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Introduction: Bladder cancer (BCa) is one of the most prevalent genitourinary

malignancies with high recurrence worldwide. A lack of reliable prognostic

biomarkers and effective therapeutic targets hinders its treatment. Emerging

evidence indicates that long noncoding RNAs (lncRNAs) are involved in human

cancers, including BCa. While lncRNAs hold enormous promise, their specific

roles and mechanisms in BCa remain largely unexplored. Here, we identify the

lncRNA ELDR as a pivotal oncogenic driver in BCa.

Methods: RT-qPCR was used to analyze the expression patterns of ELDR, miR-

1343-3p and TRIM44. CCK-8, colony formation, EdU, and Transwell assays were

used to detect the effect of ELDR on cell proliferation, migration, and invasion.

The association between ELDR, miR-1343-3p and TRIM44 was analyzed by

bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of

the ELDR-miR-1343-3p-TRIM44 axis in bladder cancer cell behavior

was demonstrated.

Results and Discussion: ELDR is significantly upregulated in BCa tissues, and its

high expression correlates with aggressive clinicopathological features and

predicts poor prognosis in BCa patients. Functional experiments demonstrate

that ELDR enhances BCa cell proliferation, colony formation, migration, and

invasion in vitro and accelerates tumor growth in vivo. Mechanistically, ELDR

functions as a competitive endogenous RNA (ceRNA) by sequestering tumor-

suppressive miR-1343-3p in the cytoplasm, which consequently leads to the

upregulation of the oncogene TRIM44. Our findings unveil the ELDR/miR-1343-

3p/TRIM44 axis as a crucial pathway in BCa progression, establishing ELDR as a

promising prognostic biomarker and an attractive candidate for the development

of targeted therapies.
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1 Introduction

Bladder cancer, ranking as the second most prevalent

malignancy of the genitourinary system, accounts for over

573,000 new cases globally each year (1). The characteristics of

frequent recurrence and metastasis are the main reasons for its poor

prognosis (2). The past decade has been important for strides in

BCa detection and management. However, the prognosis for most

patients remains poor. High recurrence rates and the aggressive

course of disease mean an undesirable 5-year survival rate of BCa

(3). Therefore, identifying novel genes and pathways involved in

BCa i s c r i t i ca l fo r deve lop ing new diagnos t i c and

therapeutic approaches.

Long non-coding RNAs (lncRNAs) are defined as transcripts

longer than 200 nucleotides with limited protein-coding potential.

They have emerged as critical regulators of gene expression and

cellular homeostasis (4). Although initially considered

“transcriptional noise”, recent studies reveal that lncRNAs

participate in diverse biological processes, including chromatin

remodeling, RNA stability modulation, and signal transduction

cascades. Interactions with proteins, DNA, or other RNAs enable

these functions (5, 6). The roles of lncRNAs in disease pathogenesis

—particularly cancer—are increasingly recognized. Numerous

dysregulated lncRNAs operate as competitive endogenous RNAs

(ceRNAs). They contribute to tumor initiation, metastasis, and

therapy resistance by sponging tumor-suppressive miRNAs and

derepressing oncogenic target genes (7, 8). For example, Xue et al.

revealed that lncRNA LUESCC is highly expressed in ESCC and acts

as a ceRNA to promote tumor proliferation, invasion, and

migration by targeting the miR-6785-5p/NRSN2 axis (9).

Furthermore, Sheng et al. observed a clear upregulation of

LINC01980 in HCC, which they correlated with a poor prognosis

(10). Despite its association with various cancers, the role of

lncRNA ELDR in BCa remains unclear. A previous study on oral

cancer demonstrated that ELDR enhances tumor growth by

promoting ILF3-cyclin E1 signaling (11). Additionally, ELDR is

highly expressed and has potential as a biomarker of poor prognosis

in the serum extracellular vesicles of breast cancer patients (12).

These findings support the role of ELDR as an oncogenic molecule,

suggesting the need for further studies on its mechanistic role in

bladder carcinogenesis progression.

MicroRNAs (miRNAs) are small non-coding RNAs of 21–25

nucleotides. They are master regulators of carcinogenesis,

modulating oncogenes and tumor suppressors at the post-

transcriptional level (13). In BCa, dysregulated miRNAs drive

malignant phenotypes—including proliferation, migration,

invasion, and therapy resistance—through interactions with key

genes (14, 15). For instance, Zhang et al. displayed that miR-15b-

3p-mediated inhibition of ferroptosis could weaken bicalutamide

sensitivity in prostate cancer (16). As a tumor suppressor gene,

miR-1343-3p has been reported to be downregulated in expression

in a variety of malignancies (17–19). Notably, Lai et al. revealed that

miR-1343-3p can serve as an early screening marker for BCa (20).

However, the potential mechanism of miR-1343-3p in BCa needs to

be further explored.
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Tripartite motif-containing 44 (TRIM44), a cytoplasmic and

nuclear regulatory protein (21), is dysregulated in multiple human

malignancies. Previous research indicated elevated TRIM44 levels

in ovarian cancer drive tumor progression via activating the NF-kB

pathway (22). It also correlates with aggressive clinical behavior in

prostate cancer (23). A previous study demonstrated that TRIM44

was a risk factor affecting BCa (24); however, the underlying

mechanism by which TRIM44 regulated BCa development

remained unclear.

In this investigation, we demonstrate that highly expressed

ELDR promotes malignant progression of BCa by targeting the

miR-1343-3p/TRIM44 axis, which is correlated with the poor

prognosis. Therefore, ELDR may serve as a diagnostic biomarker

and therapeutic target for BCa patients.
2 Materials and methods

2.1 Clinical tissue specimens collection

Primary BCa tumor tissues and paired adjacent normal tissues

(at least 3 cm from the edge of cancer tissues) were acquired from 58

treatment-naïve patients undergoing curative resection at the First

Affiliated Hospital of Chongqing Medical University (2019-2021).

All cases received histopathological confirmation by two

independent pathologists, with exclusion criteria encompassing

any preoperative anticancer therapy. Immediately following

surgical excision, tissues were snap-frozen in liquid nitrogen and

cryopreserved at -80°C for molecular analyses. The study protocol

obtained formal approval from the Medical Ethics Committee of

the First Affiliated Hospital of Chongqing Medical University

(2021-199), with written informed consent procured from

all participants.
2.2 Cell culture and treatment

The human urothelial cell lines (SV-HUC-1, J82, T24, UM-UC-

3, 5637, and RT4) were obtained from Wuhan Procell

Biotechnology (Wuhan, China). Cells were maintained at 37°C in

a humidified 5% CO2 incubator using the following media: SV-

HUC-1 in F12K basal medium (Gibco, USA), J82 and UM-UC-3 in

Dulbecco’s modified eagle media (DMEM, Gibco, USA), and T24/

5637/RT4 in RPMI-1640 (Gibco, USA). All media contained 10%

bovine serum (FBS; Procell, Wuhan, China) and 1% penicillin/

streptomycin (Sangon, Shanghai, China).
2.3 Cell transfection, plasmids and
oligonucleotides

Overexpression constructs for ELDR (pcDNA3.1-ELDR) and

TRIM44 (pcDNA3.1-TRIM44), along with ELDR-targeting shRNA

(sh-ELDR) and miR-1343-3p mimics/inhibitors, were procured

from Tsingke Biotechnology (Beijing, China). Corresponding
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negative control vectors and oligonucleotides were included. For

gene modulation, cells were transfected using Lipofectamine™

3000 (Invitrogen, USA) per the manufacturer’s protocol, with

plasmid validation via Sanger sequencing.
2.4 RNA isolation, reverse transcription,
and RT-qPCR

Total RNA isolation from cells and clinical specimens was

performed with TRIzol reagent (Abclonal, China). The purified

RNA underwent reverse transcription using the PrimeScript qRT-

PCR kit (Abclonal, China). Subsequently, qRT-PCR analysis was

conducted using the SYBR(R) Prime-Script RT-PCR kit (Abclonal,

China) on an ABI 7500 Real-Time PCR Platform (Applied

Biosystems, USA). Actin and U6 were used as internal controls,

and gene expression levels were normalized to internal controls and

quantified via the 2-DCt method. All samples were run in triplicate.
2.5 Cell counting kit-8 and colony
formation assay

Cells were plated in 96-well plates at a density of 3 × 10³ cells

per well. After incubation for 6 h, 24 h, 48 h, 72 h, and 96 h, the

CCK-8 reagent (10 mL, Sangon) was incubated with each well for 1

h at 37°C, 5% CO2. Absorbance was measured at 450 nm using a

microplate reader (Thermo Fisher, USA). About the colony

formation assay, cells (1.5 × 10³/well) were seeded in 6-well plates

and incubated at 37°C, 5% CO2 until colonies were visible. The cells

were then fixed with 4% paraformaldehyde and stained with 0.1%

crystal violet, and the colonies were counted.
2.6 Transwell migrating and invasion assay

For migration assays, cells were seeded in RPMI-1640 (500 mL)
at 1×104density in the upper chamber of Transwell inserts, with

DMEM containing 10% FBS (1000 mL) in the lower compartment.

Following 12 h incubation, migrated cells were fixed and stained

with 0.1% crystal violet (30 min), then imaged using a microscope

(Thermo Fisher, USA). Invasion assays followed identical

procedures except for Matrigel coating (Corning; 1:8 dilution in

serum-free medium) applied to the upper membrane prior to

cell seeding.
2.7 Proliferation assay

Cell proliferation was assessed using an EdU Cell Proliferation

Kit (C0071S, Beyotime), following the manufacturer’s protocol.

Briefly, cells 4y of 4×104 cells per well and pretreated for 24

hours. Subsequently, half of the medium was replaced with EdU-

containing buffer (20 mM) for a 3-hour incubation period.

Following fixation and permeabilization, the cells were incubated
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with click reaction solution and DAPI (1:1000 dilution). Three

randomly selected fields per well were imaged, and the results were

averaged for statistical analysis.
2.8 Western blot assay

Total protein was isolated from cells and tissues using RIPA

lysis buffer (Beyotime) supplemented with phenylmethanesulfonyl

fluoride (PMSF) at a 1:100 ratio. Following separation by SDS-

PAGE, proteins were transferred onto PVDF membranes (EMD

Millipore). The membranes were blocked for 1 hour in Tris-

buffered saline (TBS) containing 5% skim milk and then

incubated overnight at 4 °C with the following primary

antibodies: PCNA (Proteintech, 10205-2-AP), GAPDH

(Proteintech, 60004-1-Ig), TRIM44 (Abcam, ab236422), and b-
actin (Proteintech, 66009-1-Ig). After washing, membranes were

exposed to a species-matched secondary antibody for 1 hour at

room temperature. Protein signals were finally detected using

enhanced chemiluminescence (Cell Signaling Technology, USA).
2.9 Subcellular fractionation

Nuclear and cytoplasmic fractions were prepared from BCa

cells cultured on 15 cm plates. Following two washes with ice-cold

PBS, cells were gently scraped into a 15 mL Falcon tube. The

resulting cell pellet was resuspended in 1 mL of hypotonic buffer (10

mM HEPES pH 8.0, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT) and

incubated on ice for 15 minutes to induce cell swelling. After that,

NP-40 was then added to the suspension to a final concentration of

1%, followed by brief vortexing (10 seconds) and centrifugation at

12,000 rpm for 2–3 minutes; the supernatant constituted the

cytoplasmic fraction, while the pellet represented the nuclear

fraction. Total RNA or protein from each compartment was

subsequently extracted using Trizol (Abclonal, China) or RIPA

lysis buffer (Beyotime), respectively, according to the

manufacturers’ instructions. ELDR expression patterns across

cellular fractions were assessed by RT-qPCR, using actin and U6

as internal controls for cytoplasmic and nuclear RNA, respectively.

Finally, fraction purity was validated by immunoblotting with anti-

GAPDH and anti-PCNA antibodies serving as cytoplasmic and

nuclear markers, respectively.
2.10 Tumor xenograft in vivo

Six-week-old male BALB/c nude mice were randomly divided

into three groups (n=5) and housed under SPF conditions. For

xenograft experiments, T24 cells stably transfected with lentiviral

vectors for shRNA against ELDR (1 × 10^6/100 mL) were injected
subcutaneously into the back of nude mice. Tumor. Tumor size was

assessed for three consecutive weeks, and after 21 days the mice

received intraperitoneal pentobarbital (150 mg/kg). Death was

confirmed by cervical dislocation, and the tumor tissue was
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weighed. The animal experiments were approved by the Ethics

Committee of the First Affiliated Hospital of Chongqing

Medical University.
2.11 Immunohistochemistry

Tumor specimens were fixed in 10% paraformaldehyde,

decalcified with formic acid, and paraffin-embedded. Consecutive

4-mm sections were cut and subjected to deparaffinization and

antigen retrieval (Dako, CA, USA). After blocking with goat

serum, avidin, and biotin solutions, sections were incubated

overnight with anti-Ki67 primary antibody (Abcam, 1:200,

ab15580), followed by 1-hour incubation with secondary antibody

(Abcam, 1:500, ab150077). Stained sections were finally examined

under an inverted microscope (Nikon, Tokyo, Japan).
2.12 Dual luciferase reporter assay

The potential binding site between ELDR and miR-1343-3p was

predicted using the starBase online database. A fragment of the human

ELDR gene containing this site was amplified by PCR. Site-directed

mutagenesis was performed on the predicted miR-1343-3p binding

site within this fragment using a dedicated kit (Stratagene, USA). The

resulting wild-type (wt) and mutant (mut) ELDR sequences were

cloned into the PGL3 vector (GenePharma) to generate ELDR-wt-luc

and ELDR-mut-luc reporter plasmids. Cells were then co-transfected

with either ELDR-wt-luc or ELDR-mut-luc plasmids together with

miR-1343-3p mimics or negative control mimics (NC), using

Lipofectamine™ 3000 (Invitrogen). Luciferase activity was measured

48 hours post-transfection using the Dual-Luciferase® Reporter Assay

System (Promega, WI, USA), following the manufacturer’s

instructions. This identical experimental approach was applied to

confirm the interaction between miR-1343-3p and TRIM44.
2.13 AGO2-RIP and MS2-RIP

The Magna RIP Kit (Millipore, USA) was used for RNA

immunoprecipitation (RIP) experiments in accordance with

product guidelines. 5 μg of control IgG or anti-Argonaute 2

(AGO2) antibody (Abcam, USA) was added to pre-cleared BCa

cell lysates in RIP lysis solution, which were then rotated and

incubated for an entire night at 4 °C. After adding protein A/G

magnetic beads to separate RNA-protein complexes, bound RNAs

were released by proteinase K digestion. Using quantitative real-

time PCR, the quantities of precipitated target RNA were measured.

For MS2-RIP validation of endogenous lncRNA-ELDR/miR-

1343-3p binding, wild-type lncRNA-ELDR and its miR-1343-3p

binding-site mutant were cloned into pcDNA3.1-MS2 (12×) to

create pcDNA3.1-MS2-ELDR-WT and pcDNA3.1-MS2-ELDR-

MUT constructs for MS2-RIP validation of endogenous lncRNA-

ELDR/miR-1343-3p binding. In addition to pcDNA3.1-MS2/GFP

(expressing MS2-GFP fusion protein), BCa cells were co-transfected
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with pcDNA3.1-MS2 (vector control), pcDNA3.1-MS2-ELDR-WT,

or pcDNA3.1-MS2-ELDR-MUT. Using the previously indicated RIP

technique, RNA complexes were immunoprecipitated with anti-GFP

antibody (Abcam, USA) during a 48-hour incubation period.
2.14 Statistical analysis

Data from at least three independent experiments are expressed

as mean ± SD and analyzed using GraphPad Prism 9.5.1. Group

comparisons employed Student’s t-test (two groups) or one-way

ANOVA (multiple groups). Associations between ELDR expression

and clinicopathological features were assessed by the chi-square

test. Survival distributions were analyzed with Kaplan-Meier curves

and log-rank testing. Correlation analyses used Pearson’s

coefficients. All tests were two-tailed, with *p* < 0.05 considered

statistically significant.
3 Results

3.1 ELDR is significantly upregulated in BCa
tissues and cell lines, correlating with poor
prognosis

To explore the correlation of ELDR with BCa development, we

analyzed its expression in TCGA-BCa data via the UALCAN web

portal. As shown in Figure 1A, ELDR expression was substantially

upregulated in BCa tissues compared to normal tissues.

Subsequently, using the starBase database, we found that high

ELDR levels were markedly associated with poor prognosis in

BCa patients (Figure 1B). To validate these findings and further

strengthen the clinical significance of ELDR, we obtained tumor

tissues and paired adjacent normal tissues from 58 bladder cancer

patients. The result of the qRT-PCR assay suggested that the ELDR

expression was obviously elevated in BCa tissues (Figure 1C,

Supplementary Table S1). Moreover, we found that higher ELDR

levels predicted a worse prognosis and enhanced malignant

progression (Figures 1D, E, Supplementary Table S1).

Multivariate analysis of clinicopathological characteristics

identified that high levels of ELDR were independently associated

with tumor size, tumor invasion depth, and TNM stage within our

cohort (Supplementary Table S2). Consistently, qRT-PCR analysis

confirmed that ELDR levels were markedly higher in BCa cell lines

(J82, T24, UM-UC-3, 5637, and RT4) than in the normal

uroepithelial sv-HUC-1 line (Figure 1F). In summary, these

results suggested that ELDR was pronouncedly elevated in BCa

tissues and cell lines, correlating with clinicopathological features.
3.2 ELDR promotes BCa cells malignant
behaviors in vitro

To investigate the potential biological functions of ELDR in BCa

progression, we performed gain- and loss-of-function experiments.
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Transfection with pcDNA3.1-ELDR significantly increased ELDR

levels in both T24 and 5637 cells, while sh-ELDR transfection

effectively reduced its expression (Figure 2A). Subsequently, we

performed CCK-8, colony formation, transwells and EdU assays in

vitro. As shown in Figures 2B-E, ELDR knockdown substantially

inhibited proliferation, colony formation, migration, and invasion

in both cell lines, whereas its overexpression potentiated these

malignant phenotypes. Taken together, ELDR promotes the

malignant behaviors of BCa cells.
3.3 ELDR knockdown suppresses tumor
growth in vivo

Next, to further assess the effects of ELDR on BCa tumorigenesis

in vivo, we established subcutaneous xenograft models by injecting

nude mice with T24 cells stably expressing control shRNA or two

independent shRNAs targeting ELDR (FigureS 3A, B). Tumors

derived from sh-ELDR-infected T24 cells exhibited significantly

reduced growth rates and smaller volumes compared to those from

control shRNA-infected cells (Figures 3C-E). Additionally,

immunohistochemical (IHC) analysis revealed a striking

reduction in the expression of the proliferation marker Ki67 in

tumors from the sh-ELDR group compared to the control group

(Figure 3F). Collectively, these results demonstrate that ELDR

inhibition could suppress BCa tumor growth in vivo.
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3.4 ELDR localizes to the cytoplasm and
functions as a miR-1343-3p sponge

We explored the molecular mechanisms of ELDR-mediated

BCa tumorigenesis. Considering that the mechanisms and

functions are dictated by subcellular localization, we first defined

the compartmental distribution of ELDR (25). Bioinformatics

prediction using the iLoc-lncRNA database indicated its

predominant cytoplasmic accumulation (Figure 4A). This

distribution was confirmed experimentally through subcellular

fractionation and qRT-PCR in both T24 and 5637 cells, with

fraction purity verified by immunoblotting for GAPDH

(cytoplasmic marker) and PCNA (nuclear marker) (Figures 4B,

C). Based on the established role of cytoplasmic noncoding RNAs in

miRNA sequestration and target derepression, we hypothesized that

ELDR acts as a molecular sponge for specific miRNAs to regulate

downstream oncogenic genes (26).

To identify the underlying mechanism, potential miRNAs

binding to ELDR were predicted using the starBase, miRDB,

lncRNASNP2, and LncBook databases. By intersecting the four

databases, we obtained two predicted miRNAs, miR-1343-3p and

miR-6783-3p (Figure 4D). We performed qRT-PCR assays to

confirm that miR-1343-3p is the direct downstream target of

ELDR, as ELDR overexpression decreased miR-1343-3p levels

while its knockdown upregulated them in both cell lines

(Figure 4E). To ascertain the interaction between ELDR and miR-
FIGURE 1

LncRNA ELDR expression is over-presented in BCa tumors tissues and cells, and predicts poor prognosis in BCa patients. (A) ELDR expression in
tumor and normal tissues in UALCAN database. (B) The overall Survival for ELDR in BCa from starBase database. (C) The expression of ELDR in an in-
house cohort of 58 paired BCa tumor and adjacent normal tissues is shown. (D) The correlation between the expression of ELDR and the prognosis
of patients for the BCa in in-house cohort. (E) ELDR expression in BCa tissue of TNM stage 1-2 (n=33) and BCa tissues of TNM stage 3-4 (n=25)
were determined using qRT-PCR assay. (F) ELDR expression in SV-HUC-1, J82, T24, UM-UC-3, 5637, RT4 cells were detected by qRT-PCR assay.
Data were shown as mean ± SD of three. **P <0.01, ***P < 0.001.
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1343-3p, we predicted their binding sites using starBase and

constructed the wild-type (WT) and mutant (MUT) ELDR

luciferase reporter genes respectively. We performed the dual-

luciferase assays, and the results of dual-luciferase indicated that

the luciferase activity of ELDR-WT, but not MUT, was markedly

attenuated by miR-1343-3p (Figure 4F, Supplementary Figure S1A).

Furthermore, ELDR expression levels were significantly higher than
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those of miR-1343-3p in both cell lines, supporting its efficacy as a

competing endogenous RNA in binding miR-1343-3p

(Supplementary Figure S1B). It is well established that lncRNA-

miRNA interactions depend on the AGO2 complex; therefore, we

performed AGO2-RIP assays in both cell lines, which revealed that

ELDR directly bound to the AGO2-containing miR-1343-3p

ribonucleoprotein complex, but this interaction was obviously
FIGURE 2

ELDR promotes cell proliferation, colony formation, migration, and invasion in BCa cells. T24 and 5637 were transfected with sh-NC, sh-ELDR, pcDNA3.1
or pc-ELDR. (A) ELDR expression was assessed using qRT-PCR assay. (B-D) CCK-8, colony formation, and EDU assays were employed to determine cell
proliferation. (E) Cell migration and invasion were detected using transwell assay. Data were shown as mean ± SD. **P <0.01, ***P < 0.001.
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reduced upon inhibition of miR-1343-3p (Figure 4G,

Supplementary Figure S1C). Subsequently, MS2-RIP assays

demonstrated that endogenous miR-1343-3p was enriched by the

MS2-ELDR-WT complex, further validating endogenous binding

between ELDR and miR-1343-3p (Figures 4H, I). Besides, in BCa

tissues from our in-house cohort, the miR-1343-3p expression level

was significantly downregulated compared to paired adjacent

normal tissues, and correlation analyses revealed that the ELDR

expression level was negatively correlated with miR-1343-3p

(Supplementary Figures S1D, E, Supplementary Table S1).

Altogether, ELDR localized in the cytoplasm sponges miR-1343-

3p to suppress its expression in BCa.
3.5 MiR-1343-3p inhibitor rescued
malignant phenotypes suppressed by ELDR
knockdown in BCa cells

To explore the functional significance of the ELDR/miR-1343-

3p axis in BCa progression, we allocated T24 and 5637 cells into

three experimental groups: shRNA negative control (sh-NC),

ELDR-knockdown (sh-ELDR), and combined ELDR-knockdown

with miR-1343-3p inhibitor (sh-ELDR + miR-1343-3p inhibitor),

followed by CCK-8, colony formation, EdU and transwell assays

(Figures 5A). As displayed in Figures 5B-E, ELDR knockdown
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markedly suppressed proliferation, colony formation, migration,

and invasion capacities in both cell lines. Conversely, the miR-1343-

3p inhibitor attenuated these suppressive effects, rescuing malignant

phenotypes. Collectively, ELDR functions as a driver in BCa

progression by targeting miR-1343-3p.
3.6 ELDR functions as a ceRNA for miR-
1343-3p to upregulate TRIM44 expression

Given that miRNAs exert their function via regulating the

expression of target genes, we employed four bioinformatic

databases—starBase, miRDB, miRTarBase, and TargetScan—to

predict candidate targets of miR-1343-3p. As shown in Figure 6A,

sixteen targets overlapped in the prediction results of these four

databases. We performed qRT-PCR assays, and the results of

showed that only the expression level of TRIM44 mRNA was

sharply decreased after treatment with miR-1343-3p mimic in

T24 and 5637 cells (Supplementary Figure S1F). Conversely, the

miR-1343-3p inhibitor promoted the TRIM44 mRNA expression

level in both cell lines (Figure 6B). A similar pattern of expression

was observed for the TRIM44 protein by western blot assay

(Figure 6C). Subsequently, we confirmed that miR-1343-3p

directly bound to the 3’-UTR of TRIM44 via a dual-luciferase

reporter assay. Transfection with the miR-1343-3p mimic
FIGURE 3

ELDR knockdown inhibited tumor formation in vivo. (A, B) T24 cells transfected with sh-ELDR and sh-NC were injected subcutaneously into the
back of nude mice. (C-E) The tumors were collected, and the size and weight of tumors were measured. (F) The level of Ki67 in tumor tissues was
evaluated using IHC. Data were shown as mean ± SD. **P <0.01, ***P < 0.001.
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significantly suppressed luciferase activity driven by the wild-type

(WT) TRIM44 3’-UTR reporters relative to the miR-NC control in

both cell lines, whereas activity of the mutant (MUT) reporter was

unaffected (Figure 6D). We also detected TRIM44 expression level

in our in-house cohort using western blot and qRT-PCR assays. The

result showed that TRIM44 was markedly upregulated in the tumor
Frontiers in Oncology 08
tissues compared with paired adjacent normal tissues

(Supplementary Figures S1G, SH). Moreover, TRIM44 mRNA

expression level showed a positive relationship with ELDR and an

inverse association with miR-1343-3p (Supplementary Figures SI,

SJ, Supplementary Table S1). Finally, silencing ELDR expression

substantially diminished TRIM44 protein levels in both cell lines,
FIGURE 4

Cytoplasmic ELDR acted as a sponge of miR-1343-3p. (A) Subcellular localization of ELDR in cells predicted by iLoc-lncRNA databese. (B) The
subcellular localization of ELDR in T24 (left panel) and 5637 (right panel) cells was determined by nuclear and cytoplasmic fractionation experiment
followed by RT-qPCR analysis. (C) The nuclear and cytoplasmic fractionations as described in B were subjected to immunoblotting analysis.
(D) Online predicting the ELDR target miRNAs. Venn gram showed the intersection miRNAs. (E) qRT-PCR assays were performed to screen target
miRNAs of ELDR by silencing or overexpressing ELDR in BCa cell lines. (F) Online predicting of the interaction sites between ELDR and miR-1343-3p,
T24 and 5637 cells were transfected with reporters containing wild-type or mutated ELDR in the presence or absence of negative control miRNA
mimic or miR-1343-3p mimic followed by luciferase activity measurement. (G) RIP assays were used to pulldown the endogenous RNA associated
with AGO2 in T24 and 5637 cells transfected with miR-1343-3p inhibitor or inhibitor NC, and the relative levels of ELDR and miR-1343-3p were
measured and normalized according to the result in IgG group. (H) Schematic delineating the strategy of MS2-RIP. (I) MS2-RIP assays in T24 and
5637 cells followed by qRT-PCR examining the endogenous binding between ELDR and miR-1343-3p. Data were shown as mean ± SD, **P <0.01,
***P < 0.001.
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whereas this reduction was reversed by the miR-1343-3p inhibitor

(Figure 6E). In summary, ELDR promotes TRIM44 expression via

sponging miR-1343-3p.
3.7 TRIM44 overexpression rescued the
inhibition of ELDR knockdown on the
malignant phenotypes of BCa cells

To determine whether TRIM44 mediates ELDR oncogenic

function in BCa, we performed rescue experiments via restoring

TRIM44 expression. ELDR knockdown significantly reduced

TRIM44 protein levels in T24 and 5637 cells, an effect rescued by
Frontiers in Oncology 09
pcDNA3.1-TRIM44 transfection (Figure 7A). Subsequent

functional assays revealed that silencing ELDR inhibited BCa cell

proliferation, colony formation, migration, and invasion in both cell

lines (Figures 7B-E). Notably, TRIM44 restoration abolished ELDR-

silencing-induced suppression of these malignant phenotypes

(Figures 7B-E). Collectively, TRIM44 overexpression rescues the

inhibitory effects of ELDR depletion on BCa oncogenicity.
4 Discussion

As the primary genitourinary malignancy, the prognosis of BCa

remains poor due to a lack of effective diagnostic biomarkers and
FIGURE 5

MiR-1343-3p inhibitor reversed the inhibitory effect of ELDR knockdown on the malignant phenotypes of BCa cells. T24 and 5637 cells were
classified into: sh-NC group, sh-ELDR group, sh-ELDR+miR-1343-3p inhibitor group. (A) MiR-1343-3p was determined using qRT-PCR assay.
(B-D) Cell proliferation was determined using CCK-8 assay, colony formation, and EDU assay. (E) Cell migration and invasion were determined using
transwell assay. Data were expressed as mean ± SD, **P <0.01, ***P < 0.001.
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therapeutic drugs (27). It has been reported that abnormal

proliferation is the main reason for the occurrence and malignant

progression of BCa (28). Therefore, there is an urgent need to better

understand the underlying molecular mechanisms of BCa

progression and improve the survival of BCa patients. LncRNAs

have received increasing attention due to their important roles in

the development and progression of human cancers, including BCa

(29–32). For example, TUG1 (33) and SNHG16 (34) showed

overexpression in BCa tumor tissues and served as bad predictors

of overall survival. However, the exact role of lncRNAs in BCa

remains poorly understood. A comprehensive understanding of the

mechanisms of lncRNAs will help reveal promising biomarkers and

therapeutic targets for BCa patients. While the ceRNA paradigm

and the oncogenic role of TRIM44 have been documented in

various cancer types, the upstream regulators that dictate TRIM44

expression in BCa remain poorly characterized.

In this study, we focused our attention on a lncRNA ELDR that

has not been reported in BCa and whose function is still unclear.

Our work provides the first evidence that ELDR functions as a key

oncogenic lncRNA in BCa by operating as a competitive

endogenous RNA (ceRNA). We found that the expression level of

ELDR was obviously upregulated in BCa tissues compared to the

paired adjacent normal tissues, correlating with tumor size,

invasion depth, TNM stage and poor prognosis in BCa patients.

Functional experiments displayed that silencing ELDR inhibited the
Frontiers in Oncology 10
BCa cell proliferation, colony formation, migration, and invasion,

whereas overexpression of ELDR showed the opposite effect. The

tumor-promoting effect of ELDR in vivo was further validated.

While other well-characterized oncogenic lncRNAs in BCa, such as

UCA1 and MALAT1, have been associated with specific processes

like chemoresistance and metastasis, respectively, our date defines a

distinct role for ELDR. We demonstrate that ELDR directly

sequesters miR-1343-3p, which in turn leads to the derepression

of its target oncogene, TRIM44. These results motivate us to further

explore the biological mechanism of ELDR in BCa.

TRIM44, a member of the tripartite motif (TRIM) family E3

ubiquitin ligases, is recognized for its involvement in protein

stabil i ty regulation and signal transduction (35, 36).

Accumulating evidence indicates that the crucial roles of TRIM44

in the development of various types of malignant tumors. TRIM44

overexpression was confirmed to be associated with the malignant

phenotype in gastric cancer (37), lung adenocarcinoma (38), and

ovarian cancer (22). The precise molecular effects triggered by the

upregulation of TRIM44 in bladder cancer require further

investigation. our study provides the first evidence of TRIM44

dysregulation in BCa. Moreover, TRIM44 expression was

positively correlated with that of ELDR. Importantly, the

inhibitory effect of ELDR silencing on the BCa malignant

phenotype were significantly attenuated in the presence of

TRIM44 overexpression. Based on these results, we concluded
FIGURE 6

ELDR positively regulated TRIM44 expression through sponging miR-1343-3p. (A) Online predicting the miR-1343-3p target genes. Venn gram
showed the intersection genes. (B) TRIM44 mRNA expression in T24 and 5637 cells after miR-1343-3p overexpression was determined using qRT-
PCR. (C) TRIM44 proteins levels after transfection of miR-1343-3p mimic and inhibitor in the above two cell lines. (D) Online predicting of the
interaction sites between miR-1343-3p and TRIM44, and luciferase reporter assays demonstrated TRIM44 was a direct target of miR-1343-3p.
(E) TRIM44 expression in 5637 and T24 cells after sh-ELDR transfection or sh-ELDR and miR-1343-3p inhibitor co-transfection was detected by
western blot. Data were expressed as mean ± SD, **P <0.01, ***P < 0.001.
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that ELDR promotes the progression of BCa, at least to some extent,

by stimulating the expression of TRIM44. There is already a lot of

proof that TRIM44 makes the PI3K protein more stable and speeds

up the PI3K/AKT signaling pathways in different malignancies.

This suggests that TRIM44 overexpression caused by ELDR

probably acts in bladder cancer by making this essential cancer-

causing pathway work too hard. This potential association provides

a plausible explanation for the enhanced growth capacity observed

in ELDR-overexpressing cells. Concurrently, the potent pro-

migration and invasion phenotypes induced by ELDR strongly

suggest its involvement in regulating epithelial-mesenchymal
Frontiers in Oncology 11
transition (EMT)—a core mechanism of cancer metastasis. Future

research focusing on this pathway’s effects on key EMT

transcription factors and biomarkers (such as E-cadherin, N-

cadherin, and vimentin) will be crucial for comprehensively

elucidating its role in bladder cancer dissemination.

Our findings indicate promising potential for translational

applications. From a diagnostic perspective, the substantial

increase of ELDR in BCa tissues and its association with

aggressive disease highlight its potential as a predictive biomarker.

Identifying ELDR levels in liquid biopsies, such as serum or urine

extracellular vesicles, may aid in the creation of non-invasive
FIGURE 7

TRIM44 overexpression reversed the inhibitory effect of ELDR knockdown on the malignant phenotypes of BCa cells. T24 and 5637 cells were
classified into: sh-NC group, sh-ELDR group, and sh-ELDR+TRIM44 group. (A) Western blot was employed to asses TRIM44 level in T24 and 5637
cells. (B-D) CCK-8 assay, colony information assay, and EDU assay were employed to determine cell proliferation. (E) Cell migration and invasion
were determined using transwell assay. Data were expressed as mean ± SD, **P <0.01, ***P < 0.001.
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diagnostics for early detection and risk assessment. From a

therapeutic standpoint, the unique and heightened expression of

ELDR in malignancies renders it a compelling target for targeted

therapies. Targeting lncRNAs poses technical challenges; however,

innovative methodologies, including the application of antisense

oligonucleotides (ASOs) or small interfering RNAs (siRNAs)

specifically engineered to inhibit ELDR, may provide a novel and

precise therapeutic approach to disrupt this carcinogenic pathway.

It must be acknowledged that this study has limitations. First,

our clinical relevance analysis is based solely on a single-center

cohort with limited sample size. To establish the post-rain value of

ELDR, validation through independent, multicenter, large-scale

prospective cohorts is essential. Second, although in vitro and in

vivo data strongly support the functional role of the ELDR/miR-

1343-3p/TRIM44 axis, the direct clinical utility of ELDR and its

feasibility for patient treatment remain to be verified. Finally,

confirmatory validation of the proposed downstream pathways—

particularly the direct activation mechanism of the PI3K/AKT

pathway and the role of TRIM44 in inducing epithelial-

mesenchymal transition (EMT) in bladder cancer—has become

the core focus of our current research.

Collectively, these findings delineate the ELDR/miR-1343-3p/

TRIM44 axis as a functionally independent pathway that expands

the known regulatory network of lncRNAs in bladder cancer

pathogenesis (Figure 8).
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