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TRIM44 axis

Xiao Hu'?!, Tianhang Xie®', Xiao Xiao® and Yuhua Mei***

tFrontiers Science Center for Disease-related Molecular Network, Department of Orthopedic Surgery
and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China,
2Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan
University, Chengdu, Sichuan, China, *Department of Urology, Chongqing University Fuling Hospital,
Chongging, China, “Department of Urology, The First Affiliated Hospital of Chongging Medical
University, Chongging, China, °The First Affiliated Hospital of Chongging Medical University,
Chongging, China

Introduction: Bladder cancer (BCa) is one of the most prevalent genitourinary
malignancies with high recurrence worldwide. A lack of reliable prognostic
biomarkers and effective therapeutic targets hinders its treatment. Emerging
evidence indicates that long noncoding RNAs (IncRNAs) are involved in human
cancers, including BCa. While IncRNAs hold enormous promise, their specific
roles and mechanisms in BCa remain largely unexplored. Here, we identify the
IncRNA ELDR as a pivotal oncogenic driver in BCa.

Methods: RT-gPCR was used to analyze the expression patterns of ELDR, miR-
1343-3p and TRIM44. CCK-8, colony formation, EdU, and Transwell assays were
used to detect the effect of ELDR on cell proliferation, migration, and invasion.
The association between ELDR, miR-1343-3p and TRIM44 was analyzed by
bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of
the ELDR-miR-1343-3p-TRIM44 axis in bladder cancer cell behavior
was demonstrated.

Results and Discussion: ELDR is significantly upregulated in BCa tissues, and its
high expression correlates with aggressive clinicopathological features and
predicts poor prognosis in BCa patients. Functional experiments demonstrate
that ELDR enhances BCa cell proliferation, colony formation, migration, and
invasion in vitro and accelerates tumor growth in vivo. Mechanistically, ELDR
functions as a competitive endogenous RNA (ceRNA) by sequestering tumor-
suppressive miR-1343-3p in the cytoplasm, which consequently leads to the
upregulation of the oncogene TRIM44. Our findings unveil the ELDR/miR-1343-
3p/TRIM44 axis as a crucial pathway in BCa progression, establishing ELDR as a
promising prognostic biomarker and an attractive candidate for the development
of targeted therapies.
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1 Introduction

Bladder cancer, ranking as the second most prevalent
malignancy of the genitourinary system, accounts for over
573,000 new cases globally each year (1). The characteristics of
frequent recurrence and metastasis are the main reasons for its poor
prognosis (2). The past decade has been important for strides in
BCa detection and management. However, the prognosis for most
patients remains poor. High recurrence rates and the aggressive
course of disease mean an undesirable 5-year survival rate of BCa
(3). Therefore, identifying novel genes and pathways involved in
BCa is critical for developing new diagnostic and
therapeutic approaches.

Long non-coding RNAs (IncRNAs) are defined as transcripts
longer than 200 nucleotides with limited protein-coding potential.
They have emerged as critical regulators of gene expression and
cellular homeostasis (4). Although initially considered
“transcriptional noise”, recent studies reveal that IncRNAs
participate in diverse biological processes, including chromatin
remodeling, RNA stability modulation, and signal transduction
cascades. Interactions with proteins, DNA, or other RNAs enable
these functions (5, 6). The roles of IncRNAs in disease pathogenesis
—particularly cancer—are increasingly recognized. Numerous
dysregulated IncRNAs operate as competitive endogenous RNAs
(ceRNAs). They contribute to tumor initiation, metastasis, and
therapy resistance by sponging tumor-suppressive miRNAs and
derepressing oncogenic target genes (7, 8). For example, Xue et al.
revealed that IncRNA LUESCC is highly expressed in ESCC and acts
as a ceRNA to promote tumor proliferation, invasion, and
migration by targeting the miR-6785-5p/NRSN2 axis (9).
Furthermore, Sheng et al. observed a clear upregulation of
LINCO01980 in HCC, which they correlated with a poor prognosis
(10). Despite its association with various cancers, the role of
IncRNA ELDR in BCa remains unclear. A previous study on oral
cancer demonstrated that ELDR enhances tumor growth by
promoting ILF3-cyclin E1 signaling (11). Additionally, ELDR is
highly expressed and has potential as a biomarker of poor prognosis
in the serum extracellular vesicles of breast cancer patients (12).
These findings support the role of ELDR as an oncogenic molecule,
suggesting the need for further studies on its mechanistic role in
bladder carcinogenesis progression.

MicroRNAs (miRNAs) are small non-coding RNAs of 21-25
nucleotides. They are master regulators of carcinogenesis,
modulating oncogenes and tumor suppressors at the post-
transcriptional level (13). In BCa, dysregulated miRNAs drive
malignant phenotypes—including proliferation, migration,
invasion, and therapy resistance—through interactions with key
genes (14, 15). For instance, Zhang et al. displayed that miR-15b-
3p-mediated inhibition of ferroptosis could weaken bicalutamide
sensitivity in prostate cancer (16). As a tumor suppressor gene,
miR-1343-3p has been reported to be downregulated in expression
in a variety of malignancies (17-19). Notably, Lai et al. revealed that
miR-1343-3p can serve as an early screening marker for BCa (20).
However, the potential mechanism of miR-1343-3p in BCa needs to
be further explored.
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Tripartite motif-containing 44 (TRIM44), a cytoplasmic and
nuclear regulatory protein (21), is dysregulated in multiple human
malignancies. Previous research indicated elevated TRIM44 levels
in ovarian cancer drive tumor progression via activating the NF-kB
pathway (22). It also correlates with aggressive clinical behavior in
prostate cancer (23). A previous study demonstrated that TRIM44
was a risk factor affecting BCa (24); however, the underlying
mechanism by which TRIM44 regulated BCa development
remained unclear.

In this investigation, we demonstrate that highly expressed
ELDR promotes malignant progression of BCa by targeting the
miR-1343-3p/TRIM44 axis, which is correlated with the poor
prognosis. Therefore, ELDR may serve as a diagnostic biomarker
and therapeutic target for BCa patients.

2 Materials and methods
2.1 Clinical tissue specimens collection

Primary BCa tumor tissues and paired adjacent normal tissues
(atleast 3 cm from the edge of cancer tissues) were acquired from 58
treatment-naive patients undergoing curative resection at the First
Affiliated Hospital of Chongqing Medical University (2019-2021).
All cases received histopathological confirmation by two
independent pathologists, with exclusion criteria encompassing
any preoperative anticancer therapy. Immediately following
surgical excision, tissues were snap-frozen in liquid nitrogen and
cryopreserved at -80°C for molecular analyses. The study protocol
obtained formal approval from the Medical Ethics Committee of
the First Affiliated Hospital of Chongqing Medical University
(2021-199), with written informed consent procured from
all participants.

2.2 Cell culture and treatment

The human urothelial cell lines (SV-HUC-1, J82, T24, UM-UC-
3, 5637, and RT4) were obtained from Wuhan Procell
Biotechnology (Wuhan, China). Cells were maintained at 37°C in
a humidified 5% CO, incubator using the following media: SV-
HUC-1 in F12K basal medium (Gibco, USA), J82 and UM-UC-3 in
Dulbecco’s modified eagle media (DMEM, Gibco, USA), and T24/
5637/RT4 in RPMI-1640 (Gibco, USA). All media contained 10%
bovine serum (FBS; Procell, Wuhan, China) and 1% penicillin/
streptomycin (Sangon, Shanghai, China).

2.3 Cell transfection, plasmids and
oligonucleotides

Overexpression constructs for ELDR (pcDNA3.1-ELDR) and
TRIM44 (pcDNA3.1-TRIM44), along with ELDR-targeting shRNA
(sh-ELDR) and miR-1343-3p mimics/inhibitors, were procured
from Tsingke Biotechnology (Beijing, China). Corresponding
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negative control vectors and oligonucleotides were included. For
gene modulation, cells were transfected using LipofectamineTM
3000 (Invitrogen, USA) per the manufacturer’s protocol, with
plasmid validation via Sanger sequencing.

2.4 RNA isolation, reverse transcription,
and RT-gPCR

Total RNA isolation from cells and clinical specimens was
performed with TRIzol reagent (Abclonal, China). The purified
RNA underwent reverse transcription using the PrimeScript qRT-
PCR kit (Abclonal, China). Subsequently, qRT-PCR analysis was
conducted using the SYBR(R) Prime-Script RT-PCR kit (Abclonal,
China) on an ABI 7500 Real-Time PCR Platform (Applied
Biosystems, USA). Actin and U6 were used as internal controls,
and gene expression levels were normalized to internal controls and
quantified via the 2-ACt method. All samples were run in triplicate.

2.5 Cell counting kit-8 and colony
formation assay

Cells were plated in 96-well plates at a density of 3 x 10° cells
per well. After incubation for 6 h, 24 h, 48 h, 72 h, and 96 h, the
CCK-8 reagent (10 uL, Sangon) was incubated with each well for 1
h at 37°C, 5% CO,. Absorbance was measured at 450 nm using a
microplate reader (Thermo Fisher, USA). About the colony
formation assay, cells (1.5 x 10°/well) were seeded in 6-well plates
and incubated at 37°C, 5% CO, until colonies were visible. The cells
were then fixed with 4% paraformaldehyde and stained with 0.1%
crystal violet, and the colonies were counted.

2.6 Transwell migrating and invasion assay

For migration assays, cells were seeded in RPMI-1640 (500 uL)
at 1x10*density in the upper chamber of Transwell inserts, with
DMEM containing 10% FBS (1000 uL) in the lower compartment.
Following 12 h incubation, migrated cells were fixed and stained
with 0.1% crystal violet (30 min), then imaged using a microscope
(Thermo Fisher, USA). Invasion assays followed identical
procedures except for Matrigel coating (Corning; 1:8 dilution in
serum-free medium) applied to the upper membrane prior to
cell seeding.

2.7 Proliferation assay

Cell proliferation was assessed using an EAU Cell Proliferation
Kit (C0071S, Beyotime), following the manufacturer’s protocol.
Briefly, cells *y of 4x10* cells per well and pretreated for 24
hours. Subsequently, half of the medium was replaced with EdU-
containing buffer (20 pM) for a 3-hour incubation period.
Following fixation and permeabilization, the cells were incubated
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with click reaction solution and DAPI (1:1000 dilution). Three
randomly selected fields per well were imaged, and the results were
averaged for statistical analysis.

2.8 Western blot assay

Total protein was isolated from cells and tissues using RIPA
lysis buffer (Beyotime) supplemented with phenylmethanesulfonyl
fluoride (PMSF) at a 1:100 ratio. Following separation by SDS-
PAGE, proteins were transferred onto PVDF membranes (EMD
Millipore). The membranes were blocked for 1 hour in Tris-
buffered saline (TBS) containing 5% skim milk and then
incubated overnight at 4 °C with the following primary
antibodies: PCNA (Proteintech, 10205-2-AP), GAPDH
(Proteintech, 60004-1-Ig), TRIM44 (Abcam, ab236422), and -
actin (Proteintech, 66009-1-Ig). After washing, membranes were
exposed to a species-matched secondary antibody for 1 hour at
room temperature. Protein signals were finally detected using
enhanced chemiluminescence (Cell Signaling Technology, USA).

2.9 Subcellular fractionation

Nuclear and cytoplasmic fractions were prepared from BCa
cells cultured on 15 cm plates. Following two washes with ice-cold
PBS, cells were gently scraped into a 15 mL Falcon tube. The
resulting cell pellet was resuspended in 1 mL of hypotonic buffer (10
mM HEPES pH 8.0, 1.5 uM MgCl,, 10 mM KCI, 1 uM DTT) and
incubated on ice for 15 minutes to induce cell swelling. After that,
NP-40 was then added to the suspension to a final concentration of
1%, followed by brief vortexing (10 seconds) and centrifugation at
12,000 rpm for 2-3 minutes; the supernatant constituted the
cytoplasmic fraction, while the pellet represented the nuclear
fraction. Total RNA or protein from each compartment was
subsequently extracted using Trizol (Abclonal, China) or RIPA
lysis buffer (Beyotime), respectively, according to the
manufacturers’ instructions. ELDR expression patterns across
cellular fractions were assessed by RT-qPCR, using actin and U6
as internal controls for cytoplasmic and nuclear RNA, respectively.
Finally, fraction purity was validated by immunoblotting with anti-
GAPDH and anti-PCNA antibodies serving as cytoplasmic and
nuclear markers, respectively.

2.10 Tumor xenograft in vivo

Six-week-old male BALB/c nude mice were randomly divided
into three groups (n=5) and housed under SPF conditions. For
xenograft experiments, T24 cells stably transfected with lentiviral
vectors for shRNA against ELDR (1 x 1076/100 uL) were injected
subcutaneously into the back of nude mice. Tumor. Tumor size was
assessed for three consecutive weeks, and after 21 days the mice
received intraperitoneal pentobarbital (150 mg/kg). Death was
confirmed by cervical dislocation, and the tumor tissue was
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weighed. The animal experiments were approved by the Ethics
Committee of the First Affiliated Hospital of Chongqing
Medical University.

2.11 Immunohistochemistry

Tumor specimens were fixed in 10% paraformaldehyde,
decalcified with formic acid, and paraffin-embedded. Consecutive
4-um sections were cut and subjected to deparaffinization and
antigen retrieval (Dako, CA, USA). After blocking with goat
serum, avidin, and biotin solutions, sections were incubated
overnight with anti-Ki67 primary antibody (Abcam, 1:200,
ab15580), followed by 1-hour incubation with secondary antibody
(Abcam, 1:500, ab150077). Stained sections were finally examined
under an inverted microscope (Nikon, Tokyo, Japan).

2.12 Dual luciferase reporter assay

The potential binding site between ELDR and miR-1343-3p was
predicted using the starBase online database. A fragment of the human
ELDR gene containing this site was amplified by PCR. Site-directed
mutagenesis was performed on the predicted miR-1343-3p binding
site within this fragment using a dedicated kit (Stratagene, USA). The
resulting wild-type (wt) and mutant (mut) ELDR sequences were
cloned into the PGL3 vector (GenePharma) to generate ELDR-wt-luc
and ELDR-mut-luc reporter plasmids. Cells were then co-transfected
with either ELDR-wt-luc or ELDR-mut-luc plasmids together with
miR-1343-3p mimics or negative control mimics (NC), using
Lipofectamine " 3000 (Invitrogen). Luciferase activity was measured
48 hours post-transfection using the Dual-Luciferase® Reporter Assay
System (Promega, WI, USA), following the manufacturer’s
instructions. This identical experimental approach was applied to
confirm the interaction between miR-1343-3p and TRIM44.

2.13 AGO2-RIP and MS2-RIP

The Magna RIP Kit (Millipore, USA) was used for RNA
immunoprecipitation (RIP) experiments in accordance with
product guidelines. 5 pg of control IgG or anti-Argonaute 2
(AGO2) antibody (Abcam, USA) was added to pre-cleared BCa
cell lysates in RIP lysis solution, which were then rotated and
incubated for an entire night at 4 °C. After adding protein A/G
magnetic beads to separate RNA-protein complexes, bound RNAs
were released by proteinase K digestion. Using quantitative real-
time PCR, the quantities of precipitated target RNA were measured.

For MS2-RIP validation of endogenous IncRNA-ELDR/miR-
1343-3p binding, wild-type IncRNA-ELDR and its miR-1343-3p
binding-site mutant were cloned into pcDNA3.1-MS2 (12x) to
create pcDNA3.1-MS2-ELDR-WT and pcDNA3.1-MS2-ELDR-
MUT constructs for MS2-RIP validation of endogenous IncRNA-
ELDR/miR-1343-3p binding. In addition to pcDNA3.1-MS2/GFP
(expressing MS2-GFP fusion protein), BCa cells were co-transfected
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with pcDNA3.1-MS2 (vector control), pcDNA3.1-MS2-ELDR-W'T,
or pcDNA3.1-MS2-ELDR-MUT. Using the previously indicated RIP
technique, RNA complexes were immunoprecipitated with anti-GFP
antibody (Abcam, USA) during a 48-hour incubation period.

2.14 Statistical analysis

Data from at least three independent experiments are expressed
as mean + SD and analyzed using GraphPad Prism 9.5.1. Group
comparisons employed Student’s t-test (two groups) or one-way
ANOVA (multiple groups). Associations between ELDR expression
and clinicopathological features were assessed by the chi-square
test. Survival distributions were analyzed with Kaplan-Meier curves
and log-rank testing. Correlation analyses used Pearson’s
coefficients. All tests were two-tailed, with *p* < 0.05 considered
statistically significant.

3 Results

3.1 ELDR is significantly upregulated in BCa
tissues and cell lines, correlating with poor
prognosis

To explore the correlation of ELDR with BCa development, we
analyzed its expression in TCGA-BCa data via the UALCAN web
portal. As shown in Figure 1A, ELDR expression was substantially
upregulated in BCa tissues compared to normal tissues.
Subsequently, using the starBase database, we found that high
ELDR levels were markedly associated with poor prognosis in
BCa patients (Figure 1B). To validate these findings and further
strengthen the clinical significance of ELDR, we obtained tumor
tissues and paired adjacent normal tissues from 58 bladder cancer
patients. The result of the qRT-PCR assay suggested that the ELDR
expression was obviously elevated in BCa tissues (Figure 1C,
Supplementary Table S1). Moreover, we found that higher ELDR
levels predicted a worse prognosis and enhanced malignant
progression (Figures 1D, E, Supplementary Table SI1).
Multivariate analysis of clinicopathological characteristics
identified that high levels of ELDR were independently associated
with tumor size, tumor invasion depth, and TNM stage within our
cohort (Supplementary Table S2). Consistently, qRT-PCR analysis
confirmed that ELDR levels were markedly higher in BCa cell lines
(J82, T24, UM-UC-3, 5637, and RT4) than in the normal
uroepithelial sv-HUC-1 line (Figure 1F). In summary, these
results suggested that ELDR was pronouncedly elevated in BCa
tissues and cell lines, correlating with clinicopathological features.

3.2 ELDR promotes BCa cells malignant
behaviors in vitro

To investigate the potential biological functions of ELDR in BCa
progression, we performed gain- and loss-of-function experiments.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1685792
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Hu et al.

10.3389/fonc.2025.1685792

A B Cc
Gene expression of ELDR in Bladder urothelial carcinoma %
1.00 Overall Survival for ELDR in BLCA —low 0.084
0,06 P<0.001 Rank p=0.028 — high
h Num=
NS I
0759 + (high,1) < 0.064
0,04 %
o
0.03 n
H o0 8 0.041
£ 4
% 002 s-
{ | L_\ o
oo i o S 0.02
I u
o
0.00
ool Normal Primary tumor o 50 100 150 0.00 N T
(n=19) (n=414) ormal Tumor
TCGA samples
D E F
In-house cohort B
1004 0.08 4 -
Log-rank P=0.0195 fuiid
HR=2.553 & E
3 7 5, 0067 i s
s )
g § @ .
3 2 0.044 23, ok
«= 50 2 guw **
8 g 3%
£
o s o
o Expression of ELDR x 2
o p5f PP 9 0.02 5 1
—— ELDR Low (n=29) o e
—— ELDR High (n=29)
=) .
0 12 24 36 48 60 T T2 T3 T4 0‘\ 9“‘ ’<‘? 025 & &>
Time(months) 4*9 ‘)9 & <
S N

FIGURE 1

LncRNA ELDR expression is over-presented in BCa tumors tissues and cells, and predicts poor prognosis in BCa patients. (A) ELDR expression in
tumor and normal tissues in UALCAN database. (B) The overall Survival for ELDR in BCa from starBase database. (C) The expression of ELDR in an in-
house cohort of 58 paired BCa tumor and adjacent normal tissues is shown. (D) The correlation between the expression of ELDR and the prognosis
of patients for the BCa in in-house cohort. (E) ELDR expression in BCa tissue of TNM stage 1-2 (n=33) and BCa tissues of TNM stage 3-4 (n=25)
were determined using qRT-PCR assay. (F) ELDR expression in SV-HUC-1, J82, T24, UM-UC-3, 5637, RT4 cells were detected by qRT-PCR assay.

Data were shown as mean + SD of three. **P <0.01, ***P < 0.001.

Transfection with pcDNA3.1-ELDR significantly increased ELDR
levels in both T24 and 5637 cells, while sh-ELDR transfection
effectively reduced its expression (Figure 2A). Subsequently, we
performed CCK-8, colony formation, transwells and EAU assays in
vitro. As shown in Figures 2B-E, ELDR knockdown substantially
inhibited proliferation, colony formation, migration, and invasion
in both cell lines, whereas its overexpression potentiated these
malignant phenotypes. Taken together, ELDR promotes the
malignant behaviors of BCa cells.

3.3 ELDR knockdown suppresses tumor
growth in vivo

Next, to further assess the effects of ELDR on BCa tumorigenesis
in vivo, we established subcutaneous xenograft models by injecting
nude mice with T24 cells stably expressing control shRNA or two
independent shRNAs targeting ELDR (FigureS 3A, B). Tumors
derived from sh-ELDR-infected T24 cells exhibited significantly
reduced growth rates and smaller volumes compared to those from
control shRNA-infected cells (Figures 3C-E). Additionally,
immunohistochemical (IHC) analysis revealed a striking
reduction in the expression of the proliferation marker Ki67 in
tumors from the sh-ELDR group compared to the control group
(Figure 3F). Collectively, these results demonstrate that ELDR
inhibition could suppress BCa tumor growth in vivo.
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3.4 ELDR localizes to the cytoplasm and
functions as a miR-1343-3p sponge

We explored the molecular mechanisms of ELDR-mediated
BCa tumorigenesis. Considering that the mechanisms and
functions are dictated by subcellular localization, we first defined
the compartmental distribution of ELDR (25). Bioinformatics
prediction using the iLoc-IncRNA database indicated its
predominant cytoplasmic accumulation (Figure 4A). This
distribution was confirmed experimentally through subcellular
fractionation and qRT-PCR in both T24 and 5637 cells, with
fraction purity verified by immunoblotting for GAPDH
(cytoplasmic marker) and PCNA (nuclear marker) (Figures 4B,
C). Based on the established role of cytoplasmic noncoding RNAs in
miRNA sequestration and target derepression, we hypothesized that
ELDR acts as a molecular sponge for specific miRNAs to regulate
downstream oncogenic genes (26).

To identify the underlying mechanism, potential miRNAs
binding to ELDR were predicted using the starBase, miRDB,
IncRNASNP2, and LncBook databases. By intersecting the four
databases, we obtained two predicted miRNAs, miR-1343-3p and
miR-6783-3p (Figure 4D). We performed qRT-PCR assays to
confirm that miR-1343-3p is the direct downstream target of
ELDR, as ELDR overexpression decreased miR-1343-3p levels
while its knockdown upregulated them in both cell lines
(Figure 4E). To ascertain the interaction between ELDR and miR-
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FIGURE 2

ELDR promotes cell proliferation, colony formation, migration, and invasion in BCa cells. T24 and 5637 were transfected with sh-NC, sh-ELDR, pcDNA3.1
or pc-ELDR. (A) ELDR expression was assessed using gRT-PCR assay. (B-D) CCK-8, colony formation, and EDU assays were employed to determine cell
proliferation. (E) Cell migration and invasion were detected using transwell assay. Data were shown as mean + SD. **P <0.01, ***P < 0.001.

1343-3p, we predicted their binding sites using starBase and
constructed the wild-type (WT) and mutant (MUT) ELDR
luciferase reporter genes respectively. We performed the dual-
luciferase assays, and the results of dual-luciferase indicated that
the luciferase activity of ELDR-WT, but not MUT, was markedly
attenuated by miR-1343-3p (Figure 4F, Supplementary Figure S1A).
Furthermore, ELDR expression levels were significantly higher than
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those of miR-1343-3p in both cell lines, supporting its efficacy as a
competing endogenous RNA in binding miR-1343-3p
(Supplementary Figure S1B). It is well established that IncRNA-
miRNA interactions depend on the AGO2 complex; therefore, we
performed AGO2-RIP assays in both cell lines, which revealed that
ELDR directly bound to the AGO2-containing miR-1343-3p
ribonucleoprotein complex, but this interaction was obviously
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FIGURE 3

Ki-67

ELDR knockdown inhibited tumor formation in vivo. (A, B) T24 cells transfected with sh-ELDR and sh-NC were injected subcutaneously into the
back of nude mice. (C-E) The tumors were collected, and the size and weight of tumors were measured. (F) The level of Ki67 in tumor tissues was
evaluated using IHC. Data were shown as mean + SD. **P <0.01, ***P < 0.001.

reduced upon inhibition of miR-1343-3p (Figure 4G,
Supplementary Figure S1C). Subsequently, MS2-RIP assays
demonstrated that endogenous miR-1343-3p was enriched by the
MS2-ELDR-WT complex, further validating endogenous binding
between ELDR and miR-1343-3p (Figures 4H, I). Besides, in BCa
tissues from our in-house cohort, the miR-1343-3p expression level
was significantly downregulated compared to paired adjacent
normal tissues, and correlation analyses revealed that the ELDR
expression level was negatively correlated with miR-1343-3p
(Supplementary Figures S1D, E, Supplementary Table S1).
Altogether, ELDR localized in the cytoplasm sponges miR-1343-
3p to suppress its expression in BCa.

3.5 MiR-1343-3p inhibitor rescued
malignant phenotypes suppressed by ELDR
knockdown in BCa cells

To explore the functional significance of the ELDR/miR-1343-
3p axis in BCa progression, we allocated T24 and 5637 cells into
three experimental groups: shRNA negative control (sh-NC),
ELDR-knockdown (sh-ELDR), and combined ELDR-knockdown
with miR-1343-3p inhibitor (sh-ELDR + miR-1343-3p inhibitor),
followed by CCK-8, colony formation, EdU and transwell assays
(Figures 5A). As displayed in Figures 5B-E, ELDR knockdown
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markedly suppressed proliferation, colony formation, migration,
and invasion capacities in both cell lines. Conversely, the miR-1343-
3p inhibitor attenuated these suppressive effects, rescuing malignant
phenotypes. Collectively, ELDR functions as a driver in BCa
progression by targeting miR-1343-3p.

3.6 ELDR functions as a ceRNA for miR-
1343-3p to upregulate TRIM44 expression

Given that miRNAs exert their function via regulating the
expression of target genes, we employed four bioinformatic
databases—starBase, miRDB, miRTarBase, and TargetScan—to
predict candidate targets of miR-1343-3p. As shown in Figure 6A,
sixteen targets overlapped in the prediction results of these four
databases. We performed qRT-PCR assays, and the results of
showed that only the expression level of TRIM44 mRNA was
sharply decreased after treatment with miR-1343-3p mimic in
T24 and 5637 cells (Supplementary Figure SIF). Conversely, the
miR-1343-3p inhibitor promoted the TRIM44 mRNA expression
level in both cell lines (Figure 6B). A similar pattern of expression
was observed for the TRIM44 protein by western blot assay
(Figure 6C). Subsequently, we confirmed that miR-1343-3p
directly bound to the 3-UTR of TRIM44 via a dual-luciferase
reporter assay. Transfection with the miR-1343-3p mimic
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subcellular localization of ELDR in T24 (left panel) and 5637 (right panel) cells was determined by nuclear and cytoplasmic fractionation experiment
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(D) Online predicting the ELDR target miRNAs. Venn gram showed the intersection miRNAs. (E) gRT-PCR assays were performed to screen target
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mimic or miR-1343-3p mimic followed by luciferase activity measurement. (G) RIP assays were used to pulldown the endogenous RNA associated
with AGO2 in T24 and 5637 cells transfected with miR-1343-3p inhibitor or inhibitor NC, and the relative levels of ELDR and miR-1343-3p were
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***P < 0.001.

significantly suppressed luciferase activity driven by the wild-type
(WT) TRIM44 3’-UTR reporters relative to the miR-NC control in
both cell lines, whereas activity of the mutant (MUT) reporter was
unaffected (Figure 6D). We also detected TRIM44 expression level
in our in-house cohort using western blot and qRT-PCR assays. The
result showed that TRIM44 was markedly upregulated in the tumor
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tissues compared with paired adjacent normal tissues
(Supplementary Figures S1G, SH). Moreover, TRIM44 mRNA
expression level showed a positive relationship with ELDR and an
inverse association with miR-1343-3p (Supplementary Figures SI,
SJ, Supplementary Table S1). Finally, silencing ELDR expression
substantially diminished TRIM44 protein levels in both cell lines,
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transwell assay. Data were expressed as mean + SD, **P <0.01, ***P < 0.001

whereas this reduction was reversed by the miR-1343-3p inhibitor
(Figure 6E). In summary, ELDR promotes TRIM44 expression via
sponging miR-1343-3p.

3.7 TRIM44 overexpression rescued the
inhibition of ELDR knockdown on the
malignant phenotypes of BCa cells

To determine whether TRIM44 mediates ELDR oncogenic
function in BCa, we performed rescue experiments via restoring
TRIM44 expression. ELDR knockdown significantly reduced
TRIM44 protein levels in T24 and 5637 cells, an effect rescued by
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pcDNA3.1-TRIM44 transfection (Figure 7A). Subsequent
functional assays revealed that silencing ELDR inhibited BCa cell
proliferation, colony formation, migration, and invasion in both cell
lines (Figures 7B-E). Notably, TRIM44 restoration abolished ELDR-
silencing-induced suppression of these malignant phenotypes
(Figures 7B-E). Collectively, TRIM44 overexpression rescues the
inhibitory effects of ELDR depletion on BCa oncogenicity.

4 Discussion

As the primary genitourinary malignancy, the prognosis of BCa
remains poor due to a lack of effective diagnostic biomarkers and
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therapeutic drugs (27). It has been reported that abnormal
proliferation is the main reason for the occurrence and malignant
progression of BCa (28). Therefore, there is an urgent need to better
understand the underlying molecular mechanisms of BCa
progression and improve the survival of BCa patients. LncRNAs
have received increasing attention due to their important roles in
the development and progression of human cancers, including BCa
(29-32). For example, TUGI (33) and SNHGI6 (34) showed
overexpression in BCa tumor tissues and served as bad predictors
of overall survival. However, the exact role of IncRNAs in BCa
remains poorly understood. A comprehensive understanding of the
mechanisms of IncRNAs will help reveal promising biomarkers and
therapeutic targets for BCa patients. While the ceRNA paradigm
and the oncogenic role of TRIM44 have been documented in
various cancer types, the upstream regulators that dictate TRIM44
expression in BCa remain poorly characterized.

In this study, we focused our attention on a IncRNA ELDR that
has not been reported in BCa and whose function is still unclear.
Our work provides the first evidence that ELDR functions as a key
oncogenic IncRNA in BCa by operating as a competitive
endogenous RNA (ceRNA). We found that the expression level of
ELDR was obviously upregulated in BCa tissues compared to the
paired adjacent normal tissues, correlating with tumor size,
invasion depth, TNM stage and poor prognosis in BCa patients.
Functional experiments displayed that silencing ELDR inhibited the
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sh-ELDR and miR-1343-3p inhibitor co-transfection was detected by

BCa cell proliferation, colony formation, migration, and invasion,
whereas overexpression of ELDR showed the opposite effect. The
tumor-promoting effect of ELDR in vivo was further validated.
While other well-characterized oncogenic IncRNAs in BCa, such as
UCA1 and MALATI, have been associated with specific processes
like chemoresistance and metastasis, respectively, our date defines a
distinct role for ELDR. We demonstrate that ELDR directly
sequesters miR-1343-3p, which in turn leads to the derepression
of its target oncogene, TRIM44. These results motivate us to further
explore the biological mechanism of ELDR in BCa.

TRIM44, a member of the tripartite motif (TRIM) family E3
ubiquitin ligases, is recognized for its involvement in protein
stability regulation and signal transduction (35, 36).
Accumulating evidence indicates that the crucial roles of TRIM44
in the development of various types of malignant tumors. TRIM44
overexpression was confirmed to be associated with the malignant
phenotype in gastric cancer (37), lung adenocarcinoma (38), and
ovarian cancer (22). The precise molecular effects triggered by the
upregulation of TRIM44 in bladder cancer require further
investigation. our study provides the first evidence of TRIM44
dysregulation in BCa. Moreover, TRIM44 expression was
positively correlated with that of ELDR. Importantly, the
inhibitory effect of ELDR silencing on the BCa malignant
phenotype were significantly attenuated in the presence of
TRIM44 overexpression. Based on these results, we concluded
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cells. (B-D) CCK-8 assay, colony information assay, and EDU assay were employed to determine cell proliferation. (E) Cell migration and invasion
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that ELDR promotes the progression of BCa, at least to some extent,
by stimulating the expression of TRIM44. There is already a lot of
proof that TRIM44 makes the PI3K protein more stable and speeds
up the PI3K/AKT signaling pathways in different malignancies.
This suggests that TRIM44 overexpression caused by ELDR
probably acts in bladder cancer by making this essential cancer-
causing pathway work too hard. This potential association provides
a plausible explanation for the enhanced growth capacity observed
in ELDR-overexpressing cells. Concurrently, the potent pro-
migration and invasion phenotypes induced by ELDR strongly
suggest its involvement in regulating epithelial-mesenchymal
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transition (EMT)—a core mechanism of cancer metastasis. Future
research focusing on this pathway’s effects on key EMT
transcription factors and biomarkers (such as E-cadherin, N-
cadherin, and vimentin) will be crucial for comprehensively
elucidating its role in bladder cancer dissemination.

Our findings indicate promising potential for translational
applications. From a diagnostic perspective, the substantial
increase of ELDR in BCa tissues and its association with
aggressive disease highlight its potential as a predictive biomarker.
Identifying ELDR levels in liquid biopsies, such as serum or urine
extracellular vesicles, may aid in the creation of non-invasive
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The schematic diagram of LncRNA ELDR promotes bladder cancer malignant progression by regulating the miR-1343-3p/TRIM44 axis.

diagnostics for early detection and risk assessment. From a
therapeutic standpoint, the unique and heightened expression of
ELDR in malignancies renders it a compelling target for targeted
therapies. Targeting IncRNAs poses technical challenges; however,
innovative methodologies, including the application of antisense
oligonucleotides (ASOs) or small interfering RNAs (siRNAs)
specifically engineered to inhibit ELDR, may provide a novel and
precise therapeutic approach to disrupt this carcinogenic pathway.

It must be acknowledged that this study has limitations. First,
our clinical relevance analysis is based solely on a single-center
cohort with limited sample size. To establish the post-rain value of
ELDR, validation through independent, multicenter, large-scale
prospective cohorts is essential. Second, although in vitro and in
vivo data strongly support the functional role of the ELDR/miR-
1343-3p/TRIM44 axis, the direct clinical utility of ELDR and its
feasibility for patient treatment remain to be verified. Finally,
confirmatory validation of the proposed downstream pathways—
particularly the direct activation mechanism of the PI3K/AKT
pathway and the role of TRIM44 in inducing epithelial-
mesenchymal transition (EMT) in bladder cancer—has become
the core focus of our current research.

Collectively, these findings delineate the ELDR/miR-1343-3p/
TRIM44 axis as a functionally independent pathway that expands
the known regulatory network of IncRNAs in bladder cancer
pathogenesis (Figure 8).
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