered electroporation threshold or altered

resealing dynamics.
5 Conclusion

We demonstrated that nisin markedly enhances the cytotoxic

effects of pulsed electric fields across a range of electric field

intensities, pulse durations, and frequencies. Collectively, the

results suggest that nisin can act as a potent sensitizer in

electroporation-based therapies by lowering the effective

thresholds for membrane disruption. This could improve the

applicability and controllability of PEFs, particularly when using

short pulses that typically require high voltages. Furthermore, nisin

shows potential as an electrochemotherapy agent in its own right.

Recognized as safe by the WHO, ESFA and FDA, nisin emerges as a

novel, natural ECT candidate. Future studies should explore the

molecular mechanisms underlying the increased permeability and

decreased viability, possibly involving nisin’s interactions with

membrane lipids or cytoskeletal elements, as well as a more in-

depth investigation of the type of cell death. It will be necessary to

confirm nisin’s efficacy against different types of cancer cells and, in

the context of ECT, to verify its activity in the presence of

commonly used drugs. Additionally, in vivo validation and
Frontiers in Oncology 11
investigation of tissue-specific effects will be essential for

translating these findings into clinical applications.
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52. Sobrino-López Á, Martıń-Belloso O. Enhancing Inactivation of Staphylococcus
aureus in Skim Milk by Combining High-Intensity Pulsed Electric Fields and Nisin. J
Food Prot. (2006) 69:345–53. doi: 10.4315/0362-028X-69.2.345
Frontiers in Oncology 13
53. Calderón-Miranda ML, Barbosa-Cánovas GV, Swanson BG. Inactivation of
Listeria innocua in skim milk by pulsed electric fields and nisin. Int J Food
Microbiol. (1999) 51:19–30. doi: 10.1016/S0168-1605(99)00069-0
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