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Integrative modeling of FOXO-
mediated autophagy in NSCLC:
linking cGAS–STING signaling
to IL-6 dynamics
Divya Rani1,2, Shweta Khandibharad1 and Shailza Singh1,2*

1Systems Medicine Laboratory, Biotechnology Innovation and Research Council (BRIC)-National
Centre for Cell Science, Pune, India, 2Regional Centre for Biotechnology, Faridabad, Haryana, India
Lung cancer, particularly non-small cell lung cancer (NSCLC), remains the leading

cause of cancer-related mortality worldwide, accounting for approximately 85% of

lung cancer cases. Despite therapeutic advancements, the prognosis for advanced-

stage NSCLC remains poor due to late diagnosis and high rates of therapeutic

resistance. Recent studies have implicated the cyclic GMP-AMP synthase (cGAS)–

stimulator of interferon genes (STING) pathway in NSCLC progression, revealing its

dual role in innate immune activation and autophagy induction. Concurrently,

cGAS–STING activation triggers noncanonical autophagy. We proposed a systems

biology framework integrating mathematical model and network biology to

elucidate how forkhead box class O (FOXOs) FOXO1 and FOXO3a serve as critical

regulators linking cGAS–STING signaling with interleukin-6 (IL-6) in promoting

autophagy in NSCLC. Furthermore, sequence, phylogeny, structure, domain, and

protein–protein interaction studies identified crucial amino acids and their functions

in regulating cGAS–STING– FOXO1 and cGAS–STING–FOXO3a interactions. Our

integrative model highlights the complex interplay between immune signaling,

metabolic reprogramming, and autophagic regulation in NSCLC. Further findings

offermechanistic insights into the dual role of FOXOproteins in autophagymediated

cancer progression and present potential components for the development of

personalized therapeutic strategies aimed at targeting the cGAS–STING–FOXO–

autophagy axis.
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GRAPHICAL ABSTRACT

Graphical abstract of the cGAS–STING/IL-6 pathway promoting autophagy through FOXOs in NSCLC
1 Introduction

Cancer remains one of the most significant global health

challenges of the current time, encompassing more than 100

distinct types, defined by their tissue of origin and molecular

characteristics. Over the past few decades, significant progress has

been made in understanding the molecular mechanisms of

carcinogenesis. Many cancer types still continue to have poor

prognosis, especially when diagnosed at advanced stages when the

tumor has metastasized to nearby organs as well. Among these, lung

cancer has been a major concern due to its high incidence in 2022

with age-standardized incidence rate (ASIR) of 32.1 per 100,000

inhabitants and disproportionately high mortality rate inferred with

age-standardized mortality rate (ASMR) of 16.8 per 100,000 (1, 2).

Lung cancer is categorized into two main types: small cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC

comprises several histological subtypes, including adenocarcinoma,

squamous cell carcinoma, and large cell carcinoma, each with

distinct pathological and molecular features and accounts for

approximately 85% of all lung cancer cases. Despite advances in

early detection and targeted therapies, NSCLC remains a major

contributor to global cancer mortality due to its asymptomatic

progression, late-stage diagnosis, and high rate of therapeutic

resistance. The latest Global Cancer Observatory (GLOBOCAN)

data provided by the International Agency for Research on Cancer

for the year 2022 estimated that there were approximately 2.48
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million new lung cancer cases worldwide, with NSCLC comprising

the majority of these diagnosis. In that period, lung cancer was

responsible for approximately 1.8 million deaths, representing 18%

of all cancer-related fatalities, making lung cancer the leading cause

of cancer mortality across the globe (2). Moreover, according to

American Cancer Society, the 5-year survival rate of NSCLC

patients is approximately 28%, highlighting the urgent need for

improved early detection methods and more targeted, personalized

treatment approaches (https://seer.cancer.gov/statfacts/html/

lungb.html).

Considering the urgency, recent advancements in treatment

approaches integrated with chemotherapy, radiotherapy, surgery,

and targeted therapy are in application, aiming to bring better

outcomes in terms of NSCLC treatment. In the context of metabolic

pathways contributing to the development of NSCLC, multiple

factors particularly aberrant signaling driven by somatic mutations

in the epidermal growth factor receptor (EGFR)-mediated rat

sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated

protein kinase (RAS/RAF/MAPK), phosphoinositide 3-kinase/

protein kinase B (PI3K/AKT), and Janus kinase/signal transducer

and activator of transcription (JAK/STAT) pathways have been

identified as critical factors leading to tumor survival. Recent studies

have also highlighted the emerging role of the cyclic GMP-AMP

synthase (cGAS)/stimulator of interferon genes (STING) pathway

in NSCLC pathogenesis. Belonging to the nucleotidyltransferase

(NTase) superfamily, cGAS, is a cytoplasmic DNA sensor
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consisting 522 amino acids and has a molecular weight of

approximately 60 kDa. The N-terminal of cGAS is positively

charged, thus enhancing its affinity toward DNA (3) as DNA, due

to the presence of the phosphate group, is negatively charged. The

cGAS protein contains sites for modifications, such as

phosphorylation and ubiquitination, which regulate the enzyme’s

activity as well as stability in the cytoplasm (4). The C-terminal

catalytic domain, encompassing the NTase core with male

abnormal 21-like protein domain (Mab21) domains, is crucial for

2′,3′-cyclic GMP-AMP (cGAMP) production, DNA binding, and

the overall regulation of cGAS function (5).

In 2013, cGAS was recognized as a key cytosolic DNA sensor

which detects dsDNA not based on DNA sequence but the length

of the nucleotide in various types of cells (3). cGAS is activated in a

DNA length-dependent manner, requiring dsDNA of at least 45

base pairs (bp) (6–8) for efficient recognition and robust cGAMP

synthesis. DNA fragments shorter than this threshold are

significantly less effective at inducing cGAS activation and

downstream STING signaling. This length dependency is

attributed to the necessity for cGAS to form active dimers or

higher-order oligomers upon binding to sufficiently long DNA,

which facilitates the conformational changes required for

enzymatic activity and immune signaling. Another key adapter

protein is STING which is bound to the membrane of endoplasmic

reticulum (ER) of Homo sapiens and gets activated on binding

with cyclic dinucleotides (CDNs) produced by cGAS. The human

STING protein consists of 379 amino acids and is primarily

localized to the ER (9). Structurally, STING is organized into

three key domains: an N-terminal transmembrane domain

(residues 1–136) that spans the ER membrane via four a-helical
segments; a central cyclic dinucleotide-binding domain (CDN

binding domain; residues ~153–340), which facilitates

homodimerization and binds endogenous and bacterial cyclic

dinucleotides such as cGAMP; and a C-terminal tail that

encompass TANK-binding kinase 1 (TBK1) phosphorylation

site and IRF3 docking site between ~358–366 and ~374–379,

which is essential for downstream signaling through the

recruitment and activation of TBK1 and interferon regulatory

factor 3 (IRF3).

It is now well established in the literature that cGAS–STING is

activated in response to the presence of cytosolic double-stranded

DNA (10–12). Upon activation, the canonical pathway is initiated,

leading to the induction of type I interferons, e.g., interferon alpha

(IFN-a) and pro-inflammatory cytokines such as interleukin-6 (IL-

6). Notably, recent findings have revealed that cGAS-STING also

promotes autophagy by facilitating the formation of isolation

membranes from the ER–Golgi intermediate compartment

(ERGIC), ultimately leading to phagophore formation in

coordination with various cytoplasmic proteins like secretion-

associated Ras-related GTPase activating protein 12 (SEC12) and

transmembrane emp24 domain-containing protein 9 (TMED9).

Since autophagy has been considered as a double-edged sword,

triggering cancer progression in advanced stages, the underlying

role of cGAS–STING in inducing autophagy should be studied in

depth. Autophagy-related genes (ATGs) are transcribed in the
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nucleus, which results in the formation of autophagosome from

phagophore. Thus, coupling these two pathways may shed an

insight to identify the crucial regulators which could be targeted

to develop cancer therapies. The onset and regulation of autophagy

are governed by interconnected signaling pathways involving

multiple kinases, phosphatases, and proteins transcribed by

various transcription factors.

Among these regulatory factors, the two forkhead box class O

(FOXO) transcription factors FOXO1 and FOXO3a have emerged

as pivotal modulators of autophagy. Their involvement in cellular

stress responses and transcriptional regulation of ATG genes

positions them as important links between oncogenic signaling

and autophagic control (13, 14). The four mammalian isoforms of

FOXO includes FOXO1, FOXO3a, FOXO4, and FOXO6. These

FOXO proteins have been shown to be regulated by multiple factors

such as DNA damage, nutrient deprivation, cytokines, and hypoxia.

These conditions are commonly seen during tumor progression

(15). In mammals, these major FOXO proteins function as

transcription factors and bind to the promoter region through

their forkhead domain often referred to as a “winged-helix” due

to its butterfly-like appearance on X-ray crystallography and

nuclear magnetic resonance imaging (16). Majorly affected by

their subcellular localization, FOXO proteins undergo various

posttranslational modifications (PTMs), such as phosphorylation,

ubiquitination, acetylation, methylation, glycosylation, and poly

(ADPribosyl)ation (PARylation), leading to either inhibition or

activation of downstream target genes. FOXO transcription

factors are broadly expressed across various tissues, including the

ovary, prostate, skeletal muscle, brain, heart, lungs, liver, pancreas,

spleen, thymus, and testes. Given their evolutionary conservation,

therapeutically targeting these key proteins holds potential for the

development of effective agents to overcome NSCLC.

FOXO3a and FOXO1 are two key members of the FOXO

transcription factor family due to their central roles in cellular

homeostasis, stress responses, and cancer biology especially in

NSCLC. With a molecular weight of 71 kDa, FOXO3a is a 673-

amino-acid-long protein (17), playing a vital role in regulating a

variety of cellular processes such as apoptosis, autophagy, etc., and

is conserved across different species. Under conditions of metabolic

stress such as ATP deprivation, FOXO3a undergoes nuclear

translocation triggered by the inhibition of the PI3K/AKT

pathway where it activates a repertoire of autophagy-related genes

like ATG12, LC32/B, etc. These transcriptional events promote the

initiation and maturation of autophagosomes, contributing to the

survival of NSCLC cells under hypoxia, nutrient deprivation, or

therapeutic stress.

FOXO1 is 655 amino acids in length which exhibits overlapping

yet distinct regulatory functions as that of FOXO3a. It promotes the

transcription of key autophagy genes such as ATG5, ATG7, etc.,

facilitating autophagosome formation and lysosomal fusion. FOXO

proteins are known for their role in regulating cancer (13, 18, 19).

However, in NSCLC, both FOXO1 and FOXO3a show context-

dependent duality in their function in both early and advanced

stages and represent a critical node between cGAS, STING, and

autophagy which are triggered in the case of NSCLC. Although both
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STING and FOXO pathways independently orchestrate stress

responses, their mechanistic crosstalk in NSCLC remains largely

unexplored. In advanced stages of cancer, FOXO proteins are found

to play the role of a tumor promoter (20). This dual scenario

necessitates fully comprehending the role of FOXO in cancer

especially as a promoter which is still raveled. In order to get

insights to the intricate network considering these key proteins and

delineate how FOXO-mediated autophagy intersects with STING-

driven immune signaling, we utilized systems biology approach to

investigate the biological pathways represented in the form of a

model system, after which integrative analysis was done to decipher

the regulation of crucial proteins in NSCLC.

Under normal physiological conditions, DNA in eukaryotic

cells is strictly compartmentalized within the nucleus and

mitochondria. However, various stress conditions, such as

chromosomal instability, mitochondrial damage, necrotic cells, or

bacterial invasion, can disrupt cellular homeostasis, leading to the

accumulation of dsDNA in the cytosol. Among these, chromosomal

instability, in the case of cancer, emerges as a hallmark of cancer,

often associated with tumor progression and metastasis (21).

Moreover, as a crucial part of innate immunity, the cGAS–STING

pathway is activated. cGAS, being a pattern recognition receptor,

detects and binds to cytosolic dsDNA in a sequence-independent

but length-dependent manner (3, 22, 23). As soon as dsDNA binds

to cGAS, the conformational change in cGAS leads to the binding of

cGAS to ATP and GTP present in the cytoplasm and catalyzes them

into a cyclic dinucleotide (cGAMP), which comprises both 2′−5′
and 3′−5′ phosphodiester linkages (24–26). For efficient cGAMP

synthesis, longer DNA has better potential in activating cGAS,

promoting liquid-like droplet formation in which cGAS and

dsDNA are concentrated.

cGAMP, the secondary cytoplasmic messenger, is then

translocated to the ER and activates STING, after which STING

forms tetramers, undergoes high-order oligomerization, and gets

translocated to ERGIC. At ERGIC, in the presence of SEC12 and

TMED9 protein, some portion of the ERGIC membrane gets

separated as an isolation membrane. In the cytoplasm, this

ERGIC isolation membrane, in the presence of tryptophan–

aspartic acid (WD) repeat domain phosphoinositide interacting

protein 2 (WIPI2) and coating protein 2 (COP-2), gets converted

into the phagophore. This activation of cGAS–STING leads to a

non-canonical autophagy pathway. cGAMP STING, which has

been activated then, from ERGIC gets translocated to the Golgi

apparatus, where it activates TBK1 and inhibitor of kB kinase

(IKK). Activated TBK then phosphorylates IRF3 and leads to its

translocation into the nucleus. Activated IKK binds to nuclear

factor kappa B (NF-kB) and gets translocated as p65p50 complex.

In the inactivated form, phosphorylated IRF3 transcribes interferon

alpha (IFN1) and subsequently translocates into the plasma

membrane. Furthermore, NF-kB leads to the transcription of IL-

6, which also gets translocated to the plasma membrane via the

cytoplasm. This leads to an increased expression of IL-6 and IFN1

in NSCLC cells. These cytokines have an inflammatory role in

NSCLC, thus promoting poor prognosis and tumor cell survival.
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IFN1 binds to interferon alpha/beta receptor subunit 1 and 2

(IFNAR1/2), leading to the activation of IFN1. The activated IFN1

further binds to Janus kinase 1/tyrosine kinase 2 (JAK1/TYK2). As a

result of cancer cell immuno-modulation, several researchers have

suggested the increased production of interleukin-10 (IL-10) in

NSCLC cells (27). Later, IL-10 binds to interleukin-10 receptors (IL-

10R1/R2), after which IL-10 signaling gets activated; thus, the

JAK1/TYK2 pathway is triggered via two interleukins, i.e., IL-6

and IL-10. Subsequently, the signal transducer and activator of

transcription 1 and 2 (STAT1/2) and interferon regulatory factor 9

(IRF9) is activated via JAK/STAT signaling and forms a STAT1/2/

IRF9 complex, which is translocated into the nucleus. The STAT1/

2/IRF9 complex transcribes the STING gene, which further gets

translocated into the ER membrane, thus making a positive

feedback loop. The IL-6 induction in the NSCLC also leads to the

activation of the JAK2/TYK2 pathway. The activated JAK2/TYK2

further leads to dimerization and activation of STAT3. This STAT3

dimer further dephosphorylates FOXO1 and FOXO3a present in

the cytoplasm, leading to their translocation into the nucleus.

NSCLC tumor cells rely on glycolysis as their metabolic process,

leading to the rapid production of adenosine diphosphate (ADP),

the phenomenon commonly referred to as the Warburg effect.

When ADP is increased in the nearby cells, it enters the NSCLC

cells and directly binds to adenosine monophosphate (AMP)

gamma and further leads to the activation of Unc-51 like

autophagy activating kinase 1 (ULK1) complex, a major protein

involved in autophagy. This ADP/AMP gamma complex in

activated form also regulates FOXO3a in the nucleus (28). The

activated ULK1 complex then activates PI3K, another key protein

involved in the formation of phagophore. Epidermal growth factors

(EGF) are present in more than 50% of NSCLC patients and play a

primary role in poor prognosis (29). EGF, upon binding with EGFR,

gets activated and phosphorylates PI3K, thus again promoting the

activity of PI3K to lead to phagophore formation. Apart from

phagophore formation, PI3K further activates AKT. Upon

phosphorylation, AKT activates the mechanistic target of

rapamycin complex 1 (mTORC1). mTORC1 then activates a key

transcription factor involved in cellular response to low oxygen

levels, hypoxia-inducible factor 1-alpha (HIF-1a). Translocation of

HIF-1a into the nucleus leads to the transcription of the STING

protein. Lipopolysaccharide (LPS) binds to TLR4, which then

activates myeloid differentiation primary response gene 88

(MYD88). MYD88, on activation, phosphorylates interleukin-1

receptor-associated kinase 4 (IRAK4), a serine/threonine kinase.

IRAK4 then phosphorylates TNF receptor-associated factor 3

(TRAF3) and TNF receptor-associated factor 6 (TRAF6). TRAF3,

then, further recruits TBK1 to the Golgi apparatus, whereas TRAF6

recruits IKK to the Golgi apparatus, the two key proteins, activated

by cGAMP-STING for IL-6 and IFN1 transcription.

At the advanced NSCLC, emerging evidence from multiple

systems indicates that FOXOs orchestrate the expression of genes

involved in autophagy, which, in turn, fuel cancer cells to survive in

nutrient-deprived conditions and combat the stress caused during

chemotherapy. The activation or deactivation of FOXO proteins
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depends on their shuttling between the cytoplasm and the nucleus.

The mathematical model depicts that when the FOXO1 and

FOXO3a proteins are triggered in NSCLC, FOXO3a leads to the

transcription of microtubule-associated protein 1 light chain 3 beta

(LC3-2) and ATG12. FOXO1 leads to transcription of the ATG5

and ATG7 genes. ATG7 binds to ATG12, and the complex then

activates ATG10, leading to the formation of ATG12/10. This

ATG12/10 binds to ATG5, and an ATG12/5 complex is formed,

which further binds to ATG16L. The ATG12–ATG5–ATG16L1

complex acts as an E3-like ligase in the autophagy pathway, crucial

for nucleating and expanding the phagophore (the initial isolation

membrane) into a mature autophagosome by scaffolding the

lipidation process. The lipidated LC3-2B then leads to membrane

curvature and expansion and further sealing of the phagophore and

its closure into an autophagosome.

The study aims to unite FOXO-regulated autophagy and

STING-mediated immune signaling within a single dynamic

framework in NSCLC. By bridging molecular stress pathways

with immune-modulatory outputs, the model provides novel

mechanistic insights into how tumor cells adapt to stress and how

these adaptations might be exploited therapeutically for

NSCLC treatment.
2 Methodology

2.1 Data collection

To explore the regulatory role of FOXO1 and FOXO3a in

signaling networks involved in cGAS–STING-mediated

autophagy, information was gathered from the KEGG pathway

and from relevant scientific literatures in PubMED (30). The

integration of literature-derived and publicly available datasets

enabled the development of a comprehensive network describing

FOXO–STING–autophagy signaling dynamics in NSCLC (31) and

drawing the connectivity among various pathways surrounding

cGAS–STING-driven autophagy, bridging existing gaps in

understanding how these complex pathways facilitate intricate

tumorigenesis in NSCLC.
2.2 Reconstruction of mathematical model
for FOXO3a-mediated cGAS–STING
autophagy

To elucidate the regulatory role of FOXO1 and FOXO3a in

immune signaling and autophagy, with the cGAS–STING signaling

axis in NSCLC, a mathematical model was reconstructed. Using

SimBiology toolbox from MATLAB v7.11.1.866, the model was

built comprising different compartments depicting cell organelles,

including plasma membrane (PM), cytoplasm, nucleus (N), ER,

Golgi apparatus, and ERGIC containing different proteins which

are involved in FOXO-mediated autophagy.

SimBiology is a programmatic tool utilizing systems biology

mark-up language (SBML) format to determine and analyze
Frontiers in Oncology 05
mechanisms underlying the complex and dynamic behavior of the

species of biological systems and how they interact under defined

parameters. The protocol which was used to construct, simulate,

and analyze the mathematical model was taken from Khandibharad

et al. (32), and the goal of quantitative modeling approach was to

gain mechanistic insights into the critical proteins involved in

FOXO-mediated autophagy involving cGAS–STING and decipher

their interactions when triggered by external signals.

In the section of block diagram editor, different entities like

compartment, species, and reactions are present. Compartments

depict cell organelles; species were used to depict reactants and

products, after which rate law was defined between them. The

reactions are assigned based on specific rate laws. For association/

dissociation/translocation, we used Law of Mass action; for enzyme

kinetic, Michaelis–Menten equation was used; and for reactions

involving gene expression, we used Hill kinetic equation.

Considering these parameters, values are provided with respective

units, and the initial concentration was considered between 103 and

106 signaling molecules (33). The reconstructed mathematical

model discretely mimicked the parameters of cGAS–STING

signaling model system in NSCLC.
2.3 Mathematical model analysis

The mathematical model is analyzed using different system-

based approaches like sensitivity analysis, principal component

analysis (PCA), flux analysis, and model reduction. These

techniques help identify the most important components and

reactions that control how the system behaves and what are the

most crucial reactions that have a major impact on the overall

behavior of the model.

2.3.1 Simulation
In simulation, the SimBiology tool box utilizes a stiff ordinary

differential equations (ODE15s) based on variable-order numerical

differentiation formulas (NDFs) to stimulate the reconstructed

mathematical model. Keeping the absolute and relative tolerance as

default, the behavior of each component was obtained in the form

of state vs. time graph further defined along with concentration

(in molecules) and parameter within the stimulated time of 100 s.

2.3.2 Sensitivity
Sensitivity analysis is a mathematical approach that enhances

the understanding of mathematical model’s robustness by

quantifying how variations in external parameters influence

model behavior, thereby identifying the key components that

predominantly govern the model’s outcomes. This means that the

reconstructed mathematical model is able to maintain its accuracy

and reliability even when the input data, assumptions, or

parameters are altered by building the confidence in the model.

Local and global sensitivity analysis approaches are the two

commonly applied sensitivity analysis in systems biology (34). Local

sensitivity analysis gives insights on how small changes in the input

parameters such as reactant concentration, reaction rate, etc., on a
frontiersin.org
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mathematical model influence output behavior such as product

concentration. On the other hand, global sensitivity analysis

approaches are applied to understand how the model outputs are

affected by large variations of the model input parameters.

We have performed local sensitivity to understand the impact of a

single component and its associated parameters on the overall model

dynamics by keeping each component as input parameter one by one

and others as output. It is represented at the time-dependent

derivatives as Eq. dx/dy, dx/dz, where the components in the model

are considered as “x” and other parameters are considered as “y”

and “z”. The sensitivity outputs and sensitivity inputs are mentioned as

numerator and denominator to calculate sensitivity using SUite of

Nonlinear and DIfferential/ALgebraic equation Solvers (SUNDIALS).

It integrates the original ordinary differential equations (ODE) and

computes the time-dependent sensitivities for each species state with

respect to each parameter value.
2.3.3 Principal component analysis
Principal component analysis (PCA) is used to simplify the

large set of values characterized by numerous inter-correlated

quantitative dependent variables and helps highlight which

components in the system have the most influence in the overall

mathematical model by giving a principal component score to each

component to reduce the complexity of the data and removes

background noise, thus making our data more robust and

reproducible. A high PCA score means that a component is very

sensitive and if it is targeted, the system could collapse.

We calculated PCA in MATLAB using the function:

score_coefficient = princomp(A).

Here A is an m × n matrix containing sensitivity scores of each

component with respect to local sensitivities in the system.
2.3.4 Flux analysis
This constraint-based study is based on the principle of mass

conservation in the biological network which utilizes the

stoichiometric matrix (35) to determine how much each reaction

is contributing in the flow of the entire mathematical model and

how the flow of these components is balanced at steady state, which

helps us understand the productivity of each reaction and overall

system behavior or phenotype. We have adopted comparative flux

analysis to determine the productivity of each reaction in

mathematical model. The value of flux for each reaction is

obtained in (mol/s) using COmplex PAthway Simulator

(COPASI) v4.11, a modeling stimulator which defines the flux of

every reaction present in our reconstructed mathematical model.

Based on high flux rates ranging between 215,000 and 500 mol/s,

the top 27 reactions are mechanistically sorted to understand the

highly contributing reactions.
2.3.5 Model reduction
Defined as a computational biology approach, model reduction

aims to reduce the computational complexity of reconstructed

mathematical models so that the behavior of significant kinetic

equations can be studied among the complex reactions by
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eliminating transient and intermediate reactions that do not

contribute significantly to network output (36).

For model reduction, three parameters which we had calculated

previously have been combined, the reactions with the value of

sensitivity close to one in sensitivity analysis (to see which reactions

affect the system the most), highest flux values in flux analysis (to

sort out the reactions with the highest rate of flow), and

concentration through time series (to find key components and

reactions). The data was used as an input in Sigmaplot (15.0) to

generate a 3D mesh graph representing quasi-potential landscape.

The purpose of model reduction is to eliminate spurious parameters

and reactions which had least contribution in maintaining a stable

steady state of the biological network.

2.3.6 Crosstalk identification
In the reconstructed mathematical model, crosstalk point refers

to the interaction between biological networks connected via

particular signaling components, which influences the model

dynamics and acts as a node in regulating signaling. With the

help of crosstalk analysis, the relative importance of each

component in the network can be quantitatively assessed in the

context of NSCLC. The crosstalk score quantifies the extent to

which the given component participates in the network and could

serve as potential candidates for therapeutic intervention.

The total degree of an individual node – degree of a node within

its pathway = non-zero value of the crosstalk point.

2.3.7 Network analysis of the reconstructed
mathematical model

In order to analyze the complex sets of interactions between

different components in our reconstructed mathematical model,

biological entities were represented as nodes, and the functional

entities which connects them were referred to as edges (37). This

can be well understood by Graph theory postulated by Leonhard

Euler, where the networks, represented in terms of graph, can be

used to capture interactions between the molecules (38). For the

connectivity analysis of the network, Cytoscape (3.10.3) along with

its plugins BiNGO and CytoHubba have been utilized. CytoHubba

allows an analysis of the biological network using different

parameters such as closeness, betweenness, bottleneck, degree,

clustering coefficient, maximum neighborhood component

(MNC), density of maximum neighborhood component

(DMNC), eccentricity, edge percolated component (EPC),

maximal clique centrality (MCC), radiality, and stress to elucidate

the network properties. In the reconstructed mathematical model,

we visualized overrepresented categories after correction, and for

this, Biological Networks Gene Ontology tool (BiNGO), a plugin for

Cytoscape, has been used. For analysis, a hypergeometric test was

selected as the statistical test, and Benjamin and Hochberg false

discovery rate (FDR) was applied for correction. Using whole

annotation as a reference set and GO_Biological_Process as an

ontology file, BiNGO assesses the overrepresentation of gene

ontology (GO) categories and describes gene products in terms of

biological processes, molecular functions, and cellular components.

After selecting Homo sapiens as organism/annotation,
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the functional roles of genes during network analysis was

determined (39).

2.3.8 Structure prediction of cGAS, STING,
FOXO1, and FOXO3a with domain analysis and
molecular docking

Considering that cGAS–STING-mediated FOXO3a-induced

autophagy is responsible for the triggered growth and persistent

survival of tumor cells in NSCLC, it is necessary to elucidate the

structure of target proteins to better understand the function and

three-dimensional conformation, active domains, and interaction

interfaces will provide critical insights into their functional

mechanisms and regulatory dynamics.

In this study, we have performed homology modeling approach

for the prediction of 3D structure of both cGAS and STING from

Homo sapiens. The query templates of cGAS (accession ID:

Q8N884) and STING (accession ID: Q86WV6) were downloaded

from NCBI website for Homo sapiens. The templates identified for

cGAS from protein data bank (PDB) was PDB ID-4Km5 and for

STING was PDB ID-8GT6; using these templates and Modeller

9.18, a structural model via homology modeling was performed

(40). The parameters for selecting the best models were done by the

assessment of the structures by calculating the root mean square

distance (RMSD) via PyMOL 1.7.4.4, derivation of Ramachandran

plot via PDBSum generate and calculation of z-score via ProSA-

web. For proteins FOXO1 (accession ID: Q12778) and FOXO3a

(accession ID: O43524) for Homo sapiens, ab initio modeling using

Robetta server was util ized (available online: https://

robetta.bakerlab.org/) and validated based on the z-score using

ProSA-web (available online: https://prosa.services.came.sbg.ac.at/

prosa.php) and Ramachandran plot using PDBSum generate

(available online: https://www.ebi.ac.uk/thornton-srv/databases/

pdbsum/Generate.html). The domains of each protein was

mapped based on the literature available (41–43). To understand

the functions of protein, it is necessary to get an insight on how the

proteins interact; so, in order to check the important residues of

cGAS–STING with its interacting partners, protein–protein

interaction was employed. For the exploration of protein–protein

interactions between cGAS and STING and further with cGAS–

STING and FOXO3a and FOXO1 as well, the ClusPro2.0 web

server (available online: https://cluspro.org/) was used.

2.3.9 Phylogenetic analysis
The protein sequences of FOXO1, FOXO3a, FOXO4, and

FOXO6 for Homo sapiens and Mus musculus were downloaded

from the National Centre for Biotechnology Information (NCBI,

United States) in.fasta format. The phylogeny analysis was

performed for the entire FOXO family members derived from

Homo sapiens and Mus musculus. Phylogeny was also performed

for FOXO3a proteins and FOXO1 proteins of Homo sapiens and

Mus musculus together as well as separately for the two species.

Multiple sequence alignment (MSA) is a bioinformatics approach to

generate evolutionary tree where the evolutionary closely related

sequences are kept together. Using Clustal Omega (available online:

https://www.ebi.ac.uk/jdispatcher/msa/clustalo?stype=protein),
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the.fasta files were converted to.nexus format to create an alignment

file for Bayesian inference phylogeny. MrBayes v3.2.6 was utilized

for Bayesian phylogenetic analysis, and programming sequences for

generations using Metropolis-coupled Markov chain Monte Carlo

(MCMC) was done for each nexus file until the average standard

deviation of split frequencies reached its lowest. Then, the run with

least average standard deviation of split frequency was chosen to

visualize the phylogenetic tree as a cladogram using a java-based

application, Figtree v1.4.4 (44).

2.3.10 Statistical coupling analysis
To gain a comprehensive understanding of the structural,

functional, and evolutionary relationships of key proteins involved

in immune and cellular regulation, we performed statistical coupling

analysis (SCA) for the amino acid sequences of cGAS, STING,

FOXO1, and FOXO3a for two organisms—Homo sapiens and Mus

musculus. The domains in the protein structure consist of amino acid

interactions, comprising statistically significant co-evolving residues

termed as sectors (45). These sectors are functionally distinct divisions

and are represented in blue, green, and red colors, providing insights

into the different biochemical properties of the protein and the

conservation of functional sites across species (46). The aligned file

was converted to the Pearson/FASTA format using Clustal Omega,

and SCA was performed using the SCA toolbox in MATLAB R2020a

(The MathWorks, Inc., Torrance, CA, USA). The location of amino

acid residues within their specified sectors was determined using Dij

values, the coupling scores used to quantify the degree of co-evolution

between amino acid residues in multiple sequence alignments. The

Dij cutoff threshold is often applied between the range of 0.2 and 0.5

to remove noise due to limited sampling of the sequences and retain

statistically significant correlations by balancing the combination of

sensitivity as well as specificity. To analyze the amino acid residues of

proteins FOXO1 and FOXO3a for Homo sapiens and Mus musculus,

the cutoff was set to 0.5. For cGAS, the cutoff was set to 0.5, and for

STING protein the cutoff was set to 0.2. SCA was also performed by

combining all members of FOXO protein family that are FOXO1,

FOXO3a, FOXO4, and FOXO6 for Homo sapiens andMus musculus

with a cutoff value of 0.2.

By analyzing Dij values, it was attempted to understand the link

between the residues and its contribution in protein function. In

addition, the conservation of residues with regard to the position

was estimated to understand how consistently a particular amino

acid is preserved at a given position across all aligned sequences.

Highly conserved residues indicate their functional or structural

importance, as evolutionary pressure maintains their identity to

preserve protein function (47).

2.3.11 Immunofluorescence
Immunofluorescence staining was performed on human

NSCLC cell lines H1299, H1975, and A549. H1299 cells and

H1975 cells were grown in Roswell Park Memorial Institute

medium (RPMI) 1640 media, and A549 cells were cultured in

Ham’s F-12 (HF12) media, each supplemented with 10% fetal

bovine serum (Gibco) and penicillin–streptomycin (Himedia)

(complete growth media) in tissue culture flasks until reaching
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approximately 90% confluency after incubation in a humidified

incubator at a temperature of 37°C at 5% CO2 concentration. The

cells were then dissociated from the flask using trypsin and seeded

into 96-well coverslip bottom plates at a density of 1 × 104 cells per

well in 200 mL of complete growth medium. For each cell line,

untreated cells were used as control, while cells treated with

recombinant human IL-6 protein (Thermo Fisher 200-06) at a

final concentration of 0.2 ng/mL for 24 h were used as IL-6-induced

sample. After 24 h of IL-6 stimulation, the cells were washed thrice

with 200 mL phosphate buffer saline (PBS) and fixed with 4%

paraformaldehyde for 20 min at room temperature in the dark

and later washed with 200 mL phosphate buffer saline (PBS).

Blocking was performed with 3% bovine serum albumin (BSA) in

phosphate-buffered saline triton-X (PBST) for 30 min.

Subsequently, the cells were incubated for 2 h with primary

antibodies against IL-6 (Invitrogen, #701028) and STING (Cell

Signaling Technology, #13647). Each primary antibody (1:1,000)

was added across the three cell lines in control and IL-6 induction

conditions. After incubation, the cells were washed and incubated

for 1 h at room temperature in the dark with anti-rabbit secondary

antibody (50 mL/well) conjugated with Alexa Fluor 488 and

phalloidin. Then, the cells were washed thrice with PBST and

stained with 4′,6-diamidino-2-phenylindole (DAPI) at the

concentration of 1 mg/mL and incubated for 20 min in the dark.

After washing thrice with PBST and twice with deionized water, the

samples were acquired using Olympus FV3000, a LSCM with a ×60

oil immersion objective lens. The analysis of protein for each well

was done using fluorescent intensity measurement obtained via

ImageJ 1.53 where Green channel fluorescence corresponding to the

target protein was quantified by outlining individual cells to

quantify the expression of IL-6 and STING.

2.3.12 Statistical analysis
The mean fluorescence intensity values (arbitrary units, a.u.)

were statistically analyzed using a two-way ANOVA, followed by

Sidak’s multiple-comparisons test to adjust for type I error. Data is

presented as the mean ± standard deviation (SD), where p-value

<0.05 was considered statistically significant. Asterisks denoted the

statistical significance for differences, with p-value less than 0.05 (*),

p-value less than 0.01 (**), p-value less than 0.001 (***), and p-value

less than 0.0001 (****). The graphs were plotted using GraphPad

Prism version 9.0.0 (121).
3 Results

3.1 Reconstructed mathematical model
and simulation

The reconstructed mathematical model of cGAS–STING

signaling promoting autophagy in NSCLC was generated with six

compartments including cytoplasm, PM, ER, Golgi apparatus, and

ERGIC with 72 species and 83 reactions and was simulated for 100 s

with a Stiff Deterministic ODE15s solver (SimBiology toolbox). The

mathematical model depicts the cascade triggered by the interaction
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between cGAS present in the cytoplasm and dsDNA which enters

the cytoplasm from NSCLC cell, leading to the conformational

change in cGAS, with the transition leading to the synthesis of

cGAMP. This cGAMP on binding with STING present on the ER

membrane leads to the separation of ERGIC as an isolation

membrane for phagophore formation. Meanwhile, the activated

cGAMP STING also leads to the activation of TBK1 and IKK in

the Golgi apparatus, the two proteins which have been recruited via

IRAK4-TRAF3 pathway. Activated TBK1 phosphorylates IRF3

present in the cytoplasm which on translocation to the nucleus

transcribes IFN1. Subsequently, activated IKK forms a complex with

NF-kB complex which in the nucleus transcribes IL-6. This IFN1

along with IL-6 via JAK1/TYK2 pathway activates STAT1/2 dimer

and STAT3 dimer. STAT1/2 dimer on activation binds with IRF9,

which leads to the transcription of STING. The STAT3 dimer

translocates FOXO1 and FOXO3a to the nucleus where they

transcribe ATGs, which play a crucial role in the formation of

autophagosome from phagophore. The autophagosome is also

induced in response to ATP depletion. This energy deficit is

attributed to the heightened metabolic demand required to sustain

the rapid proliferation characteristic of NSCLC cells. The pathway

which is involved is PI3K/AKT/mTORC1 pathway, where PI3K

contributes to the initiation of phagophore formation. This PI3K is

activated by ligand-bound EGF, and downstream ULK1 complex

further activates HIF-1a through mTORC1/2 signaling.

Subsequently, HIF-1a upregulates the expression of STING which

has an implication in the promotion of phagophore biogenesis. Since

the genes transcribed by FOXO1 and FOXO3a are mainly involved

in autophagy, the entire mathematical model correlation depicts that

there is enhanced autophagy process which is mediated by cGAS–

STING complex in the presence of FOXO3a and FOXO1 proteins

(Figure 1a). The simulation analysis revealed that the major proteins

produced at the 100-s simulation include autophagosome, ATG12/5,

ER membrane cGAMP STING, LC3-2, ATG12, and FOXO1 and

FOXO3a which are present in the nucleus (Figure 1b).
3.2 Principal component analysis

Since our model consists of various signaling proteins, we analyzed

local sensitivity analysis to obtain sensitivity coefficients which were

further used to perform PCA to churn out the crucial species

(Supplementary File S1). The key components identified through

PCA analysis with PCA score between 0.8 and 1.2 included the

following: ULK1 complex, cytoplasmic ADP, STAT1/2/IRF9,

cytoplasmic cGAMP, cytoplasmic recruited cGAS, cytoplasmic

dsDNA cGAS complex, cytoplasmic ATP, cytoplasmic GTP,

phagophore, cytoplasmic STAT3 dimer, PI3K, cytoplasmic FOXO1,

cytoplasmic FOXO3a, cytoplasmic AKT,MYD88, HIF1 alpha, TRAF3,

IKK, TBK, cytoplasmic IFN1, activated TBK, activated IKK,

cytoplasmic IL-6, ATG16L, plasma membrane dsDNA, nucleus

STING, ATG12/5, IFN activated, IFNAR1/2, nucleus FOXO1,

nucleus FOXO3a, ERGIC/WIPI2/COP2, plasma membrane IL-10

receptor complex, nucleus NFKBp65p50 complex, nucleus

phosphorylated IRF3, endoplasmic reticulum cGAMP STING,
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nucleus IL-6, Golgi cGAMP STING, Golgi TBK, Golgi IKK,

endoplasmic reticulum cGAMP, and cytoplasmic LC3/ATG12/5/16L.

Through PCA, it was revealed that cGAMP STING, nucleus and

cytoplasmic FOXO1 and FOXO3a, nuclear STING, and ATG12/5 are

one of the key determinants in the cGAS STING pathway, mediating

the autophagy process in the reconstructed NSCLC model (Figure 2a).
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3.3 Flux analysis

To understand the dynamic behavior and directionality of

reactions within the mathematical model, flux analysis was

performed. Key reactions were identified based on their flux

values, with significant fluxes reaching up to 500 mol/s. The
FIGURE 2

Mathematical model analysis. (a) PCA. (b) Quasi-potential landscape. (c) Summary of reduced model. (d) Crosstalk point analysis.
FIGURE 1

Reconstructed mathematical model and simulation. (a) Reconstructed mathematical model of cGAS–STING/IL-6 pathway promoting autophagy
through FOXOs in NSCLC. (b) Simulation of the reconstructed mathematical model to obtain a concentration-versus-time plot at 100s.
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reactions having high flux rates include autophagosome formation

upon activation of LC3/ATG12/6/16L and phagophore and the

translocation of FOXO1 and FOXO3a from the cytoplasm to the

nucleus (Table 1). The list of reactions along with their flux is shown

in Supplementary File S2.
3.4 Model reduction

Since our mathematical model is driven by a combination of

discrete parameters, a quasi-potential landscape models the

dynamics of the system and removes the extraneous species and

parameters from the reconstructed mathematical model in order to

make it more robust and to predict the model outcomes. The quasi-
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potential landscape displayed a dome-shaped pattern representing

the distribution of high flux, high concentration, and high

sensitivity at the top of the dome (Supplementary File S3). At the

bottom of the graph, the three quantitative parameter values reduce

subsequently. Since we have filtered out 12 reactions considering all

of the parameters to be the highest among 83 reactions, the model is

reduced by 86% (Figures 2b, c).
3.5 Crosstalk points

In our mathematical model, we came across six crosstalk points

which are JAK1/TYK2, STAT3 dimer, PI3K, nucleus FOXO1 and

FOXO3a, and phagophore. These components act as connecting
TABLE 1 High-flux reactions identified from the reconstructed mathematical model.

Reaction Flux (mol/s)

LC3/ATG12/5/16L -> Autophagosome 215,000

STING{“ER membrane”} -> “cGAMP STING”{“ER membrane”} 119,785.7388

FoxO1{Cytoplasm} -> FoxO1{Nucleus} 15,962.46

ATG12/10 -> ATG12/5 8,870.4

ATG5 -> ATG12/5 7,884.8

Phagophore -> Autophagosome 5,050

FoxO3{Cytoplasm} -> FoxO3{Nucleus} 4,213.739334

STAT1/2/IRF9{Cytoplasm} -> STAT1/2/IRF9{Nucleus} 3,520.963037

ATG12/7 -> ATG12/10 3,195.52

IFN1{Nucleus} -> IFN1{Cytoplasm} 2,187.30438

IFN activated -> JAK1/TYK2 1,986.823901

IL6{“Plasma membrane”} + IL6R/gp130 -> IL6/IL6R/gp130 1,721.04

STING{Nucleus} -> STING{“ER membrane”} 1,393.470384

cGAMP{Cytoplasm} -> cGAMP{“ER membrane”} 1,327.578

FoxO1{Nucleus} + “ATG5 gene” -> “ATG5 gene” + ATG5 1,114.342414

FoxO3{Nucleus} + “LC3–2 gene” -> LC3-2 + “LC3–2 gene” 995.7870612

ATG12 gene + FoxO3{Nucleus} -> ATG12 + “ATG12 gene” 995.7870612

HIF1alpha -> “HIF1 alpha” 948.9610392

IFN1{Cytoplasm} -> IFN1{“Plasma membrane”} 803.3688

ERGIC/WIPI2/COP2 -> Phagophore 803.0784

ERGIC{“ERGIC Isolation membrane”} -> ERGIC{Cytoplasm} 759.64849

STAT3 dimer -> FoxO1{Cytoplasm} + FoxO3{Cytoplasm} 595.3331605

STAT1/2/IRF9{Nucleus} + “Sting gene” -> STING{Nucleus} + “Sting gene” 587.1056789

HIF1 alpha + “Sting gene” -> STING{Nucleus} + “Sting gene” 557.6449384

IL6{Cytoplasm} -> IL6{“Plasma membrane”} 540.5768064

Phos IRF3{Cytoplasm} -> “Phos IRF3”{Nucleus} 501.8405937

recruited cGAS -> dsDNAcGAScomplex 501
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bridges between multiple signaling pathways in the model, assisting

the model to decide between alternative fates such as survival,

apoptosis, inflammation, or autophagy. Hence, in the context of

NSCLC, we can determine the activity of proteins which are

crosstalk points and target them to understand their behavior in

different phenotypes. JAK1/TYK2 was acting as a crosstalk point

between IFN1 and IL-10 pathway, STAT3 was acting as a crosstalk

point between IL-6 and IL-10 pathway, PI3K was acting as a

crosstalk point between EGF and ADP pathway, FOXO1 was

acting as a crosstalk point between IL-6, IL-10 and autophagy

pathway, FOXO3a was acting as a crosstalk point between EGFR,

ADP, IL-10, IL-6, LPS, and autophagy pathway, and phagophore

was acting as a crosstalk point between ADP, autophagy, and

cGAS–STING pathway (Figure 2d).
3.6 Network analysis

In order to view and examine the built model connectivity, we

used Cytoscape for network building. The components which were

reactants were designated as source and the products were designated

as target (Supplementary File S4). The network is represented in a

circular layout, and the network was subsequently analyzed. The

resulting network had an average node degree of 2.247, 89 nodes,

and 102 edges. The network radius, or the shortest distance from the

most central node, was identified to be 11, while the network

diameter, or the longest shortest path between any two nodes, was

determined to be 19. The network was found to have a moderate

degree of local interconnectivity, as indicated by the clustering
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coefficient of 0.034, which measures how much nodes tend to

cluster together (Figures 3a, b).

We have utilized CytoHubba’s integrative approach to extract

and visualize the networks present in the NSCLC mathematical

model with the combination of BiNGO, another plugin of

Cytoscape. The primary goal of analyzing the network properties of

genes associated with NSCLC is to unravel critical information

underlying NSCLC which provides a holistic view of the molecular

interactions that dictate NSCLC progression. While Cytoscape helps

to visualize the mathematical model in network, Cytoscape plugins

such as CytoHubba and BiNGO offer analysis of the biological

network via various parameters which include closeness,

betweenness, bottleneck, clustering coefficient, degree, DMNC,

eccentricity, EPC, MCC, MNC, radiality, and stress, leading to the

identification of key proteins involved in disease severity. Based on

these topological analysis methods of CytoHubba in Cytoscape plug-

in, hub proteins are selected. The proteins identified from the

CytoHubba analysis through all of the abovementioned parameters

include phagophore, STAT3 dimer, JAK1/TYK2, LC3/ATG12/5/16L,

nucleus FOXO3a, nucleus STING, ERGIC. cGAMP STING, ERGIC.

SEC12/TMED9, autophagosome, ER membrane cGAMP STING,

FOXO3a, PI3K, ADPAMP gamma, IKK/NFKB complex, GOLGI.

cGAMP STING, ERGIC/WIPi2/COP2, recruited cGAS, cytoplasm

dsDNA, dsDNAcGAS complex, nucleus ATG12 gene, TRAF3,

nucleus LC3–2 gene, LC3-2, cGAMP, cytoplasm ERGIC, ER

membrane STING, ERGIC.ERGIC, nucleus NFKB p65p50complex,

nucleus Phos IRF3, nucleus IFN, cytoplasm IFN1, ATG12/7, and

STAT1/2 which are presented in Supplementary File S5, and their

frequency of occurrence is shown in Figure 4.
FIGURE 3

Network construction of the mathematical model. (a) Circular layout representation of the mathematical model in the form of network. (b) Table
showing the parameters of the analyzed network.
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We also analyzed our network via BiNGO, another Cytoscape

plugin, to perform Gene Ontology (GO) enrichment analysis. This

allowed us to identify overrepresented biological processes,

molecular functions, and cellular components associated with the

hub genes identified by CytoHubba. By integrating the topological

network analysis from CytoHubba with the functional annotation

from BiNGO, we obtained a more comprehensive understanding of

the molecular mechanisms and pathways involved in NSCLC

progression triggered as a result of autophagy mediated by cGAS

STING and FOXO3a and how these genes are involved in cell

regulation and autophagy (Figure 5). The list of all GO from BiNGO

analysis is presented in Supplementary File S6.
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3.7 Structure prediction of cGAS, STING,
FOXO1, and FOXO3a

In order to understand the sequence–structure–functional

properties of cGAS, STING, FOXO1, and FOXO3a, elucidating

the structures of the following proteins is necessary. The structure is

predicted by homology modeling for cGAS and STING where the

number of amino acids in disallowed regions for both predicted

structure is 0, ensuring that the structure has good stereochemical

quality and lies within favorable regions of the Ramachandran plot.

The predicted structure of cGAS shows a z-score of −8.4 with an

RMSD of 0.231 (Figure 6a), while the predicted structure of STING
FIGURE 5

Overrepresentation analysis of the network using BiNGO.
FIGURE 4

Frequency of occurrence plot to identify top nodes in the network.
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has a z-score of −5.14 with an RMSD of 1.317 (Figure 6b). These z-

score values fall within the range typically observed for

experimentally determined protein structures of similar size, and

the low RMSD values indicate a close fit between the predicted

structure and reference structures, thereby supporting the reliability

and accuracy of the generated structure for both cGAS and STING.

The analysis of Robetta-generated structure of FOXO1 and

FOXO3a revealed four proteins in the disallowed regions for both

structures. The value of z-score for the predicted structure of

FOXO1 is -8, while FOXO3a has a z-score value of -8.07

(Figures 6c, d).
3.8 Protein–protein interaction studies
between cGAS–STING, FOXO1, and
FOXO3a

The available literatures concerned with NSCLC elucidate an

intricate interaction between cGAS and STING. The ClusPro 2.0

web server, a rigid docking approach, was utilized, which rotates and

translates one protein (the ligand) relative to the other (the receptor).

Based on energy calculations and clustering from the server, the results

were filtered out to identify the most likely docked structures. The

protein–protein interaction was observed between cGAS and STING

protein and then between cGAS–STING complexes with FOXO1 and

FOXO3a separately. The docked structure with the lowest energy has

been considered for further analysis. Then, Proteins, Interfaces,

Structures and Assemblies (PDBePISA), a web-based tool (available
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online: https://www.ebi.ac.uk/pdbe/pisa/), was used to analyze

macromolecular structures, particularly focusing on interfaces

between cGAS and STING.

Additionally, PDBsum enabled a detailed structural analysis of

the interaction complexes, uncovering critical amino acid residues

that mediate the specific binding interfaces between cGAS and

STING as well as cGAS–STING complex with FOXO1 and

FOXO3a (Figures 7a–f). This comprehensive evaluation

highlighted the distinct residue-level interactions essential for the

association of cGAS–STING with FOXO1 and FOXO3a, thereby

emphasizing the molecular underpinnings of these protein–protein

interactions. Based on the domain map of cGAS and STING, the

amino acid residues of cGAS from Mab21 domain Tyr510, Arg423,

Arg499, Leu462, Phe424, Phe503, Gln507, Lys506, Asn513,

Glu509, Leu472, Arg476, Arg512, Thr469, and Asn466 along

with Pro160 from NTase core domain interact with Asp320,

Ser321, Pro317, Phe323, Gln315, and Glu316 of CDN binding

domain of STING. Other interfacial residues of STING interacting

with cGAS belong to TM4, including Leu136, Asn131, Leu130,

Leu134, Leu121, Met120, Phe117, Trp119, Pro116, and Leu123,

and then Tyr106 from TM3 domain, Ser53, Leu49, and His50 from

TM2 domain, and Glu38, Gly37, and Leu36 from TM1 domain

(Figures 7a, d).

Furthermore, the interfacial residues between cGAS STING

complex and FOXO1 were identified. PDBsum results revealed

that the interfacial residues of FOXO1 included Thr391 an Gln392

from TAD domain and Arg327, Thr323, Ser329, Ala321, Ile324,

Asn320, and Ser319 from NES domain of FOXO1 (Figures 7b, e).
FIGURE 6

Computationally predicted structures and domain map analysis. (a) cGAS, (b) STING, (c) FOXO1, and (d) FOXO3a.
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The interfacial residues between cGAS–STING complex and

FOXO3a were also studied to understand the downstream

signaling associated with autophagy in NSCLC. The interacting

residues involved- Ser257, Asn258, val252, and Lys259 from NLS

domain and Arg189, Cys190, Leu160, Trp186, Trp157, Pro192,

Gly158, Lys195, Tyr193, and Asp196 present in DBD domain of

FOXO3a (Figures 7c, f).

The Gibbs free energy (DG) value which measures the amount

of energy available in a chemical or physical process at constant

temperature and pressure for cGAS–STING docking was -12.8 kcal/

mol, indicating strong complex formation due to spontaneous

reaction. The DG observed was -35.4 kcal/mol for cGAS–STING

complex and FOXO1 docking. The observed DG for cGAS–STING

complex docked with FOXO3a was -18.6kcal/mol.
3.9 Phylogeny analysis of FOXOs

Phylogenetic tree analysis revealed that an isoform of FOXO1

from Homo sapiens (Hu_FOXO1_3) emerged as a distinct outlier,

indicating divergent evolutionary behavior relative to other

members of the FOXO1 protein family with bootstrap value 0.5.

In the case of FOXO3a protein ofHomo sapiens, with the phylogeny

analysis, we inferred that some proteins evolved from separate

ancestors, and two FOXO proteins that were named as

Hu_FOXO3a_isoform5 and Hu_FOXO3a_8_isoform1 have

evolved separately as outliers, supported by bootstrap value 1.1.
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Next, we performed the sequential conservation analysis for

FOXO3a and FOXO1 protein for Homo sapiens and Mus

musculus. It revealed that Homo sapiens FOXO protein

(Hu_FOXO3a_isoform5) and FOXO3a protein of M. musculus

have common ancestors, and the clustering of human and mouse

isoforms within common clades underscores the evolutionary

conservation of key functional domains and supports orthology

and the validity of cross-species functional studies as well.

Mu_FOXO3a_3 and Hu_FOXO3a_isoform5 appear as outliers in

the phylogeny tree (Figure 8a) (Supplementary File S7).
3.10 Statistical coupling analysis of cGAS,
STING, FOXO1, and FOXO3a sequences in
Homo sapiens and Mus musculus

To identify co-evolving residues and functionally coupled

regions within cGAS, STING, FOXO1, and FOXO3a, SCA was

performed on aligned sequences to quantify the evolutionary

constraints acting on individual residues as well as their co-

evolving statistical dependencies across the alignment. The

analysis revealed distinct sectors—red, blue, and green—underlie

the functional architecture of the protein. Since the cutoff for cGAS

protein was 0.5 when Homo sapiens and Mus musculus were

considered, 46 residues are present in the blue sector, 76 are in

the green sector, and 78 residues which are strongly co-evolving are

in the red sector (Figure 8b). To study the co-evolving residues for
FIGURE 7

Protein–protein interaction studies using molecular docking and identifying the interacting residues. (a) cGAS–STING docked protein complex. (b)
cGAS–STING–FOXO1 docked protein complex. (c) cGAS–STING–FOXO3a docked protein complex. (d) Interacting residues of cGAS and STING. (e)
Interacting residues of cGAS–STING complex and FOXO1. (f) Interacting residues of cGAS–STING complex and FOXO3a.
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STING protein at cutoff 0.2, maximum residues that were strongly

co-evolving included 78 residues in the red sector, while 46 residues

are in the blue sector and 76 residues are in the green sector

(Figure 8c). The analysis of FOXO1 proteins was performed at the

0.5 cutoff which depicts that most of the residues (68) were present

in the blue regions, i.e., least conserved regions. A total of 24

residues in FOXO1 were present in the red sector, determining its

statistical significance at strongly co-evolving residues, while 25

reside depicting mixed conservation and are present in the green

sector (Figure 8d). The cutoff was set to 0.5 for the analysis of

FOXO3a proteins present in Homo sapiens and Mus musculus, the

analysis of which reveals that 26 residues were present in the blue

sector and 13 residues were in the green sector (Figure 8e).

Furthermore, with regard SCA for protein sequences of FOXO1,

FOXO3a, FOXO4, and FOXO6 for Homo sapiens and Mus

musculus at the cutoff of 0.2, the results depict that a total of 71

residues are strongly co-evolving and thus are present in the red

sector, 17 residues are present in the blue sector, and 43 residues are

present in the green sector.
3.11 Immunofluorescence and confocal
microscopy

Upon treatment with IL-6, immunofluorescence studies

revealed that all three lung cancer cell lines H1299, A549, and

H1975 demonstrated significant alterations in the expression levels
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of several key markers as compared with their control counterparts.

IL-6 stimulation resulted in a significant increase in the intensity of

IL-6 itself (Figure 9a), STING (Figure 9b), P62 (Figure 9c), Foxo3a

(Figure 9d), Foxo1 (Figure 9e), and LC3-2B (Figure 9f), with the

most pronounced expression observed for Foxo3a and Foxo1 on the

induction of IL6. The same trend was observed in A549 and H1975

cell lines, where IL-6 exposure robustly elevated the levels of the

assayed targets. Notably, statistical analysis revealed high levels of

significance (ranging from p < 0.05 to p < 0.0001) for the

upregulation of most markers across all cell lines, especially for

Foxo3a, Foxo1, and LC3-2B.

The data indicate that IL-6 not only promotes its own

expression but also activates the STING pathway (as evidenced by

increased STING expression) and enhances autophagic flux

(reflected by higher P62 and LC3-2B levels) in these lung cancer

cell lines. Furthermore, the marked upregulation of both Foxo3a

and Foxo1 following IL-6 treatment points toward a strong

involvement of FOXO transcription factors in the cellular

response to inflammatory cytokine stimulation. Collectively, these

findings suggest that IL-6 signaling orchestrates a coordinated

increase in pro-inflammatory, autophagic, and FOXO-related

pathways in NSCLC cells, potentially contributing to tumor cell

adaptation and survival mechanisms for cancerous cells under

inflammatory conditions. Two-way ANOVA was used to

compare control versus IL-6-induced cell expression. We

observed a significant expression level increase in IL-6, STING,

P62, FOXO3a, FOXO1, and LC3-2B levels in IL-6-induced NSCLC
FIGURE 8

Amino acid sequence conservation studies of cGAS, STING, and FOXOs. (a) Phylogenetic tree of FOXO1, FOXO3a, FOXO4, and FOXO6 protein of
Homo sapiens and Mus musculus. (b) cGAS protein in Homo sapiens and Mus musculus at 0.5 cutoff. (c) STING protein in Homo sapiens and Mus
musculus at 0.2 cutoff. (d) FOXO1 protein in Homo sapiens and Mus musculus at 0.5 cutoff. (e) FOXO3a protein in Homo sapiens and Mus musculus
at 0.5 cutoff.
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FIGURE 9

Laser scanning. confocal microscopy was performed on H1299, H1975, and A549 cell lines, both with and without IL-6 stimulation. Single-channel
images captured DAPI (blue) for nuclear staining, phalloidin (magenta) for cytoskeletal visualization, and antibody staining (green), along with merged
composite images of all channels. The antibodies used for immunofluorescence detection included (a) IL-6, (b) STING, (c) P62, (d) Foxo3a, (e) Foxo1,
and (f) LC3-2B. Quantitative analysis of fluorescence intensity was conducted for each protein across the cell lines under control and IL-6-induced
conditions. The results are graphically represented for (g) H1299 and IL-6-treated H1299, (h) H1975 and IL-6-treated H1975, and (i) A549 and IL-6-
treated A549 cells. Statistical comparisons were performed using two-way ANOVA followed by Sidak’s multiple-comparison test, with a p-value *p <
0.05, ** p < 0.01 , ***p < 0.001 , ****p < 0.0001 considered statistically significant.
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cell lines compared with their basal level control cells, which is

demonstrated in graphical format (Figures 9g–i).
4 Discussion

The reconstructed mathematical model presented here offers a

system-level perspective of the cGAS–STING–FOXO regulatory

axis in mediating autophagy within non-small cell lung cancer

(NSCLC) cells. The model integrates compartmentalization where

molecular interactions and pathway crosstalk occur. This helped us

in the identification of regulatory nodes that govern autophagic

flux. The simulation results indicate that autophagosome formation

is strongly driven by the crosstalk of cGAS–STING signaling

and transcriptional regulation by FOXO1 and FOXO3a,

corroborating previous experimental findings that link cGAS–

STING activation to autophagy induction (48, 49). In NSCLC,

this process appears to be further amplified under ATP-depleted

conditions, likely due to the heightened metabolic demands of

proliferating tumor cells (50). PCA revealed that cGAMP–STING,

nuclear FOXO1, nuclear FOXO3a, and ATG12/5 were high-impact

species with strong influence over autophagic progression along

with other proteins playing a significant role in NSCLC. This aligns

with prior observations that FOXO transcription factors serve as

pivotal regulators of autophagy-related genes (51, 52). Moreover,

the PI3K/AKT/mTOR pathway emerged as a crucial upstream

modulator not only influencing ULK1 activation but also

indirectly reinforcing STING expression via HIF-1a. The

integration of both metabolic stress and immune surveillance

pathways into the autophagy process underscores the adaptability

of NSCLC cells in sustaining growth under stress conditions. While

our study focused on STING-induced autophagy, recent studies

have revealed that STING also induces necroptosis, a caspase-

independent programmed cell death, via the ZBP1–RIPK3–MLKL

axis, independent of TNFR1 and FADD (53). This alternative death

pathway is transcriptionally primed by STING-driven type I

interferon signaling, which upregulates ZBP1 and MLKL. Thus,

STING serves as a dual regulator of both autophagy and

necroptosis. Moreover, the pathway for endoplasmic reticulum

stress and associated necroptosis has been found to be driven by

triggered levels of FOXO proteins as well (54). Within NSCLC,

where both STING and FOXO protein are activated under

metabolic stressful or DNA-damaging conditions, these proteins

under triggered conditions may together influence whether a cell

undergoes autophagy-mediated survival or necroptosis-mediated

death. However, STING-based downstream signaling of

necroptosis outcome is likely determined by cellular context as

well as FOXO-mediated stress responses. Moreover, it has been

found that STING activation, apart from acting in tumor cells, also

modulates its surrounding milieu. Clinical and translational studies

in NSCLC have shown that STING pathway activation of

peripheral blood immune cells (PBMCs) correlates with the

expression of immune-related genes, CD8+ T-cell infiltration as

well as response to immunotherapy (55). Moving toward the flux
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and network topology analyses, it highlighted STAT3, JAK1/TYK2,

PI3K, and FOXO proteins as key components. These nodes are

likely determinants in cell fate decisions, balancing pro-survival

autophagy with other responses such as apoptosis or inflammation

(56). Network centrality measures from Cytoscape’s CytoHubba

plugin identified hub proteins. Closeness and betweenness are the

classic centrality measures; closeness centrality is defined as the

connectivity of a node, determining how quickly it reaches other

nodes of the network and is mathematically represented as the sum

of the shortest-path distances from a node to other nodes, while

betweenness centrality defines the influence a node has over other

nodes in the network. Bottleneck is another network metric which

identifies nodes that act as critical articulation points in shortest

−path routing across communities, the removal of which may lead

to a significant disruption of flow and overall connectivity of the

network. Degree for any node is defined as the number of direct

connections (edges) a node has established in a network. It reflects

the node’s immediate activity or influence within its local

neighborhood, and the tendency for a node’s neighbors to be

connected to each other is defined under the clustering

coefficient. Density of maximum neighborhood (DNMC) is

defined as how much a node is central and influential within the

network, measuring the density of a node’s neighborhood.

Eccentricity is calculated by taking the reciprocal of the path

length which is the longest shortest-path from a given node to all

other nodes, and a lower eccentricity value means that the node is

more central. Edge percolated component (EPC) is calculated as the

average of whether the edges remain connected in the reduced

networks based on the assigned probabilities when edges are

removed randomly. Since a network comprises of multiple nodes,

when these nodes are directly connected, they make a larger

network; these subgraphs are known as clique and quantified in

terms of maximal clique centrality (MCC) to define the nodes

which are central and are likely to be hub genes. Another

topological analysis for a node is done with the help of maximum

neighborhood component (MNC) which identifies its largest

connected component. Radiality, unlike eccentricity, considers all

shortest paths and defines how a node is connected to all other

nodes. In order to define key regulators in the biological network,

analyzing the number of times any node appears on the shortest

paths between all other possible pairs is crucial, which is defined

under the stress centralities. Considering all of the parameters

stated above, the biological network was analyzed, and nodes

with high frequency of occurrence were highlighted.

Furthermore, BiNGO-based functional annotation confirmed GO

enrichment of autophagy, immune signaling, and cellular

stress response.

Structure modeling and protein–protein docking analysis

revealed stable interactions between cGAS and STING as well as

between the cGAS–STING complex and FOXO1 and FOXO3a

transcription factors. The predicted DG value for FOXO1 binding

was particularly high, suggesting that FOXO1 may form a more

stable complex with cGAS–STING than FOXO3a, potentially

resulting in differential transcriptional activation profiles. This
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highlights the importance of studying the FOXO3a/FOXO1 axis in

the context of cGAS STING in NSCLC.

Furthermore, interface residue mapping uncovered domain-

specific interactions such as FOXO1 NES domain and FOXO3a

DBD domain contacts that could be targeted for selective disruption.

Such structural insights open avenues for a novel drug design that may

play a significant role in modulating the cGAS–STING signaling-

mediated autophagy axis which may be regulated by FOXO1 and

FOXO3a in NSCLC. However, while these computational predictions

provide valuable structural interactions, they are inherently limited by

static docking. So, for a clear conceptualization, biochemical validation

through co-immunoprecipitation (co-IP) or pull-down assays will be

essential to confirm the physical interaction between FOXO proteins

and the cGAS–STING complex and to characterize its regulatory

relevance in NSCLC.

Phylogenetic analysis provided evolutionary context, revealing

that although there are different isoforms of FOXO family

members, there are outliers which were divergent isoforms of

FOXO1 and FOXO3a in Homo sapiens and Mus musculus. The

conservation of FOXO isoforms in both species thereby supported

cross-species conservation sequence studies. Using SCA, we

identified a high number of co-evolving clusters in cGAS and the

transmembrane domain of STING that are critical for functional

specificity, further refining our understanding of evolutionarily

conserved autophagy regulation mechanisms. We validated the

cellular expression of IL-6 and STING proteins upon IL-6

induction using confocal microscopy.

Overall, this study provides a comprehensive insight of how

cGAS–STING with FOXO1 and FOXO3a signaling coordinates

autophagy in NSCLC. These findings strengthen the hypothesis that

targeting FOXO-driven autophagy could be a viable therapeutic

strategy to enhance tumor survival in NSCLC patients.
5 Conclusion

The mathematical modeling of cGAS–STING and IL-6

immunological signaling offers a sophisticated systems biology

framework to understand their interplay with autophagy in

FOXO1/FOXO3a signaling in conjunction with cGAS–STING,

both of which are essential regulators of autophagy during lung

cancer progression. By merging key immune-inflammatory

pathways with autophagic mechanisms, the model provides deep

mechanistic insights into tumor-induced autophagy dysregulation.

Moreover, systems-level network analysis identifies critical

regulatory nodes, particularly activation of the FOXO1–FOXO3a

axis, presenting actionable targets for precision medicine strategies

in NSCLC patients.

Consistent with these predictions, our experimental findings

demonstrate that IL-6 robustly upregulates the expression of

FOXO3a, FOXO1, STING, and autophagy markers (P62, LC3-2B)

across diverse NSCLC cell lines. The observed induction of the FOXO

axis and autophagy-related proteins upon IL-6 treatment underscores

the tight functional linkage between inflammatory cytokine signaling,

cGAS–STING pathway activation, and FOXO-driven autophagic
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responses. These results further support the model’s assertion that

IL-6 and cGAS–STING signaling converge on FOXO transcription

factors to coordinate autophagy, immunemodulation, and survival in

lung cancer cells. Thus, targeting the IL-6–STING–FOXO signaling

axis may offer novel, effective therapeutic approaches to manipulate

autophagy and improve outcomes in NSCLC.
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