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Evaluating metastatic risk in
breast cancer through CTCs
and L1CAM expression

Ni Liao, Qiong Guo, Jingjing Chen, Fulan Tan, Yan Huang,
Jiansheng Yi, Yi Hu, Chen Zeng, Qianhui Ouyang,
Zhouxi Chen and Wei Zhou*

Department of Breast Surgery, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central
South University, Zhuzhou, China

Introduction: Circulating tumor cells (CTCs) and L1 cell adhesion molecule
(LLCAM) are associated with breast cancer (BC) metastasis. This study
investigated their potential as predictive biomarkers for lymph node metastasis
in early-stage invasive breast cancer (ESIBC).

Methods: Ninety-three ESIBC patients were enrolled. CTC phenotypes and
L1CAM expression were detected in preoperative blood samples using the
CanPatrol® CTC system and RNA-ISH. Associations with clinicopathological
variables were analyzed.

Results: CTCs were detected in 79.6% of patients. Hybrid CTCs (H-CTCs) and
L1CAM-positive CTCs were significantly correlated with lymph node metastasis
and Ki-67 expression. A nomogram integrating H-CTCs, L1CAM, and Ki-67
predicted metastatic risk with excellent accuracy (AUC = 0.98).

Discussion: H-CTCs and LICAM-positive CTCs serve as potential blood-based
biomarkers for evaluating metastatic risk in BC.

Conclusion: The combined detection of H-CTCs and L1CAM enhances
preoperative prediction of lymph node metastasis and provides new insights
into BC metastasis mechanisms.

KEYWORDS
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Schematic representation of a liquid biopsy strategy for evaluating metastatic risk in BC based on CTC subtypes and LICAM expression.

Highlights

 This study finds that the positivity rate of CTCs is significantly
associated with tumor size and lymph node metastasis.

* The number of H-CTCs is significantly correlated with
lymph node metastasis in BC, suggesting their potential
predictive value.

Abbreviations: AUC, Area Under the Curve; BC, Breast Cancer; C-index,
Concordance Index; CI, Confidence Interval; CTCs, Circulating Tumor Cells;
E-CTCs, Epithelial Circulating Tumor Cells; EMT, Epithelial-Mesenchymal
Transition; ER, Estrogen Receptor; ESIBC, Early-Stage Invasive Breast Cancer;
H-CTCs, Hybrid Circulating Tumor Cells; HER2, Human Epidermal Growth
Factor Receptor 2; IHC, Immunohistochemistry; ISIBC, Intermediate-Stage
Invasive Breast Cancer; LICAM, L1 Cell Adhesion Molecule; LICAM" CTCs,
L1 Cell Adhesion Molecule-Positive Circulating Tumor Cells; LICAM* T-CTCs,
L1 Cell Adhesion Molecule-Positive Total Number of Circulating Tumor Cells;
M-CTCs, Mesenchymal Circulating Tumor Cells; OR, Odds Ratio; PR,
Progesterone Receptor; ROC, Receiver Operating Characteristic; T-CTCs, Total

Number of Circulating Tumor Cells.
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* L1CAM shows a high positivity rate in CTCs, particularly in
H-CTCs, and is strongly associated with tumor aggressiveness.

* A nomogram model combining H-CTCs, LICAM, and Ki-67
is constructed to predict metastatic risk with high accuracy.

* This study provides novel molecular targets and predictive
tools for assessing metastatic risk in BC.

Introduction

Breast cancer (BC) is one of the most common malignancies
among women worldwide, with an increasing incidence that poses a
serious threat to women’s health and survival (1). Due to
improvements in screening and treatment technologies, the
overall survival rate of BC has improved; however, tumor
heterogeneity and metastatic potential still place a subset of
patients at risk for recurrence and poor prognosis (2). In
particular, lymph node metastasis is a critical factor influencing
staging, treatment strategies, and prognostic evaluation in BC.
Accurate determination of lymph node involvement is therefore
essential for clinical decision-making (3, 4). At present, lymph node
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metastasis is primarily assessed through imaging and intraoperative
pathological biopsy, which are limited in sensitivity and fail to
provide reliable preoperative individualized predictions (5-7).
Consequently, the identification of more sensitive, non-invasive
biomarkers capable of dynamic monitoring has become a key focus
for improving early assessment of metastatic risk in BC.

Circulating tumor cells (CTCs), defined as tumor cells shed
from primary or metastatic sites into the peripheral bloodstream,
act as “seeds” in the process of distant metastasis (8). In recent
years, CTCs have garnered increasing attention as a central
component of liquid biopsy techniques, due to their potential for
non-invasive and real-time monitoring through blood sampling
(9, 10). Studies have shown that the clinical significance of
CTCs lies not only in their quantity but also in their phenotypic
heterogeneity, which is closely associated with tumor aggressiveness
and metastatic capacity (11, 12). Based on their epithelial-
mesenchymal transition (EMT) status, CTCs can be classified into
three subtypes: epithelial (E-CTCs), mesenchymal (M-CTCs), and
hybrid (H-CTCs) (13). H-CTCs, which exhibit both adhesion and
migratory capabilities and represent an intermediate stage of
dynamic EMT transformation, are considered the most
metastasis-prone CTC subpopulation. Their presence has been
strongly associated with increased metastatic risk across various
solid tumors (14). In patients with primary BC, the presence of
circulating tumor cells is also considered an independent adverse
prognostic factor for disease-free survival, overall survival, breast
cancer-specific survival, and distant disease-free survival (15).
Therefore, recognizing the clinical significance of H-CTCs
may enhance the precision of metastatic risk assessment in
cancer patients.

L1 cell adhesion molecule (LICAM) is a transmembrane
glycoprotein belonging to the immunoglobulin superfamily and
plays a crucial role in normal neural development (16, 17). In recent
years, studies have shown that LICAM is aberrantly overexpressed
in various malignancies, where it regulates critical processes such as
cell adhesion, migration, EMT, and chemoresistance (18, 19). In
BC, elevated LICAM expression has been strongly associated with
high tumor grade, lymphovascular invasion, increased metastatic
risk, and poor prognosis (20). Although its biological function has
been investigated at the tissue level, the expression profile of
L1CAM in peripheral blood CTCs and its relationship with EMT
phenotypes remain unclear (21). Given the potential role of LICAM
in maintaining the EMT state of CTCs and promoting their invasive
behavior, studies integrating CTC phenotyping and L1CAM
expression may further elucidate the underlying mechanisms of
metastasis in BC and enhance clinical predictive accuracy (22).

This study aimed to clarify the clinical and biological significance of
CTCs in early-stage invasive breast cancer (ESIBC) by investigating the
association between CTC phenotypic heterogeneity, LICAM
expression, and lymph node metastasis. We focused on the highly
metastatic H-CTC subtype and its LICAM expression pattern to
explore its link with tumor aggressiveness. By identifying metastasis-
relevant CTC subpopulations and molecular markers, our findings
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support the utility of liquid biopsy for early metastatic risk assessment
and offer potential targets for anti-metastatic strategies in personalized
breast cancer management.

Materials and methods
Study design

This study was designed as a retrospective cohort study. The
sample size estimation was based on previous literature and
preliminary clinical pilot data, with the estimated positivity rate of
CTCs set at approximately 30%. With a two-sided ot of 0.05, an effect
size of 0.3, and a statistical power (1-f) of 0.80, the minimum
required sample size was calculated using PASS software (Version
15.0), resulting in 84 cases. Considering an estimated 10% risk of
dropout or incomplete data, a total of 93 patients diagnosed with
ESIBC at Zhuzhou Central Hospital between March 2019 and
December 2021 were ultimately enrolled (Figure 1, Supplementary
Figure S1). The inclusion criteria were as follows: (1) histologically
confirmed ESIBC; (2) no prior history of cancer treatment; (3) an
expected survival time of more than 3 months; and (4) an Eastern
Cooperative Oncology Group (ECOG) performance status score of 0-
2. The exclusion criteria included: (1) significant impairment of
major organ function; (2) receipt of surgical treatment before
enrollment; and (3) incomplete or missing clinical data. All patients
provided written informed consent, and the study protocol was
approved by the Ethics Committee of The Affiliated Zhuzhou
Hospital of Xiangya Medical College Central South University.

Observation indicators

The primary observation indicators of this study were the
preoperative positivity rate of CTCs and the association between
their EMT phenotypes—particularly H-CTCs—and lymph node
metastasis in BC. Secondary indicators included estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) status; Ki-67 expression level; LICAM
expression in CTCs; and its correlation with molecular subtypes.

Data collection

In this study, all clinical data were systematically collected by
trained medical personnel before surgery. The information included
patient age, ER status, PR status, HER2 status, molecular subtype,
tumor size, TNM stage, lymph node metastasis status, and Ki-67
expression level.

The determination of ER and PR status was based on
immunohistochemistry (IHC) results, with >1% of tumor cell
nuclei exhibiting positive staining considered ER- or PR-positive.
HER2 status was also assessed using IHC, with a score of 3+
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FIGURE 1

Flowchart of inclusion and exclusion criteria for patients with ESIBC to ISIBC.

interpreted as positive. Tumor molecular subtypes were classified
according to the 2013 St. Gallen International Expert Consensus
and relevant clinical guidelines, and were divided into five
categories: (1) Luminal A: ER-positive, PR-positive (=20%),
HER2-negative, and low Ki-67 expression (<20%); (2) Luminal B
(HER2-negative): ER-positive, PR-negative or low, HER2-negative,
and high Ki-67 expression (230%); (3) Luminal B (HER2-positive):
ER-positive, HER2-positive, regardless of PR or Ki-67 status; (4)
HER2-overexpression: ER-negative, PR-negative, and HER2-
positive; (5) Triple-negative: ER-negative, PR-negative, and
HER2-negative. Lymph node metastasis was determined based on
the 8th edition of the American Joint Committee on Cancer (AJCC)
TNM staging criteria for BC, combined with intraoperative axillary
lymph node dissection or sentinel lymph node biopsy and
confirmed by postoperative pathological findings. The presence of
cancer cell infiltration in regional lymph nodes was classified as
lymph node metastasis, including macrometastasis (>2.0 mm),
micrometastasis (0.2-2.0 mm), and isolated tumor cells (ITCs,
<0.2 mm). For consistency in grouping, both micrometastases
and ITCs were categorized as lymph node metastasis-positive in
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this study. Ki-67 expression was evaluated by IHC and expressed as
the percentage of positively stained nuclei. A Ki-67 level of >30%
was defined as high expression.

To ensure the objectivity and consistency of the data, all IHC-
stained slides were independently evaluated in a blinded manner by
two senior pathologists, without knowledge of the patients’ CTC
test results. In cases of disagreement, a third experienced
pathologist reviewed the slides and made the final judgment.
Clinical data were independently extracted by dedicated data
collectors based on pathology reports, examination results, and
the hospital information system. The data collectors, laboratory
personnel, and statistical analysts remained blinded to each other’s
work, thereby maintaining the independence and scientific rigor of
data collection and analysis.

IHC

THC was used to assess the expression of ER, PR, HER2, and Ki-
67 antigen. BC tissue specimens were fixed in 10% neutral buffered
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formalin for 24 hours, routinely paraffin-embedded, and sectioned
at a thickness of 4 um. Staining was performed using the Ventana
Benchmark XT automated IHC system (Roche). The primary
antibodies used were as follows: ER (Roche, 790-4324), PR
(Roche, 790-4296), HER2 (Roche, 790-2991), and Ki-67 (Roche,
790-4286). The staining procedure included deparaffinization,
hydration, antigen retrieval, peroxidase blocking, incubation with
primary antibody (37 °C for 30 minutes), DAB visualization, and
hematoxylin counterstaining. Positive and negative controls were
included in each batch to ensure the specificity and reliability of the
staining results.

Isolation, classification, and LICAM
detection of CTCs

CanPatrol® CTC Analysis System (Model: CanPatrol CTC
Analysis System, Manufacturer: SurExam Biotech, Suzhou, China)
was used to isolate, enrich, classify, and detect the expression of
L1CAM in CTCs from preoperative peripheral blood samples. A
5 mL peripheral blood sample was collected from each patient 1-3
days before surgery and stored in CTC-preservation tubes. Samples
were processed within 4 hours of collection. Red blood cell lysis
buffer was added to the samples and incubated at room temperature
for 5-10 minutes to remove erythrocytes. The remaining cells were
then enriched using an 8 um pore-size nanomembrane filter, which
retained the CTCs on its surface.

Following enrichment, the retained cells were fixed and pre-
hybridized directly on the membrane. CTC phenotyping was
subsequently performed using RNA in situ hybridization (RNA-
ISH). SurExam Biotech provided probes targeting the following
genes: epithelial markers (EpCAM, CK8, CK18, CK19),
mesenchymal markers (Vimentin, Twist), a leukocyte exclusion
marker (CD45), and L1CAM. All probes were used at a
concentration of 250 nM. Hybridization was performed at 40°C
for 2 hours using a matched hybridization buffer and a signal
amplification system. Target signals were visualized using
multicolor fluorescent labeling.

Under fluorescence microscopy, different types of CTCs
exhibited distinct fluorescence characteristics: E-CTCs were
CD45-negative and EpCAM/CK-positive, displaying red
fluorescence; M-CTCs were CD45-negative and Vimentin/Twist-
positive, showing green fluorescence; H-CTCs expressed both
epithelial and mesenchymal markers and exhibited dual red and
green fluorescence. LICAM expression was detected using a custom
RNA probe provided by the manufacturer, under hybridization
conditions identical to those used for other probes. A positive
L1CAM signal appeared as purple fluorescence (Supplementary
Figure S2). Due to intellectual property protection, the LICAM
probe sequence was not disclosed; access could be requested from
the manufacturer via a material transfer agreement (MTA). CTCs
were classified as LICAM-positive if at least two visible purple
fluorescent signal dots were observed within the DAPI-stained
nucleus, and the cell was CD45-negative with morphological
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features consistent with CTCs. LICAM signals could be detected
in E-CTCs, M-CTCs, or H-CTCs, and only signals with precise
localization and minimal background interference were
considered valid.

To ensure the accuracy and consistency of detection results,
multiple quality control measures were implemented: (1) each assay
batch included a positive control (BC cell line MCF-7) and a
negative control (peripheral blood leukocytes from healthy
donors); (2) all samples were tested in duplicate, with a
concordance rate of >95% required between replicates; (3) two
qualified technicians independently performed all experimental
procedures; and (4) CTC enumeration and phenotypic
classification were independently interpreted in a blinded manner
by two investigators with intermediate or senior professional titles.
In the event of a discrepancy, a third investigator reviewed the data,
and the consensus result was included in the final statistical analysis.

Statistical analysis

All statistical analyses were performed using SPSS version 26.0
(IBM Corp., USA). The normality of continuous variables was
assessed using the Shapiro-Wilk test. Normally distributed data
were expressed as mean + standard deviation, while categorical
variables were presented as frequencies (percentages). Between-
group comparisons were conducted using the independent samples
t-test. Multivariate logistic regression was used for regression
analysis. A p-value < 0.05 was considered statistically significant.

Results

Demographic and clinical characteristics of
patients

A total of 93 patients with ESIBC to intermediate-stage invasive
breast cancer (ISIBC) who had not received any treatment before
surgery were included in this study. Relevant demographic and
clinical characteristics are summarized in Supplementary Table S1.
The median age of the patients was 51 years, and over 85% were
classified as TNM stage I-II. Hormone receptor positivity was
relatively high, with Luminal A/B representing the predominant
molecular subtypes, accounting for more than 60% of cases.
Approximately one-third of the patients had lymph node
metastasis, and overall Ki-67 expression levels were elevated. In
general, the study population consisted primarily of middle-aged
women with typical features of ESIBC.

Distribution of CTC counts across clinical
subgroups of BC

To investigate the distribution of CTC counts among patients
with BC and their association with clinicopathological features, CTC
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detection was performed on preoperative peripheral blood samples
from 93 patients. The results showed that CTCs were detected in 74
patients (79.6%), with a median count of 3 cells per 5 mL of blood,
ranging from 1 to 43 cells per 5 mL. Correlation analyses between
CTC counts and clinical characteristics were subsequently conducted,
as summarized in Supplementary Table S2. Patients were stratified
based on whether the total number of CTCs (T-CTCs) was =5 cells
per 5 mL. T-CTC counts differed significantly among groups with
different tumor sizes (p = 0.011), suggesting that tumor burden may
influence CTC levels (Figure 2A). However, no significant
associations were found between T-CTCs and other clinical
variables, including ER status, PR status, HER2 status, or molecular
subtype (p > 0.05; Figures 2B-E). In terms of TNM staging, patients at
stage III-IV exhibited a mean T-CTC count of 9.18 + 10.56, slightly
higher than those at stage I-II (7.54 + 7.51), although the difference
was not statistically significant (p = 0.447; Figure 2F). Notably, the
mean T-CTC count in lymph node metastasis-positive patients was
1122 + 10.30, significantly higher than that in patients without
lymph node metastasis (6.14 + 6.69; p = 0.0098; Figure 2G). In
contrast, the difference in T-CTC counts between patients with high
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and low Ki-67 expression was not statistically significant (p =
0.323; Figure 2H).

Taken together, these findings indicate that CTC counts are
closely associated with tumor size and lymph node metastasis,
suggesting that CTC enumeration may serve as a reliable
biomarker reflecting tumor burden and potential metastatic risk.

Distribution of EMT phenotype CTCs
across different clinical features of BC

To further elucidate the distribution patterns and clinical
relevance of CTCs with distinct EMT phenotypes in patients with
BC, a systematic analysis was conducted on CTC-positive
individuals (n = 74). EMT-based classification revealed that
among these patients, E-CTCs were detected in 64.9% (48/74), H-
CTCs in 70.3% (52/74), and M-CTCs in 39.2% (29/74).

Subsequent analyses evaluated the association of each EMT
phenotype with TNM stage, lymph node metastasis, and Ki-67
expression level. The number of H-CTCs varied across TNM stages
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Distribution of T-CTC counts across BC clinical and pathological subgroups. (A) Comparison of T-CTC levels across different tumor sizes;

(B—E) Comparison of T-CTC levels by ER status, PR status, HER2 status, and molecular subtype (Luminal A/B, HER2-positive, triple-negative);

(F) Comparison of T-CTC levels across TNM stages; (G) Comparison of T-CTC counts between patients with and without lymph node metastasis;
(H) Comparison of T-CTC levels between low Ki-67 expression (< 30%) and high Ki-67 expression (> 30%) groups. N indicates negative; P indicates
positive; E indicates HER2-E. Ns indicates no statistically significant difference; **p < 0.01
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(p = 0.335), though the difference was not statistically significant
(Figure 3A). In contrast, H-CTC counts were significantly higher in
patients with lymph node metastasis than in those without (p = 0.017),
suggesting that H-CTCs may play a key role in metastatic progression
(Figure 3B). Regarding proliferative activity, patients with high Ki-67
expression exhibited significantly higher H-CTC counts (4.40 + 6.329)
compared to those with low Ki-67 expression (2.02 + 3.391), with the
difference reaching statistical significance (p = 0.023; Figure 3C). In
comparison, no significant differences in E-CTC or M-CTC counts
were observed across TNM stage, lymph node status, or Ki-67
expression groups (Supplementary Table S3).

In summary, H-CTCs, characterized by both epithelial and
mesenchymal features, showed strong associations with lymph
node metastasis and Ki-67 expression in BC patients, highlighting
their potential clinical value in assessing tumor progression
and aggressiveness.

Distribution of LLCAM-positive CTCs
(LLCAM™ CTCs) across clinical subgroups
of BC

To further investigate the expression profile and clinical
relevance of LICAM in CTCs, LICAM expression was assessed in
74 BC patients with CTC positivity. The results showed that
L1ICAM-positive expression in CTCs was detected in 53 patients
(71.6%), indicating a relatively high expression rate of LICAM
among CTCs in BC. Specifically, 41 patients (55.4%) exhibited
L1CAM expression in H-CTCs; 25 patients (33.8%) showed LICAM
positivity in E-CTCs; and 18 patients (24.3%) had LICAM expression
in M-CTCs.

The results of the clinical correlation analysis are presented in
Supplementary Table S4. No significant association was observed

10.3389/fonc.2025.1686166

between the number of LICAM-positive T-CTCs (LICAM™ T-
CTCs) and TNM stage (Figure 4A). However, stratification by
lymph node metastasis revealed a significant difference: patients
with lymph node metastasis had a mean LICAM" T-CTC count of
5.05 + 6.987, which was significantly higher than that of patients
without metastasis (2.58 + 4.849, p = 0.048; Figure 4B).
Additionally, the Ki-67 high-expression group showed a
significantly greater number of LICAM" T-CTCs (5.02 + 6.989)
compared to the low-expression group (2.51 + 4.726, p = 0.042;
Figure 4C), suggesting that LICAM" T-CTCs may be associated
with tumor cell proliferative activity. Further analysis of LICAM-
positive H-CTCs (L1ICAM™ H-CTCs) showed no significant
correlation with TNM stage (Figure 4D). However, a statistically
significant difference was observed between patients with and
without lymph node metastasis (p = 0.043; Figure 4E). Moreover,
patients with high Ki-67 expression had significantly higher counts
of LICAM" H-CTCs (3.38 + 5.918) than those with low Ki-67
expression (1.25 * 3.076, p = 0.027; Figure 4F).

In summary, the positivity rate of LICAM in BC CTCs,
particularly the high positivity rate in H-CTCs, was closely
associated with aggressive tumor features such as lymph node
metastasis and elevated Ki-67 index. These findings suggest that
L1CAM+ H-CTCs may serve as a potential blood-based biomarker
for tumor metastatic potential and biological activity.

Analysis of factors influencing lymph node
metastasis in BC

To further investigate the potential factors influencing lymph
node metastasis in BC patients, a multivariate logistic regression
analysis was performed based on six variables: CTC phenotypes (E-
CTCs, H-CTCs, and M-CTCs), TNM stage, LICAM expression,
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FIGURE 3

Distribution of H-CTC counts across clinical subgroups of BC patients. (A) Comparative analysis of H-CTC levels among patients with different TNM
stages; (B) Comparison of H-CTC levels between patients with and without lymph node metastasis; (C) Comparison of H-CTC levels between low
Ki-67 expression (< 30%) and high Ki-67 expression (> 30%) groups. Ns indicates no statistically significant difference; **p < 0.01.
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FIGURE 4

Comparison of LLICAM* CTC counts among BC clinical subgroups. (A—C) Comparison of LLICAM* T-CTCs between patients with TNM stage I-1I vs
-1V, with and without lymph node metastasis, and between high and low Ki-67 expression groups; (D-F) Comparison of LLICAM* H-CTCs across
the same clinical stratifications. For Ki-67, low expression was defined as < 30% positive tumor cell nuclei, and high expression as > 30%. Ns

indicates no statistically significant difference; **p < 0.01, *p < 0.05.

and Ki-67 levels. The analysis revealed that H-CTCs (odds ratio
[OR] = 1.279, 95% confidence interval [CI]: 0.590-2.539, p =
0.0068), LICAM expression (OR = 8.372, 95% CI: 3.882-17.350,
p=0.0124), and Ki-67 levels (OR = 4.636, 95% CI: 1.243-10.140, p =
0.0292) were significantly associated with the presence of lymph
node metastasis. M-CTCs showed a borderline association (OR =
0.511, 95% CI: 0.138-1.187, p = 0.0529), suggesting potential
predictive value. In contrast, E-CTCs (p = 0.7856) and TNM
stage (p = 0.0768) did not exhibit statistical significance in this
univariate analysis (Supplementary Table S5).

Taken together, these findings indicate that elevated H-CTC
counts, positive LICAM expression, and high Ki-67 levels may serve
as potential risk factors for lymph node metastasis in BC patients.
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Predictive performance of a combined H-
CTCs, LICAM, and Ki-67 model for lymph
node metastasis in BC

To further quantify the risk of lymph node metastasis in BC
patients, a nomogram model was developed based on multivariate
logistic regression analysis, incorporating three variables: H-CTC
count, LICAM expression status, and Ki-67 level. The results
showed that in the nomogram, the score axes for H-CTCs and
L1CAM were substantially longer, indicating that these two
variables contributed most significantly to the prediction of
metastatic risk. A higher H-CTC count was associated with an
increased probability of lymph node metastasis, and positive
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FIGURE 5

Risk factor prediction for lymph node metastasis in BC patients. (A) Nomogram model for quantitative risk assessment of lymph node metastasis in

BC; (B) Calibration curve of the predictive model; (C) ROC curve analysis.

L1ICAM expression also markedly elevated the risk. In contrast, Ki-
67 made a relatively smaller contribution to the model’s predictive
power (Figure 5A). The model yielded a concordance index (C-
index) of 0.980, and the calibration curve demonstrated strong
agreement between the predicted and observed probabilities,
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indicating excellent model performance (Figure 5B). Receiver
operating characteristic (ROC) curve analysis further validated
the discriminative ability of the combined predictive model, with
an area under the curve (AUC) of 0.98, significantly outperforming
each predictor. Specifically, the AUCs for LICAM and H-CTCs
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were 0.87 and 0.84, respectively, reflecting high predictive efficacy,
whereas Ki-67 showed a relatively limited predictive value with an
AUC of 0.69 (Figure 5C).

In summary, the nomogram model integrating H-CTC count,
L1CAM expression, and Ki-67 level demonstrates excellent
accuracy and discriminative capability in predicting lymph node
metastasis in BC, highlighting its promising clinical utility,
particularly for preoperative individualized risk assessment and
therapeutic decision-making.

Discussion

CTCs have emerged as promising non-invasive “liquid biopsy”
biomarkers with significant potential in predicting metastatic risk in
breast cancer (23, 24). Previous studies have predominantly focused
on the association between CTC counts and prognosis; however,
enumeration alone fails to capture the complex biology of tumors
and often neglects phenotypic heterogeneity (25, 26). In this study,
CTCs were classified into EMT subtypes using the CanPatrol
system, and the expression of the molecular marker LICAM was
assessed to systematically evaluate their relationship with lymph
node metastasis in breast cancer.

The findings demonstrated that H-CTCs represented the
predominant subtype, accounting for 70.3% of CTC-positive
samples, and were significantly associated with lymph node
metastasis and high Ki-67 expression. LICAM positivity was
detected in 71.6% of peripheral blood CTCs, primarily localized
to H-CTCs, and served as an independent predictor of lymph node
metastasis (OR = 8.37). A predictive model integrating H-CTC
counts, LICAM positivity, and Ki-67 status achieved excellent
performance, with both the C-index and AUC reaching 0.98,
markedly outperforming any single variable.

These findings are both consistent with prior observations and
significantly innovative. H-CTCs, which simultaneously retain
epithelial adhesion and mesenchymal migratory features, are
considered the most metastasis-prone subpopulation (27). They
have been strongly linked to poor prognosis in lung and colorectal
cancers (28, 29), yet systematic analyses in breast cancer remain
scarce. While earlier work indicated that > 6 CTCs/5 mL and
hybrid/mesenchymal phenotypes correlate with unfavorable
progression-free survival (30), our study highlights the dominance
of H-CTCs and the prognostic significance of LICAM positivity,
particularly in relation to lymph node metastasis and proliferative
index (Ki-67).

Differences in positivity rates across studies mainly stem from
detection thresholds and methodological variations: our study
adopted > 1 CTC/5 mL as the positivity criterion (positivity rate
79.6%), whereas Xu et al. (30) used = 6 CTCs/5 mL (positivity rate
55.6%). Variations also arose from enrichment strategies
(erythrocyte lysis plus nanomembrane vs. Ficoll density gradient)
and patient-stage composition (stage I-II dominated in this study
vs. stage I-IV in Xu et al.). Nevertheless, both studies converge on
the conclusion that higher CTC burden correlates strongly with
invasive and metastatic potential.
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Importantly, our work revealed for the first time the high
expression of LICAM within CTCs, especially H-CTCs, and its
incorporation into a combined predictive model. It significantly
enhanced predictive accuracy, extending prior insights that EMT-
state CTCs are closely related to tumor aggressiveness,
chemoresistance, and adverse outcomes (31). Moreover, recent
evidence suggests that targeting EMT processes or selectively
eliminating H-CTCs could represent novel therapeutic strategies
(32), underscoring the translational implications of our findings.

H-CTGCs, characterized by concurrent epithelial adhesion and
mesenchymal migratory capabilities, exhibit enhanced adaptability
and survival during hematogenous dissemination, which underlies
their high metastatic potential (27). Previous evidence has
demonstrated strong correlations between H-CTCs and poor
outcomes in lung and colorectal cancers (28, 29), and our study
confirms similar trends in breast cancer, showing significant
associations with both lymph node metastasis and Ki-67
overexpression, consistent with earlier observations (33).

This study also provides the first systematic assessment of
L1ICAM expression in peripheral blood CTCs in breast cancer,
with a positivity rate of 71.6%, predominantly localized to H-CTCs.
L1CAM, previously implicated in EMT, migration, and stemness
properties across various malignancies (34, 35), demonstrated
strong predictive value here (OR = 8.37). Mechanistically, it may
promote integrin-mediated adhesion signaling and activate the
FAK/ERK pathway, thereby enhancing CTC motility,
invasiveness, and resistance to hostile microenvironments (16, 36).

Ki-67 is widely established as a proliferative marker in breast
cancer pathology (37, 38). We found that patients with high Ki-67
expression exhibited significantly elevated H-CTC and L1ICAM+
CTC counts, suggesting that proliferative activity may facilitate
CTC release and survival in circulation. By integrating H-CTCs,
L1CAM, and Ki-67, our model achieved an AUC of 0.98, surpassing
the performance of existing nodal prediction models that largely
rely on imaging or histopathological indicators (AUC 0.80-0.90)
(39, 40). Given its non-invasive nature and capacity for dynamic
monitoring, this model shows strong potential for preoperative risk
stratification, occult nodal metastasis detection, neoadjuvant
therapy response evaluation, and recurrence surveillance (41).
Comparable literature also suggests that hybrid EMT-state CTCs
readily form microemboli, increasing circulatory survival and
facilitating distant metastasis (42, 43), reinforcing the central role
of H-CTCs and LICAM in metastatic dissemination.

This study is limited by its single-center, retrospective design,
relatively small cohort, and predominance of early-stage patients,
which may constrain generalizability. The enrichment strategy
(erythrocyte lysis plus nanomembrane filtration) could introduce
methodological bias in EMT subtype distribution. Additionally, the
predictive model has not undergone internal optimism correction
or external validation, raising the possibility of overfitting.
Furthermore, clinical variables such as tumor size, grade, and
lymphovascular invasion were not fully incorporated, and survival
outcomes (DFS/PFS/OS) were not analyzed. Reliable CTC detection
remains challenging given their rarity and lack of absolute specific
markers (44, 45).
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Future studies should involve large-scale, multicenter
prospective cohorts with longitudinal follow-up to validate the
stability and prognostic value of H-CTCs and L1CAM.
Incorporating decision curve analysis, bootstrap validation, and
DeLong testing will further refine the robustness and clinical benefit
of predictive models. Mechanistic studies are also warranted to
elucidate LICAM’s functional role in CTC biology and evaluate its
therapeutic potential, alongside integration of immune
microenvironmental features to construct more comprehensive
models for breast cancer metastasis monitoring and intervention.

Conclusion

This study systematically analyzes the distribution of EMT
subtypes of CTCs and their LICAM positivity profiles in patients
with ESIBC, revealing a close relationship between phenotypic
heterogeneity of CTCs and tumor biological behavior. Specifically,
LICAM+ H-CTCs are significantly associated with lymph node
metastasis, while LICAM+ M-CTCs correlate with PR status,
suggesting their potential involvement in tumor micrometastasis and
hormone receptor-related pathways. ROC analysis further indicates
that the combination of H-CTCs, LICAM+ M-CTCs, and Ki-67
markedly improves the accuracy of predicting lymph node
metastasis. Therefore, EMT-based CTC subtypes characterized by
LICAM positivity not only hold promise as biomarkers but also
provide novel perspectives for molecular subtyping and personalized
management of BC.
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