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Transcriptomic analysis reveals
TME-mediated macrophage
IFIT1 upregulation and
CX3CR1 suppression drive
osteosarcoma progression
Keyi Wang †, Huanyang He †, Jiamin Liang, Yuangang Su,
Jinmin Zhao* and Qian Liu*

Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development
and Application Co-constructed by the Province and Ministry, Department of Orthopedics Trauma
and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of
Guangxi Medical University, Nanning, China
Introduction:Osteosarcoma (OS) is one of the most common bone tumors with

an unsatisfactory prognosis for patients. Due to the stagnation in conventional

treatments, researchers are exploring therapeutic targets from the tumor

microenvironment (TME) and tumor-associated macrophages (TAM). Our study

investigates how OS TME influences macrophage gene expression, potentially

informing OS treatment strategies.

Methods: RNA sequencing was performed on bone marrow-derived

macrophages (BMMs) cultured with or without K7M2 conditional medium (CM)

for 48 h to analyze gene expression changes. Single-cell sequencing and PCR

were used to examine the expression levels of IFIT1 and CX3CR1. Their functions

were verified through flow cytometry, cloning, wound healing, and transwell

assays using IFIT1 protein and CX3CR1 inhibitors.

Results: We observed changes in the morphology and transcriptome of BMMs

exposed to K7M2 CM. Differentially expressed genes (DEGs) exhibited complex

interactions and were enriched in multiple functions and pathways. The

upregulation of IFIT1 and the downregulation of CX3CR1 were the most

representative. Inhibiting CX3CR1 can promote TAM polarization, thereby

accelerating the progression of osteosarcoma. Additionally, increasing IFIT1

also promotes osteosarcoma.

Conclusions: Stimulation of the OS TME can change the gene expression of

macrophages. Our findings offer a cellular and molecular reference for future

investigations of therapeutic targets of OS.
KEYWORDS

osteosarcoma microenvironment, tumor-associated macrophages, transcriptome
analysis, IFIT1, CX3CR1
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1 Introduction

Osteosarcoma (OS), a highly prevalent primary bone

malignancy, predominantly occurs in adolescents and young

adults (1). Despite multimodal therapies, the prognosis for

patients with OS remains poor due to tumor heterogeneity and

complex molecular mechanisms (2, 3). Given the stagnation in

conventional treatments, in recent years, researchers have taken

interest in seeking potential therapeutic targets from molecular cell

signaling components involved in tumor microenvironment (TME)

to block OS progression (4, 5). TME is a dynamic network of bone

cells, stromal/vascular/immune components, and calcified matrix

that hijacks physiological pathways to promote tumor survival and

therapy resistance (6, 7). Macrophages are highly plastic myeloid

cells that dynamically adapt to microenvironmental cues, regulating

tissue homeostasis, inflammation, and host defense through diverse

functional phenotypes (8, 9). Macrophages exhibiting tumor

infiltration and microenvironmental accumulation are classified

as tumor-associated macrophages (TAMs) (10).

Within OSmicroenvironments, TAMs emerge as the predominant

infiltrating immune population, constituting up to 50% of neoplastic

cellularity; their density shows clinical correlation with pro-

tumorigenic functions (11, 12). Mirroring the investigative

prioritization of TME biology, recent OS research has strategically

redirected its focus toward TAMs, with the translational objective of

developing targeted therapeutic modalities to enhance clinical

outcomes in OS patients (13). However, the molecular mechanism to

explain the influence of TME on macrophages is still poorly

understood. Transcriptome analysis enables comprehensive and

rapid acquisition of sequence and expression information for nearly

all transcripts in a specific cell or tissue under a given condition,

including protein-coding mRNAs and various non-coding RNAs (14).

By analyzing transcript structure and expression levels, it can reveal

critical biological questions such as gene expression differences,

structural variations, and molecular (15).

In this study, bone marrow-derived macrophages (BMMs) were

grown in a complete a-MEM medium or a conditional medium

(CM) of K7M2 cells for 48 h. Then, we performed RNA sequencing

to explore the gene expression changes. We found that the profiles

of differentially expressed genes (DEGs) functionally engaged with

multiple oncogenic pathways and exhibited significant crosstalk

with TME. The upregulation of IFIT1 and the downregulation of

CX3CR1 are the most representative. These results may promote

the understanding of the roles of macrophages in TME and provide

molecular evidence for novel therapeutic targets of OS.
2 Materials and methods

2.1 Media and reagents

OS cell line K7M2 was kindly provided by Shanghai Whelab

Bioscience Limited.a-MEM, and DMEM and fetal bovine serum

(FBS) were all from Gibco (MD, USA). M-CSF was purchased from

the R&D Biotechnology (Minneapolis, MN, USA). Penicillin/
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streptomycin (PS), TRIzol® lysate, and RevertAid™ reverse

transcriptase kits were sourced from Thermo Fisher Scientific

(Scoresby, VIC, Australia). Qubit™ RNA assay kit was from Life

Technologies (Waltham, MA, USA).
2.2 OS cell line culture

K7M2 cells were propagated in DMEM (10% FBS, 37°C, 5%

CO2/95% air, >95% humidity). The CM of K7M2 (2.5 × 105 cell/

mL) was collected and used for further experiments.
2.3 Isolation of BMMs

C57BL6/J mice were used at 6 weeks of age. Following

epiphyseal osteotomy of murine femora and tibiae, the bone

marrow was perfused with a-MEM. The cellular suspension

underwent differential centrifugation prior to resuspension in

complete medium (a-MEM with 10% FBS, 1% PS, and 25 ng/mL

M-CSF) for T75 priming.
2.4 K7M2 CM intervention

The complete a-MEM medium was renewed every 2 days until

the BMMs reached approximately 95% growth. Following

enzymatic dissociation and differential centrifugation, cellular was

seeded in 6-well plates (2.5 × 105 cells/well). The complete a-MEM

medium or a-MEM medium containing 20% K7M2 CM was used

to culture BMMs respectively for 48 h.
2.5 CCK8 assay

Treated cells in 96-well plates were incubated for 48 h. CCK8

reagent (10 mL/well) was then added and incubated for 3 h, and

absorbance was measured at 450 nm.
2.6 Immunofluorescence

BMMs were fixed with 4% paraformaldehyde, permeabilized using

0.1% Triton X-100, and blocked with 5% BSA. Anti-CD206 and anti-

CD163 antibody (Zenbio, Chengdu, China) were incubated overnight

at 4°C, followed by secondary antibody and Diamidino-2-phenylindole

dihydrochloride (DAPI) counterstaining.
2.7 RNA extraction

Following RNA isolation from BMMs, conditioned with K7M2

secretome and untreated counterparts using the TRIzol™ reagent,

RNA integrity and concentration were quantified via Qubit™ 2.0

fluorometer with the corresponding RNA assay kit.
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2.8 RNA-sequencing and transcriptome
analysis

RNA-seq libraries were assembled with Hieff NGS™ MaxUp

Dual-mode mRNA Library Prep Kit (Yeasen, Shanghai, China),

followed by DNBSEQ-T7 platform (MGI Tech, Shenzhen, China)

sequencing (n = 3).

Sequencing datasets underwent quality control processing with

Trimmomatic (v0.36) and FastQC (v0.11.2) for adapter trimming

and read visualization. A representative subset of 10,000 high-quality

reads was randomly subsampled for taxonomic profiling using

BLASTN against the NCBI NT database. Genome-guided

alignment was subsequently executed via HISAT2 (v2.1.0) with

GRCh38 reference genome, followed by alignment quality metrics

computation using RSeQC (v2.6.1). Gene expression quantification

was conducted via transcripts per million (TPM) normalization.

Differential expression profiling employed DESeq2 (v1.12.4) with

stringent thresholds (FDR <0.05, absolute log2FC >2). Significantly

altered genes underwent functional annotation through STRING

database (v11.5) for protein–protein interaction networks (PPI)

reconstruction; topGO (v2.24.0) for gene ontology (GO)

enrichment and clusterProfiler (v3.0.5) for EuKaryotic Ortholog

Groups (KOG) and KEGG analysis.
2.9 Single-cell RNA sequencing analyses

GSE162454 (16, 17) scRNA-seq data (.h5) and annotations were

obtained from Tumor Immune Single-Cell Hub (TISCH),

processed with MAESTRO/Seurat in R, and re-clustered via t-SNE.
2.10 Real-time PCR

Transcript levels of Ifit1 and Cx3cr1 were quantified via SYBR

green-based RT-PCR. Normalization employed endogenous b-
actin, with primer sequences detailed in Table 1.
2.11 Flow cytometry

TAMs were washed with PBS, stained with anti-CD206 and

anti-CD86 antibody (Thermo Fisher, MD, USA) for 30 min and

then analyzed by flow cytometry (BD Accuri C6 Plus).
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2.12 Wound-healing assay

The scratch insert was removed following K7M2 cells (104 per

well) attachment. During treatment of BMMs with K7M2 CM,

JMS-17-2 (0.25nM, MedChem, Express New Jersey, USA) was

either added or omitted. After 48 h, the medium was replaced

with complete a-MEM. Following a subsequent 48-h culture

period, supernatants were collected as CM (JMS-17–2 free) and

iCM (JMS-17–2 supplemented). K7M2 cells were cultured in

DMEM (1% FBS) supplemented with 20% CM, iCM or 10 ng/mL

IFIT1 (Cusabio, Wuhan, China). Images were captured at 0/48/

72 h.
2.13 Transwell assay

K7M2 cells (104 per well) were seeded in serum-free medium

atop a matrigel-coated (invasion) or uncoated (migration) transwell

insert. Migrated/invaded cells on the lower membrane were fixed

and stained (crystal violet) after 48 h.
2.14 Clinical database analysis

We have extracted the gene expression profiles and clinical data

of OS patients from TARGET (https://ocg.cancer.gov/programs/

target). Kaplan–Meier curves were generated using the survival

package in R software. The correlation plot for multiple genes was

displayed using the pheatmap package in R software (version 4.0.3).

We extracted data in TPM format from the TCGA database

(https://portal.gdc.cancer.gov). We performed univariate Cox

proportional hazards regression analyses and used the forest-plot

package to generate a forest plot. Additionally, the nomogram was

constructed using the rms package.
3 Results

3.1 Morphological alterations and M2
polarization of BMMs following co-culture
with K7M2 CM

To observe the effect of OS TME on macrophages, we co-

incubated BMMs with K7M2 CM. As shown in Figure 1, there were
TABLE 1 The primer sequences.

Gene Forward (5’-3’) Reverse (5’-3’)

Ifit1 CTCCACTTTCAGAGCCTTCG TGCTGAGATGGACTGTGAGG

Cx3cr1 GAGTATGACGATTCTGCTGAGG CAGACCGAACGTGAAGACGAG

Actb TCCTCCCTGGAGAAGAGCTA ATCTCCTTCTGCATCCTGTC
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obvious changes in the morphology of tested BMMs. The BMMs

exposed to K7M2 CM grew far from one another in whirling arrays

and presented with flat, elliptical or amorphous shape, which was

different from the slender and fusiform shape of the control group.

CD206 is a marker of pro-tumor M2 macrophage (18). CD163+ M2

macrophages also correlate with tumor progression (19). The

immunofluorescence results showed that under stimulation by

K7M2 CM, BMMs change toward M2-type TAM (Figures 1C, D

and Supplementary Figure S1A, B).
3.2 Overview of transcriptome sequencing
data

RNA-seq raw data underwent rigorous quality control. High-

confidence clean reads demonstrated Q30 scores exceeding 97%

across biological replicates, with genomic Guanine-Cytosine (GC)

content stabilized from 51.65% to 52.39% (Table 2). Alignment to

the Mus musculus reference genome achieved 99% total mapping

efficiency, including 94.8% to 95.17% uniquely aligned reads
Frontiers in Oncology 04
(Table 3). The raw data employed in the analysis demonstrated

adequate quality.
3.3 DEGs analysis and construction of PPI
network

RNA-seq differential expression profiling revealed 1,473

significantly dysregulated transcripts in the experimental cohort.

Among these DEGs, 784 were upregulated and 689 were

downregulated in BMMs exposed to K7M2 CM as visualized in

Figure 2A. The volcano diagram was conducted for the differential

expression trend and the DEGs distributions between different

groups were analyzed using the hierarchical clustering heatmap

method (Figures 2B, C). Figure 2D shows the PPI network of DEGs.

DEGs were represented as nodes whose size was proportional to the

degree, and the interactions between DEGs were depicted as edges.

Following intersection analysis of upregulated/downregulated gene

subsets, a dual-criteria selection framework identified overlapping

candidates between the top 10 most significantly DEGs and the hub
FIGURE 1

The morphology of bone marrow-derived macrophage (BMM) changes after co-culture with K7M2 conditional medium (CM). (A) Representative
image in different groups after being fixed with 4% paraformaldehyde (PFA). Scale bar, 100 mm. (B) Cell viability of BMMs following a 48-h treatment
with or without K7M2 CM, assessed by CCK-8 assay. (C) Representative immunofluorescence images of CD206-positive cells stimulated with or
without K7M2 CM. (D–E) Quantification of CD206 immunofluorescence intensity. * p < 0.05, ** p < 0.01, *** p < 0.001.
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genes with maximal node degrees in the PPI network. This

integrative approach revealed Ifit1 and Cx3cr1 as consensus

biomarkers (Figure 2E).
3.4 GO and KOG enrichment analysis

Multi-dimensional functional annotation GO, KOG, and

KEGG pathways was systematically implemented to delineate the

biological significance of DEGs. As shown in Figures 3A, B,

functional classification was displayed on the horizontal axis,

DEGs were represented by light colored columns, while the total

genes were represented by the dark ones. The functional annotation

demonstrated enrichment patterns of up and down-regulated DEGs

across GO categories. KOG analysis was performed on upregulated

and downregulated DEGs, only the top 10 functions with the

highest enrichment were displayed. Transcriptional profiling

revealed 14 upregulated DEGs demonstrating statistically

significant associations with “signal transduction mechanisms”

and “post-translational modification, protein turnover, and

chaperones” (Figure 3C). As for downregulated DEGs, 10 DEGs

participated in “cell cycle control, cell division, chromosome

partitioning”, and 9 participated in “signal transduction

mechanisms” (Figure 3D). GO and KOG analyses provide
Frontiers in Oncology 05
directional guidance for further in-depth understanding of gene

functions and biological processes.
3.5 KEGG enrichment analysis

KEGG pathway annotation identified significant enrichment of

upregulated DEGs in “viral protein interaction with cytokine and

cytokine receptor” and “antigen processing and presentation”. At

the same time, the downregulated DEGs were mostly related to

“mismatch repair” and “DNA replication” (Figures 4A, B). KEGG

analysis facilitates the identification of genes involved in the

pathogenesis of OS. Additionally, it enables the mapping of these

genes to specific metabolic pathways and serves as a basis for drug

and material design, thereby facilitating clinical translation (20).
3.6 Expression of Ifit1 and Cx3cr1

To investigate the specific expression profiles of Ifit1 and

Cx3cr1 genes, we analyzed scRNA-seq data from tissues of

patients with primary OS (Figure 5A). Both IFIT1 (Figures 5B, D)

and CX3CR1 (Figures 5C, E) exhibited high expression in

monocyte/macrophage subpopulations, aligning with prior BMM
TABLE 2 Quality control of the sequencing data.

Sample
Total reads

count
Total bases count

(bp)
Clean reads

count
Clean bases count

(bp)
Clean Q30

(%)
Clean GC

(%)

C1 64546500 9681975000 62441134 9016123502 97.59% 52.39%

C2 65956542 9893481300 64394164 9299028201 97.84% 52.15%

C3 55837134 8375570100 53812340 7854563724 97.37% 52.05%

P1 64962148 9744322200 63060392 9174214765 97.76% 51.70%

P2 58170278 8725541700 55983736 8176019241 97.35% 51.65%

P3 62170498 9325574700 60055868 8706097773 97.49% 51.95%
TABLE 3 Reads number of Mus musculus and the summary of mapped data.

Sample Total reads Total mapped Multiple mapped Uniquely mapped
Mus musculus

reads number (‱)

C1
61285544
(100.00%)

60852808
(99.29%)

2588071
(4.22%)

58264737
(95.07%)

8333

C2
62237802
(100.00%)

61802307
(99.30%)

2801468
(4.50%)

59000839
(94.80%)

8191

C3
53020786
(100.00%)

52730524
(99.45%)

2282296
(4.30%)

50448228
(95.15%)

8367

P1
62342316
(100.00%)

61958998
(99.39%)

2736798
(4.39%)

59222200
(95.00%)

8572

P2
55027012
(100.00%)

54699722
(99.41%)

2329120
(4.23%)

52370602
(95.17%)

8473

P3
59412940
(100.00%)

59060504
(99.41%)

2700507
(4.55%)

56359997
(94.86%)

8583
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sequencing outcomes. The expression levels of IFIT1 and CX3CR3

also influenced patient clinical outcomes. Patients with high IFIT1

expression and low CX3CR3 expression exhibited poorer prognosis,

with a higher cumulative risk of adverse clinical events

(Supplementary Figure S2A, B). We constructed a forest plot

based on the results of Cox proportional hazards regression

analysis and generated a nomogram to investigate the association

between IFIT1 and CX3CR1 expression levels and clinical prognosis

(Supplementary Figure S2D, E). PCR assessed the expression levels

of Ifit1 and Cx3cr1, revealing that upon intervention with K7M2

CM, Ifit1 expression was significantly upregulated, whereas Cx3cr1

expression was downregulated (Figures 5F, G).
Frontiers in Oncology 06
3.7 Function of IFIT1 and CX3CR1

We employed a CX3CR1 inhibitor (JMS-17-2) and the IFIT1

protein to investigate the functions of CX3CR1 and IFIT1 in the OS

TME. CCK-8 assays revealed that BMMs exhibited slight

proliferation in K7M2 CM, while JMS-17–2 showed no

cytotoxicity toward BMMs. Furthermore, CX3CR1 inhibition did

not suppress alterations in cell viability induced by TME

(Figure 6A). Flow cytometry results demonstrated that K7M2 CM

promoted M2 polarization of BMMs, and JMS-17–2 further

enhanced the generation of M2-type TAMs (Figures 6B, C and

Supplementary Figure S1C–E). These findings suggest that the
FIGURE 2

Analysis of differentially expressed genes (DEGs) by RNA sequencing. (A) Statistical bar chart of the differential expression analysis. (B) Volcano plots
for DEGs between the K7M2 CM co-culture and control groups. (C) Clustering heatmap of DEGs. (D) Comparative Analysis of protein–protein
interaction (PPI) networks. (E) Venn diagram for the upregulated and downregulated genes.
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CX3CR1 receptor may functionally suppress M2 polarization of

TAMs. CM were collected from the control group BMMs (2.5 × 105

cell/mL), while iCM were collected from JMS-17-2-treated BMMs

(2.5 × 105 cell/mL), both of which were induced by K7M2 CM, to

investigate the impact of Cx3cr1 downregulation on OS. Following

stimulation with K7M2 CM, BMMs in turn promoted the migration
Frontiers in Oncology 07
and invasion of K7M2 cells. Furthermore, the suppression of

CX3CR1 expression amplified the promoting effects of TAMs on

K7M2 cells. Compared with the control group, K7M2 cells

subjected to IFIT1 intervention exhibited enhanced migratory and

invasive capabilities, suggesting that the upregulation of IFIT1

expression also exerts a pro-tumorigenic effect (Figures 6D–G).
FIGURE 3

Gene ontology (GO) and KOG enrichment analysis. (A) GO annotation classification bar plot of upregulated genes. (B) GO annotation classification
bar plot of downregulated genes. (C) Significantly enriched functional interaction network of upregulated genes. (D) Significantly enriched functional
interaction network of downregulated genes.
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4 Discussion

TME-mediated immunotherapy brings new possibilities for the

treatment of OS (21). TME has become a central focus of oncology

due to its multifaceted involvement in oncogenesis, disease

evolution, metastatic dissemination, and therapeutic recalcitrance

(22). As pivotal effectors in tumor immunology, macrophages can

be recruited to TME and induce tumoricidal immune responses

through cytokines and/or chemokines. The application of

macrophages for anti-tumor delivery is regarded as one of the

most promising methods (23, 24). Previously, researchers have

shown that cytokines and bacterial products drive macrophage

ontogeny and phenotypic polarization, which effectively prevent

tumor progression and enhance survival in mice (25). However,

macrophages do not only have a positive killing effect on tumors,

but a double-edged sword relationship (26). TAMs represent the

most abundant immune subset in the TME, displaying a functional

continuum from tumor-suppressive to tumor-promoting states

(27). The functional plasticity of TAMs represents a potential

therapeutic target in cancer treatment, while posing mechanistic

and translational challenges (28). Exploring the impact of TME on

the pro-tumorigenic and anti-tumorigenic features of TAMs is of

great significance for exerting their plasticity in the treatment of OS.

In this study, BMMs were cultured in K7M2 CM for 48 h

followed by transcriptomic profiling to explore the gene expression

changes. The analysis of DEGs focuses on Ifit1 and Cx3cr1 (Figure 2).

IFIT1 is a member of the interferon-induced protein with

tetratricopeptide repeats (IFIT) genes family (29). Although the

antiviral mechanisms of IFIT proteins have been extensively

characterized, recent studies implicated that they may also serve as

critical regulators in oncogenesis (30). Li et al. (31) found that IFIT1
Frontiers in Oncology 08
can enhance pancreatic cancer cell proliferation, migration, and

invasion while modulating epithelial–mesenchymal transition

through Wnt/b-catenin pathway. Liu et al. (32) demonstrated that

IFIT1 silencing suppressed the IL-17/IL-1b expression and

attenuated hepatocellular carcinoma cell migration. Additionally,

the cancer-promoting effects of IFIT1 have been reported in

colorectal cancer, oral squamous cell carcinoma, and

nasopharyngeal carcinoma (33, 34l 35). Our experimental results

demonstrate that the TME upregulates Ifit1 expression in BMMs, and

the IFIT1 protein in turn promotes OS invasion and migration

(Figures 6D–G). Moreover, the role of IFIT1 may be closely related

to STAT1 and b-catenin (Supplementary Figure S3). The inhibition

of IFIT1 may serve as a therapeutic target to impede OS progression.

The CX3CL1-CX3CR1 signaling axis, formed by a ligand–receptor

interaction between transmembrane CX3CL1 and its cognate

receptor, modulates malignant phenotypes encompassing

proliferation, migration, invasion, and apoptosis resistance in

cancer, suggesting its therapeutic relevance (36). Studies have

demonstrated that the inhibition of CX3CR1 promotes macrophage

polarization toward the M2 phenotype, which may be associated with

reduced levels of pro-inflammatory cytokines (e.g., TNF-a, IL-6) and
the suppression of NF-kB signaling (37, 38). Meanwhile, some

researchers have reached opposite conclusions, and these reports

both implicated another chemokine (CCL2) or chemokine receptor

(CCRL2) in addition to CX3CR1. (39, 40). M2 macrophage

polarization is associated with IL-4 and IL-13 (41). Studies have

reported that increased CX3CR1 expression correlates with reduced

IL-4 and IL-13 levels (42). We hypothesize that CX3CR1 inhibition

may promote M2 polarization by enhancing their secretion. As for

skeletal-related diseases, CX3CR1 has been implicated in rheumatoid

arthritis (RA), osteoarthritis (OA), intervertebral disc degeneration
FIGURE 4

KEGG enrichment analysis. (A, B) Functional enrichment scatter plot of upregulated and downregulated genes.
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(IDD), and bone metastasis of cancer, primarily through its roles in

adhering to fibroblast-like synoviocytes (FLSs), endothelial cells,

cancer cells, enhancing osteoclastogenesis, osteogenesis, and

promoting inflammatory responses (43–47). However, most of

these studies concentrate on inflammation and do not extend to

tumors. TME sustains malignancy through hypoxia, reduced pH, and

elevated interstitial fluid pressure (48, 49). CX3CR1 binds to CX3CL1

to mediate adhesion and chemotaxis in TME (50). The infiltration of

M2-polarized TAMs serves as a critical driver of malignant tumor

progression (51–53). Our results demonstrated that the inhibition of

CX3CR1 promoted M2 polarization of macrophages within the

TME, while simultaneously augmenting the pro-tumor effects of

M2-type TAMs on OS (Figures 6B, C). Based on the analysis of
Frontiers in Oncology 09
clinical data and our own sequencing data, we hypothesize that

CX3CR1 may promote M2 polarization by modulating the NFKB1

(Supplementary Figure S3). Reports indicate that CX3CR1 exhibits

both tumor-promoting and tumor-suppressing effects in oncology,

potentially linked to tumor heterogeneity and immune system

complexity (54–58). The function of CX3CR1 in the OS TME is

regulated by hypoxia, bone matrix remodeling, and the immune

microenvironment. Its dual roles (pro-tumorigenic and anti-

tumorigenic) depend on the form of CX3CL1 (membrane-bound

FKN and soluble FKN) and local protease activity (ADAM10/17)

(55). The therapeutic targeting of CX3CR1 for OS requires further

experimental validation and mechanistic investigation. The GO

enrichment analysis shows that K7M2 CM exposure impacts the
FIGURE 5

The expression of IFIT1 and CX3CR1 in OS. (A) The t-SNE plot of single-cell clustering. (B, C) The t-SNE plot of the expression distribution of IFIT
and CX3CR1 in different cells. (D, E) The bar chart of the expression abundance of IFIT and CX3CR1 in different cells. (F, G) Relative expression levels
of Ifit1 and Cx3cr1 in BMMs with or without K7M2 CM, normalized to b-actin.
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cell, binding, and cellular process of BMMs. As for the KOG analysis,

the enrichment network further elucidates the interaction between

functions and DEGs (Figure 3). The sequencing data indicated genes

involved in interaction with cytokine-cytokine receptor, antigen

processing and presentation, and mismatch repair (MMR)

pathways according to the KEGG enrichment analysis (Figure 4).
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Cytokines exert complex and significant effects on tumors (59).

Emerging evidence indicates that blockade of the CCL2-CCR2 axis

suppresses monocyte infiltration and exhibits therapeutic efficacy in

metastatic osteosarcoma (60). Liao et al. (61) found that CCL3

stimulates vascular endothelial growth factor and angiogenesis in

OS by JNK, ERK, and p38 phosphorylation. In the analysis of Tsai
FIGURE 6

The function of IFIT1 and CX3CR1 in osteosarcoma (OS). (A) Cell viability of BMMs after a 48-h treatment with or without K7M2 CM and JMS-17-2,
assessed by CCK-8 assay. (B, C) TAMs treated with or without JMS-17–2 for 48 h were stained with antibodies against CD206 and analyzed using
flow cytometry. (D) Wound-healing assay to assess the migration capabilities of K7M2 cells. (E) Quantification of the K7M2 healing rate. (F) Transwell
assay to assess the migration and invasion capabilities of K7M2 cells. (G) Quantification of migratory and invasive cell areas. * p < 0.05, ** p < 0.01,
*** p < 0.001. ns, no significance, p > 0.05.
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et al. (62), they identified that CCL4 stimulates integrin avb3
expression and OS cell migration via FAK/AKT/HIF-1a pathways.

Other enriched chemokines are also considered as diagnostic or

therapeutic genes of OS such as CCL5, CXCL1, CXCL2, CXCL5, and

CXCL6 (63–66). The differentiation of TAM subsets is involved in

antigen processing and presentation. Antitumorigenic TAMs retain

antigen-presenting cell features including elevated MHCII

expression, phagocytic/tumoricidal activity, and pro-inflammatory

cytokine secretion to activate adaptive immunity, whereas pro-

tumorigenic TAMs exhibit immunosuppression via diminished

MHCII and upregulated inhibitory molecules (67). MMR has an

implication for immunosurveillance and immunotherapy, which is

relevant to tumor mutational burden and immune checkpoint

blockade (68).
5 Conclusions

This study is primarily based on murine sequencing data and

public databases, and the expression patterns and prognostic value

of IFIT1 and CX3CR1 have not yet been comprehensively validated

in clinical samples. Although the roles of key factors such as STAT1

and NF-kB have been preliminarily revealed, the specific

mechanisms require further experimental investigation. These

limitations do not undermine the scientific validity and

innovation of the current findings; instead, they provide clear

directions for future research: expanding clinical sample

validation (using human OS tissues), and in-depth exploration of

signaling pathway regulatory mechanisms (using overexpression/

knockdown models of IFIT1 and CX3CR1). In summary, TME

stimulation can cause changes in the gene expression of

macrophages. Understanding the function of DEGs would help

further enable systematic dissection of OS pathogenesis across

molecular hierarchies. IFIT1 and CX3CR1 may merge as potential

therapeutic targets for OS.
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