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Objectives: Given the high postoperative recurrence of locally advanced
laryngeal squamous cell carcinoma (LSCC) and American Joint Committee on
Cancer (AJCC) staging system prediction limitations, this study aims to construct
and validate a postoperative recurrence-free survival (RFS) prediction model
using multimodal feature fusion and explore data integration strategies to
enhance prediction efficacy.

Methods: Data from 278 patients diagnosed with locally advanced LSCC
between 2013 and 2024 were collected retrospectively. These data were then
separated into a training dataset (n = 196) and a validation dataset (n = 82), using a
near 7:3 allocation strategy. By integrating clinicopathological features,
preoperative blood markers, and enhanced computed tomography imaging
data, we constructed clinicopathological (Clinic-score), radiomics (Rad-score),
and two fusion models: feature-level (FF-Model) and decision-level (DF-Model).
Model performance was evaluated using the concordance index, time-
dependent area under the receiver operating characteristic curve, calibration
curve, and decision curve analyses. Improvement in model discriminative ability
was assessed using continuous net reclassification improvement (cNRI) and
integrated discrimination improvement (IDI).

Results: At 24.5 months median follow-up, 95 patients (34.2%) experienced
recurrence. In the validation set, the DF-Model significantly outperformed the
FF-Model, Rad-score and Clinic-score models, and AJCC stages. Additionally,
the DF-Model demonstrated superior calibration and clinical utility, better
prediction of 1-year, 3-year, and 5-year RFS through cNRI/IDI analysis, and
excellent risk stratification across datasets, AJCC stages, and tumor locations.
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Conclusion: The multimodal prediction DF-Model effectively integrates multi-
source heterogeneous information, significantly improving the prediction
accuracy of postoperative RFS in locally advanced LSCC, outperforming the
FF-Model, single-modal models, and AJCC staging system, and demonstrating
its potential clinical translational value.

laryngeal squamous cell carcinoma, locally advanced, multimodal features, recurrence-
free survival, decision-level fusion

1 Introduction

Laryngeal squamous cell carcinoma (LSCC), one of the most
common malignant tumors of the head and neck region, is
increasing in incidence among males annually, accounting for
most of the approximately 180,000 new cases of laryngeal cancer
globally each year (I, 2). Notably, approximately 43.1-65% of
patients are diagnosed with locally advanced stage (III, IVa, and
IVDb) disease at initial presentation, resulting in a five-year disease-
free survival rate of only 50-65% (3-7). Despite the widespread
application of comprehensive treatment strategies, including
surgery, radiotherapy, and chemotherapy, approximately 30-40%
of patients experience local tumor recurrence or distant metastatic
spread after surgery, which can substantially compromise long-term
survival and quality of life (4, 7, 8).

Currently, clinical practice relies primarily on the TNM staging
system of the American Joint Committee on Cancer (AJCC) for
prognostic assessment. However, its reliance on anatomical criteria
overlooks critical biological and systemic factors—such as tumor
heterogeneity, host systemic status, and treatment quality—that
significantly influence outcomes. Consequently, its predictive
accuracy for recurrence, as measured by the concordance index
(C-index), is suboptimal (C-index<0.65), limiting the utility of
precise individualized risk stratification (9, 10). In addition,
systemic inflammatory indicators (such as the neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and
lymphocyte-to-monocyte ratio (LMR)) and nutritional prognostic
indices (such as the prognostic nutritional index (PNI)) have
attracted considerable attention; however, the predictive efficacy
of single markers is limited and susceptible to various factors (11,
12). Novel molecular markers (such as epidermal growth factor
receptor overexpression (13), WRAP53f (14), sex hormone
receptors estrogen receptor-f3 and progesterone receptor (15), and
p53 mutation (16)) have shown significant prognostic value;
however, their clinical application requires further validation.

With advancements in artificial intelligence (AI) and precision
medicine, the synergistic use of diverse data modalities—such as
clinical, imaging, and molecular profiles—combined with AI
algorithms—has shown great promise in enhancing prognosis
prediction. In areas such as high-grade serous ovarian cancer
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(17), glioblastoma (18), thyroid cancer (19), renal cell carcinoma
(20), breast cancer (21), and colorectal cancer (22), the area under
the receiver operating characteristic (ROC) curve (AUC) values and
C-indices (AUC > 0.8; C-index > 0.7) of multimodal data fusion
models generally outperform traditional methods. However,
research on predicting the risk of postoperative recurrence in
locally advanced LSCC still has limitations, most of which are
confined to application scenarios of a single type or single-modality
data source, such as relying solely on clinicopathological features
(23) or radiomics parameters (24-26), with AUC values
generally<0.8, making it difficult to meet the need for precise
stratification of patients.

Therefore, this study aimed to develop a comprehensive
prediction model for postoperative recurrence-free survival (RES)
in locally advanced LSCC by synthesizing preoperative data from
multiple domains—clinicopathological, laboratory, and radiomic—
thereby leveraging the strengths of multimodal fusion. By
comparing the efficacy of feature- and decision-level fusion
strategies, this study sought to achieve precise stratification of
postoperative recurrence risk, thereby providing data support for
the formulation of personalized treatment plans (such as adjuvant
radiotherapy dose adjustment) and dynamic prognosis
management. We compared feature- and decision-level fusion
because they represent fundamentally different integration
strategies: the former concatenates features early (potentially
capturing interactions but risking overfitting), while the latter
combines model predictions, preserving modality-specific patterns
and enhancing interpretability. This comparison helps identify the
optimal architecture for clinical prediction in LSCC.

2 Materials and methods
2.1 Study participants

Following the principles of the TRIPOD-AI checklist (27), we
conducted a retrospective cohort study of patients with locally
advanced LSCC at the First Affiliated Hospital of Guangxi
Medical University (Jan 2013-Jan 2024). Inclusion was
determined by histopathologic staging per AJCC 8th edition
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(Stage III-IVb) (9), availability of more than six months of
postoperative monitoring, documented results for standard blood
counts as well as liver and kidney function indicators, and qualified
preoperative contrast-enhanced multiplex spiral computed
tomography (CT) scan images. The exclusion criteria were
incomplete medical records; history of surgery, radiotherapy, or
chemotherapy prior to surgery; presence of active infections,
chronic inflammation, hematological diseases, or autoimmune
diseases; and history of other malignancies.

The sample size was calculated using the Events Per Variable
(EPV) method: N = (EPV x number of predictor variables/
recurrence rate) x (1 + efficiency rate). With 7 expected variables,
a 30% 5-year recurrence rate, EPV = 10, and 10% inefficiency, a
minimum of 256 patients was required. After applying criteria, 278
patients were included, meeting statistical power needs. The study
adhered to the Declaration of Helsinki and was approved by the
Institutional Ethics Committee (No. 2025-E0564). Informed
consent was waived for this retrospective study, and all data were
anonymized. The study workflow is shown in Figure 1.

10.3389/fonc.2025.1685737

2.2 Acquisition of clinical variables

Clinical data were extracted from electronic health records,
including age, sex, comorbidities (e.g., hypertension), smoking/
alcohol history, preoperative blood count, liver/kidney function,
and postoperative pathological features (tumor location, margin
status, vascular invasion, lymph node metastasis, differentiation,
and TNM stage). Based on preoperative peripheral blood test
results, we calculated the following systemic inflammation-related
biomarkers: NLR, PLR, LMR, Systemic Immune-Inflammation Index
(SII) = platelet count x NLR, PNT = lymphocyte count x 5 + albumin,
Advanced Lung Cancer Inflammation Index (ALI) = body mass
index (BMI) x albumin/NLR, and Systemic Inflammation Response
Index (SIRI) = monocyte count x NLR. Blood tests used the Beckman
Coulter/LH 780 and Werfen/ACL TOP 750LAS, with collection
between 6:00 and 10:00 AM. Smoking history was defined as >1
cigarette/day for >6 months pre-surgery; drinking history as >72g
alcohol/week for >6 months pre-surgery. The AJCC 8th edition
(2017) criteria were applied for pathological staging.
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"""a(“V;';‘S';“’“’ kidney function tests, and enhanced CT scan of the throat area.
(n=
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De el
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FIGURE 1

Methodological framework of the study design. (A) Multi-Scale Feature Fusion-Based Model; (B) Radiomic Model.

Frontiers in Oncology

03

frontiersin.org


https://doi.org/10.3389/fonc.2025.1685737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhao et al.

2.3 Image acquisition and preprocessing

Contrast-enhanced CT scans (skull base to supraclavicular) were
performed. Venous phase images were acquired 60-90 s after
injecting non-ionic contrast (iopromide/iohexol, 350 mg/ml, 1.0-
2.0 ml/kg, 3-5 ml/s). Scanner parameters are in Supplementary
Table 1. Image preprocessing followed the Evaluation of Radiomics
Research (CLEAR) checklist (28): original DICOM images were
resampled to 1x1x1 mm? isotropic resolution, gray-level discretized
(bin width: 25 HU), intensity range limited to 1-500 HU, and
normalized using Z-score. Window width/level was set to 350/40
HU to enhance tumor boundaries. The tumor volume of interest
(VOI) was outlined at the beginning of the study by randomly
selecting CT images from 35 patients. The delineation of tumor
boundaries on axial images was conducted independently by two
head and neck specialists, who had accumulated 10 and 13 years of
clinical expertise, using the ITK-SNAP platform (www.itksnap.org)
without knowledge of other clinical data (Figure 1B). One week
later, the more experienced rater repeated the segmentation.
Inter-rater agreement was assessed using the intraclass correlation
coefficient (ICC). Features with ICC > 0.75 were retained
for analysis.

2.4 Prediction of outcomes and follow-up

RFS was defined as time from surgery to the first recurrence or
metastasis or the end of follow-up (Jan 31, 2025), with time points
set at 1, 3, and 5 years postoperatively. Follow-up used digital
communication (WeChat), telephonic contact, and clinic visits
(quarterly for years 1-3, semi-annually for years 4-5, annually
thereafter), with<5% loss to follow-up.

2.5 Model development and validation

2.5.1 Dataset partitioning

To ensure reproducibility, we split the dataset into two subsets —
a training set (n = 196) and a validation set (n = 82) — using a 7:3
partitioning strategy with a fixed random seed (seed = 42). The
training set was used to train and optimize the model, whereas the
validation set was used to evaluate the generalization ability of
the model.

2.5.2 Development of clinical-pathological model
(Clinic-score)

Based on 35 baseline clinicopathological characteristics and
peripheral blood markers of patients in the training set, variables
were screened using univariate Cox regression (p< 0.05), and the
optimal variable combination was selected in conjunction with the
Akaike Information Criterion (AIC) (29) to construct a multivariate
Cox regression model, which was defined as the clinical-
pathological model (Clinic-score). The results are presented as a
nomogram, and a web-based calculator was developed.
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2.5.3 Development of radiomics models (Rad-
score)

Radiomics features were extracted from preprocessed tumor
VOIs in the training cohort using PyRadiomics, encompassing ten
feature classes: first-order statistics, 3D morphological features,
gray-level co-occurrence matrix (GLCM), gray-level size zone
matrix (GLSZM), gray-level run length matrix (GLRLM),
neighborhood gray-tone difference matrix (NGTDM), Hessian-
based features, fractal features, and topological features.
Univariate Cox regression (P< 0.05) identified prognostic features,
which were further refined using the least absolute shrinkage and
selection operator (LASSO) with 10-fold cross-validation to
minimize overfitting. The optimal regularization parameter ()
was selected by minimizing cross-validated partial likelihood
deviance, retaining only features with non-zero coefficients. A
multivariable Cox model was then fitted to these features to
compute the radiomics score (Rad-score):

k
Rad - score = > X;
i=1
Where X; is the value of the i-th radiomics feature, f; is its
corresponding regression coefficient from the multivariable Cox
model, and k is the number of selected features.

2.5.4 Development of fusion models

We compared feature-level and decision-level fusion strategies
to determine the optimal approach for integrating multimodal data
(clinical, blood, and radiomics). Feature-level fusion combines raw
features, while decision-level fusion integrates model outputs,
offering potentially greater robustness.

Feature-level fusion model (FF-Model)

1. Variable selection: This model involves the direct
concatenation of clinicopathological features, peripheral blood
markers, and radiomics features, which are selected through
univariate Cox regression during the construction of the
radiomics model. Subsequently, a LASSO-Cox regression
approach incorporating 100 rounds of 10-fold cross-validation is
applied to select relevant predictors.

2. Fusion strategy: Early fusion — raw features from different
modalities are concatenated into a single vector.

3. Model construction: A multivariable survival model is
constructed based on Cox regression. The resulting linear
predictor is defined as the FF-Score.

Decision-level fusion model (DF-Model)

1. Variable selection: This model uses the outputs of two pre-
trained submodels as input variables:

(i) Clinic-score: derived from the clinical-pathological model
(Section 2.5.2);

(ii) Rad-score: derived from the radiomics model
(Section 2.5.3).

2. Fusion strategy: Late fusion — predictions (scores) from
separate submodels are combined at the decision level.

Model construction: The Clinic-score and Rad-score are combined
in a multivariable Cox proportional hazards model as covariates. The
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model is defined as: h(t) = hy(t) exp (B, - Clinic — score + [3, - Rad —
score). Where hy(t) is the baseline hazard, and f3;, 3, are the maximum
likelihood estimates for the respective regression coefficients.

2.5.5 Model evaluation and comparison

Model performance was evaluated based on discrimination,
calibration, and clinical utility. Discrimination was assessed using
the C-statistic and time-dependent AUC at 1, 3, and 5 years for RES.
Calibration was evaluated using calibration plots. Clinical utility
was assessed via decision curve analysis (DCA), comparing models
against each other and the AJCC 8th Edition TNM staging system.
Additionally, the degree of improvement in the fusion model was
assessed using continuous net reclassification improvement (cNRI)
and integrated discrimination improvement (IDI). Finally, the
optimal cutoff for the best-performing model was determined
using X-tile software (30), stratified by AJCC stage and tumor
location, to validate its risk stratification and generalizability
across subgroups.

2.6 Statistical methods

Categorical variables (such as tumor location), are summarized
with counts and proportions, while group differences were assessed
using either the chi-square test or Fisher’s exact test. For continuous
variables (such as NLR), the data are expressed as mean + standard
deviation (mean + SD) or median and interquartile range (IQR),
contingent upon whether the data adhered to a normal distribution.
An independent samples t-test or Mann-Whitney U test was used
to evaluate differences between groups. The statistical processing
was carried out using R version 4.2.3 and Python 3.6, with key
functions drawn from these packages: glmnet 4.1.8, pROC 1.18.5,
rms 6.7.1, dplyr 1.1.4, survival 3.7.0, and timeROC 0.4. Statistical
significance was set at p< 0.05.

3 Results
3.1 Patient characteristics

A total of 278 patients with locally advanced LSCC were
enrolled in this study, including 106 (38.1%) patients with stage
III, 170 (61.1%) with stage IVa, and two (0.7%) with stage IVb
disease. The median follow-up duration was 24.5 (8.3-54.8)
months. As of the follow-up cutoff date of January 31, 2025, 95
(34.2%) patients experienced recurrence or distant metastasis. The
median time from the last treatment to recurrence or metastasis was
10 (6-21) months. The cumulative RFS rates at 1, 3, and 5 years
were 79.5%, 70.1%, and 67.3%, respectively. The cumulative
recurrence rate was 35.2% (69/196) in the training set and 31.7%
(26/82) in the validation set, with no significant differences between
the recurrence rates of the two sets (p > 0.05). Except for BMI (Z =
2.204, p = 0.028) and smoking history (> = 3.884, p = 0.049), there
were no significant differences in the distribution of the remaining
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variables between the training and validation sets (all p > 0.05,
Supplementary Table 2).

3.2 Clinic-score

Univariate Cox regression analysis identified 13 potential
predictive variables (including tumor location and AJCC stage; all
p< 0.05; Table 1). Based on the AIC, seven optimal variables were
determined to construct the multivariate Cox regression model
(Supplementary Table 3). Additionally, the model was visualized as
a nomogram and deployed a web calculator at https://
huangxiaoying.shinyapps.io/dynnomapp (Figure 2).

3.3 Rad-score

Through PyRadiomics, 3232 radiomics features were extracted,
with 2658 (82.24%) retained after ICC screening, including 10
categories of features such as first-order statistics (360) and
Hessian matrix (780) (Supplementary Figure 1). Univariate Cox
regression analysis further screened 413 significant features (p<
0.05), and LASSO ultimately retained seven non-zero coefficient
features, including one first-order statistical feature, one three-
dimensional shape feature, three GLCM, one GLRLM, and one
GLSZM (Figure 3, Table 2). The Rad-score was computed as a linear
combination of these features (Equation 1):

h(t) = ho(t) exp (0.489 - Featurel —0.185
- Feature2 — 0.071 - Feature3 + 0.39 - Feature4 (1)
+0.897 - Feature5 + 0.575 - Feature6 + 0.05 - Feature7)

3.4 Fusion model construction

3.4.1 FF-Model

To develop the FF-Model, we integrated 13 clinicopathological
variables with 413 radiomic features, resulting in a 426-dimensional
dataset. Subsequently, LASSO-Cox regression identified 16
significant predictors, including PNI, tumor location, surgical
margin status, contralateral cervical lymph node metastasis, and 12
radiomics features (Supplementary Figure 2, Supplementary Table 4).
Multivariate Cox regression identified seven independent predictors
of RFS (p< 0.05), among which were positive surgical margins and
contralateral lymph node involvement (Figure 4).

3.4.2 DF-Model
The DF-Model formula based on multifactorial Cox regression
is as follows:

h(t) = hy(t) exp (0.009 - Clinic — score + 0.036 - Rad — score)

Both the Clinic-score and Rad-score significantly impacted the
postoperative RES of locally advanced LSCC (p< 0.001;
Figures 5, 6).
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TABLE 1 Univariate Cox regression analysis of postoperative RFS in patients with locally advanced LSCC.

Variables SEIMRELE Z-value HR(95%CI) p-value
error
Age,year 0.018 0.013 1.398 1.018(0.993,1.045) 0.162
‘ Sex,n(%) ‘
Male Reference
Female -0.791 1.008 0.785 0.453(0.063,3.269) 0.433

‘ Smoking habits, n (%) ‘

NO Reference

YES -0.155 0.293 0.529 0.857(0.483,1.520) 0.597

‘ Drinking habits, n (%) ‘

NO Reference

YES -0.113 0.245 0.459 0.893(0.552,1.445) 0.646
‘ History of hypertension,n(%) ‘

NO Reference

YES -0.277 0.358 0.774 0.758(0.376,1.529) 0.439

‘ History of diabetes,n(%) ‘

NO Reference

YES 0.535 0.4 1.339 1.708(0.780,3.737) 0.181

‘ History of coronary heart disease, n(%) ‘

NO Reference
YES -0.468 1.008 0.464 0.626(0.087,4.517) 0.642
BMI, kg/m2 -0.056 0.037 1.503 0.946(0.880,1.017) 0.133
Course of disease,month -0.015 0.01 1.522 0.985(0.967,1.004) 0.128

‘ Tumor location, n(%) ‘

Glottic Reference

Non-Glottic 0.701 0.242 2.89 2.015(1.253,3.241) 0.004

‘ Degree of differentiation, n (%) ‘

poorly Reference
Moderate 0.39 0.523 0.746 1.477(0.530,4.117) 0.456
Highly 0.008 0.544 0.015 1.008(0.347,2.928) 0.988

‘ pT staging, n(%) ‘

1 Reference

2 -1.095 1.163 0.941 0.334(0.034,3.271) 0.346
3 -2.007 1.031 1.947 0.134(0.018,1.014) 0.052
4 -1.392 1.019 1.366 0.249(0.034,1.832) 0.172

AJCC staging, n(%)

111 Reference

IV /IVy, 0.924 0.292 3.162 2.520(1.421,4.469) 0.002

(Continued)
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TABLE 1 Continued

Standard

Variables Z-value HR(95%Cl) p-value
error

Vascular thrombosis, n (%)
NO Reference

YES 0.653 0.319 2.049 1.922(1.029,3.589) 0.04

Peripheral nerve infiltration, n(%) ‘

NO Reference

YES 0.513 0.359 143 1.670(0.827,3.374) 0.153

Striated muscle invasion, n(%) ‘
NO Reference

YES 0.655 0.249 2.627 1.925(1.181,3.137) 0.009

Thyroid cartilage infiltration, n (%) ‘

NO Reference
YES -0.172 0.243 0.708 0.842(0.523,1.355) 0.479
Surgical margin, n(%) ‘

Negatives Reference

Positive 0.878 0.3 2.924 2.407(1.336,4.336) 0.003

pN stages, n(%) ‘

0 Reference

1 0.348 0.378 0.922 1.417(0.676,2.970) 0.356
2 1.041 0.259 4.016 2.831(1.703,4.704) <0.001
3 -14.825 2714.368 0.005 0.000(0.000,Inf) 0.996

Cervical lymph node metastases n (%)

NO Reference
YES 0.755 0.242 3.124 2.128(1.325,3.418) 0.002

Contralateral cervical lymph node metastasis, n

(%)
NO Reference
YES 1.137 0.293 3.875 3.118(1.754,5.542) <0.001
Total number of lymph nodes cleared (n) 0.006 0.006 0.961 1.006(0.994,1.019) 0.337
Total number of positive lymph nodes (n) 0.158 0.036 4.366 1.171(1.091,1.257) <0.001
Proportion of positive lymph nodes 1.567 0.494 3.171 4790 0.002

(1.819,12.615)

Type of primary resection, n (%) ‘

Partial laryngectomy Reference
Total laryngectomy 0.108 0.253 0.425 1.114(0.678,1.830) 0.671

Side of cervical lymph node dissection, n(%) ‘

NO Reference
Unilateral -0.686 0.35 1.96 0.504(0.254,1.000) 0.05
Bilateral -0.05 0.308 0.164 0.951(0.520,1.740) 0.87

(Continued)
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TABLE 1 Continued

10.3389/fonc.2025.1685737

Variables Beta stk Z-value HR(95%ClI) p-value
error
Side of cervical lymph node dissection, n(%)
Postoperative radiotherapy, n (%)
NO Reference
YES 0.146 0.253 0.578 1.158(0.705,1.901) 0.563
Post-operative chemotherapy, n (%)

NO Reference

YES 0.113 0.28 0.403 1.119(0.647,1.937) 0.687
NLR 0.038 0.013 2.998 1.038(1.013,1.064) 0.003
PLR 0.001 0 1.543 1.001(1.000,1.001) 0.123
LMR -0.107 0.085 1.261 0.899(0.762,1.061) 0.207
SII 0 0 2.305 1.000(1.000,1.000) 0.021
PNI -0.02 0.006 3328 0.980(0.969,0.992) <0.001
AL -0.001 0 1.408 0.999(0.999,1.000) 0.159
SIRI 0.02 0.042 0.478 1.020(0.939,1.109) 0.633

3.5 Model performance comparison

3.5.1 Discrimination

In the training set, the C-index of the DF-Model was 0.847 (95%
CI: 0.811-0.884), which was significantly higher than the Clinic-
score (0.723; p< 0. 001), Rad-score (0.828; p = 0.099), and AJCC
stage (0.608; p< 0.001). The C-index of the FF-Model was 0.878
(95% CI: 0.838-0.917), which was significantly higher than that of
the DF-Model (p = 0.024). In the validation set, the DF-Model
achieved a C-index of 0.826 (95% CI: 0.763-0.889), showing a
statistically significant improvement over the FF-Model (0.741; p =
0.047), Rad-score (0.734; p = 0.033), Clinic-score (0.723; p = 0.002),
and AJCC stages (0.58; p< 0.001, Table 3).

The ROC analysis showed no significant difference between the
AUC values of the FF-Model and DF-Model in the prediction of 1/
3/5-year RFS in the training set (p > 0.05; Figures 7A-C). In the
validation set, the AUC of the DF-Model was significantly higher
than that of the FF-Model for predicting 3-year and 5-year RFS (all
p = 0.022). no statistically significant difference was observed in the
predictive performance of 1-year RES across the models (p = 0.206;
Figures 7D-F).

3.5.2 Calibration

Calibration curve analysis demonstrated that in predicting 1-
year, 3-year, and 5-year RFS, the calibration curves of the DF-Model
in both the training and validation sets were closer to the ideal
diagonal line than those of the FF-Model, Rad-score, and Clinic-
score (Figure 8), indicating superior calibration performance over
the other models.
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3.5.3 Clinical utility

DCA showed that both fusion models provided greater clinical
utility than the single-modality models and the AJCC staging
system for predicting 1-, 3-, and 5-year RES (Figure 9).

In the training set, the FF-Model yielded the highest net benefit
across most threshold probabilities. In the validation set, the DF-
Model generally outperformed other models, particularly for 3- and
5-year predictions. Although the FE-Model showed slightly higher
net benefit at some thresholds for 1-year RES, the DF-Model
remained superior to all single-modality models.

3.5.4 cNRI and IDlI tests

The DF-Model exhibited better discriminative ability than the
single-modal and the FF-Model in both the cNRI and IDI tests. In
the 1-year prediction, the cNRI increased by 32.6% (p = 0.040),
51.3% (p = 0.020), and 23.4% (p< 0.001) compared to the FF-Model,
Rad-score, and Clinic-score, respectively. Although the IDI gain did
not reach statistical significance (p = 0.079), it transcended the
minimal clinically important difference (MCID = 5%) (31) and
thus, might have potential value. In the 3-year prediction, the cNRI
showed significant improvement compared to the Rad-score
(51.5%; p = 0.020) and Clinic-score (70.1%; p< 0.001).
Additionally, the IDI exhibited superior performance compared
to the Clinic-score (27.3%; p = 0.02) and Rad-score (19.1%; p<
0.001). Regarding the 5-year prediction, an even more robust
performance was observed, with the c¢NRI increasing to 67.0%
(p< 0.001) compared to the Clinic-score, and 47.8% (p = 0.020)
compared to the Rad-score. The IDI exhibited a similar
trend (Table 4).
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3.5.5 Subgroup analysis

X-tile software was used to determine the cutoff value of the DF-
Model, which was 81.1, to divide the training set into low-risk
(<81.1) and high-risk (=81.1) subgroups. Kaplan-Meier analysis
showed significantly worse recurrence-free survival (RFS) in the
high-risk group compared to the low-risk group in both the training
and validation cohorts (all p< 0.001; Figure 10). The prognostic
value of the DF-Model remained significant across subgroups
defined by AJCC stage (IIT vs. IV) and tumor location (glottic vs.
non-glottic) (all p< 0.001; Figure 11).
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4 Discussion

4.1 State of the art in multimodal data
fusion applications

Locally advanced LSCC has a high postoperative recurrence
rate, and the traditional AJCC staging system is not sufficient for
precise prognosis prediction, making it difficult to develop
personalized treatment plans. In this case, multimodal data fusion
provides a different method for improving prediction effectiveness.
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Selection of non-zero coefficient radiomics features using the least absolute shrinkage and selection operator (LASSO) regression model. (A) LASSO
regularization path diagram; (B) C-index coefficient plot using 10-fold cross-validation; (C) 7 selected radiomics features and their weight

coefficients; (D) correlation clustering heatmap of 7 radiomics features.

TABLE 2 Seven radiomics signature coefficients selected using LASSO-
cox regression.

Variables Radiomics features Coefficient
Featurel wavelet_LLL_glszm_ZoneEntropy 0.010967
Feature2 gradient_firstorder_Skewness 0.023122
Feature3 original_shape_Maximum3DDiameter 0.058509
Feature4 wavelet_ HHL_glcm_Idn 0.060522
Feature5 wavelet_HLL_glem_Idn 0.065519
Feature6 Ibp_3D_m2_glrlm_GrayLevelVariance 0.07332
Feature7 wavelet_LLL_glem_Imcl 0.221575

Frontiers in Oncology

Different data modalities complementarily reflect the biological
behavior of tumors. Macroscopic invasiveness (such as
rhabdomyolysis invasion and lymph node metastasis burden) and
preoperative blood markers (such as PNI) characterize the host’s
systemic inflammatory and nutritional status, whereas radiomic
features (such as wavelet transform texture and gray entropy)
quantify the heterogeneity of the tumor microenvironment.
Studies have attempted to integrate multimodal data to improve
predictive efficacy in head and neck squamous cell carcinoma
(HNSCC). For example, Tseng et al. (32) integrated clinical,
pathological, and genetic variation data to construct an elastic net
Cox model to predict the survival risk in patients with oral cancer.
Wang et al. (33) integrated radiomic and pathomic features to
develop a Particle Swarm Optimization-Support Vector Machine
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Variables Beta SE. =z Hazard Ratio(95%CIl) P value
Positive surgical margins 1.750 0.406 4.309 5.756(2.596,12.762)  0.000 ! —i—
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FIGURE 7

ROC comparison of four models for RFS prediction. (A—C) Training set; (D—F) Validation set.

laryngeal cancer, which could add some selective bias. Rajgor et al.
(26) studied 72 patients with advanced laryngeal cancer, using
shape compactness and gray-level zone length matrix—gray-level
nonuniformity modeling to predict 5-year survival, achieving a C-
index of 0.759, outperforming the clinical model’s C-index of 0.655.
Nevertheless, this investigation was conducted at a single institution
and involved a limited number of participants; furthermore, its
findings have yet to undergo external validation.

In contrast, this study provided an explicit definition and
included 278 individuals with locally advanced LSCC, targeting
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the prediction of prognosis within this high-risk group of patients.
Additionally, we included clinicopathological features such as
surgical margin status and the ratio of positive lymph nodes, pre-
PNI, and CT radiomics features to capture complementary
information. The preoperative PNI indicates the patient’s
nutritional and immune status, striated muscle invasion
represents tumor aggressiveness, the number of positive nodes
represents the extent of tumor metastasis, margin status reflects
operation radicality, and radiomics features further quantify tumor
microenvironment heterogeneity; therefore, the model enables a
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FIGURE 8

Calibration of four models for RFS prediction. (A—C) Training set; (D—F) Validation set.

comprehensive, multidimensional evaluation of the “tumor
characteristics- host status- treatment” framework. This
represents a shift beyond the conventional AJCC staging system,
which was not designed to predict recurrence at the individual
patient level and primarily reflects anatomical extent rather than
underlying biological behavior.

The radiomic model incorporated features reflecting diverse
aspects of tumor phenotype. Tumor size was represented by the
three-dimensional maximum diameter (original shape_
Maximum3DDiameter), with larger values generally associated

Frontiers in Oncology

with more advanced disease and poorer prognosis (47). Tumor
intensity distribution asymmetry was captured by first-order
skewness (gradient_firstorder_Skewness), where high positive
values indicate a more aggressive and heterogeneous tumor
phenotype (43). Tumor heterogeneity was further quantified
using wavelet-based texture features (e.g., wavelet LLL_glszm_
ZoneEntropy), which measure gray-level inhomogeneity; higher
values suggest greater internal complexity and are linked to
adverse outcomes (43). Notably, four of the seven radiomic
features in the final model were derived from wavelet
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Decision curve analysis of five models for RFS prediction. (A—C) Training set; (D—F) Validation set.

transformation, underscoring the importance of capturing
intratumoral heterogeneity in prognostic prediction (46).

In the present study, the DF-Model achieved a C-index of 0.826
(95% CI: 0.763-0.889) in validation, exceeding the FF-Model
(0.741), Rad-score (0.734), and Clinic-score (0.657). Furthermore,
it exhibited superior performance in calibration curve analysis and
DCA. The c¢NRI and IDI metrics indicated that the DF-Model
demonstrated superior performance in forecasting RFS at 1-, 3-,
and 5-year intervals compared to alternative models. In particular,
the cNRI enhancement for the 1-year prediction relative to the FF-
Model reached 32.6% (p< 0.05). Although the improvements in the
3-5-year predictions did not achieve statistical significance, they
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exceeded the MCID and may hold clinical value in high-risk
recurrence cases. The improving effect of the DF-Model
compared with the FF-Model diminishes over time, aligning with
the clinical observation that the likelihood of recurrence in locally
advanced LSCC decreases with time.

Compared with AJCC staging (training set C-index: 0.608;
validation set C-index: 0.58), the two fusion models constructed
in this study, the single Rad-score and the single Clinic-score,
demonstrated significant advantages in terms of discriminative
ability and clinical utility. The DF-Model exhibited robust risk
stratification capabilities across different datasets, AJCC staging,
and tumor location subgroups (log-rank p< 0.001). For instance, in
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TABLE 4 Comparison of the DF-Model with the FF-Model, Rad-score, and Clinic-score using IDI and cNRI metrics.

: Evaluation .
Time(year) Datasets o Estimate (95% ClI)
indicators
Training set IDI -0.155 (-0.241, -0.043) <0.001
cNRI -0.511 (-0.655, 0.025) 0.079
FF-Model
Validation set IDI 0.093 (-0.004, 0.182) 0.079
cNRI 0.326 (0.008, 0.546) 0.04
Training set IDI 0.037 (-0.047, 0.100) 0.455
cNRI 0.264 (-0.318, 0.481) 0.436
Rad-score 1
Validation set IDI 0.115 (-0.023, 0.186) 0.079
cNRI 0.513 (0.091, 0.766) 0.02
Training set IDI 0.159 (0.068, 0.236) <0.001
cNRI 0.433 (0.234, 0.606) <0.001
Clinic-score
Validation set IDI 0.173 (0.038, 0.311) <0.001
cNRI 0.234 (0.060, 0.668) <0.001
Training set IDI -0.087 (-0.153, -0.019) 0.02
cNRI -0.530 (-0.660, 0.084) 0.079
FF-Model
Validation set IDI 0.143 (-0.041, 0.287) 0.099
cNRI 0.290 (-0.026, 0.662) 0.059
Training set IDI 0.058 (-0.025, 0.115) 0.158
cNRI 0.207 (-0.403, 0.551) 0.851
Rad-score 3
Validation set IDI 0.191 (0.044, 0.288) <0.001
cNRI 0.515 (0.075, 0.742) 0.02
Training set IDI 0.254 (0.150, 0.337) <0.001
cNRI 0.570 (0.386, 0.732) <0.001
Clinic-score
Validation set IDI 0.273 (0.065, 0.418) 0.02
cNRI 0.701 (0.296, 0.852) <0.001
Training set IDI -0.116 (-0.184, -0.037) <0.001
cNRI -0.584 (-0.736, 0.000) 0.04
FF-Model
Validation set IDI 0.158 (-0.022, 0.327) 0.079
cNRI 0.296 (-0.075, 0.733) 0.119
Training set IDI 0.073 (-0.013, 0.124) 0.079
cNRI 0.105 (-0.431, 0.663) 0.832
Rad-score 5
Validation set IDI 0.170 (0.024, 0.317) 0.02
cNRI 0.478 (0.049, 0.681) 0.02
Training set IDI 0.254 (0.150, 0.337) <0.001
cNRI 0.570 (0.386, 0.732) <0.001
Clinic-score
Validation set IDI 0.305 (0.128, 0.465) <0.001
cNRI 0.670 (0.311, 0.822) <0.001

Frontiers in Oncology 16 frontiersin.org


https://doi.org/10.3389/fonc.2025.1685737
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhao et al.
A
Training set
1.00 DF-score
low-risk
High-risk
0.75
K-}
[
& 050
(2]
'8
[
0.25 4
0.00 :
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98105112119
low=risk 111 (100)83p (888 (78) (683 (563 (485 (43P (35) (28D (187 (154 (1310 (9)7 (66 (5) 4 (4)3 (3)
High-risk i85 (16 (687 (42p (328 (215 (19B (157 (8) 7 (8) 7 (8) 5 (6) 4 (5)4 (5)2 (2) 0(0) 0.(0) 0 (0) 0 (0)
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98105112119
Time(months)
FIGURE 10

10.3389/fonc.2025.1685737

B
Validation set
1.00 DF-score
low-risk
High-risk
0.75
o
<
o 0.50] -----==2
(2]
'S '
o 1
P value::< 0.001
0.25 g
0.00 :
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10!
low-risk 144 (10Q)7 (8434 (7731 (7028 (6423 (5221 (48) 8 (417 (39)2 (271 (25)0 (23)7 (16) 7 (16) 5 (11) 3
High-risk 38 (101 (829 (5012 (320 (24)7 (18)7 (18) 7 (18)5 (13) 3(8) 2(5) 1(3) 1(3) 1(3) 1(3) O
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10

Time(months)

Survival analysis using the fusion model threshold (81.1). (A) Training set; (B) Validation set.

the stage IIT subgroup, the DF-Model achieved a significant
difference in 3-year RFS (high-risk group: 31% vs. low-risk group:
89%), which could not be achieved by AJCC staging alone. This
result indicates that the DF-Model transcends the limitations of
anatomical staging and can identify truly low-risk groups among
patients with advanced disease. Moreover, DCA results indicate that
the DF-Model yields a greater net benefit over most of the clinically
relevant threshold probability ranges. However, in the 1-year RFS
prediction (threshold probability 0.18-0.4), the FF-Model is slightly
superior, possibly because short-term recurrence risk is more
dependent on the quality of treatment (such as surgical margin
status), whereas medium- and long-term recurrence is driven by
tumor heterogeneity and the immune microenvironment.

The enhanced risk stratification capability of the DF-Model
holds significant clinical interpretability and direct implications for
postoperative management. By accurately identifying high-risk
patients beyond conventional staging, clinicians can consider
intensifying adjuvant therapy—such as adding chemotherapy to
radiotherapy or extending radiation fields—for those most likely to
benefit, potentially improving survival outcomes. Conversely, low-
risk patients identified by the DF-Model may be candidates for de-
escalated treatment or less frequent follow-up, thereby reducing the
burden of overtreatment, minimizing long-term toxicities (e.g.,
dysphagia, xerostomia, voice deterioration), and preserving
quality of life. This ability to refine risk assessment within the
same AJCC stage (e.g., distinguishing high- from low-risk Stage III
patients) enables a more biologically driven, personalized approach
to postoperative care, moving beyond anatomical staging alone.

4.3 Efficacy difference mechanism of
multimodal fusion strategy

The differences in the results of the two fusion strategies can be
attributed to their inherent characteristics. At the feature level,
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feature-level fusion is obtained by combining raw features directly
before modeling, so the “information dilution effect” and
The substantial
number of radiomic features (413) compared to clinical feature

“interaction noise interference” occur (48).

data (13) suggests a high likelihood of overshadowing certain
clinical information, such as the positive ratio of lymphatic
metastasis, during the process of dimensionality reduction, which
can adversely affect model performance. This phenomenon is
evident in the results obtained from applying the FF-Model to the
validation set, which demonstrated a decrease in the C-index by A =
0.137. These findings challenge the assertion that “fusion is always
better than single-modality.”

The DF-Model combines the prediction probabilities or scores
of individual modality models to build an ensemble model that
preserves independent prediction information (49). In the DF-
Model, both the Clinic-score and Rad-score are independent
predictors of RFS. Analysis of B-values indicated that 80% of the
DF-Model’s reliance is on the Rad-score, suggesting that tumor
microenvironment heterogeneity significantly influences
recurrence, whereas clinicopathological features act as
supplementary factors. Patients misclassified as low-risk by the
clinical model yet flagged as high-risk by the radiomic model can
be accurately recognized by the DF-Model. These patients may
benefit from intensive postoperative imaging follow-up,
radiotherapy, and immunotherapy. For low-risk patients, the aim
is to prevent overtreatment, conserve medical resources, and
alleviate the burden of the illness. In addition, the DF-Model
eliminates the demand for extensive data preparation by
integrating the probable outputs from the Clinic-score and Rad-
score, thereby decreasing technical prerequisites and enhancing
applicability in resource-limited places, such as primary hospitals.
Patients with lower preoperative PNI levels may have improved
outcomes with improved nutrition (such as a protein-rich diet
supplemented with -3 fatty acids). Further studies are required to
verify this hypothesis.
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Subgroup survival analysis using the DF-Model threshold (81.1). (A) Stage Ill; (B) Stage IVa/IVb; (C) Non-glottic; (D) Glottic.

4.4 Limitations and future directions

Several limitations should be acknowledged in this research,
such as a limited participant count (n = 278), reliance on single-
center data, and the absence of external validation to assess
generalizability across different clinical environments. The
strategies for feature selection and integration may require further
refinement, as there is a risk of losing important features. Both
feature-level and decision-level fusion may not fully optimize data
utilization, leading to predictive uncertainty. Promoting the model
is difficult because the model’s complexity and the cost associated
with CT radiomics feature extraction hinder its clinical translation.

To facilitate the transition from research to clinical practice,
essential next steps should prioritize multicenter prospective
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validation to confirm generalizability, followed by prospective
clinical trials designed to evaluate whether model-guided
management leads to tangible improvements in patient outcomes—
such as recurrence, survival, and quality of life. Concurrently,
integrating the model with established molecular biomarkers,
including PD-L1 and HPV status, could refine risk stratification,
while the development of an accessible web-based calculator would
support real-time, bedside decision-making. Beyond these immediate
translational priorities, future research should explore advanced
feature engineering methods such as transformer networks, the
integration of multiomics data—including genomics and proteomics
—to enhance predictive accuracy, dynamic risk updating based on
postoperative follow-up, and strategies for clinician education and
seamless integration into routine clinical workflows.
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5 Conclusion

The multimodal feature fusion model developed according to
the decision-level fusion strategy (DF-Model) enhances the
prediction of postoperative RES in locally advanced LSCC. This
improvement is primarily attributed to the integration of
multimodal features derived from clinical pathology, PNI, and CT
radiomics for the construction of the model. Its performance
surpassed those of the FF-Model, single-modality model, and
traditional AJCC staging. The model displayed robust risk
stratification capabilities across various AJCC stages and
subgroups according to tumor location. Further investigations are
encouraged to emphasize multicenter validation, enhancement of
predictive algorithms, and integration into clinical workflows in
order to support real-world deployment and individualized
therapeutic strategies.
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