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Al-based prediction of
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Lung adenocarcinoma (LUAD) is one of the main causes of cancer-related
mortality worldwide. Pathological risk factors such as spreading through air
spaces, high-risk pathological subtypes, occult lymph nodes, and visceral
pleural invasion have significant impact on patient prognosis. In recent years,
there has been significant progress in the application of artificial intelligence (Al)
technology, e.g., deep learning (DL), in medical image analysis and pathological
diagnosis of lung cancer, offering novel approaches for predicting the
aforementioned pathological risk factors. This article reviews recent
advancements in Al-based analysis and prediction of pathological risk factors
in lung adenocarcinoma, with a focus on the applications and limitations of DL
models, focusing on studies aimed at improving diagnostic accuracy and
efficiency for specific high-risk pathological subtypes. Finally, we summarize
current challenges and future directions, emphasizing the need to expand
dataset diversity and scale, improve model interpretability, and enhance the
clinical applicability of Al models. This article aims to provide a reference for
future research on the analysis and prediction of pathological risk factors of
LUAD and to promote the development and application of Al, especially DL, in
this field.
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1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide. Lung
adenocarcinoma (LUAD), accounting for over 50% of newly diagnosed lung cancer cases
(1, 2), is particularly prevalent. Although surgical resection, as the standard treatment, has
significantly improved the prognosis of patients with early-stage LUAD, specific
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pathological risk factors still contribute to recurrence in certain
patients. The currently widely recognized LUAD pathological risk
factors primarily include spreading through air spaces (STAS),
visceral pleural invasion (VPI), lymphovascular invasion (LVI),
occult lymph node metastasis (OLM), and presence of
micropapillary and solid subtypes (Figure 1) (3, 4). Owing to the
presence of these high-risk factors, some subtypes of
adenocarcinoma exhibit greater aggressiveness. Although the
specific mechanisms remain unclear, the factors may be
associated with higher tumor mutation burdens or the presence
of microscopic tumor residues (5, 6). Simultaneously, the disruption
of intercellular adhesion complexes in the lungs exacerbates the
invasive spread of tumors (7). More critically, STAS and subtypes
such as micropapillary or solid subtypes often coexist. Patients with
a larger number of concomitant high-risk factors are more prone to
recurrence and exhibit poorer long-term survival rates (4, 8-10).
For such patients, lobectomy with radical lymph node dissection is
recommended over segmentectomy (11). Unfortunately, it is not
possible to diagnose these factors by visually examining computed
tomography (CT) images (12), and invasive preoperative
procedures such as bronchoscopy or percutaneous transthoracic
needle biopsy (PTNB) may cause harm to patients and offer low
sensitivity. Therefore, how to effectively enhance the accuracy of
screening for LUAD risk factors through noninvasive methods
before surgery, reduce the rate of missed diagnoses, and alleviate
the workload of clinicians have become an urgent issue requiring
resolution nowadays.

Owing to recent advancements in computer technology and
statistics, intelligent clinical diagnosis and treatment models for
lung cancer, based on tumor imaging, have begun to emerge (13-
17). Machine learning (ML) is a primary form of artificial
intelligence (AI) technology. Instead of explicit programming,
computing systems learn from small- and medium-sized datasets
to make predictions or decisions; examples include linear regression
and decision trees (18). Deep learning (DL) is a specialized subset of
ML, which offers enhanced data volume and model complexity,
sacrificing interpretability to achieve extraordinary predictive
capabilities from massive datasets (19), e.g., convolutional neural
networks (CNNs) (19, 20) and visual transformer (ViTs) (21, 22).
The CNNs automatically learn complex features from images
through multiple convolutions and pooling operations, thereby
enhancing the accuracy and efficiency of lung cancer subtype
analysis. Specifically, ResNet is a great landmark architecture of
CNN that introduced residual blocks to overcome degradation
issues, enabling the training of extremely deep networks

Abbreviations: Al artificial intelligence; AUC, area under the curve; CNN,
convolutional neural networks; CT, computed tomography; DL, deep learning;
EMA, European Medicines Agency; FDA, Food and Drug Administration;
HRCT, high-resolution computed tomography; LUAD, lung adenocarcinoma;
MDT, mass doubling time; ML, machine learning; OLM, occult lymph node
metastasis; OS, overall survival; PTNB, percutaneous transthoracic needle biopsy;
RCT, randomized controlled trials; RFS, recurrence-free survival; STAS,
spreading through air spaces; SVM, support vector machine; VDT, volume-

doubling time; VPI, visceral pleural invasion.
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(Figure 2) (23). Furthermore, ViTs have emerged as another
powerful deep learning model for leveraging self-attention
mechanisms to capture long-range dependencies and global
contextual information within images. The current assumption is
that the primary objective of research is to compare the diagnostic
capabilities of AI with those of human experts. However, it is
evident that classical ML and DL, as complementary Al paradigms,
have already demonstrated superior performance and immense
potential in terms of speed, reproducibility, and accuracy,
surpassing human standards. Given the rapid changes and
advancements in this field, this review attempts to summarize the
status and trends in the application of Al, especially DL, in the
diagnosis and prediction of LUAD risk factors and to discuss
current challenges and future perspectives.

2 Assessment of high-risk factors in
preoperative diagnosis

The abovementioned risk factors can only be diagnosed by
experienced pathologists based on post-operative slides. However,
at this stage, surgical treatment has already concluded, and the
surgical approach cannot be altered. Patients with high-risk factors
can only receive drug-assisted therapy post-operatively. Therefore,
our primary concern is how to enable surgeons to achieve the goals
of preoperative visualization of lesions, precise intraoperative
resection, and minimized postoperative complications through
imaging examinations. Preoperative CT or PET/CT images
represent a widely available, easily accessible, and non-invasive
source of data. ML is an initial attempt in this area, and DL has
become ever more popular in the recent few years (15, 20). Figure 3
illustrates the fundamental workflow and key components for lung
cancer diagnosis of clinician (A), radiomics (B), and deep
learning (C).

2.1 Spreading through air spaces

STAS is defined as the presence of tumor cells in the air space of
the lungs beyond the margins of the existing tumor. It consists of
three main forms, namely (1): bronchus filled by microstructures
without a central fibrovascular core (2), solid nests in which the air
space is filled by solid components of the tumor (3), and bronchus
filled by multiple discrete and discrete continuous single tumor cell
filling (27). STAS is always indicative of worse prognosis for
patients with LUAD (11, 28). Given the significant implications
of STAS for lung cancer progression, it has been proposed as a
reference for TNM staging (29). Studies said that leveraging AI by
interpreting the clinical significance of STAS can enhance
diagnostic accuracy or enable risk stratification for STAS-positive
patients. This approach will improve clinical workflows and assist
physicians in developing appropriate treatment plans (28, 30). Jiang
et al. (31) conducted the first study predicting STAS in LUAD using
a ML model based on CT imaging. Their results indicated that
quantitative parameters (e.g., tumor size, solid composition, and
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FIGURE 1

Incidence rates of five high-risk factors (3, 4, 6, 8—11, 13).

homogeneity) could serve as predictive biomarkers. However, the
study’s limited STAS-positive cohort (19.5%) suggests potential
data imbalance issues that may compromise the accuracy of the
results. Owing to its stronger feature extraction ability and
generalization ability, three-dimensional CNN (3D-CNN) offers
superior performance to traditional imaging histological models
and computer vision models in predicting STAS of non-small cell
lung cancer (NSCLC) (32). Features extracted by CNNs from
aligned images can be combined with delta-imaging genomics to
generate a double delta model (33). Thus, the importance of
stereoscopic features and their corresponding delta features in

Al

Convolutional Neural
Network

Recurrent Neural
Network

Linear Regression
Logistic Regression

Decision Tree

Naive Bayes Classifier

K-nearest Neighbors

Random Forest

FIGURE 2

Relationship between Al, ML, DL, and some of their algorithms (14,
24). Al, artificial intelligence; ML, machine learning; DL, deep
learning.
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model construction should be confirmed, while extracting a large
number of fine features is precisely where DL excels (34). Regarding
data sources, unlike the traditional thin-slice CT, PET/CT can
simultaneously reflect the morphological and metabolic
characteristics of the lesion, thus offering more abundant
information (35). Furthermore, maximum standard uptake value
(SUVmax) exhibits a higher predictive effect than the maximum
tumor diameter in the STAS (36, 37). Therefore, exploration based
on DL technology and 'F-FDG PET/CT for predicting the
existence of STAS is expected (28). Retrospective analyses
predicting STAS using Al have become increasingly common,
with multiple features such as high-density images confirmed to
show a significant association with STAS; yet, how to predict STAS
in the patient population with non-solid nodules remains under-
explored. We call for more prospective studies on STAS, ideally
encompassing a broader cohort of patients with lung cancer.

2.2 Lymphovascular invasion

LVI is characterized by the invasion of tumor emboli into the
peritumoral lymphatic and/or vascular systems. Consequently, even
with complete resection of the primary lesion, the presence of lung
cancer cells may still promote recurrence or metastasis via
peripheral lymphatics and arteries/veins (8). This explains why
LVI is associated with recurrence-free survival (RFS) and overall
survival (OS) in NSCLC (8, 38). In 2021, Kyongmin et al. (39)
developed and validated a deep cubical nodule transfer learning
algorithm (DeepCUBIT) that utilizes transfer learning and 3D-
CNN to predict LVI in CT images. In the external validation cohort,
DeepCUBIT significantly outperformed single support vector
machine (SVM) models that rely solely on tumor size or C/T
ratio, demonstrating the informational value of peritumoral
regions in CT images. Specifically, in some nodules with C/T
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FIGURE 3

Typical process and differences between clinician (A), radiomics (B), and deep learning (C) for lung cancer diagnostic applications (25, 26)

ratios below 1.0, the main feature for the prediction comes from the
tumor margins—the interface between the tumor and adjacent lung
parenchyma. Therefore, we suggest that future studies should
consider reasonable expansion in lung nodule image
segmentation to incorporate more information. Furthermore,
integrating clinical and radiological data can also enhance the
accuracy of LVI prediction (40). Compared with simple models,
two-dimensional and three-dimensional CT imaging features and
clinical radiological data can more accurately reflect the true
presence of lung cancer. Of course, the integration of expanded
multi-center datasets is equally essential to optimize the model’s
learning capabilities (41).

Moreover, the analysis of LVI prediction relevance and
interpretability is crucial, as a model that merely reports LVI
positivity, without disclosing the reason for the result, cannot
deliver satisfactory clinical performance. This necessitates further
validation to confirm the efficacy of customized deep network
features in capturing imaging phenotypes beyond known
histological characteristics (39, 42).

2.3 Visceral pleural invasion

VPI can reduce the 5-year survival rate of patients in stage IA by
16% (8, 10). Therefore, VPI not only reflects the severity of tumor
invasiveness but is also regarded as an independent prognostic
indicator (10). Regrettably, when thoracic surgeons combined
clinical information, preoperative CT scans, and intraoperative
pleural biopsies, the diagnostic accuracy rate of VPI was found to
be no more than 60% (43). In contrast, DL can automatically learn
useful feature representations from lung nodes of raw data,
significantly improving the efficiency and accuracy of diagnosis (44,
45). Choi et al. developed a VGG-16 model that achieved an area
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under the curve (AUC) of 0.81, although its accuracy was constrained
by the small sample size (n = 212) (44). In addition to the issue of
sample size, the heterogeneity of diagnosis also affects the stability of
the model (46). However, other researchers remain optimistic about
the future of this field—for instance, one study found that images
based on high-resolution computed tomography (HRCT) could
effectively predict VPI (45). Another study developed a 3D-ResNet
DL model and found that pleural traction angle >30° and
disappearance of subpleural fat space were important predictive
indicators. The AUC of this model in the training, internal
validation, and external validation queues was around 0.70 (46).
Tsuchiya’s team used thoracoscopic images and Al to identify the
presence of VPI in clinical stage I LUAD and found that the AT model
based on ViTs achieved a sensitivity of 0.85 in real-time VPI
recognition (47). This study therefore suggests another approach to
acquiring the ability to intraoperatively diagnose high-risk factors
from images taken by intraoperative thoracoscopy as well, rather than
relying solely on preoperative CT. The VPI prediction model holds
great promise and significant clinical value, as relying solely on the
distance between nodules and the pleura in CT images to diagnose
VPI carries risks; in other words, the presence of pleural-tumor
contact does not always indicate VPI. Conversely, tumors can invade
the pleura through retraction even without direct contact (48).
Therefore, a stronger collaboration between radiologists, surgeons,
and pathologists is recommended to foster multidisciplinary
consensus and address challenges in this field.

2.4 Occult lymph node metastasis
OLM refers to the situation where preoperative CT is not

showing lymph node enlargement, but postoperative pathological
results do confirm the existence of tumor metastasis (49). However,
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the fact that radiologists may not detect lymph node abnormalities
based on the images does not necessarily indicate that no abnormal
manifestations exist on the images—in many cases, these
abnormalities are too small to be observed by eye. Therefore, at
present, experienced radiologists spend a considerable amount of
time carefully examining tumor morphology and lymph node
manifestations before diagnosing few OLM cases (50). In
addition, by integrating parameters such as carcinoma embryonic
antigen (CEA) (>5 ng/mL) and the proportion of nodular solid
components (consolidation-to-tumor ratio, CTR 20.7), 83% of N1
metastatic cases can be identified (51). AI models based on
architectures such as XGB have demonstrated excellent
performance in predicting OLM in patients with clinical stage IA
LUAD (52-54). The pulmonary nodule volume-doubling time
(VDT) of patients with LUAD is shorter when solid/microform
components are dominant, which leads to a higher metastasis rate;
therefore, VDT or mass doubling time (MDT) may be effective
predictors of OLM among NSCLC (55, 56). In other words, when
establishing a DL model, considering CT follow-up results for more
than 1 year is conducive to a better model (55).

PET/CT has high sensitivity in detecting hilar and mediastinal
lymph nodes. Cytokeratin fragment (CYFRA) 21-1 (>2.46) and liver
SUVmax (L-SUR) (>2.68) have been proven to be independent risk
factors for OLM (57). Furthermore, the use of PET/CT data to build
AI models is feasible in predicting OLM and offers high sensitivity
and specificity in prospective tests (58). PET/CT-DL models have
achieved excellent performance, respectively, in the prediction of
latent N1 and N2. High-risk patients identified by this model can
benefit from lymph node biopsy, lobectomy, and adjuvant therapy
(59). It is important to note that although the images are necessary for
analysis, not all PET/CT devices have the ability to output such high-
quality images. Furthermore, PET/CT is not commonly used for the
diagnosis of ground-glass lung nodules <2 cm (35, 60) and is often
not the preferred test in developing countries, such as China, owing to
its high cost. This may reduce the clinical applicability of such models
in some institutions. Because of the low incidence of occult lymph
nodes (approximately 5%-15%) (6), the imbalance in samples caused
by a low number of positive cases limits AI's learning capacity.
Furthermore, while the study targets metastatic lymph nodes,
preoperative CT scans struggle to accurately diagnose and delineate
them. Consequently, recent Al predictions still focus on pulmonary
nodules as regions of interest—a contradiction that appears difficult
to resolve. Additionally, an increasing number of studies are shifting
their focus to N1 and N2 metastases rather than simple binary
classification problems, which better align with actual clinical needs
regarding lung cancer diagnosis and treatment.

2.5 High-grade pathological subtype
(micropapillary or solid pattern)

During the development of LUAD, various growth patterns
(including squamous, acinar, micropapillary, and solid types) occur.
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Generally, various pathological subtypes are calculated in
increments of 5%, and the proportion of the main subtypes
determines the dominance of the pathological types (3). We
focused on the micropapillary subtypes and solid types in LUAD,
which are closely related to DFS and OS after surgery (61) and
accompanied by a higher postoperative recurrence rate (9, 62).
More researchers are exploring the application of DL techniques in
predicting LUAD pathotypes due to DL detection of details that
cannot be observed by the human eye (63). Dong et al. developed
two deep learning models based on LeNet and DenseNet,
discovering that deep learning techniques can not only be applied
to the classification of invasive LUAD but also used to predict
micropapillary patterns—marking the first attempt at utilizing deep
learning technology in this field (64). Chang et al. used an advanced
LUAD subtype detection algorithm to analyze near-pure lung
adenocarcinoma imaging with histological features and plaque
images and obtained high sensitivity and moderate specificity
(65). As intratumoral heterogeneity is manifested in the
pathological components and tumor imaging features, a single
modality may not be able to accurately identify the solid
components within the tumor (66-68). Thus, the establishment of
a comprehensive model combining DL-based scoring and clinical
imaging features to distinguish LUAD with micropapillary and
solid-type structure enhanced the classification performance (68).
Chen et al. developed a DL model based on the data of 502 patients
with pathologically diagnosed high-grade adenocarcinoma within 4
years. They applied a solid-attenuation-component-like subregion
masks (tumor area 2-190 HU) to guide the DL model in analyzing
high-grade subtypes. This is another promising preoperative
prediction method for high-grade adenocarcinoma subtypes (69).
Similar to the assessment of other high-risk factors, 8E_EDG PET/
CT data are increasingly being applied to DL because of the high
metabolic rate of tumor cells and have demonstrated decent
predictive accuracy for microscopic or solid components within
LUAD (70, 71). A new study demonstrated the combined DL of
texture features for ultra-short echo time MRI (UTE-MRI) to avoid
radiation exposure while maintaining comparable diagnostic
performance with CT for subtypes such as micropapillary (AUC
= 0.82 vs. 0.79) (72). Despite the small sample size of the study (74
lesions), this implies the feasibility of the UTE-MRI DL model with
the significant advantage of UTE-MRI in avoiding radiation
hazards, especially for patients requiring multiple follow-up visits
over time and for children with radiation sensitivity. Furthermore,
various imaging examinations and large models that integrate
imaging and genomics are providing new perspectives and tools
for personalized treatment and surgical decisions. Both clinical and
quantitative radiomics features, along with DL-based scoring
models, can decode LUAD phenotypes. However, a notable issue
arises: LUAD with multiple subtypes may exhibit mixed subtype
characteristics rather than distinct information from the three
subtypes, potentially limiting the discriminative capability of AI
processing. Most studies rely on quantitative analysis of specific
subtypes using thresholds such as 5%, 10%, or 20%. Future DL
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models and related fusion models require a more detailed stratified
analysis beyond qualitative predictions (Tablel).

3 Evaluation of high-risk factors
combining pathological tissue and CT

Multimodal fusion has become an inevitable direction for AI-
assisted lung cancer diagnosis. Pathological images serve as another
critical information source alongside radiological imaging—for
example, the ResNet model trained on whole-slide images
demonstrates recognition capabilities comparable to those of
senior pathologists in identifying pathological subtypes of LUAD
(73). In recent years, the integration of CT and pathological
information is more commonly used to predict patient prognosis.
However, Wu and colleagues constructed a predictive model using
preoperative CT images and intraoperative frozen section results to
assess the extent of lung cancer invasion (74). This represents a
novel clinical issue: although diagnosis based on intraoperative
frozen section offers high specificity to identify high-risk factors
in LUAD, its sensitivity remains limited (75). DL models analyze
feature maps and perform logical reasoning, exhibiting decision-
making processes consistent with the diagnostic reasoning of
pathologists. They even demonstrate superior capabilities in
identifying minute lesions (76). This demonstrates that AI models
can now automatically detect and quantitatively analyze STAS,
acinar, micropapillary, papillary, solid subtypes, and normal tissue
in final histopathological sections, achieving satisfactory results
(77). Thus, leveraging AI to further enhance the diagnostic
accuracy of frozen section analysis has a solid practical
foundation. Going a step further, the question of whether
integrating preoperative CT imaging with preoperative needle
biopsy specimens, bronchoscopic biopsy specimens, or
intraoperative frozen section results to construct a more
comprehensive and integrated intelligent model could achieve
more precise predictions warrants in-depth exploration.

10.3389/fonc.2025.1687360

4 The future of prediction of high-risk
factors for LUAD based on DL

DL offers advantages such as high efficiency, accuracy, and
automation, making its potential self-evident. However, several key
challenges remain, including technical issues such as sparse datasets
and model generalization. In medical applications, AT models must
also demonstrate high interpretability to gain the trust and
acceptance of clinicians. Therefore, we believe that future research
directions may include the following:

1. In predicting high-risk factors for LUAD, the core value of
multimodal fusion models lies in their ability to integrate
heterogeneous medical data, break down information barriers,
and ultimately enable more precise and personalized prognostic
assessments. By integrating imaging data such as CT, PET/CT, and
pathological images from the puncture surgery or bronchoscopy
and electronic health records (EHRs)—including the age,
symptoms, and smoking history (Figure 4)— multimodal models
can construct multidimensional disease views, providing a more
comprehensive reflection of lung cancer progression stages and
individual patient condition. The adoption of large language models
further facilitates faster and more standardized generation of EHRs
in clinical practice, enhancing the input quality for multimodal
systems (78), and significant progress has been made in validating
the feasibility and potential of multimodal strategies—for instance,
She et al. (59) developed a multimodal DL model based on PET/CT
that demonstrated a significantly higher accuracy in diagnosing
OLM relative to single-modality DL models, clinical models, and
physicians. Chen et al. (79) established a multiomics model (clinic-
RadmC) integrating clinical and radiomic data with circulating cell-
free DNA fragmentomic features in 5-methylcytosine (5mC)-
enriched regions to predict the malignancy risk of indeterminate
pulmonary nodules. Moreover, a combined DL model
incorporating clinical, imaging, and cell-free DNA methylation
biomarkers has been shown to accurately classify pulmonary
nodules, potentially reducing approximately 80% of unnecessary
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FIGURE 4

Multimodal data types and sources available for artificial intelligence models.

Frontiers in Oncology

06

frontiersin.org


https://doi.org/10.3389/fonc.2025.1687360
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Huang et al.

TABLE 1 Application of Al in the prediction of pathological risk factors.

10.3389/fonc.2025.1687360

High-risk factors Total cases Positive cases Algorithm

Spread through air spaces Jiang et al. (31) 462 90 Random forest 0.754
Tao et al. (32) 203 89 3D-CNN 0.800
Jin et al. (33) 585 143 Delta-DL 0.840
Lin et al. (34) 581 89 DL 0.820
Gao et al. (36) 466 113 Logistic regression 0.786

Lymphovascular invasion Beck et al. (39) 695 254 3D-CNN 0.717
Liu et al. (40) 2077 299 3D-Resnet-9 0.770
Wang et al. (41) 3034 106 Reg;igegjsp 0.869

Visceral pleural invasion Choi et al. (44) 817 256 3D-CNN 0.750
Kudo et al. (45) 472 224 EfficientNet V2-M 0.780
Lin et al. (46) 2077 381 3D-ResNet-9 0.690
Shimada et al. (47) 127 49 Vision Transformer 0.840

Occult lymph node metastasis Liu et al. (52) 258 129 XGB 0917
Tian et al. (53) 1325 478 ResNet-18 0.754
Karita et al. (55) 560 89 Logistic regression 0.768
Liu et al. (56) 144 27 Logistic regression 0.860
Zhong et al. (59) 3265 655 ResNet-18 0.914

Micropapillary and solid Chen et al. (65) 158 42 Logistic regression 0.86 + 0.01

subtypes
Wang et al. (66) 111 31 CNN 0.861
Xing et al. (67) 273 61 Logistic regression 0.843
Wang et al. (68) 512 191 Wide residual network 0.827
Chen et al. (69) 502 180 SACA-DL 0.930

“Performance evaluation in test data or external validation data.

3D-CNN, three-dimensional convolutional neural network; DL, deep learning; XGB, extreme gradient boosting; SACA-DL, solid attenuation components attention deep learning model.

surgeries and delayed treatments (80).However, the construction
and application of multimodal models still face several critical
challenges. First, significant differences in format, dimensionality,
and semantic levels exist between different modal data, making
effective modal alignment and deep fusion a persistent technical
hurdle. Second, the inherent “black-box” nature of DL models
makes it difficult for clinicians to understand which features—
such as image regions or gene mutations—underlie the model’s
high-risk assessments.

2. In the field of medical imaging, some phenomena, such as
occult lymph nodes whose incidence rate is approximately 10%, are
not common. Moreover, the manual annotation of CT and
pathological images is costly and time-consuming, and the limited
availability of annotated datasets makes small-sample learning a key
challenge. To address this issue, researchers have explored various
strategies. Data augmentation techniques, including geometric
transformations, intensity perturbations, and advanced methods
such as MixUp and CutMix, enrich the diversity of training and
reduce overfitting (81, 82). Few-shot and meta-learning paradigms
offer another promising direction, wherein models are trained in a
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batch manner to learn transferable representations, enabling rapid
adaptation to new cohorts or rare subtypes with only a few
examples (83, 84). Knowledge distillation from large teacher
models to lightweight student models has also been used to
mitigate overfitting and improve sample efficiency (85). Overall,
these methods aim to overcome the inherent limitations of small-
sample medical datasets and support more robust and generalizable
DL models.

Furthermore, the latest advancements in large-scale pre-trained
models show great promise. Models such as CLIP, SAM, and
DINOvV2, which were initially developed for natural images, have
demonstrated significant potential in the field of medical imaging,
particularly in few-shot adaptation, interactive annotation, and
cross-modal integration (24, 86, 87). These developments
collectively suggest that customizing model designs for the
characteristics of medical data and transferring from foundational
models will also play a crucial role in overcoming the inherent
limitations of medical datasets.

3. The application of Al in clinical practice relies heavily on
evidence-based medical support obtained through rigorous clinical
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trials to validate its efficacy, safety, and reliability. Most previously
mentioned studies are predominantly retrospective analyses,
although some high-quality studies have included prospective
validation cohorts. Most published studies have focused on the
East Asian populations (such as patients from China, Japan, and
South Korea), thereby presenting geographical and demographic
limitations. To address the issue of generalization of the capabilities
of AI models across diverse populations, regulatory bodies such as
the US Food and Drug Administration (FDA) and the European
Medicines Agency (EMA) are actively promoting multicenter trials
and external validation mechanisms to assess their actual efficacy in
heterogeneous populations (88, 89). However, it is encouraging that
the clinical research findings on AI published to date have been
almost entirely positive. A systematic review of 39 randomized
controlled trials (RCTs) conducted as of July 2021 revealed that 77%
(30/39) of Al interventions demonstrated superior efficacy relative
to standard clinical care and 70% (21/30) showed clinically
meaningful improvements in outcomes, with radiology studies
constituting the majority of these findings (90). Other prospective
studies have also demonstrated that CT-based Al tools can enhance
the sensitivity of lung nodule diagnosis (90-92). However, no
further studies with higher levels of evidence have been published
on the prediction of high-risk factors for LUAD. Despite its
promise, Al still faces multiple challenges in clinical applications,
including data privacy, system security, and interoperability. Future
research should include multicenter, large-scale, rigorously
designed clinical trials to fully validate the effectiveness of AI—
particularly DL models—in real-world clinical settings.
Simultaneously, collaboration between clinicians, AI companies,
and regulatory bodies must be enhanced to jointly address complex
ethical and legal issues, thereby promoting the robust and
responsible integration of Al within the healthcare sector.

5 Conclusions

Al-based research on the prediction of high-risk factors for
LUAD shows great potential in medical image analysis and
pathological diagnosis. DL models significantly improve the
accuracy and efficiency of early prediction and diagnosis of lung
cancer by automatically identifying and classifying high-risk factors
in CT images. However, current techniques still face challenges such
as insufficient datasets, high model complexity, poor
interpretability, and data privacy. Future research should focus on
translating cutting-edge technologies into clinical practice through
standardized data collection, lightweight model architectures, and
rigorous evidence-based validation. With the introduction of new
architectures such as transformers, Al is expected to become an
important method to support decision-making in the diagnosis of
high-risk factors and treatment of LUAD.
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