
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xiaonan Cui,
Tianjin Medical University Cancer Institute
and Hospital, China

REVIEWED BY

Hanlin Ding,
Jiangsu Cancer Hospital, China

*CORRESPONDENCE

Kuo Li

lktj126@126.com

Yongde Liao

2019xh0249@hust.edu.cn

†These authors have contributed equally to
this work

RECEIVED 17 August 2025

ACCEPTED 17 October 2025
PUBLISHED 13 November 2025

CITATION

Huang Y, Zhao B, Yan R, Zhang C, Geng Z,
Mei P, Li K and Liao Y (2025) AI-based
prediction of pathological risk factors in lung
adenocarcinoma from CT imaging: bridging
innovation and clinical practice.
Front. Oncol. 15:1687360.
doi: 10.3389/fonc.2025.1687360

COPYRIGHT

© 2025 Huang, Zhao, Yan, Zhang, Geng, Mei,
Li and Liao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 13 November 2025

DOI 10.3389/fonc.2025.1687360
AI-based prediction of
pathological risk factors in
lung adenocarcinoma from CT
imaging: bridging innovation
and clinical practice
Yu Huang1†, Bowen Zhao1†, Ruiyang Yan2†, Chi Zhang1,
Zuhan Geng1, Peiyuan Mei1, Kuo Li1* and Yongde Liao1*

1Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical
College Union Hospital, Wuhan, Hubei, China, 2School of Computer Science and Engineering, Sun
Yat-Sen University, Guangzhou, Guangdong, China
Lung adenocarcinoma (LUAD) is one of the main causes of cancer-related

mortality worldwide. Pathological risk factors such as spreading through air

spaces, high-risk pathological subtypes, occult lymph nodes, and visceral

pleural invasion have significant impact on patient prognosis. In recent years,

there has been significant progress in the application of artificial intelligence (AI)

technology, e.g., deep learning (DL), in medical image analysis and pathological

diagnosis of lung cancer, offering novel approaches for predicting the

aforementioned pathological risk factors. This article reviews recent

advancements in AI-based analysis and prediction of pathological risk factors

in lung adenocarcinoma, with a focus on the applications and limitations of DL

models, focusing on studies aimed at improving diagnostic accuracy and

efficiency for specific high-risk pathological subtypes. Finally, we summarize

current challenges and future directions, emphasizing the need to expand

dataset diversity and scale, improve model interpretability, and enhance the

clinical applicability of AI models. This article aims to provide a reference for

future research on the analysis and prediction of pathological risk factors of

LUAD and to promote the development and application of AI, especially DL, in

this field.
KEYWORDS
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1 Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide. Lung

adenocarcinoma (LUAD), accounting for over 50% of newly diagnosed lung cancer cases

(1, 2), is particularly prevalent. Although surgical resection, as the standard treatment, has

significantly improved the prognosis of patients with early-stage LUAD, specific
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pathological risk factors still contribute to recurrence in certain

patients. The currently widely recognized LUAD pathological risk

factors primarily include spreading through air spaces (STAS),

visceral pleural invasion (VPI), lymphovascular invasion (LVI),

occult lymph node metastasis (OLM), and presence of

micropapillary and solid subtypes (Figure 1) (3, 4). Owing to the

presence of these high-risk factors, some subtypes of

adenocarcinoma exhibit greater aggressiveness. Although the

specific mechanisms remain unclear, the factors may be

associated with higher tumor mutation burdens or the presence

of microscopic tumor residues (5, 6). Simultaneously, the disruption

of intercellular adhesion complexes in the lungs exacerbates the

invasive spread of tumors (7). More critically, STAS and subtypes

such as micropapillary or solid subtypes often coexist. Patients with

a larger number of concomitant high-risk factors are more prone to

recurrence and exhibit poorer long-term survival rates (4, 8–10).

For such patients, lobectomy with radical lymph node dissection is

recommended over segmentectomy (11). Unfortunately, it is not

possible to diagnose these factors by visually examining computed

tomography (CT) images (12), and invasive preoperative

procedures such as bronchoscopy or percutaneous transthoracic

needle biopsy (PTNB) may cause harm to patients and offer low

sensitivity. Therefore, how to effectively enhance the accuracy of

screening for LUAD risk factors through noninvasive methods

before surgery, reduce the rate of missed diagnoses, and alleviate

the workload of clinicians have become an urgent issue requiring

resolution nowadays.

Owing to recent advancements in computer technology and

statistics, intelligent clinical diagnosis and treatment models for

lung cancer, based on tumor imaging, have begun to emerge (13–

17). Machine learning (ML) is a primary form of artificial

intelligence (AI) technology. Instead of explicit programming,

computing systems learn from small- and medium-sized datasets

to make predictions or decisions; examples include linear regression

and decision trees (18). Deep learning (DL) is a specialized subset of

ML, which offers enhanced data volume and model complexity,

sacrificing interpretability to achieve extraordinary predictive

capabilities from massive datasets (19), e.g., convolutional neural

networks (CNNs) (19, 20) and visual transformer (ViTs) (21, 22).

The CNNs automatically learn complex features from images

through multiple convolutions and pooling operations, thereby

enhancing the accuracy and efficiency of lung cancer subtype

analysis. Specifically, ResNet is a great landmark architecture of

CNN that introduced residual blocks to overcome degradation

issues, enabling the training of extremely deep networks
Abbreviations: AI, artificial intelligence; AUC, area under the curve; CNN,

convolutional neural networks; CT, computed tomography; DL, deep learning;

EMA, European Medicines Agency; FDA, Food and Drug Administration;

HRCT, high-resolution computed tomography; LUAD, lung adenocarcinoma;

MDT, mass doubling time; ML, machine learning; OLM, occult lymph node

metastasis; OS, overall survival; PTNB, percutaneous transthoracic needle biopsy;

RCT, randomized controlled trials; RFS, recurrence-free survival; STAS,

spreading through air spaces; SVM, support vector machine; VDT, volume-

doubling time; VPI, visceral pleural invasion.

Frontiers in Oncology 02
(Figure 2) (23). Furthermore, ViTs have emerged as another

powerful deep learning model for leveraging self-attention

mechanisms to capture long-range dependencies and global

contextual information within images. The current assumption is

that the primary objective of research is to compare the diagnostic

capabilities of AI with those of human experts. However, it is

evident that classical ML and DL, as complementary AI paradigms,

have already demonstrated superior performance and immense

potential in terms of speed, reproducibility, and accuracy,

surpassing human standards. Given the rapid changes and

advancements in this field, this review attempts to summarize the

status and trends in the application of AI, especially DL, in the

diagnosis and prediction of LUAD risk factors and to discuss

current challenges and future perspectives.
2 Assessment of high-risk factors in
preoperative diagnosis

The abovementioned risk factors can only be diagnosed by

experienced pathologists based on post-operative slides. However,

at this stage, surgical treatment has already concluded, and the

surgical approach cannot be altered. Patients with high-risk factors

can only receive drug-assisted therapy post-operatively. Therefore,

our primary concern is how to enable surgeons to achieve the goals

of preoperative visualization of lesions, precise intraoperative

resection, and minimized postoperative complications through

imaging examinations. Preoperative CT or PET/CT images

represent a widely available, easily accessible, and non-invasive

source of data. ML is an initial attempt in this area, and DL has

become ever more popular in the recent few years (15, 20). Figure 3

illustrates the fundamental workflow and key components for lung

cancer diagnosis of clinician (A), radiomics (B), and deep

learning (C).
2.1 Spreading through air spaces

STAS is defined as the presence of tumor cells in the air space of

the lungs beyond the margins of the existing tumor. It consists of

three main forms, namely (1): bronchus filled by microstructures

without a central fibrovascular core (2), solid nests in which the air

space is filled by solid components of the tumor (3), and bronchus

filled by multiple discrete and discrete continuous single tumor cell

filling (27). STAS is always indicative of worse prognosis for

patients with LUAD (11, 28). Given the significant implications

of STAS for lung cancer progression, it has been proposed as a

reference for TNM staging (29). Studies said that leveraging AI by

interpreting the clinical significance of STAS can enhance

diagnostic accuracy or enable risk stratification for STAS-positive

patients. This approach will improve clinical workflows and assist

physicians in developing appropriate treatment plans (28, 30). Jiang

et al. (31) conducted the first study predicting STAS in LUAD using

a ML model based on CT imaging. Their results indicated that

quantitative parameters (e.g., tumor size, solid composition, and
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homogeneity) could serve as predictive biomarkers. However, the

study’s limited STAS-positive cohort (19.5%) suggests potential

data imbalance issues that may compromise the accuracy of the

results. Owing to its stronger feature extraction ability and

generalization ability, three-dimensional CNN (3D-CNN) offers

superior performance to traditional imaging histological models

and computer vision models in predicting STAS of non-small cell

lung cancer (NSCLC) (32). Features extracted by CNNs from

aligned images can be combined with delta-imaging genomics to

generate a double delta model (33). Thus, the importance of

stereoscopic features and their corresponding delta features in
Frontiers in Oncology 03
model construction should be confirmed, while extracting a large

number of fine features is precisely where DL excels (34). Regarding

data sources, unlike the traditional thin-slice CT, PET/CT can

simultaneously reflect the morphological and metabolic

characteristics of the lesion, thus offering more abundant

information (35). Furthermore, maximum standard uptake value

(SUVmax) exhibits a higher predictive effect than the maximum

tumor diameter in the STAS (36, 37). Therefore, exploration based

on DL technology and 18F-FDG PET/CT for predicting the

existence of STAS is expected (28). Retrospective analyses

predicting STAS using AI have become increasingly common,

with multiple features such as high-density images confirmed to

show a significant association with STAS; yet, how to predict STAS

in the patient population with non-solid nodules remains under-

explored. We call for more prospective studies on STAS, ideally

encompassing a broader cohort of patients with lung cancer.
2.2 Lymphovascular invasion

LVI is characterized by the invasion of tumor emboli into the

peritumoral lymphatic and/or vascular systems. Consequently, even

with complete resection of the primary lesion, the presence of lung

cancer cells may still promote recurrence or metastasis via

peripheral lymphatics and arteries/veins (8). This explains why

LVI is associated with recurrence-free survival (RFS) and overall

survival (OS) in NSCLC (8, 38). In 2021, Kyongmin et al. (39)

developed and validated a deep cubical nodule transfer learning

algorithm (DeepCUBIT) that utilizes transfer learning and 3D-

CNN to predict LVI in CT images. In the external validation cohort,

DeepCUBIT significantly outperformed single support vector

machine (SVM) models that rely solely on tumor size or C/T

ratio, demonstrating the informational value of peritumoral

regions in CT images. Specifically, in some nodules with C/T
FIGURE 2

Relationship between AI, ML, DL, and some of their algorithms (14,
24). AI, artificial intelligence; ML, machine learning; DL, deep
learning.
FIGURE 1

Incidence rates of five high-risk factors (3, 4, 6, 8–11, 13).
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ratios below 1.0, the main feature for the prediction comes from the

tumor margins—the interface between the tumor and adjacent lung

parenchyma. Therefore, we suggest that future studies should

consider reasonable expansion in lung nodule image

segmentation to incorporate more information. Furthermore,

integrating clinical and radiological data can also enhance the

accuracy of LVI prediction (40). Compared with simple models,

two-dimensional and three-dimensional CT imaging features and

clinical radiological data can more accurately reflect the true

presence of lung cancer. Of course, the integration of expanded

multi-center datasets is equally essential to optimize the model’s

learning capabilities (41).

Moreover, the analysis of LVI prediction relevance and

interpretability is crucial, as a model that merely reports LVI

positivity, without disclosing the reason for the result, cannot

deliver satisfactory clinical performance. This necessitates further

validation to confirm the efficacy of customized deep network

features in capturing imaging phenotypes beyond known

histological characteristics (39, 42).
2.3 Visceral pleural invasion

VPI can reduce the 5-year survival rate of patients in stage IA by

16% (8, 10). Therefore, VPI not only reflects the severity of tumor

invasiveness but is also regarded as an independent prognostic

indicator (10). Regrettably, when thoracic surgeons combined

clinical information, preoperative CT scans, and intraoperative

pleural biopsies, the diagnostic accuracy rate of VPI was found to

be no more than 60% (43). In contrast, DL can automatically learn

useful feature representations from lung nodes of raw data,

significantly improving the efficiency and accuracy of diagnosis (44,

45). Choi et al. developed a VGG-16 model that achieved an area
Frontiers in Oncology 04
under the curve (AUC) of 0.81, although its accuracy was constrained

by the small sample size (n = 212) (44). In addition to the issue of

sample size, the heterogeneity of diagnosis also affects the stability of

the model (46). However, other researchers remain optimistic about

the future of this field—for instance, one study found that images

based on high-resolution computed tomography (HRCT) could

effectively predict VPI (45). Another study developed a 3D-ResNet

DL model and found that pleural traction angle >30° and

disappearance of subpleural fat space were important predictive

indicators. The AUC of this model in the training, internal

validation, and external validation queues was around 0.70 (46).

Tsuchiya’s team used thoracoscopic images and AI to identify the

presence of VPI in clinical stage I LUAD and found that the AI model

based on ViTs achieved a sensitivity of 0.85 in real-time VPI

recognition (47). This study therefore suggests another approach to

acquiring the ability to intraoperatively diagnose high-risk factors

from images taken by intraoperative thoracoscopy as well, rather than

relying solely on preoperative CT. The VPI prediction model holds

great promise and significant clinical value, as relying solely on the

distance between nodules and the pleura in CT images to diagnose

VPI carries risks; in other words, the presence of pleural–tumor

contact does not always indicate VPI. Conversely, tumors can invade

the pleura through retraction even without direct contact (48).

Therefore, a stronger collaboration between radiologists, surgeons,

and pathologists is recommended to foster multidisciplinary

consensus and address challenges in this field.
2.4 Occult lymph node metastasis

OLM refers to the situation where preoperative CT is not

showing lymph node enlargement, but postoperative pathological

results do confirm the existence of tumor metastasis (49). However,
FIGURE 3

Typical process and differences between clinician (A), radiomics (B), and deep learning (C) for lung cancer diagnostic applications (25, 26).
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the fact that radiologists may not detect lymph node abnormalities

based on the images does not necessarily indicate that no abnormal

manifestations exist on the images—in many cases, these

abnormalities are too small to be observed by eye. Therefore, at

present, experienced radiologists spend a considerable amount of

time carefully examining tumor morphology and lymph node

manifestations before diagnosing few OLM cases (50). In

addition, by integrating parameters such as carcinoma embryonic

antigen (CEA) (>5 ng/mL) and the proportion of nodular solid

components (consolidation-to-tumor ratio, CTR ≥0.7), 83% of N1

metastatic cases can be identified (51). AI models based on

architectures such as XGB have demonstrated excellent

performance in predicting OLM in patients with clinical stage IA

LUAD (52–54). The pulmonary nodule volume-doubling time

(VDT) of patients with LUAD is shorter when solid/microform

components are dominant, which leads to a higher metastasis rate;

therefore, VDT or mass doubling time (MDT) may be effective

predictors of OLM among NSCLC (55, 56). In other words, when

establishing a DL model, considering CT follow-up results for more

than 1 year is conducive to a better model (55).

PET/CT has high sensitivity in detecting hilar and mediastinal

lymph nodes. Cytokeratin fragment (CYFRA) 21-1 (>2.46) and liver

SUVmax (L-SUR) (>2.68) have been proven to be independent risk

factors for OLM (57). Furthermore, the use of PET/CT data to build

AI models is feasible in predicting OLM and offers high sensitivity

and specificity in prospective tests (58). PET/CT-DL models have

achieved excellent performance, respectively, in the prediction of

latent N1 and N2. High-risk patients identified by this model can

benefit from lymph node biopsy, lobectomy, and adjuvant therapy

(59). It is important to note that although the images are necessary for

analysis, not all PET/CT devices have the ability to output such high-

quality images. Furthermore, PET/CT is not commonly used for the

diagnosis of ground-glass lung nodules ≤2 cm (35, 60) and is often

not the preferred test in developing countries, such as China, owing to

its high cost. This may reduce the clinical applicability of such models

in some institutions. Because of the low incidence of occult lymph

nodes (approximately 5%–15%) (6), the imbalance in samples caused

by a low number of positive cases limits AI’s learning capacity.

Furthermore, while the study targets metastatic lymph nodes,

preoperative CT scans struggle to accurately diagnose and delineate

them. Consequently, recent AI predictions still focus on pulmonary

nodules as regions of interest—a contradiction that appears difficult

to resolve. Additionally, an increasing number of studies are shifting

their focus to N1 and N2 metastases rather than simple binary

classification problems, which better align with actual clinical needs

regarding lung cancer diagnosis and treatment.
2.5 High-grade pathological subtype
(micropapillary or solid pattern)

During the development of LUAD, various growth patterns

(including squamous, acinar, micropapillary, and solid types) occur.
Frontiers in Oncology 05
Generally, various pathological subtypes are calculated in

increments of 5%, and the proportion of the main subtypes

determines the dominance of the pathological types (3). We

focused on the micropapillary subtypes and solid types in LUAD,

which are closely related to DFS and OS after surgery (61) and

accompanied by a higher postoperative recurrence rate (9, 62).

More researchers are exploring the application of DL techniques in

predicting LUAD pathotypes due to DL detection of details that

cannot be observed by the human eye (63). Dong et al. developed

two deep learning models based on LeNet and DenseNet,

discovering that deep learning techniques can not only be applied

to the classification of invasive LUAD but also used to predict

micropapillary patterns—marking the first attempt at utilizing deep

learning technology in this field (64). Chang et al. used an advanced

LUAD subtype detection algorithm to analyze near-pure lung

adenocarcinoma imaging with histological features and plaque

images and obtained high sensitivity and moderate specificity

(65). As intratumoral heterogeneity is manifested in the

pathological components and tumor imaging features, a single

modality may not be able to accurately identify the solid

components within the tumor (66–68). Thus, the establishment of

a comprehensive model combining DL-based scoring and clinical

imaging features to distinguish LUAD with micropapillary and

solid-type structure enhanced the classification performance (68).

Chen et al. developed a DL model based on the data of 502 patients

with pathologically diagnosed high-grade adenocarcinoma within 4

years. They applied a solid-attenuation-component-like subregion

masks (tumor area ≥-190 HU) to guide the DL model in analyzing

high-grade subtypes. This is another promising preoperative

prediction method for high-grade adenocarcinoma subtypes (69).

Similar to the assessment of other high-risk factors, 18F-FDG PET/

CT data are increasingly being applied to DL because of the high

metabolic rate of tumor cells and have demonstrated decent

predictive accuracy for microscopic or solid components within

LUAD (70, 71). A new study demonstrated the combined DL of

texture features for ultra-short echo time MRI (UTE-MRI) to avoid

radiation exposure while maintaining comparable diagnostic

performance with CT for subtypes such as micropapillary (AUC

= 0.82 vs. 0.79) (72). Despite the small sample size of the study (74

lesions), this implies the feasibility of the UTE-MRI DL model with

the significant advantage of UTE-MRI in avoiding radiation

hazards, especially for patients requiring multiple follow-up visits

over time and for children with radiation sensitivity. Furthermore,

various imaging examinations and large models that integrate

imaging and genomics are providing new perspectives and tools

for personalized treatment and surgical decisions. Both clinical and

quantitative radiomics features, along with DL-based scoring

models, can decode LUAD phenotypes. However, a notable issue

arises: LUAD with multiple subtypes may exhibit mixed subtype

characteristics rather than distinct information from the three

subtypes, potentially limiting the discriminative capability of AI

processing. Most studies rely on quantitative analysis of specific

subtypes using thresholds such as 5%, 10%, or 20%. Future DL
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models and related fusion models require a more detailed stratified

analysis beyond qualitative predictions (Table1).
3 Evaluation of high-risk factors
combining pathological tissue and CT

Multimodal fusion has become an inevitable direction for AI-

assisted lung cancer diagnosis. Pathological images serve as another

critical information source alongside radiological imaging—for

example, the ResNet model trained on whole-slide images

demonstrates recognition capabilities comparable to those of

senior pathologists in identifying pathological subtypes of LUAD

(73). In recent years, the integration of CT and pathological

information is more commonly used to predict patient prognosis.

However, Wu and colleagues constructed a predictive model using

preoperative CT images and intraoperative frozen section results to

assess the extent of lung cancer invasion (74). This represents a

novel clinical issue: although diagnosis based on intraoperative

frozen section offers high specificity to identify high-risk factors

in LUAD, its sensitivity remains limited (75). DL models analyze

feature maps and perform logical reasoning, exhibiting decision-

making processes consistent with the diagnostic reasoning of

pathologists. They even demonstrate superior capabilities in

identifying minute lesions (76). This demonstrates that AI models

can now automatically detect and quantitatively analyze STAS,

acinar, micropapillary, papillary, solid subtypes, and normal tissue

in final histopathological sections, achieving satisfactory results

(77). Thus, leveraging AI to further enhance the diagnostic

accuracy of frozen section analysis has a solid practical

foundation. Going a step further, the question of whether

integrating preoperative CT imaging with preoperative needle

biopsy specimens, bronchoscopic biopsy specimens, or

intraoperative frozen section results to construct a more

comprehensive and integrated intelligent model could achieve

more precise predictions warrants in-depth exploration.
Frontiers in Oncology 06
4 The future of prediction of high-risk
factors for LUAD based on DL

DL offers advantages such as high efficiency, accuracy, and

automation, making its potential self-evident. However, several key

challenges remain, including technical issues such as sparse datasets

and model generalization. In medical applications, AI models must

also demonstrate high interpretability to gain the trust and

acceptance of clinicians. Therefore, we believe that future research

directions may include the following:

1. In predicting high-risk factors for LUAD, the core value of

multimodal fusion models lies in their ability to integrate

heterogeneous medical data, break down information barriers,

and ultimately enable more precise and personalized prognostic

assessments. By integrating imaging data such as CT, PET/CT, and

pathological images from the puncture surgery or bronchoscopy

and electronic health records (EHRs)—including the age,

symptoms, and smoking history (Figure 4)— multimodal models

can construct multidimensional disease views, providing a more

comprehensive reflection of lung cancer progression stages and

individual patient condition. The adoption of large language models

further facilitates faster and more standardized generation of EHRs

in clinical practice, enhancing the input quality for multimodal

systems (78), and significant progress has been made in validating

the feasibility and potential of multimodal strategies—for instance,

She et al. (59) developed a multimodal DL model based on PET/CT

that demonstrated a significantly higher accuracy in diagnosing

OLM relative to single-modality DL models, clinical models, and

physicians. Chen et al. (79) established a multiomics model (clinic-

RadmC) integrating clinical and radiomic data with circulating cell-

free DNA fragmentomic features in 5-methylcytosine (5mC)-

enriched regions to predict the malignancy risk of indeterminate

pulmonary nodules. Moreover, a combined DL model

incorporating clinical, imaging, and cell-free DNA methylation

biomarkers has been shown to accurately classify pulmonary

nodules, potentially reducing approximately 80% of unnecessary
FIGURE 4

Multimodal data types and sources available for artificial intelligence models.
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surgeries and delayed treatments (80).However, the construction

and application of multimodal models still face several critical

challenges. First, significant differences in format, dimensionality,

and semantic levels exist between different modal data, making

effective modal alignment and deep fusion a persistent technical

hurdle. Second, the inherent “black-box” nature of DL models

makes it difficult for clinicians to understand which features—

such as image regions or gene mutations—underlie the model’s

high-risk assessments.

2. In the field of medical imaging, some phenomena, such as

occult lymph nodes whose incidence rate is approximately 10%, are

not common. Moreover, the manual annotation of CT and

pathological images is costly and time-consuming, and the limited

availability of annotated datasets makes small-sample learning a key

challenge. To address this issue, researchers have explored various

strategies. Data augmentation techniques, including geometric

transformations, intensity perturbations, and advanced methods

such as MixUp and CutMix, enrich the diversity of training and

reduce overfitting (81, 82). Few-shot and meta-learning paradigms

offer another promising direction, wherein models are trained in a
Frontiers in Oncology 07
batch manner to learn transferable representations, enabling rapid

adaptation to new cohorts or rare subtypes with only a few

examples (83, 84). Knowledge distillation from large teacher

models to lightweight student models has also been used to

mitigate overfitting and improve sample efficiency (85). Overall,

these methods aim to overcome the inherent limitations of small-

sample medical datasets and support more robust and generalizable

DL models.

Furthermore, the latest advancements in large-scale pre-trained

models show great promise. Models such as CLIP, SAM, and

DINOv2, which were initially developed for natural images, have

demonstrated significant potential in the field of medical imaging,

particularly in few-shot adaptation, interactive annotation, and

cross-modal integration (24, 86, 87). These developments

collectively suggest that customizing model designs for the

characteristics of medical data and transferring from foundational

models will also play a crucial role in overcoming the inherent

limitations of medical datasets.

3. The application of AI in clinical practice relies heavily on

evidence-based medical support obtained through rigorous clinical
TABLE 1 Application of AI in the prediction of pathological risk factors.

High-risk factors Study Total cases Positive cases Algorithm AUCa

Spread through air spaces Jiang et al. (31) 462 90 Random forest 0.754

Tao et al. (32) 203 89 3D-CNN 0.800

Jin et al. (33) 585 143 Delta-DL 0.840

Lin et al. (34) 581 89 DL 0.820

Gao et al. (36) 466 113 Logistic regression 0.786

Lymphovascular invasion Beck et al. (39) 695 254 3D-CNN 0.717

Liu et al. (40) 2077 299 3D-Resnet-9 0.770

Wang et al. (41) 3034 106
Dual-Head

Res2Net_3D23F
0.869

Visceral pleural invasion Choi et al. (44) 817 256 3D-CNN 0.750

Kudo et al. (45) 472 224 EfficientNet V2−M 0.780

Lin et al. (46) 2077 381 3D-ResNet-9 0.690

Shimada et al. (47) 127 49 Vision Transformer 0.840

Occult lymph node metastasis Liu et al. (52) 258 129 XGB 0.917

Tian et al. (53) 1325 478 ResNet-18 0.754

Karita et al. (55) 560 89 Logistic regression 0.768

Liu et al. (56) 144 27 Logistic regression 0.860

Zhong et al. (59) 3265 655 ResNet-18 0.914

Micropapillary and solid
subtypes

Chen et al. (65) 158 42 Logistic regression 0.86 ± 0.01

Wang et al. (66) 111 31 CNN 0.861

Xing et al. (67) 273 61 Logistic regression 0.843

Wang et al. (68) 512 191 Wide residual network 0.827

Chen et al. (69) 502 180 SACA-DL 0.930
aPerformance evaluation in test data or external validation data.
3D-CNN, three-dimensional convolutional neural network; DL, deep learning; XGB, extreme gradient boosting; SACA-DL, solid attenuation components attention deep learning model.
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trials to validate its efficacy, safety, and reliability. Most previously

mentioned studies are predominantly retrospective analyses,

although some high-quality studies have included prospective

validation cohorts. Most published studies have focused on the

East Asian populations (such as patients from China, Japan, and

South Korea), thereby presenting geographical and demographic

limitations. To address the issue of generalization of the capabilities

of AI models across diverse populations, regulatory bodies such as

the US Food and Drug Administration (FDA) and the European

Medicines Agency (EMA) are actively promoting multicenter trials

and external validation mechanisms to assess their actual efficacy in

heterogeneous populations (88, 89). However, it is encouraging that

the clinical research findings on AI published to date have been

almost entirely positive. A systematic review of 39 randomized

controlled trials (RCTs) conducted as of July 2021 revealed that 77%

(30/39) of AI interventions demonstrated superior efficacy relative

to standard clinical care and 70% (21/30) showed clinically

meaningful improvements in outcomes, with radiology studies

constituting the majority of these findings (90). Other prospective

studies have also demonstrated that CT-based AI tools can enhance

the sensitivity of lung nodule diagnosis (90–92). However, no

further studies with higher levels of evidence have been published

on the prediction of high-risk factors for LUAD. Despite its

promise, AI still faces multiple challenges in clinical applications,

including data privacy, system security, and interoperability. Future

research should include multicenter, large-scale, rigorously

designed clinical trials to fully validate the effectiveness of AI—

particularly DL models—in real-world clinical settings.

Simultaneously, collaboration between clinicians, AI companies,

and regulatory bodies must be enhanced to jointly address complex

ethical and legal issues, thereby promoting the robust and

responsible integration of AI within the healthcare sector.
5 Conclusions

AI-based research on the prediction of high-risk factors for

LUAD shows great potential in medical image analysis and

pathological diagnosis. DL models significantly improve the

accuracy and efficiency of early prediction and diagnosis of lung

cancer by automatically identifying and classifying high-risk factors

in CT images. However, current techniques still face challenges such

as insufficient datasets , high model complexity, poor

interpretability, and data privacy. Future research should focus on

translating cutting-edge technologies into clinical practice through

standardized data collection, lightweight model architectures, and

rigorous evidence-based validation. With the introduction of new

architectures such as transformers, AI is expected to become an

important method to support decision-making in the diagnosis of

high-risk factors and treatment of LUAD.
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