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Objectives


Given the high postoperative recurrence of locally advanced laryngeal squamous cell carcinoma (LSCC) and American Joint Committee on Cancer (AJCC) staging system prediction limitations, this study aims to construct and validate a postoperative recurrence-free survival (RFS) prediction model using multimodal feature fusion and explore data integration strategies to enhance prediction efficacy.







Methods


Data from 278 patients diagnosed with locally advanced LSCC between 2013 and 2024 were collected retrospectively. These data were then separated into a training dataset (n = 196) and a validation dataset (n = 82), using a near 7:3 allocation strategy. By integrating clinicopathological features, preoperative blood markers, and enhanced computed tomography imaging data, we constructed clinicopathological (Clinic-score), radiomics (Rad-score), and two fusion models: feature-level (FF-Model) and decision-level (DF-Model). Model performance was evaluated using the concordance index, time-dependent area under the receiver operating characteristic curve, calibration curve, and decision curve analyses. Improvement in model discriminative ability was assessed using continuous net reclassification improvement (cNRI) and integrated discrimination improvement (IDI).







Results


At 24.5 months median follow-up, 95 patients (34.2%) experienced recurrence. In the validation set, the DF-Model significantly outperformed the FF-Model, Rad-score and Clinic-score models, and AJCC stages. Additionally, the DF-Model demonstrated superior calibration and clinical utility, better prediction of 1-year, 3-year, and 5-year RFS through cNRI/IDI analysis, and excellent risk stratification across datasets, AJCC stages, and tumor locations.







Conclusion


The multimodal prediction DF-Model effectively integrates multi-source heterogeneous information, significantly improving the prediction accuracy of postoperative RFS in locally advanced LSCC, outperforming the FF-Model, single-modal models, and AJCC staging system, and demonstrating its potential clinical translational value.
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1 Introduction


Laryngeal squamous cell carcinoma (LSCC), one of the most common malignant tumors of the head and neck region, is increasing in incidence among males annually, accounting for most of the approximately 180,000 new cases of laryngeal cancer globally each year (1, 2). Notably, approximately 43.1–65% of patients are diagnosed with locally advanced stage (III, IVa, and IVb) disease at initial presentation, resulting in a five-year disease-free survival rate of only 50–65% (3–7). Despite the widespread application of comprehensive treatment strategies, including surgery, radiotherapy, and chemotherapy, approximately 30–40% of patients experience local tumor recurrence or distant metastatic spread after surgery, which can substantially compromise long-term survival and quality of life (4, 7, 8).


Currently, clinical practice relies primarily on the TNM staging system of the American Joint Committee on Cancer (AJCC) for prognostic assessment. However, its reliance on anatomical criteria overlooks critical biological and systemic factors—such as tumor heterogeneity, host systemic status, and treatment quality—that significantly influence outcomes. Consequently, its predictive accuracy for recurrence, as measured by the concordance index (C-index), is suboptimal (C-index<0.65), limiting the utility of precise individualized risk stratification (9, 10). In addition, systemic inflammatory indicators (such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR)) and nutritional prognostic indices (such as the prognostic nutritional index (PNI)) have attracted considerable attention; however, the predictive efficacy of single markers is limited and susceptible to various factors (11, 12). Novel molecular markers (such as epidermal growth factor receptor overexpression (13), WRAP53β (14), sex hormone receptors estrogen receptor-β and progesterone receptor (15), and p53 mutation (16)) have shown significant prognostic value; however, their clinical application requires further validation.


With advancements in artificial intelligence (AI) and precision medicine, the synergistic use of diverse data modalities—such as clinical, imaging, and molecular profiles—combined with AI algorithms—has shown great promise in enhancing prognosis prediction. In areas such as high-grade serous ovarian cancer (17), glioblastoma (18), thyroid cancer (19), renal cell carcinoma (20), breast cancer (21), and colorectal cancer (22), the area under the receiver operating characteristic (ROC) curve (AUC) values and C-indices (AUC > 0.8; C-index > 0.7) of multimodal data fusion models generally outperform traditional methods. However, research on predicting the risk of postoperative recurrence in locally advanced LSCC still has limitations, most of which are confined to application scenarios of a single type or single-modality data source, such as relying solely on clinicopathological features (23) or radiomics parameters (24–26), with AUC values generally<0.8, making it difficult to meet the need for precise stratification of patients.


Therefore, this study aimed to develop a comprehensive prediction model for postoperative recurrence-free survival (RFS) in locally advanced LSCC by synthesizing preoperative data from multiple domains—clinicopathological, laboratory, and radiomic—thereby leveraging the strengths of multimodal fusion. By comparing the efficacy of feature- and decision-level fusion strategies, this study sought to achieve precise stratification of postoperative recurrence risk, thereby providing data support for the formulation of personalized treatment plans (such as adjuvant radiotherapy dose adjustment) and dynamic prognosis management. We compared feature- and decision-level fusion because they represent fundamentally different integration strategies: the former concatenates features early (potentially capturing interactions but risking overfitting), while the latter combines model predictions, preserving modality-specific patterns and enhancing interpretability. This comparison helps identify the optimal architecture for clinical prediction in LSCC.






2 Materials and methods





2.1 Study participants


Following the principles of the TRIPOD-AI checklist (27), we conducted a retrospective cohort study of patients with locally advanced LSCC at the First Affiliated Hospital of Guangxi Medical University (Jan 2013–Jan 2024). Inclusion was determined by histopathologic staging per AJCC 8th edition (Stage III–IVb) (9), availability of more than six months of postoperative monitoring, documented results for standard blood counts as well as liver and kidney function indicators, and qualified preoperative contrast-enhanced multiplex spiral computed tomography (CT) scan images. The exclusion criteria were incomplete medical records; history of surgery, radiotherapy, or chemotherapy prior to surgery; presence of active infections, chronic inflammation, hematological diseases, or autoimmune diseases; and history of other malignancies.


The sample size was calculated using the Events Per Variable (EPV) method: N = (EPV × number of predictor variables/recurrence rate) × (1 + efficiency rate). With 7 expected variables, a 30% 5-year recurrence rate, EPV = 10, and 10% inefficiency, a minimum of 256 patients was required. After applying criteria, 278 patients were included, meeting statistical power needs. The study adhered to the Declaration of Helsinki and was approved by the Institutional Ethics Committee (No. 2025-E0564). Informed consent was waived for this retrospective study, and all data were anonymized. The study workflow is shown in 
Figure 1
.


[image: Diagram depicting a multi-scale feature fusion-based model and radiomic model. Part A shows a flowchart for laryngeal cancer patient data processed from clinical and pathological data, and CT images, through training and validation sets. It includes inclusion/exclusion criteria and model validation steps. Part B illustrates preprocessing CT images for the radiomic model, including tumor segmentation, radiomics feature extraction, selection, and model construction.]
Figure 1 | 
Methodological framework of the study design. (A) Multi-Scale Feature Fusion-Based Model; (B) Radiomic Model.








2.2 Acquisition of clinical variables


Clinical data were extracted from electronic health records, including age, sex, comorbidities (e.g., hypertension), smoking/alcohol history, preoperative blood count, liver/kidney function, and postoperative pathological features (tumor location, margin status, vascular invasion, lymph node metastasis, differentiation, and TNM stage). Based on preoperative peripheral blood test results, we calculated the following systemic inflammation-related biomarkers: NLR, PLR, LMR, Systemic Immune-Inflammation Index (SII) = platelet count × NLR, PNI = lymphocyte count × 5 + albumin, Advanced Lung Cancer Inflammation Index (ALI) = body mass index (BMI) × albumin/NLR, and Systemic Inflammation Response Index (SIRI) = monocyte count × NLR. Blood tests used the Beckman Coulter/LH 780 and Werfen/ACL TOP 750LAS, with collection between 6:00 and 10:00 AM. Smoking history was defined as >1 cigarette/day for >6 months pre-surgery; drinking history as ≥72g alcohol/week for >6 months pre-surgery. The AJCC 8th edition (2017) criteria were applied for pathological staging.







2.3 Image acquisition and preprocessing


Contrast-enhanced CT scans (skull base to supraclavicular) were performed. Venous phase images were acquired 60–90 s after injecting non-ionic contrast (iopromide/iohexol, 350 mg/ml, 1.0–2.0 ml/kg, 3–5 ml/s). Scanner parameters are in 
Supplementary Table 1
. Image preprocessing followed the Evaluation of Radiomics Research (CLEAR) checklist (28): original DICOM images were resampled to 1×1×1 mm³ isotropic resolution, gray-level discretized (bin width: 25 HU), intensity range limited to 1–500 HU, and normalized using Z-score. Window width/level was set to 350/40 HU to enhance tumor boundaries. The tumor volume of interest (VOI) was outlined at the beginning of the study by randomly selecting CT images from 35 patients. The delineation of tumor boundaries on axial images was conducted independently by two head and neck specialists, who had accumulated 10 and 13 years of clinical expertise, using the ITK-SNAP platform (www.itksnap.org) without knowledge of other clinical data (
Figure 1B
). One week later, the more experienced rater repeated the segmentation. Inter-rater agreement was assessed using the intraclass correlation coefficient (ICC). Features with ICC > 0.75 were retained for analysis.






2.4 Prediction of outcomes and follow-up


RFS was defined as time from surgery to the first recurrence or metastasis or the end of follow-up (Jan 31, 2025), with time points set at 1, 3, and 5 years postoperatively. Follow-up used digital communication (WeChat), telephonic contact, and clinic visits (quarterly for years 1–3, semi-annually for years 4–5, annually thereafter), with<5% loss to follow-up.






2.5 Model development and validation





2.5.1 Dataset partitioning


To ensure reproducibility, we split the dataset into two subsets — a training set (n = 196) and a validation set (n = 82) — using a 7:3 partitioning strategy with a fixed random seed (seed = 42). The training set was used to train and optimize the model, whereas the validation set was used to evaluate the generalization ability of the model.






2.5.2 Development of clinical-pathological model (Clinic-score)


Based on 35 baseline clinicopathological characteristics and peripheral blood markers of patients in the training set, variables were screened using univariate Cox regression (p< 0.05), and the optimal variable combination was selected in conjunction with the Akaike Information Criterion (AIC) (29) to construct a multivariate Cox regression model, which was defined as the clinical-pathological model (Clinic-score). The results are presented as a nomogram, and a web-based calculator was developed.






2.5.3 Development of radiomics models (Rad-score)


Radiomics features were extracted from preprocessed tumor VOIs in the training cohort using PyRadiomics, encompassing ten feature classes: first-order statistics, 3D morphological features, gray-level co-occurrence matrix (GLCM), gray-level size zone matrix (GLSZM), gray-level run length matrix (GLRLM), neighborhood gray-tone difference matrix (NGTDM), Hessian-based features, fractal features, and topological features. Univariate Cox regression (P< 0.05) identified prognostic features, which were further refined using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation to minimize overfitting. The optimal regularization parameter (λ) was selected by minimizing cross-validated partial likelihood deviance, retaining only features with non-zero coefficients. A multivariable Cox model was then fitted to these features to compute the radiomics score (Rad-score):
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2.5.4 Development of fusion models


We compared feature-level and decision-level fusion strategies to determine the optimal approach for integrating multimodal data (clinical, blood, and radiomics). Feature-level fusion combines raw features, while decision-level fusion integrates model outputs, offering potentially greater robustness.



Feature-level fusion model (FF-Model)



1. Variable selection: This model involves the direct concatenation of clinicopathological features, peripheral blood markers, and radiomics features, which are selected through univariate Cox regression during the construction of the radiomics model. Subsequently, a LASSO-Cox regression approach incorporating 100 rounds of 10-fold cross-validation is applied to select relevant predictors.


2. Fusion strategy: Early fusion — raw features from different modalities are concatenated into a single vector.


3. Model construction: A multivariable survival model is constructed based on Cox regression. The resulting linear predictor is defined as the FF-Score.



Decision-level fusion model (DF-Model)



1. Variable selection: This model uses the outputs of two pre-trained submodels as input variables:


(i) Clinic-score: derived from the clinical-pathological model (Section 2.5.2);


(ii) Rad-score: derived from the radiomics model (Section 2.5.3).


2. Fusion strategy: Late fusion — predictions (scores) from separate submodels are combined at the decision level.


Model construction: The Clinic-score and Rad-score are combined in a multivariable Cox proportional hazards model as covariates. The model is defined as: 
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. Where h0(t) is the baseline hazard, and β1
, β2
 are the maximum likelihood estimates for the respective regression coefficients.






2.5.5 Model evaluation and comparison


Model performance was evaluated based on discrimination, calibration, and clinical utility. Discrimination was assessed using the C-statistic and time-dependent AUC at 1, 3, and 5 years for RFS. Calibration was evaluated using calibration plots. Clinical utility was assessed via decision curve analysis (DCA), comparing models against each other and the AJCC 8th Edition TNM staging system. Additionally, the degree of improvement in the fusion model was assessed using continuous net reclassification improvement (cNRI) and integrated discrimination improvement (IDI). Finally, the optimal cutoff for the best-performing model was determined using X-tile software (30), stratified by AJCC stage and tumor location, to validate its risk stratification and generalizability across subgroups.







2.6 Statistical methods


Categorical variables (such as tumor location), are summarized with counts and proportions, while group differences were assessed using either the chi-square test or Fisher’s exact test. For continuous variables (such as NLR), the data are expressed as mean ± standard deviation (mean ± SD) or median and interquartile range (IQR), contingent upon whether the data adhered to a normal distribution. An independent samples t-test or Mann–Whitney U test was used to evaluate differences between groups. The statistical processing was carried out using R version 4.2.3 and Python 3.6, with key functions drawn from these packages: glmnet 4.1.8, pROC 1.18.5, rms 6.7.1, dplyr 1.1.4, survival 3.7.0, and timeROC 0.4. Statistical significance was set at p< 0.05.







3 Results





3.1 Patient characteristics


A total of 278 patients with locally advanced LSCC were enrolled in this study, including 106 (38.1%) patients with stage III, 170 (61.1%) with stage IVa, and two (0.7%) with stage IVb disease. The median follow-up duration was 24.5 (8.3–54.8) months. As of the follow-up cutoff date of January 31, 2025, 95 (34.2%) patients experienced recurrence or distant metastasis. The median time from the last treatment to recurrence or metastasis was 10 (6–21) months. The cumulative RFS rates at 1, 3, and 5 years were 79.5%, 70.1%, and 67.3%, respectively. The cumulative recurrence rate was 35.2% (69/196) in the training set and 31.7% (26/82) in the validation set, with no significant differences between the recurrence rates of the two sets (p > 0.05). Except for BMI (Z = 2.204, p = 0.028) and smoking history (χ² = 3.884, p = 0.049), there were no significant differences in the distribution of the remaining variables between the training and validation sets (all p > 0.05, 
Supplementary Table 2
).






3.2 Clinic-score


Univariate Cox regression analysis identified 13 potential predictive variables (including tumor location and AJCC stage; all p< 0.05; 
Table 1
). Based on the AIC, seven optimal variables were determined to construct the multivariate Cox regression model (
Supplementary Table 3
). Additionally, the model was visualized as a nomogram and deployed a web calculator at https://huangxiaoying.shinyapps.io/dynnomapp (
Figure 2
).



Table 1 | 
Univariate Cox regression analysis of postoperative RFS in patients with locally advanced LSCC.





	Variables

	Beta

	Standard error

	Z-value

	HR(95%CI)

	p-value






	Age,year
	0.018
	0.013
	1.398
	1.018(0.993,1.045)
	0.162



	Sex,n(%)

	



	Male
	 
	 
	 
	Reference
	 



	Female
	-0.791
	1.008
	0.785
	0.453(0.063,3.269)
	0.433



	Smoking habits, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	-0.155
	0.293
	0.529
	0.857(0.483,1.520)
	0.597



	Drinking habits, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	-0.113
	0.245
	0.459
	0.893(0.552,1.445)
	0.646



	History of hypertension,n(%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	-0.277
	0.358
	0.774
	0.758(0.376,1.529)
	0.439



	History of diabetes,n(%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.535
	0.4
	1.339
	1.708(0.780,3.737)
	0.181



	History of coronary heart disease, n(%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	-0.468
	1.008
	0.464
	0.626(0.087,4.517)
	0.642



	BMI, kg/m2
	-0.056
	0.037
	1.503
	0.946(0.880,1.017)
	0.133



	Course of disease,month
	-0.015
	0.01
	1.522
	0.985(0.967,1.004)
	0.128



	Tumor location, n(%)

	



	Glottic
	 
	 
	 
	Reference
	 



	Non-Glottic
	0.701
	0.242
	2.89
	2.015(1.253,3.241)
	0.004



	Degree of differentiation, n (%)

	



	poorly
	 
	 
	 
	Reference
	 



	Moderate
	0.39
	0.523
	0.746
	1.477(0.530,4.117)
	0.456



	Highly
	0.008
	0.544
	0.015
	1.008(0.347,2.928)
	0.988



	pT staging, n(%)

	



	1
	 
	 
	 
	Reference
	 



	2
	-1.095
	1.163
	0.941
	0.334(0.034,3.271)
	0.346



	3
	-2.007
	1.031
	1.947
	0.134(0.018,1.014)
	0.052



	4
	-1.392
	1.019
	1.366
	0.249(0.034,1.832)
	0.172



	AJCC staging, n(%)

	



	III
	 
	 
	 
	Reference
	 



	IVa/IVb

	0.924
	0.292
	3.162
	2.520(1.421,4.469)
	0.002



	Vascular thrombosis, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.653
	0.319
	2.049
	1.922(1.029,3.589)
	0.04



	Peripheral nerve infiltration, n(%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.513
	0.359
	1.43
	1.670(0.827,3.374)
	0.153



	Striated muscle invasion, n(%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.655
	0.249
	2.627
	1.925(1.181,3.137)
	0.009



	Thyroid cartilage infiltration, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	-0.172
	0.243
	0.708
	0.842(0.523,1.355)
	0.479



	Surgical margin, n(%)

	



	Negatives
	 
	 
	 
	Reference
	 



	Positive
	0.878
	0.3
	2.924
	2.407(1.336,4.336)
	0.003



	pN stages, n(%)

	



	0
	 
	 
	 
	Reference
	 



	1
	0.348
	0.378
	0.922
	1.417(0.676,2.970)
	0.356



	2
	1.041
	0.259
	4.016
	2.831(1.703,4.704)
	<0.001



	3
	-14.825
	2714.368
	0.005
	0.000(0.000,Inf)
	0.996



	Cervical lymph node metastases n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.755
	0.242
	3.124
	2.128(1.325,3.418)
	0.002



	Contralateral cervical lymph node metastasis, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	1.137
	0.293
	3.875
	3.118(1.754,5.542)
	<0.001



	Total number of lymph nodes cleared (n)
	0.006
	0.006
	0.961
	1.006(0.994,1.019)
	0.337



	Total number of positive lymph nodes (n)
	0.158
	0.036
	4.366
	1.171(1.091,1.257)
	<0.001



	Proportion of positive lymph nodes
	1.567
	0.494
	3.171
	4.790(1.819,12.615)
	0.002



	Type of primary resection, n (%)

	



	Partial laryngectomy
	 
	 
	 
	Reference
	 



	Total laryngectomy
	0.108
	0.253
	0.425
	1.114(0.678,1.830)
	0.671



	Side of cervical lymph node dissection, n(%)

	



	NO
	 
	 
	 
	Reference
	 



	Unilateral
	-0.686
	0.35
	1.96
	0.504(0.254,1.000)
	0.05



	Bilateral
	-0.05
	0.308
	0.164
	0.951(0.520,1.740)
	0.87



	Postoperative radiotherapy, n (%)
	 



	NO
	 
	 
	 
	Reference
	 



	YES
	0.146
	0.253
	0.578
	1.158(0.705,1.901)
	0.563



	Post-operative chemotherapy, n (%)

	



	NO
	 
	 
	 
	Reference
	 



	YES
	0.113
	0.28
	0.403
	1.119(0.647,1.937)
	0.687



	NLR
	0.038
	0.013
	2.998
	1.038(1.013,1.064)
	0.003



	PLR
	0.001
	0
	1.543
	1.001(1.000,1.001)
	0.123



	LMR
	-0.107
	0.085
	1.261
	0.899(0.762,1.061)
	0.207



	SII
	0
	0
	2.305
	1.000(1.000,1.000)
	0.021



	PNI
	-0.02
	0.006
	3.328
	0.980(0.969,0.992)
	<0.001



	ALI
	-0.001
	0
	1.408
	0.999(0.999,1.000)
	0.159



	SIRI
	0.02
	0.042
	0.478
	1.020(0.939,1.109)
	0.633










[image: Panel A shows a nomogram for predicting recurrence-free survival (RFS) in locally advanced laryngeal cancer. Categories include points, striated muscle invasion, surgical margin, contralateral cervical lymph node metastasis, AJCC staging, tumor location, proportion of positive lymph nodes, PNI, and total points, corresponding to 1-year, 3-year, and 5-year RFS probability. Panel B depicts a web interface for predicting risk of recurrence, featuring input fields for tumor location, AJCC staging, muscle invasion, surgical margins, lymph node metastasis, proportion of positive lymph nodes, and PNI. A survival plot visualizes estimated survival probability over follow-up time.]
Figure 2 | 
A clinicopathological model for predicting RFS after surgery in locally advanced LSCC. (A) Nomogram, (B) Web-based calculator.








3.3 Rad-score


Through PyRadiomics, 3232 radiomics features were extracted, with 2658 (82.24%) retained after ICC screening, including 10 categories of features such as first-order statistics (360) and Hessian matrix (780) (
Supplementary Figure 1
). Univariate Cox regression analysis further screened 413 significant features (p< 0.05), and LASSO ultimately retained seven non-zero coefficient features, including one first-order statistical feature, one three-dimensional shape feature, three GLCM, one GLRLM, and one GLSZM (
Figure 3
, 
Table 2
). The Rad-score was computed as a linear combination of these features (
Equation 1
):


[image: Panel A displays a plot of coefficients against Lambda values, showing how they change as Lambda varies. Panel B shows a plot of a model's cross-validation error rate against Lambda, with a confidence interval. Panel C is a bar graph of coefficients for Features one to seven, with Feature seven having the highest value. Panel D is a heatmap with hierarchical clustering for Features one to seven, indicating correlations through color intensity, with dark areas showing stronger relationships.]
Figure 3 | 
Selection of non-zero coefficient radiomics features using the least absolute shrinkage and selection operator (LASSO) regression model. (A) LASSO regularization path diagram; (B) C-index coefficient plot using 10-fold cross-validation; (C) 7 selected radiomics features and their weight coefficients; (D) correlation clustering heatmap of 7 radiomics features.





Table 2 | 
Seven radiomics signature coefficients selected using LASSO-cox regression.





	Variables

	Radiomics features

	Coefficient






	Feature1
	wavelet_LLL_glszm_ZoneEntropy
	0.010967



	Feature2
	gradient_firstorder_Skewness
	0.023122



	Feature3
	original_shape_Maximum3DDiameter
	0.058509



	Feature4
	wavelet_HHL_glcm_Idn
	0.060522



	Feature5
	wavelet_HLL_glcm_Idn
	0.065519



	Feature6
	lbp_3D_m2_glrlm_GrayLevelVariance
	0.07332



	Feature7
	wavelet_LLL_glcm_Imc1
	0.221575
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3.4 Fusion model construction





3.4.1 FF-Model


To develop the FF-Model, we integrated 13 clinicopathological variables with 413 radiomic features, resulting in a 426-dimensional dataset. Subsequently, LASSO-Cox regression identified 16 significant predictors, including PNI, tumor location, surgical margin status, contralateral cervical lymph node metastasis, and 12 radiomics features (
Supplementary Figure 2
, 
Supplementary Table 4
). Multivariate Cox regression identified seven independent predictors of RFS (p< 0.05), among which were positive surgical margins and contralateral lymph node involvement (
Figure 4
).


[image: Forest plot showing hazard ratios with 95% confidence intervals for various variables. Positive surgical margins have the highest hazard ratio of 5.756. Other variables with significant ratios include contralateral lymph node metastasis and Feature64. Variables like PNI and Feature193 show ratios below one. Statistical significance is indicated by P values, with some below 0.05, such as for Feature187.]
Figure 4 | 
Cox Regression-Based Feature-Level Fusion Model.








3.4.2 DF-Model


The DF-Model formula based on multifactorial Cox regression is as follows:
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Both the Clinic-score and Rad-score significantly impacted the postoperative RFS of locally advanced LSCC (p< 0.001; 
Figures 5
, 
6
).


[image: Table and forest plot comparing Rad-score and Clinic-score. Rad-score shows a beta of 0.036, standard error of 0.005, z-value of 6.896, hazard ratio of 1.037 with a confidence interval of 1.026 to 1.047, and a P value of 0.000. Clinic-score shows a beta of 0.009, standard error of 0.002, z-value of 4.281, hazard ratio of 1.009 with a confidence interval of 1.005 to 1.013, and a P value of 0.000. The plot visually represents the hazard ratios with squares centered on 1.037 and 1.009.]
Figure 5 | 
Cox Regression-Based Decision-Level Fusion Model.




[image: A nomogram chart illustrating a scoring system for predicting recurrence-free survival (RFS) probabilities at one, three, and five years. It includes scales for Points, Rad-score, Clinic-score, and Total Points aligned with corresponding RFS probabilities.]
Figure 6 | 
Nomogram Based on a Decision-Level Fusion Strategy.









3.5 Model performance comparison





3.5.1 Discrimination


In the training set, the C-index of the DF-Model was 0.847 (95% CI: 0.811–0.884), which was significantly higher than the Clinic-score (0.723; p< 0. 001), Rad-score (0.828; p = 0.099), and AJCC stage (0.608; p< 0.001). The C-index of the FF-Model was 0.878 (95% CI: 0.838–0.917), which was significantly higher than that of the DF-Model (p = 0.024). In the validation set, the DF-Model achieved a C-index of 0.826 (95% CI: 0.763–0.889), showing a statistically significant improvement over the FF-Model (0.741; p = 0.047), Rad-score (0.734; p = 0.033), Clinic-score (0.723; p = 0.002), and AJCC stages (0.58; p< 0.001, 
Table 3
).



Table 3 | 
Comparison of C-indices among five predictive models.





	Models

	C-index(95% CI)

	
P1



	
P2



	
P3



	
P4






	Training set

	Validation set

	Training set

	Validation set

	Training set

	Validation set

	Training set

	Validation set

	Training set

	Validation set






	DF-Model
	0.847(0.811− 0.884)
	0.826(0.763− 0.889)
	-
	-
	-
	-
	-
	-
	-
	-



	FF-Model
	0.878 (0.838–0.917)
	0.741 (0.638–0.844)
	0.024
	0.047
	-
	-
	-
	-
	-
	-



	Rad-score
	0.828 (0.787–0.869)
	0.734 (0.627–0.841)
	0.099
	0.033
	0.003
	0.828
	-
	-
	-
	-



	Clinic-score
	0.723 (0.658–0.788)
	0.657 (0.552–0.763)
	<0.001
	0.002
	<0.001
	0.292
	0.006
	0.369
	-
	-



	AJCC stages
	0.608(0.556-0.660)
	0.580(0.484-0.676)
	<0.001
	<0.001
	<0.001
	0.002
	<0.001
	0.003
	<0.001
	0.149







P1, P2, P3, and P4 denote the results of Z-tests comparing C-index differences between model pairs: P1: DF-Model vs. FF-Model, Rad-score, Clinic-score, and AJCC stages; P2: FF-Model vs. Rad-score, Clinic-score, and AJCC stages; P3: Rad-score vs. Clinic-score and AJCC stages; P4: Clinic-score vs. AJCC stages.




The ROC analysis showed no significant difference between the AUC values of the FF-Model and DF-Model in the prediction of 1/3/5-year RFS in the training set (p > 0.05; 
Figures 7A–C
). In the validation set, the AUC of the DF-Model was significantly higher than that of the FF-Model for predicting 3-year and 5-year RFS (all p = 0.022). no statistically significant difference was observed in the predictive performance of 1-year RFS across the models (p = 0.206; 
Figures 7D–F
).


[image: Six ROC curve charts labeled A to F compare the performance of four models over time. Each chart displays sensitivity versus 1-specificity. Curves are colored blue, orange, green, and red, representing the DF, FF, Rad, and Clinic models, respectively. Each panel shows the Area Under Curve (AUC) values with 95% Confidence Intervals for each model, indicating model effectiveness at different times: 12, 36, and 60 for charts A-C and D-F respectively.]
Figure 7 | 
ROC comparison of four models for RFS prediction. (A–C) Training set; (D–F) Validation set.








3.5.2 Calibration


Calibration curve analysis demonstrated that in predicting 1-year, 3-year, and 5-year RFS, the calibration curves of the DF-Model in both the training and validation sets were closer to the ideal diagonal line than those of the FF-Model, Rad-score, and Clinic-score (
Figure 8
), indicating superior calibration performance over the other models.


[image: Six calibration plots comparing predicted and observed probabilities for various models over different times. Plots A, B, and C show data for times twelve, thirty-six, and sixty respectively, with DF, FF, Rad, and Clinic scores. Plots D, E, and F mirror this for a second dataset. Each plot features multiple colored lines with error bars, plotted against a diagonal reference line representing perfect calibration.]
Figure 8 | 
Calibration of four models for RFS prediction. (A–C) Training set; (D–F) Validation set.








3.5.3 Clinical utility


DCA showed that both fusion models provided greater clinical utility than the single-modality models and the AJCC staging system for predicting 1-, 3-, and 5-year RFS (
Figure 9
).


[image: Six line graphs labeled A to F each display net benefit versus threshold probability for different models, using various colored lines. A black line represents the 'All' model, and a dashed line represents 'None'. The other models include DF-Model, RF-Model, Rad-Score, Clinic-Score, and PTNM, each with a different color. The trends show decreasing net benefit as threshold probability increases in each graph. All graphs share a legend and axes labels.]
Figure 9 | 
Decision curve analysis of five models for RFS prediction. (A–C) Training set; (D–F) Validation set.




In the training set, the FF-Model yielded the highest net benefit across most threshold probabilities. In the validation set, the DF-Model generally outperformed other models, particularly for 3- and 5-year predictions. Although the FF-Model showed slightly higher net benefit at some thresholds for 1-year RFS, the DF-Model remained superior to all single-modality models.






3.5.4 cNRI and IDI tests


The DF-Model exhibited better discriminative ability than the single-modal and the FF-Model in both the cNRI and IDI tests. In the 1-year prediction, the cNRI increased by 32.6% (p = 0.040), 51.3% (p = 0.020), and 23.4% (p< 0.001) compared to the FF-Model, Rad-score, and Clinic-score, respectively. Although the IDI gain did not reach statistical significance (p = 0.079), it transcended the minimal clinically important difference (MCID = 5%) (31) and thus, might have potential value. In the 3-year prediction, the cNRI showed significant improvement compared to the Rad-score (51.5%; p = 0.020) and Clinic-score (70.1%; p< 0.001). Additionally, the IDI exhibited superior performance compared to the Clinic-score (27.3%; p = 0.02) and Rad-score (19.1%; p< 0.001). Regarding the 5-year prediction, an even more robust performance was observed, with the cNRI increasing to 67.0% (p< 0.001) compared to the Clinic-score, and 47.8% (p = 0.020) compared to the Rad-score. The IDI exhibited a similar trend (
Table 4
).



Table 4 | 
Comparison of the DF-Model with the FF-Model, Rad-score, and Clinic-score using IDI and cNRI metrics.





	Model

	Time(year)

	Datasets

	Evaluation indicators

	Estimate (95% CI)

	p-value






	FF-Model
	1
	Training set
	IDI
	-0.155 (-0.241, -0.043)
	<0.001



	 
	cNRI
	-0.511 (-0.655, 0.025)
	0.079



	Validation set
	IDI
	0.093 (-0.004, 0.182)
	0.079



	 
	cNRI
	0.326 (0.008, 0.546)
	0.04



	Rad-score
	Training set
	IDI
	0.037 (-0.047, 0.100)
	0.455



	 
	cNRI
	0.264 (-0.318, 0.481)
	0.436



	Validation set
	IDI
	0.115 (-0.023, 0.186)
	0.079



	 
	cNRI
	0.513 (0.091, 0.766)
	0.02



	Clinic-score
	Training set
	IDI
	0.159 (0.068, 0.236)
	<0.001



	 
	cNRI
	0.433 (0.234, 0.606)
	<0.001



	Validation set
	IDI
	0.173 (0.038, 0.311)
	<0.001



	 
	cNRI
	0.234 (0.060, 0.668)
	<0.001



	FF-Model
	3
	Training set
	IDI
	-0.087 (-0.153, -0.019)
	0.02



	 
	cNRI
	-0.530 (-0.660, 0.084)
	0.079



	Validation set
	IDI
	0.143 (-0.041, 0.287)
	0.099



	 
	cNRI
	0.290 (-0.026, 0.662)
	0.059



	Rad-score
	Training set
	IDI
	0.058 (-0.025, 0.115)
	0.158



	 
	cNRI
	0.207 (-0.403, 0.551)
	0.851



	Validation set
	IDI
	0.191 (0.044, 0.288)
	<0.001



	 
	cNRI
	0.515 (0.075, 0.742)
	0.02



	Clinic-score
	Training set
	IDI
	0.254 (0.150, 0.337)
	<0.001



	 
	cNRI
	0.570 (0.386, 0.732)
	<0.001



	Validation set
	IDI
	0.273 (0.065, 0.418)
	0.02



	 
	cNRI
	0.701 (0.296, 0.852)
	<0.001



	FF-Model
	5
	Training set
	IDI
	-0.116 (-0.184, -0.037)
	<0.001



	 
	cNRI
	-0.584 (-0.736, 0.000)
	0.04



	Validation set
	IDI
	0.158 (-0.022, 0.327)
	0.079



	 
	cNRI
	0.296 (-0.075, 0.733)
	0.119



	Rad-score
	Training set
	IDI
	0.073 (-0.013, 0.124)
	0.079



	 
	cNRI
	0.105 (-0.431, 0.663)
	0.832



	Validation set
	IDI
	0.170 (0.024, 0.317)
	0.02



	 
	cNRI
	0.478 (0.049, 0.681)
	0.02



	Clinic-score
	Training set
	IDI
	0.254 (0.150, 0.337)
	<0.001



	 
	cNRI
	0.570 (0.386, 0.732)
	<0.001



	Validation set
	IDI
	0.305 (0.128, 0.465)
	<0.001



	 
	cNRI
	0.670 (0.311, 0.822)
	<0.001














3.5.5 Subgroup analysis


X-tile software was used to determine the cutoff value of the DF-Model, which was 81.1, to divide the training set into low-risk (<81.1) and high-risk (≥81.1) subgroups. Kaplan-Meier analysis showed significantly worse recurrence-free survival (RFS) in the high-risk group compared to the low-risk group in both the training and validation cohorts (all p< 0.001; 
Figure 10
). The prognostic value of the DF-Model remained significant across subgroups defined by AJCC stage (III vs. IV) and tumor location (glottic vs. non-glottic) (all p< 0.001; 
Figure 11
).


[image: Kaplan-Meier survival plots showing recurrence-free survival probability over time for low-risk (blue) and high-risk (red) groups. Panel A represents the training set, and Panel B represents the validation set. Both panels indicate significant differences between groups with p-values less than 0.001.]
Figure 10 | 
Survival analysis using the fusion model threshold (81.1). (A) Training set; (B) Validation set.




[image: Four Kaplan-Meier survival curves for high-risk and low-risk groups are shown. Panel A: Stage III with significant differences (p < 0.001). Panel B: Stage IV shows similar significance. Panel C: Non-glottic, panel D: Glottic, both with significant differences (p < 0.001). The horizontal axis shows time in months, and the vertical axis shows RFS probability. The blue line represents low-risk, red line high-risk.]
Figure 11 | 
Subgroup survival analysis using the DF-Model threshold (81.1). (A) Stage III; (B) Stage IVa/IVb; (C) Non-glottic; (D) Glottic.










4 Discussion





4.1 State of the art in multimodal data fusion applications


Locally advanced LSCC has a high postoperative recurrence rate, and the traditional AJCC staging system is not sufficient for precise prognosis prediction, making it difficult to develop personalized treatment plans. In this case, multimodal data fusion provides a different method for improving prediction effectiveness. Different data modalities complementarily reflect the biological behavior of tumors. Macroscopic invasiveness (such as rhabdomyolysis invasion and lymph node metastasis burden) and preoperative blood markers (such as PNI) characterize the host’s systemic inflammatory and nutritional status, whereas radiomic features (such as wavelet transform texture and gray entropy) quantify the heterogeneity of the tumor microenvironment. Studies have attempted to integrate multimodal data to improve predictive efficacy in head and neck squamous cell carcinoma (HNSCC). For example, Tseng et al. (32) integrated clinical, pathological, and genetic variation data to construct an elastic net Cox model to predict the survival risk in patients with oral cancer. Wang et al. (33) integrated radiomic and pathomic features to develop a Particle Swarm Optimization–Support Vector Machine model aimed at assessing the response to neoadjuvant chemotherapy among individuals diagnosed with nasopharyngeal carcinoma. Yin et al. (34) integrated multiple immuno-omics data to develop a Computational Model for Predicting Immunotherapy Response model for identifying patient populations sensitive to immunotherapy and chemotherapy. Cavalieri et al. (35) established a large-scale multiomics database, BD2Decide, to provide a rich data resource for head and neck cancer research. Additionally, studies have enhanced model performance by integrating radiomic features from different imaging modalities. For instance, Tomita et al. (36) utilized radiomic data obtained from multiple magnetic resonance imaging (MRI) scans to develop a deep learning model designed to predict the likelihood of 2-year progression-free survival (PFS) in patients with laryngeal and hypopharyngeal malignancies. Lin et al. (37) constructed a multimodal radiomics scoring model based on preoperative MRI images of patients with advanced sinonasal squamous cell carcinoma to predict early disease recurrence. Huynh et al. (38) evaluated the performance of traditional radiomics versus convolutional neural network (CNN) models in forecasting patient survival outcomes in HNSCC, and found that the predictive capability of CNN models improved when combined with clinical and radiomic features. Li et al. (39) developed multiple prediction models and demonstrated that the DL-Model achieved higher AUC, accuracy, and specificity in the validation set. Wang et al. (40) also showed that the DL-Model based on multimodal radiomic features achieved the highest AUC values (0.89–0.90) across all datasets, along with optimal sensitivity (82–88%) and specificity (79–85%).






4.2 Core findings and comparison with other studies


In the field of laryngeal cancer prognostic prediction, previous studies have mainly focused on single-modality data or small patient cohorts. Zhong et al. (25) used positron emission tomography (PET)-CT metabolic parameters to construct a random forest model to predict disease progression; Choi et al. (41) combined radiomic scores with clinical variables, which increased the C-index of survival prediction to 0.958; Lin et al. (42) found that intra-tumoral/peri-tumor features during the mid-radiation process performed better than pre-radiation models in prediction; Agarwal et al. (43) used pre-treatment CT image data of 60 patients treated with chemoradiotherapy and found that the entropy of medium-filtered texture features is an independent predictor. However, these studies have issues such as incomplete selection of regions of interest and some cases of hypopharyngeal cancer, which makes it difficult to apply these findings elsewhere. Al-Ibraheem et al. (44) used PET/CT data from 68 patients with laryngeal cancer to build a Cox model demonstrating that total lesion glycolysis and metabolic tumor volume have independent predictive values for PFS. Nakajo et al. (45) developed an RSF model using PET/CT features of 49 patients to predict PFS. Chen et al. (24) built a radiomics nomogram with a C-index of 0.913 using CT data from 136 cases of LSCC; however, these studies included early stage laryngeal cancer, which could add some selective bias. Rajgor et al. (26) studied 72 patients with advanced laryngeal cancer, using shape compactness and gray-level zone length matrix−gray-level nonuniformity modeling to predict 5-year survival, achieving a C-index of 0.759, outperforming the clinical model’s C-index of 0.655. Nevertheless, this investigation was conducted at a single institution and involved a limited number of participants; furthermore, its findings have yet to undergo external validation.


In contrast, this study provided an explicit definition and included 278 individuals with locally advanced LSCC, targeting the prediction of prognosis within this high-risk group of patients. Additionally, we included clinicopathological features such as surgical margin status and the ratio of positive lymph nodes, pre-PNI, and CT radiomics features to capture complementary information. The preoperative PNI indicates the patient’s nutritional and immune status, striated muscle invasion represents tumor aggressiveness, the number of positive nodes represents the extent of tumor metastasis, margin status reflects operation radicality, and radiomics features further quantify tumor microenvironment heterogeneity; therefore, the model enables a comprehensive, multidimensional evaluation of the “tumor characteristics- host status- treatment” framework. This represents a shift beyond the conventional AJCC staging system, which was not designed to predict recurrence at the individual patient level and primarily reflects anatomical extent rather than underlying biological behavior.


The radiomic model incorporated features reflecting diverse aspects of tumor phenotype. Tumor size was represented by the three-dimensional maximum diameter (original_shape_Maximum3DDiameter), with larger values generally associated with more advanced disease and poorer prognosis (47). Tumor intensity distribution asymmetry was captured by first-order skewness (gradient_firstorder_Skewness), where high positive values indicate a more aggressive and heterogeneous tumor phenotype (43). Tumor heterogeneity was further quantified using wavelet-based texture features (e.g., wavelet_LLL_glszm_ZoneEntropy), which measure gray-level inhomogeneity; higher values suggest greater internal complexity and are linked to adverse outcomes (43). Notably, four of the seven radiomic features in the final model were derived from wavelet transformation, underscoring the importance of capturing intratumoral heterogeneity in prognostic prediction (46).


In the present study, the DF-Model achieved a C-index of 0.826 (95% CI: 0.763–0.889) in validation, exceeding the FF-Model (0.741), Rad-score (0.734), and Clinic-score (0.657). Furthermore, it exhibited superior performance in calibration curve analysis and DCA. The cNRI and IDI metrics indicated that the DF-Model demonstrated superior performance in forecasting RFS at 1-, 3-, and 5-year intervals compared to alternative models. In particular, the cNRI enhancement for the 1-year prediction relative to the FF-Model reached 32.6% (p< 0.05). Although the improvements in the 3–5-year predictions did not achieve statistical significance, they exceeded the MCID and may hold clinical value in high-risk recurrence cases. The improving effect of the DF-Model compared with the FF-Model diminishes over time, aligning with the clinical observation that the likelihood of recurrence in locally advanced LSCC decreases with time.


Compared with AJCC staging (training set C-index: 0.608; validation set C-index: 0.58), the two fusion models constructed in this study, the single Rad-score and the single Clinic-score, demonstrated significant advantages in terms of discriminative ability and clinical utility. The DF-Model exhibited robust risk stratification capabilities across different datasets, AJCC staging, and tumor location subgroups (log-rank p< 0.001). For instance, in the stage III subgroup, the DF-Model achieved a significant difference in 3-year RFS (high-risk group: 31% vs. low-risk group: 89%), which could not be achieved by AJCC staging alone. This result indicates that the DF-Model transcends the limitations of anatomical staging and can identify truly low-risk groups among patients with advanced disease. Moreover, DCA results indicate that the DF-Model yields a greater net benefit over most of the clinically relevant threshold probability ranges. However, in the 1-year RFS prediction (threshold probability 0.18–0.4), the FF-Model is slightly superior, possibly because short-term recurrence risk is more dependent on the quality of treatment (such as surgical margin status), whereas medium- and long-term recurrence is driven by tumor heterogeneity and the immune microenvironment.


The enhanced risk stratification capability of the DF-Model holds significant clinical interpretability and direct implications for postoperative management. By accurately identifying high-risk patients beyond conventional staging, clinicians can consider intensifying adjuvant therapy—such as adding chemotherapy to radiotherapy or extending radiation fields—for those most likely to benefit, potentially improving survival outcomes. Conversely, low-risk patients identified by the DF-Model may be candidates for de-escalated treatment or less frequent follow-up, thereby reducing the burden of overtreatment, minimizing long-term toxicities (e.g., dysphagia, xerostomia, voice deterioration), and preserving quality of life. This ability to refine risk assessment within the same AJCC stage (e.g., distinguishing high- from low-risk Stage III patients) enables a more biologically driven, personalized approach to postoperative care, moving beyond anatomical staging alone.






4.3 Efficacy difference mechanism of multimodal fusion strategy


The differences in the results of the two fusion strategies can be attributed to their inherent characteristics. At the feature level, feature-level fusion is obtained by combining raw features directly before modeling, so the “information dilution effect” and “interaction noise interference” occur (48). The substantial number of radiomic features (413) compared to clinical feature data (13) suggests a high likelihood of overshadowing certain clinical information, such as the positive ratio of lymphatic metastasis, during the process of dimensionality reduction, which can adversely affect model performance. This phenomenon is evident in the results obtained from applying the FF-Model to the validation set, which demonstrated a decrease in the C-index by Δ = 0.137. These findings challenge the assertion that “fusion is always better than single-modality.”


The DF-Model combines the prediction probabilities or scores of individual modality models to build an ensemble model that preserves independent prediction information (49). In the DF-Model, both the Clinic-score and Rad-score are independent predictors of RFS. Analysis of β-values indicated that 80% of the DF-Model’s reliance is on the Rad-score, suggesting that tumor microenvironment heterogeneity significantly influences recurrence, whereas clinicopathological features act as supplementary factors. Patients misclassified as low-risk by the clinical model yet flagged as high-risk by the radiomic model can be accurately recognized by the DF-Model. These patients may benefit from intensive postoperative imaging follow-up, radiotherapy, and immunotherapy. For low-risk patients, the aim is to prevent overtreatment, conserve medical resources, and alleviate the burden of the illness. In addition, the DF-Model eliminates the demand for extensive data preparation by integrating the probable outputs from the Clinic-score and Rad-score, thereby decreasing technical prerequisites and enhancing applicability in resource-limited places, such as primary hospitals. Patients with lower preoperative PNI levels may have improved outcomes with improved nutrition (such as a protein-rich diet supplemented with ω-3 fatty acids). Further studies are required to verify this hypothesis.






4.4 Limitations and future directions


Several limitations should be acknowledged in this research, such as a limited participant count (n = 278), reliance on single-center data, and the absence of external validation to assess generalizability across different clinical environments. The strategies for feature selection and integration may require further refinement, as there is a risk of losing important features. Both feature-level and decision-level fusion may not fully optimize data utilization, leading to predictive uncertainty. Promoting the model is difficult because the model’s complexity and the cost associated with CT radiomics feature extraction hinder its clinical translation.


To facilitate the transition from research to clinical practice, essential next steps should prioritize multicenter prospective validation to confirm generalizability, followed by prospective clinical trials designed to evaluate whether model-guided management leads to tangible improvements in patient outcomes—such as recurrence, survival, and quality of life. Concurrently, integrating the model with established molecular biomarkers, including PD-L1 and HPV status, could refine risk stratification, while the development of an accessible web-based calculator would support real-time, bedside decision-making. Beyond these immediate translational priorities, future research should explore advanced feature engineering methods such as transformer networks, the integration of multiomics data—including genomics and proteomics—to enhance predictive accuracy, dynamic risk updating based on postoperative follow-up, and strategies for clinician education and seamless integration into routine clinical workflows.








5 Conclusion


The multimodal feature fusion model developed according to the decision-level fusion strategy (DF-Model) enhances the prediction of postoperative RFS in locally advanced LSCC. This improvement is primarily attributed to the integration of multimodal features derived from clinical pathology, PNI, and CT radiomics for the construction of the model. Its performance surpassed those of the FF-Model, single-modality model, and traditional AJCC staging. The model displayed robust risk stratification capabilities across various AJCC stages and subgroups according to tumor location. Further investigations are encouraged to emphasize multicenter validation, enhancement of predictive algorithms, and integration into clinical workflows in order to support real-world deployment and individualized therapeutic strategies.
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Py, P, Py, and P, denote the results of Z-tests comparing C-index differences between model pairs: Py: DF-Model vs. FE-Model, Rad-score, Clinic-score, and AJCC stages; P5: FF-Model vs. Rad-score, Clinic-score, and AJCC stages: Py: Rad-score v, Clinic-score and AJCC
stages; Py: Clinic-score vs. AJCC stages.





OEBPS/Images/fonc-15-1685737-g010.jpg
A
1.00
0.751
o
:
=~ 0.501
T
14
0.251
0.001

Training set

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98105112119

low-risk 11 (109)@9p (885 (75) (684 (58 (48B (439 (35) (28D (187 (154 (1310 (9)7 (6)6 (5) 4 (4) 3 (3)

High—risk 185 (108 (687 (42p (328 (275 (195 (157 (8) 7 (8) 7 (8) 5 (6)4 (5)4 (5)2 (2) 0(0) 0 (0) 0 (0) 0 (0)

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98105112119
Time(months)

RFS Prob

Validation set
DF-score

0.00

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10

low—risk {44 (1007 (8434 (7731 (7028 (6423 (5221 (48) 8 (4117 (39)2 (2731 (25)0 (23)7 (16)7 (16)5 (11) 3
High-risk 38 (1081 (82)9 (5012 (32)0 (24)7 (18) 7 (18) 7 (18)5 (13) 3(8) 2(5) 1(3) 1(3) 1(3) 1(3) O

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
Time(months)





OEBPS/Images/fonc-15-1685737-g009.jpg
Net Benefit

0.2

Net Benefit

0.2

Net Benefit

0.2

05

04

0.3

0.1

0.0

0.5

0.4

0.3

0.1

0.0

05

0.4

0.3

0.1

0.0

0.0

0.2

All

= = None

0.4 0.6 0.8
Threshold Probability

DF-Model
FF-Model

1.0

T T
0.4 0.6 0.8

Threshold Probability

1.0

T T T
0.4 0.6 0.8

Threshold Probability

Net Benefit

0.0 0.2 04 086 0.8 1.0
Threshold Probability

Net Benefit
0.2 0.3 0.4 0.5

0.1

0.0

0.0 0.2 0.4 06 0.8 1.0
Threshold Probability

Net Benefit
0.2 03 04 05

0.1

0.0

0.0 0.2 0.4 06 0.8
Threshold Probability





OEBPS/Images/fonc-15-1685737-g001.jpg
Radiomic Model

Multi-Scale Feature Fusion-Based Model

Feature
Extraction and
Model Construction

Patients with laryngeal cancer

who underwent surgery in the

hospital from January 2013 to
January 2024.

Ti
= Preprocessing =P umor =

CT images Segmentation

Inclusion Criteria: Preprocessing

® Primary Surgical Treatment: Patients must receive initial surgical
treatment.

® Postoperative Pathology and AJCC Staging I11/1V./IVp.

® Preoperative Tests within 2 Weeks: Complete blood count, liver and
kidney function tests, and enhanced CT scan of the throat area.

Voxel Resizing 7]

— Txin s = Discretization
Bin Width=25HU \

Image
Normalization
(1~500 HU)

Initially included
(n=335)

Exclusion Criteria:

® History of other primary or concurrent malignancies (n = 3).

® Preoperative active infection, chronic inflammatory disease, or
autoimmune disorders (n = 16).

® Incomplete clinical data (n = 4).

® History of laryngeal surgery, radiotherapy, or chemotherapy (n = 13).

® Postoperative follow-up less than 6 months (n = 21).

Window Width
and Level
Normalization
(350 HU / 40 HU)

Gray-Level
== Normalization
(Z-score)

Final Cohort
(n = 278)

Tumor Segmentation

File Edit Segmentation Workspace Tools Help
TTK-SWUAP Toalbox
Main Toolbar

i A
S Be

Random Split (7:3 Ratio)

Training Set (N = 196)

l—l—l

Clinical and
Pathological Data

| }

Clinical and

Validation Set (N = 82)

Layer  Intensity
deoniz: @ &

CT images

Feature Selaction: Univariate Cox+LASSO

Univariate Cox+AIC

Feature Selection:
Univariate Cox+LASSO

Pathological + Iaionie Radiomics Feature Extraction
g Features
Characteristics | ee—
| Feature Selection: I

Feature-Level
Fusion Model

Radiomic Model l|

Fusion Model

Nomogram

Radiomics Feature Selection

Clinical Model

Web-based
Calculator

il

Feature Selection: Univariate Cox+LASSO

Model Evaluation:

® Discrimination: C-index, AUC

Model Validation === © Consistency: Calibration curve

® Clinical Utility: Decision Curve Analysis (DCA)
® Reclassification Performance: cNRI/IDI

Optimal Model Radiomic Model construction

h(t)=ho(t) exp(0.489-Featurel- 0.185-Feature2- 0.071-Feature3+0.39 - Feature4
+0.897-Feature5+0.575 - Feature6+0.05 - Feature7)

| | |

Subgroup ’
Analysis

‘ Formula J ‘ Nomogram ’ ‘






OEBPS/Images/fonc-15-1685737-g007.jpg
Sensitivity

0.0

1.0

0.8

Sensitivity
0.6

0.2 0.4

0.0

0.0

~— DF-Model time=12 AUC: 0.872 (95%CI,0.818-0.925)
~ FF-Model time=12 AUC: 0.887 (95%Cl,0.832-0.943)
~— Rad-score time=12 AUC: 0.865 (95%CI,0.810-0.920)
—— Clinic-score time=12 AUC: 0.708 (95%CI,0.611-0.805)

0.2 0.4 0.6 0.8 1.0
1-Specificity

DF-Model time=36 AUC: 0.920 (95%CI,0.875-0.965)
FF-Model time=36 AUC: 0.930 (95%CIl,0.890-0.969)

~ Rad-score time=36 AUC: 0.899 (95%CI,0.845-0.953)
~ Clinic-score time=36 AUC: 0.774 (95%CI,0.693-0.856)
T T T T T

0.2 0.4 0.6 0.8 1.0
1-Specificity

~ DF-Model time=60 AUC: 0.914 (95%CI,0.855-0.973)
~ FF-Model time=60 AUC: 0.946 (95%CI,0.904-0.989)
~— Rad-score time=60 AUC: 0.876 (95%CIl,0.802-0.951)

~— Clinic-score time=60 AUC: 0.787 (95%CI,0.697-0.877)
T T

0.2 04 0.6 0.8 1.0
1-Specificity

Sensitivity

Sensitivity

1.0

0.8

0.6

0.4

0.2

0.0

—— DF-Model time=12 AUC: 0.854 (95%CI,0.761-0.948)
~ FF-Model time=12 AUC: 0.772 (95%CI,0.635-0.910)
~— Rad-score time=12 AUC: 0.736 (95%CI,0.594-0.879)
~— Clinic-score time=12 AUC: 0.668 (95%CI,0.509-0.828)

0.0 0.2 04 0.6 0.8 1.0
1-Specificity

" —— DF-Model ime=36 AUC: 0.881 (95%CI,0.786-0.976)
~— FF-Model time=36 AUC: 0.741 (95%CI,0.596-0.886)
~—— Rad-score time=38 AUC: 0.759 (95%CI,0.623-0.896)
—— Clinic-score time=36 AUC: 0.687 (95%C,0.541-0.833)
T T T T T T
0.0 0.2 0.4 06 08 1.0
1-Specificity

0.0

DF-Model time=60 AUC: 0.898 (95%CI,0.804-0.992)

Rad-score time=60 AUC: 0.780 (95%CI,0.634-0.926)

- ~ FF-Model time=60 AUC: 0.736 (95%CI,0.577-0.895)
T

Clinic-score time=60 AUC: 0.704 (95%CI,0.546-0.863)
T T T T

0.0 0.2 04 06 08 1.0
1-Specificity





OEBPS/Images/fonc-15-1685737-g003.jpg
coefficient

0.9

0.8

e
=

concordance index

o
o

0.5 o o o - ——

Lambda(=0.383) Lambda(1=0.383)

D
Feature 7
Feature 6
Feature 2
Feature 5
Feature 2 . - : : . :

Z ainjeaq
g ainead
| ainjeaq
¥ ainjead
G ainjead
€ aimead
/ aimea4

Feature 1

0.00 0.05 0.10 0.15 0.20
coefficient





OEBPS/Images/table1.jpg
Standard

Variables G Z-value HR(95%Cl) p-value
Age,year 0018 0.013 1398 1.018(0.993,1.045) 0.162
Sex,n(%)
Male Reference
Female -0.791 1.008 0.785 0.453(0.063,3.269) 0433

Smoking habits, n (%)

NO Reference

YES -0.155 0293 0529 0.857(0.483,1.520) 0597
Drinking habits, n (%)

NO Reference

YES -0.113 0.245 0.459 0.893(0.552,1.445) 0.646

History of hypertension,n(%)

NO Reference

YES 0277 0358 0774 0.758(0.376,1.529) 0.439
History of diabetes,n(%)

NO Reference

YES 0535 04 1.339 1.708(0.780,3.737) 0.181

History of coronary heart disease, n(%)

NO Reference
YES -0.468 1.008 0.464 0.626(0.087,4.517) 0.642
BMI, kg/m2 -0.056 0.037 1.503 0.946(0.880,1.017) 0.133
Course of disease,month -0.015 0.01 1.522 0.985(0.967,1.004) 0.128

Tumor location, n(%)
Glottic Reference
Non-Glottic 0701 0242 289 2.015(1.253,3.241) 0.004

Degree of differentiation, n (%)

poorly Reference
Moderate 0.39 0.523 0.746 1.477(0.530,4.117) 0.456
Highly 0.008 0.544 0.015 1.008(0.347,2.928) 0.988

pT staging, n(%)

1 Reference

2 -1.095 1.163 0.941 0.334(0.034,3.271) 0.346
3 -2.007 1.031 1.947 0.134(0.018,1.014) 0.052
4 -1.392 1.019 1.366 0.249(0.034,1.832) 0.172

AJCC staging, n(%)
il Reference
IV, /IVy, 0.924 0292 3162 2.520(1.421,4.469) 0.002
Vascular thrombosis, n (%)
NO Reference
YES 0.653 0319 2,049 1.922(1.029,3.589) 0.04
Peripheral nerve infiltration, n(%)
NO Reference
YES 0513 0359 143 1.670(0.827,3.374) 0.153
Striated muscle invasion, n(%)
NO Reference
YES 0.655 0249 2,627 1.925(1.181,3.137) 0.009
Thyroid cartilage infiltration, n (%)
NO Reference
YES -0.172 0243 0.708 0.842(0.523,1.355) 0479
Surgical margin, n(%)
Negatives Reference
Positive 0.878 03 2924 2.407(1.336,4.336) 0.003

pN stages, n(%)

0 Reference

1 0.348 0.378 0.922 1.417(0.676,2.970) 0.356
2 1.041 0259 4.016 2.831(1.703,4.704) <0.001
3 -14.825 2714.368 0.005 0.000(0.000,Inf) 0.996

Cervical lymph node metastases n (%)
NO Reference
YES 0755 0242 3124 2.128(1.325,3.418) 0.002

Contralateral cervical lymph node metastasis, n

(%)
NO Reference
YES 1.137 0.293 3.875 3.118(1.754,5.542) <0.001
Total number of lymph nodes cleared (n) 0.006 0.006 0.961 1.006(0.994,1.019) 0.337
Total number of positive lymph nodes (n) 0.158 0.036 4.366 1.171(1.091,1.257) <0.001
Proportion of positive lymph nodes 1.567 0.494 3171 790 0.002

(1.819,12.615)
Type of primary resection, n (%)
Partial laryngectomy Reference
Total laryngectomy 0.108 0253 0.425 1.114(0.678,1.830) 0.671

Side of cervical lymph node dissection, n(%)

NO Reference
Unilateral -0.686 0.35 1.96 0.504(0.254,1.000) 0.05
Bilateral -0.05 0.308 0.164 0.951(0.520,1.740) 0.87

Postoperative radiotherapy, n (%)
NO Reference
YES 0.146 0.253 0.578 1.158(0.705,1.901) 0.563

Post-operative chemotherapy, n (%)

NO Reference
YES 0.113 0.28 0.403 1.119(0.647,1.937) 0.687
NLR 0.038 0.013 2.998 1.038(1.013,1.064) 0.003
PLR 0.001 0 1.543 1.001(1.000,1.001) 0.123
LMR -0.107 0.085 1.261 0.899(0.762,1.061) 0.207
SII 0 0 2.305 1.000(1.000,1.000) 0.021
PNI -0.02 0.006 3328 0.980(0.969,0.992) <0.001
ALIL -0.001 0 1.408 0.999(0.999,1.000) 0.159

SIRI 0.02 0.042 0478 1.020(0.939,1.109) 0.633





