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Objectives: To develop a non-invasive model for the preoperative prediction of

Cytokeratin 19 (CK19) expression in hepatocellular carcinoma (HCC) based on

clinical, radiologic, habitat radiomics, and deep learning features using gadoxetic

acid-enhanced MRI, and to assess its utility for RFS risk stratification.

Methods: In this retrospective study, 539 patients with HCC from two hospitals

were divided into training (n = 266), internal (n = 114), and external (n = 159) test

sets. Univariable and multivariable logistic regression analyses were conducted

on clinical and radiologic features to develop a clinical-radiologic model. Habitat

radiomics and deep learning (DL) features were extracted and selected to

develop the Habitat and DL models, respectively. The DL-HR nomogram

model incorporating clinical, radiologic, habitat radiomics, and deep learning

features was developed and evaluated. The Kaplan-Meier survival analysis

assessed recurrence-free survival (RFS) in the CK19-positive (CK19+) and

CK19-negative (CK19-) patients.

Results: AFP level and arterial phase (AP) enhancement were identified as

independent predictors of CK19 expression. The DL-HR nomogram model

showed superior performance compared to the clinical-radiologic model in

both internal and external test sets (all P < 0.05). The AUCs of the DL-HR

nomogram and clinical-radiologic models were 0.794 [95% CI: 0.708-0.864]

vs. 0.615 [95% CI: 0.520-0.705] for the internal test set and 0.744 [95% CI: 0.669-

0.810] vs. 0.600 [95% CI: 0.520-0.677] for the external test set, respectively. RFS

was significantly different between the DL-HR nomogram model-predicted

CK19+ and CK19- HCC patients across all sets (all P < 0.05).
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Conclusions: The DL-HR nomogram model integrating clinical, radiologic,

habitat radiomics, and deep learning features effectively predicted the CK19

expression and served as an effective tool for RFS risk stratification in HCC.
KEYWORDS

magnetic resonance imaging, deep learning, habitat radiomics, cytokeratin 19,
hepatocellular carcinoma
1 Introduction

Cytokeratin 19 (CK19) is well acknowledged as a marker of

biliary/progenitor cells and tumor stem cells and represent a vital

marker of the proliferative subtype in Hepatocellular Carcinoma

(HCC) (1). Clinically, CK19 is expressed in approximately 10-30%

of the HCCs (2). Patients with CK19-positive (CK19+) HCC

demonstrate poorer prognosis, reduced overall survival (OS) and

recurrence-free survival (RFS), and higher recurrence rates,

compared with CK19-negative (CK19-) HCC patients (3, 4).

Therefore, accurate prediction of CK19 holds crucial importance

for early clinical decision-making.

Currently, the identification of CK19 in HCC relies on

pathological immunohistochemical assessment (5). Magnetic

resonance imaging (MRI) provides a valuable and non-invasive

method for preoperative pathologic evaluation of HCC (6). Despite

this, radiologists still face challenges in accurately identifying HCC

subtypes from original MRI images. In recent years, deep learning

(DL) algorithms have gained prominence for their ability to directly

mine the complex features of visual information from imaging data,

and are widely used in the fields of deep feature extraction of medical

images, tumor recognition, differential diagnosis, and grading (7–10).

Habitat radiomics analysis is an emerging method applied to various

diseases. Tumor subregions, or “habitats,” represent clusters of tissue

with similar properties, providing valuable insights into tumor

phenotypes and the tumor microenvironment. Habitat analysis can

provide tumor-specific multidimensional features, thereby improving

predictive performance (11). Previous studies have shown that

radiomics analysis of MRI models is helpful to assess CK19

expression (12–14). To our knowledge, few studies have combined

habitat radiomics and deep learning analyses for predicting

CK19 expression.
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Therefore, this study aimed to develop and validate a predictive

model for CK19 expression and RFS in HCC by integrating clinical,

radiologic, habitat radiomics, and deep learning features derived

from gadoxetic acid-enhanced MRI.
2 Materials and methods

2.1 Patients

The institutional ethics review boards in our medical centers

approved this study and waived informed consent requirements due

to the study’s retrospective nature. Patients with HCC who

underwent gadoxetic acid-enhanced MRI examinations at two

medical centers between June 2016 and June 2024 were enrolled.

Inclusion criteria were as follows: (a) no less than 18 years of age,

(b) histologically confirmed HCC and available CK19

immunohistochemical staining data, (c) underwent gadoxetic

acid-enhanced MRI within 20 days before hepatic resection, and

(d) no prior treatment for HCC before the MRI examination.

Exclusion criteria were as follows: (a) Images with poor clarity,

(b) Incomplete clinical data or pathologic examination, and

(c) mixed liver malignancies other than HCC, including

combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and

intrahepatic cholangiocarcinoma (ICC). In patients with multiple

HCCs, the largest tumor was selected as the main object.

A total of 539 patients were included in this study, consisting of

117 CK19+ and 422 CK19- patients. Patients from institute 1 (n =

380) were randomly assigned to the training set (n = 266; 55 CK19+

and 211 CK19-) and internal test set (n = 114; 28 CK19+ and 86

CK19-) at a ratio of 7:3. Additionally, patients from institute 2

served as the external test set (n = 159; 34 CK19+ HCC and 125

CK19-).

Baseline clinical information was obtained from electronic

medical records, including age, sex, viral hepatitis status, liver

cirrhosis, alpha-fetoprotein (AFP), alanine aminotransferase

(ALT), aspartate aminotransferase (AST), gamma-glutamyl

transferase (GGT), tumor maximum diameter, and tumor

number. The definition of tumor maximum diameter is the

maximum length of the tumor in the axial plane. The workflow

of this study was shown in Figure 1.
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2.2 Histopathology and
immunohistochemistry

CK19 expression data were collected from pathology reports.

Pathologic evaluations were performed independently and

qualitatively by two pathologists (C.Y.G., Reader 1 and M.Z.D.,

Reader 2, with 8 and 10 years of experience in pathology,

respectively). Disagreements were resolved through consensus

discussion. CK19 positivity was defined as membranous or

cytoplasmic immunoreactivity presented in≥ 5% of tumor cells (4).
2.3 MRI acquisition and imaging analysis

Two 3.0-T MRI scanners (Siemens Magnetom Skyra and GE

Revolution) were used to acquire MR images. The sequences

employed T1-weighted in-phase, T2-weighted imaging, diffusion-

weighted imaging, as well as contrast-enhanced T1WI imaging

using gadoxetic acid (Bayer Healthcare, Germany). The detailed

imaging protocols are shown in Supplementary material Table S1.

Radiologic characteristics were evaluated by two radiologists

(W.H.C., Reader 1, and Y.X.Y., Reader 2, with 2 and 11 years of

experience in liver imaging), respectively, in consensus to avoid

subjectivity. Although the Readers were aware that all patients had

HCC, they remained blinded to the clinical, laboratory, and

histologic data. The following 16 MRI imaging features were
Frontiers in Oncology 03
evaluated: Shape of tumor, Arterial phase (AP) enhancement,

Arterial peritumoral enhancement, Capsule, Washout, Delayed

enhancement, LI-RADSv2018 category, Intratumoral artery, Fat

in mass, Blood production in mass, Substantial necrosis,

Hepatobiliary phase (HBP) signal intensity, peritumoral

hepatobiliary phase hypointensity, and Diffusion-weighted

imaging (DWI) signal intensity.
2.4 Follow−up

Postoperative follow-up was performed using abdominal MRI

at 3-6month intervals. Tumor recurrence was defined through

typical imaging features at MRI or pathological results. RFS was

defined as the time from the surgery date to the date of the first

recurrence, metastasis, or last follow-up. The deadline for the

follow-up period was February 10, 2025.
2.5 Habitat radiomics and deep learning
features extraction

Three radiologists, each with two years of experience, used 3D

Slicer Software(http://www.slicer.org) for segmentation. Three-

dimensional masks (volumes of interest) of the tumors were

manually segmented on a slice-by-slice basis in arterial phase
FIGURE 1

Workflow of this study. Workflow of this study for Predicting CK19 Expression and Recurrence-Free Survival in Hepatocellular Carcinoma. HCC,
hepatocellular carcinoma. Cytokeratin 19, CK19. RFS, recurrence-free survival.
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(AP), portal venous phase (PP), and hepatobiliary phase (HBP)

images. All VOIs were reviewed by a senior radiologist (Y.X.Y., 11

years of experience) for quality control. These tumor VOIs were

then used for the subsequent extraction of habitat radiomics and

deep learning features.

All MRI images underwent the following preprocessing steps:

Bias field correction was performed using the N4 algorithm to

mitigate intensity nonuniformity. Intensity normalization with a

scaling factor of 100 was applied to reduce signal variability across

scanners and to standardize voxel intensity distributions prior to

radiomic feature extraction. Voxel resampling was conducted to

achieve an isotropic resolution of 2×2×2mm³, ensuring consistency

in spatial resolution across all images.

3D Swin Transformer models were developed for feature

extraction from AP, PP, and HBP images, respectively. These

models were based on the “swin3d_s” architecture available in the

torchvision models. video module of PyTorch 2.1.0 (https://

github.com/pytorch/pytorch). Several techniques were

implemented to mitigate overfitting, including data augmentation

protocols (Resized, ScaleIntensityRanged, RandFlipd, and

RandAffined) and learning rate decay algorithms. In this study, a

batch size of 16 and an initial learning rate of 0.0001 were used,

with the learning rate decaying by a factor of 0.1 every 7 epochs.

To handle class imbalance, we employed focal loss as the

loss function. The Adam optimizer was selected due to its

ability to adjust the learning rate automatically. Training

continued for 200–500 epochs. The finalized weights were

leveraged to extract robust feature representations from the

imaging data. Ultimately, 768 deep learning features were

obtained from each VOI.

The unsupervised K-means clustering was applied to generate

similar subregions within tumor voxels using cluster numbers (k)

ranging from 2 to 10 to control clustering resolution. The optimal

number of clusters was determined to be 3 based on the highest

Calinski-Harabasz (CH) index value. After clustering, same colors

were assigned to pixels in the same cluster, creating subregion maps

that provided visually intuitive representation and served as

imaging biomarkers for quantifying intratumor heterogeneity.

Radiomics features were extracted from VOIs using the

PyRadiomics package (http://www.radiomics.io/pyradiomics.

html). Radiomics features can be calculated on the original or

pre-processed images using the wavelet and Laplacian of

Gaussian (LoG) filters (sigma = 2.0, 3.0, 4.0, 5.0). Feature

computation was performed at resampling voxel dimensions of

2×2×2mm³ and an intensity bin width of 5. Radiomics features

included first-order statistics and texture metrics derived from gray

level co-occurrence matrix, gray level dependence matrix, gray level

size zone matrix, and neighboring gray tone difference matrix.

Lastly, each cluster contained 1132 features, totaling 3396 habitat

radiomic features were obtained from each tumor VOI.
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2.6 Feature selection and models
development

On the basis of training set, univariable logistic regression

analyses identified clinical and radiologic features associated with

CK19 expression. The remaining features underwent multivariable

logistic regression to select the independent predictors. The

variables associated with CK19 in univariable analysis (p < 0.1)

were used to develop the clinical-radiologic model using stepwise

backward logistic regression.

Habitat radiomics and deep learning feature analysis were

performed using FAE software version 0.5.6 (https://github.com/

salan668/FAE), a PyRadiomics-based analytical platform. Data

preprocessing involved synthetic minority over-sampling

algorithm (SMOTE) for class imbalance correction and Z-score

normalization for feature standardization. Features with Pearson

correlation coefficients (PCC) >0.8 were considered highly

correlated. When two features were highly correlated, the feature

with a stronger correlation with CK19 expression was retained to

reduce redundancy and ensure statistical independence. Feature

selection utilized recursive feature elimination (RFE) and analysis of

variance (ANOVA) testing. Logistic regression (LR) and support

vector machine (SVM) algorithms were used for model

development. The Habitat and DL model scores for CK19 were

calculated based on the mean predicted probabilities from the

best model.

Model performance was evaluated using the area under the

receiver operating characteristic curve (AUC). The optimal habitat

radiomics and DL features were integrated with selected clinical and

radiologic features through multivariable logistic regression to

construct the DL-HR nomogram model. Highly collinear features

were removed using variance inflation factor (VIF) analysis.
2.7 Statistical analysis

Statistical analysis was conducted using SPSS Statistics (version

24.0) and MedCalc software. The Shapiro-Wilk test assessed

normality. Normally distributed continuous variables are

expressed as mean and standard deviation, while non-normally

distributed continuous variables are presented as medians with

interquartile range (IQRs). Categorical variables are presented as

frequencies with percentages. Independent sample t-tests or Mann-

Whitney U tests were used for quantitative variables and chi-square

tests for categorical variables. Univariable and multivariable logistic

regression analyses were conducted to identify the independent

predictors, using a stepwise backward selection.

Kaplan-Meier analysis with the log-rank test was used to

evaluate RFS outcomes. The correlation heatmap, decision curve

analysis (DCA), and nomogram were generated using the
frontiersin.org
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“corrplot”, “rmda”, and “rms” packages, respectively, in R software

(version 4.4.2). Model performance was evaluated using Receiver

operating characteristic (ROC) curves, AUC, sensitivity, and

specificity. The DeLong test was used for model comparison. P-

value < 0.05 (two-tailed) was considered statistically significant.
3 Results

3.1 Baseline characteristics

A total of 539 patients (mean age [± SD], 59.9 years ± 10.2; 412

male, 127 female) were included. Most patients had hepatitis virus

infection (414 of 539 [76.8%]). Clinical and radiologic

characteristics showed no statistically significant differences

between the training and internal test sets, except for washout.

The distribution of CK19 expression status remained consistent
Frontiers in Oncology 05
across all sets: training set (CK19+ n = 55 [20.7%]; CK19- n = 211

[79.3%]), internal test set (CK19+ n = 28 [24.6%]; CK19- n = 86

[75.4%]), and external test set (CK19+ n = 34 [21.4%]; CK19- n =

125 [78.6%]). CK19 expression was similarly distributed between

the training and internal test set (p = 0.401, c² = 0.705) or external

test set (p = 0.862, c² = 0.030). All baseline characteristics are

detailed in Tables 1 and 2.
3.2 Performance evaluation of prediction
models

3.2.1 Performance of clinical-radiologic model
Univariable analysis showed that five clinical and radiologic

factors were associated with the expression of CK19 in the training

set, including age, AFP, AP enhancement, washout, and peritumoral

hepatobiliary phase hypointensity. Multivariable analysis revealed
TABLE 1 Clinical characteristics of patients with HCC.

Characteristics

Training set (n = 266) Internal test set (n = 114) External test set (n = 159)

P# P*Ck19 (–)
(n=211)

Ck19(+)
(n=55)

Ck19 (–)
(n=86)

Ck19(+)
(n=28)

Ck19 (–)
(n=125)

Ck19(+)
(n=34)

Sexa 0.211 0.251

Male 164(77.7) 40(72.7) 68(79.1) 26(92.3) 89(71.2) 25(73.5)

Female 47(22.3) 15(27.3) 18(20.9) 2(7.7) 36(28.8) 9(26.5)

Ageb(years) 61.0 ± 10.0 57.2 ± 11.9 61.9 ± 10.9 56.8 ± 9.5 59.0 ± 9.1 58.7 ± 10.0 0.740 0.210

HBVa 0.180 <0.001

negative 62(29.4) 19(34.5) 24(27.9) 3(10.7) 14(11.2) 3(8.8)

positive 149(70.6) 36(65.5) 62(72.1) 25(89.3) 111(88.8) 31(91.2)

Cirrhosisa 0.194 <0.001

negative 110(52.1) 33(60.0) 39(45.3) 14 (50) 45(36.0) 12(35.3)

positive 101(47.9) 22(40.0) 47(54.7) 14 (50) 80(64.0) 22(64.7)

ALTa(U/L) 0.810 0.750

≤50 167(79.1) 39(70.9) 70(81.4) 17(60.7) 91(72.8) 30(88.2)

>50 44(20.9) 16(29.1) 16(18.6) 11(39.3) 34(28.2) 4(11.8)

ASTa(U/L) 0.961 0.011

≤40 149(70.6) 37(67.3) 61(70.9) 19(67.9) 68(54.4) 24(70.6)

>40 62(29.4) 18(32.7) 25(29.1) 9(32.1) 57(45.6) 10(29.4)

GGTa(U/L) 0.653 0.292

≤100 118(55.9) 27(49.1) 51(59.3) 14(50.0) 75(60.0) 20(58.8)

>100 93(44.1) 28(50.9) 35(40.7) 14(50.0) 50(40.0) 14(41.2)

AFPa(mg/L) 0.449 0.003

≤100 140(66.4) 25(45.5) 55(64.0) 11(39.3) 100(80.0) 21(61.8)

>100 71(33.6) 30(54.5) 31(36.0) 17(60.7) 25(20.0) 13(38.2)
frontie
a Data are numbers of patients, with percentages in parentheses. b Data are means ± SDs.P# < 0.05 indicates a statistically significant difference between the training and internal test; P* < 0.05
indicates a statistically significant difference between the training and external test set. HBV, hepatitis B virus; ALT, alanine aminotransferase; AST, aspartate amino-transferase; GGT, g-glutamyl
transferase; AFP, a-fetoprotein; CK19, Cytokeratin 19.
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TABLE 2 Radiologic characteristics of patients with HCC.

Characteristics

Training set (n = 266) Internal test set (n = 114) External test set (n = 159)

P# P*Ck19 (–)
(n=211)

Ck19(+)
(n=55)

Ck19 (–)
(n=86)

Ck19(+)
(n=28)

Ck19 (–)
(n=125)

Ck19(+)
(n=34)

Tumor margina 0.649 0.536

smooth 139(65.9) 39(70.9) 60(69.8) 19(67.9) 90(72.0) 21(61.8)

non-smooth 72(34.1) 16(29.1) 26(30.2) 9(32.1) 35(28.0) 13(38.2)

Tumor numbera 0.611 0.003

1 146(69.2) 36(65.5) 61(70.9) 20(71.4) 103(82.4) 27(79.4)

≥2 65(30.8) 19(34.5) 25(29.1) 8(28.6) 22(17.6) 7(20.6)

Diameter(cm)c 4.7(2.9-7.5) 3.9(2.7-6.4) 4.2(2.6-6.7) 4.1(2.5-8.0) 2.7(1.7-4.2) 2.4(1.5-4.2) 0.516 <0.001

AP enhancementa 0.821 0.912

negative 11(5.2) 2(3.6) 6(7.0) 1(3.6) 8(6.4) 1(2.9)

non-rim 186(88.2) 42(76.4) 72(83.7) 23(82.1) 106(84.8) 28(82.4)

rim 14(6.6) 11(20.0) 8(9.3) 4(14.3) 11(8.8) 5(14.7)

AP peritumor
enhancementa

0.567 0.347

negative 178(84.4) 42(76.4) 75(87.2) 22(78.6) 110(88.0) 27(79.4)

positive 33(15.6) 13(23.6) 11(12.8) 6(21.4) 15(12.0) 7(20.6)

capsulea 0.051 <0.001

without capsule 76(36.0) 25(45.5) 29(33.7) 8(28.6) 55(44.0) 14(41.2)

enhancing capsule 108(51.2) 25(45.5) 45(52.3) 16(57.1) 69(55.2) 17(50.0)

non-enhancing capsule 27(12.8) 5(9.1) 12(14.0) 4(14.3) 1(0.8) 3(8.8)

Washouta <0.001 <0.001

without 64(30.3) 14(25.5) 23(26.7) 11(39.3) 20(16.0) 6(17.6)

nonperipheral washout 140(66.4) 35(63.6) 59(68.6) 13(46.4) 99(79.2) 24(70.6)

peripheral washout 7(3.3) 6(10.9) 4(4.7) 4(14.3) 6(4.8) 4(11.8)

Delayed enhancementa 0.790 0.041

negative 150(71.1) 41(74.5) 63(73.3) 18(64.3) 105(84.0) 26(76.5)

positive 61(28.9) 14(25.5) 23(26.7) 10(35.7) 20(16.0) 8(23.5)

LI-RADS categorya 0.837 <0.001

LR-3 11(5.2) 2(3.6) 7(8.1) 2(7.1) 12(9.6) 4(11.8)

LR-4 32(15.2) 10(18.2) 13(15.1) 5(17.9) 9(7.2) 6(17.6)

LR-5 149(70.6) 30(54.5) 57(66.3) 16(57.1) 104(83.2) 24(70.6)

M 16(7.6) 13(23.6) 8(9.3) 5(17.9) 0(0.0) 0(0.0)

TIV 3(1.4) 0(0.0) 1(1.2) 0(0.0) 0(0.0) 0(0.0)

Intratumoral arterya 0.250 <0.001

negative 114(54.0) 30(54.1) 53(61.6) 16(57.1) 87(69.6) 25(73.5)

positive 97(46.0) 25(45.5) 33(38.4) 12(42.9) 38(30.4) 9(26.5)

Fat in massa 0.687 0.601

negative 164(77.7) 41(74.5) 69(80.2) 21(75.0) 96(76.8) 30(88.2)

(Continued)
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AFP level > 100 mg/L (OR = 2.519 [95% CI:1.129-5.617]; p = 0.024),

AP enhancement (OR = 2.996 [95% CI: 0.976-9.194]; p = 0.055) as

independent predictors of CK19 expression. These factors were used

to construct the clinical-radiologic model (Table 3).
Frontiers in Oncology 07
The clinical-radiologic model achieved AUCs of 0.645 [95% CI:

0.584-0.702], 0.615 [95% CI: 0.520-0.705] and 0.600 [95% CI: 0.520-

0.677] in the training, internal test and external test sets,

respectively, for predicting CK19 expression (Table 4).
TABLE 2 Continued

Characteristics

Training set (n = 266) Internal test set (n = 114) External test set (n = 159)

P# P*Ck19 (–)
(n=211)

Ck19(+)
(n=55)

Ck19 (–)
(n=86)

Ck19(+)
(n=28)

Ck19 (–)
(n=125)

Ck19(+)
(n=34)

positive 47(22.3) 14(25.5) 17(19.8) 7(25.0) 29(23.2) 4(11.8)

Blood product in massa 0.598 0.003

negative 155(73.5) 46(83.6) 67(77.9) 22(78.6) 109(87.2) 30(88.2)

positive 56(26.5) 9(16.4) 19(22.1) 6(21.4) 16(12.8) 4(11.8)

necrosisa 0.622 0.008

without necrosis 121(57.3) 33(60.0) 53(61.6) 16(27.1) 89(71.2) 27(79.4)

Patch necrosis 69(32.7) 16(29.1) 26(30.2) 11(39.3) 29(23.2) 4(11.8)

Mass necrosis 21(10.0) 6(10.9) 7(8.1) 1(3.6) 7(5.6) 3(8.8)

HBP signal intensitya 0.281 0.021

low 191(90.5) 54(98.2) 84(97.7) 26(92.9) 124(99.2) 32(94.1)

equal 11(5.2) 1(1.8) 1(1.2) 1(3.6) 1(0.8) 2(5.9)

high 9(4.3) 0(0.0) 1(1.2) 1(3.6) 0(0.0) 0(0.0)

HBP peritumoral
hypointensitya

0.209 0.021

negative 177(83.9) 40(72.7) 75(87.2) 24(85.7) 113(90.4) 30(88.2)

positive 34(16.1) 15(27.3) 11(12.8) 4(14.3) 12(9.6) 4(11.8)

DWI signal intensitya 0.422 0.537

slightly high 183(86.7) 51(92.7) 74(86.0) 23(82.1) 104(83.2) 30(88.2)

high 18(8.5) 4(7.3) 11(12.8) 3(10.7) 15(12.0) 3(8.8)

equal 10(4.7) 0(0.0) 1(1.2) 2(7.1) 6(4.8) 1(2.9)
frontie
a data are numbers of patients, with percentages in parentheses. b Data are means ± SDs. c Data are medians, with IQRs in parentheses. P# < 0.05 indicates a statistically significant difference
between the training and internal test; P* < 0.05 indicates a statistically significant difference between the training and external test set.
AP, arterial phase; HBP, hepatobiliary phase; DWI, Diffusion weighted imaging; LI-RADS, Liver Imaging Reporting and Data System; TIV, tumor in vein.
TABLE 3 Explore the predictors with binary logistic regression analysis.

Characteristics
Univariable Multivariable

b P OR(95%CI) b P OR(95%CI)

age -0.034 0.018 0.966(0.939-0.994) NA NA

AFP 0.861 0.005 2.366(1.259-4.323) 0.924 0.024 2.519(1.129-5.617)

AP hyper enhancement 1.030 0.009 2.801(1.286-6.101) 1.097 0.055 2.996(0.976-9.194)

washout 0.659 0.030 1.933(1.067-3.503) NA NA

peritumoral hepatobiliary phase hypointensity 0.669 0.060 1.952(0.972-3.922) NA NA

Habitat 1.437 <0.001 4.208(2.846-6.222) 1.577 <0.001 4.839(3.073-7.621)

DL 0.842 <0.001 2.320(1.616-3.330) 1.070 <0.001 2.916(1.818-4.677)
OR, odds ratio; AFP, a-fetoprotein; AP, arterial phase; HBP, hepatobiliary phase; Habitat, Habitat radiomic; DL, deep learning; NA, not applicable.
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3.2.2 Performance of habitat, DL and habitat-DL
models

Four Habitat, four DL, and four Habitat-DL models were

developed using AP, PP, HBP, and combined phase images.

Performance metrics across training, internal, and external test

sets are presented in Supplementary material Table S2. Both the

Habitat and DL models in HBP showed higher AUCs compared

with other phase models in the internal test set.

In the external test set, the AUCs of the Habitat model were

0.590 [95% CI: 0.485-0.696], 0.547 [95% CI: 0.426-0.667], 0.715

[95% CI: 0.603-0.827], and 0.570 [95% CI: 0.461-0.678] for AP, PP,

HBP, and combined phase, respectively. The AUCs of the DL model

were 0.569 [95% CI: 0.467-0.670], 0.632 [95% CI: 0.526-0.737],

0.581 [95% CI: 0.470-0.697], and 0.584 [95% CI: 0.480-0.689] for

AP, PP, HBP, and combined phase, respectively. The visualization

of habitat and deep learning features for a CK19+ case is shown in

Figure 2. The CAM heatmaps highlight that tumor margin regions

receive significant attention, corresponding to the habitat

marginal regions.

Integration of habitat and deep learning features was

subsequently used to develop the Habitat-DL model .

(Correlation heatmaps of habitat radiomics and deep learning

features in HBP are shown in Supplementary material Figure S1).

The performance of Habitat-DL model was highest in combined

phase, achieving AUCs of 0.832 [95% CI: 0.775-0.888], 0.728 [95%

CI: 0.626-0.831], and 0.695 [95% CI: 0.586-0.804] in training,

internal, and external test sets, respectively (Supplementary

material Table S3).
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3.2.3 Comparison of performance between the
DL-HR nomogram and clinical-radiologic model

Multivariable analysis identified AFP level > 100 mg/L, AP
enhancement, and the predictive scores derived from DL and

Habitat models as independent predictors of CK19 expression

without multicollinearity (VIF <2) (Supplementary material Table

S4). By integrating clinical, radiologic, habitat radiomics, and deep

learning features, the DL-HR nomogram achieved improved AUCs

of 0.863 [95% CI: 0.815-0.902], 0.794 [95%CI: 0.708-0.864], and

0.744 [95% CI:0.669-0.810] in the training, internal, and external

test sets, respectively. The DL-HR nomogram significantly

outperformed the clinical-radiologic model across all sets

(Table 4), with statistically significant differences in both internal

and external test sets. (Delong test, all p < 0.05).

Calibration curves for the DL-HR nomogram model predicted

outcomes showed no observable difference from the calibration

curves for actual CK19 expression across all sets (Hosmer-

Lemeshow test: training set, p = 0.504; internal test set, p = 0.849;

external test set, p = 0.588). The nomogram to predict the CK19

expression is shown in Figure 3. The evaluation of DL-HR

nomogram model is shown in Figure 4. Confusion matrices of

DL-HR nomogram model are shown in Figure 5.
3.3 DL-HR nomogram model for RFS

By February 10, 2025, 434 of 539 (80.5%) patients were enrolled

for RFS analysis. The overall recurrence rate was 36.7% (159 of 434),
TABLE 4 Comparison of performance of DL-HR nomogram and clinical-radiologic model.

Model and metric DL-HR nomogram model Clinical-radiologic model P Z

Training Set (n =266)

Sensitivity 0.782 0.618

Specificity 0.825 0.645

AUC (95%CI) 0.863(0.815-0.902) 0.645(0.584-0.702) <0.001 4.159

Internal test Set (n = 114)

Sensitivity 0.750 0.607

Specificity 0.756 0.616

AUC (95%CI) 0.794(0.708-0.864) 0.615(0.520-0.705) 0.008 2.665

External test Set (n =159)

Sensitivity 0.618 0.441

Specificity 0.872 0.744

AUC (95%CI) 0.744(0.669-0.810) 0.600(0.520-0.677) 0.017 2.382
Sensitivity and specificity are percentages, AUC = area under the receiver operating characteristic curve. 95% CI = 95% confidence interval,
* The DL-HR nomogram includes AFP levels (>100 ng/mL), arterial enhancement, and predictive score of Habitat radiomics and deep learning models.
P and Z value was calculated with the DeLong test.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1684264
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1684264
with rates of 36.2% (80 of 221), 33.7% (33 of 98), and 40% (46 of

115) in the training, internal, and external test sets. Patients have a

median RFS of 32.0 (IQR, 16.0-48.2) months. CK19+ HCC revealed

poorer RFS compared with CK19- HCC in the whole set (n = 434).

The median RFS was 26.0 [95%CI: 20.5-31.5] months for CK19+

patients and 34.6 [95%CI: 28.1-41.1] months for CK19- patients

(p = 0.031).

The DL-HR nomogram model had similar results, with patients

predicted to be CK19+ exhibiting significantly shorter median RFS

than across all sets: training set (14.8 vs. 29.0 months), internal test

set (12.0 vs. 32.0 months), and external test set (18.2 vs. 42.2

months). These differences were statistically significant (log-rank

test: p = 0.028, 0.040, and 0.040, respectively) (Figure 6).
Frontiers in Oncology 09
4 Discussion

CK19+ HCC is a hyperproliferative subtype of HCC that shows

higher AFP levels, poor differentiation, frequent vascular invasion,

and worse prognosis (15, 16). Therefore, developing non-invasive

methods to identify these hyperproliferative subtypes has significant

clinical value. In this multicenter study, we found four independent

predictors of CK19 expression: AFP level > 100 mg/L, AP

enhancement, and predictive scores derived from both Habitat

model and DL models. By integrating these factors, we developed

a DL-HR nomogram model showed the highest AUC values in the

internal test (AUC, 0.794) and maintained robust performance in

the external test set (AUC, 0.744), indicating its potential as a
FIGURE 2

Visualization of habitat and deep learning features in CK19+ HCC. (a) Axial MRI image showing the habitat clustering of tumor regions. (b) HE
staining elucidated the hepatocytic origin of HCC. (c) IHC staining showing CK19 positivity. (d-f) Axial, coronal, and sagittal MRI views of the tumor.
(g-i) Corresponding Class Activation Maps (CAM) from deep learning model showing attention weights. (j-l) Overlay of CAM weights on the MRI
images, where the red color highlighted that model focuses attention on the tumor periphery. HCC, Hepatocellular carcinoma. HE, hematoxylin-
eosin; IHC, immunohistochemistry.
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valuable tool for CK19 prediction. Furthermore, the DL-HR

nomogram effectively stratified HCC patients into risk categories

for RFS across all sets.

Logistic regression analysis showed that elevated AFP level and

AP enhancement were independent predictors. These findings

support the biological relationship between imaging phenotypes

and the molecular characteristics of CK19+ HCC, consistent with

previous studies (3). Traditional radiomics analysis typically

extracts features from the whole tumor, whereas habitat analysis

defines subregional divisions that reflect diverse voxel intensity

information to better characterize intratumoral heterogeneity (17,

18). Previous studies have utilized radiomics to predict CK19

expression, such as Fan Yang et al.’s (19) predictive model

achieving AUCs of 0.857, 0.726, and 0.790 in training and

validation cohorts, respectively. Compared with their studies, our

method incorporates more comprehensive enhanced sequence

information and employs gadoxetic acid, a liver-specific contrast

agent that improves detection and differential diagnosis of liver

space-occupying lesions (20, 21). Additionally, combined habitat

analysis with deep learning approaches to enhance model

performance. While Wang et al.’s fusion radiomics prediction

model achieved higher AUCs of 0.951 and 0.822 in training and

validation data sets (14), it is important to note that HCC is a

heterogeneous disease with substantial variations in outcomes and

treatment responses. Information extracted from the entire tumor

may introduce significant interference factors, including

hemorrhage, necrosis, cystic changes, potentially confounding
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tumor heterogeneity and reducing predictive power. This study

implemented an unsupervised K-means clustering algorithm to

generate cluster label maps for intratumoral voxels. These label

maps visualized clustering pattern distributions and quantified

tumor heterogeneity. Therefore, our Habitat imaging enables

meticulous observation of the complex variations within the

tumor habitat, improving the ability to capture tumor complexity

and better represent actual tumor behavior. We speculate that

peripheral subregions may correspond to areas with abundant

vascularity and active cellular proliferation. Previous studies have

reported that CK19-positive HCC often exhibits arterial-phase rim

enhancement. These observations are consistent with our findings

and support the association of CK19 positivity with high

proliferative activity and poor differentiation. Transitional

subregions likely represent mixed cellular areas containing tumor

cells, fibrous septa, and other components. Conversely, subregions

closer to the tumor center may reflect necrosis or extensive fibrosis,

corresponding to hypoxic and necrotic areas within the tumor. In

fact, habitat radiomics-based predictive models have demonstrated

excellent performance across various cancers, including esophageal

cancer, breast cancer, and rectal cancers (22–24).

The deep learning methods in this study utilized a Swin

Transformer framework that effectively captures complex spatial

relationships through its multi-attention mechanisms, particularly

valuable for analyzing image features (25, 26). The self-attention

mechanism allows the model to focus on relevant image regions

while considering the global context, enhancing feature extraction
FIGURE 3

The utilization of the nomogram to predict the CK19 expression. The nomogram incorporates four independent predictors: AFP level, AP
enhancement, Habitat model score, and deep learning (DL) model score. AP, arterial phase. DL, deep learning.
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capabilities beyond conventional CNNs (27, 28). Deep learning

models are increasingly applied to diagnose pathological features,

predict treatment response, and identify early recurrence in various

malignancies (29–31). Previous reports found that deep learning

can be applied to the HCC classification and identification (32, 33),

as shown by Charlie A. Hamm’s research (34). Compared with Hai-

Feng Liu et al.’s study (35), our research similarly integrated habitat
Frontiers in Oncology 11
and deep learning features. Moreover, we enhanced our model by

incorporating comprehensive clinical data and traditional imaging

features, increasing its clinical applicability. Furthermore, their

study was limited by its single-institution design, relatively

modest sample size, and lacked external validation cohorts.

Indeed, the integration of diverse features to create optimized

models has been substantiated across multiple studies (36–38).
FIGURE 4

Receiver operating characteristic curves, calibration curves, and decision curve of the DL-HR nomogram model. Five models are displayed: Clinical-
Radiological Model (blue), Habitat Model (orange), DL Model (green), DL-HR Model (red), and DL-HR nomogram Model (purple). The DL-HR
nomogram Model demonstrated superior performance with the highest AUC values in training (a), internal (b), and external test set (c). The
calibration curves exhibited satisfactory concordance between the predicted and observed probabilities of CK19+ HCC in both the training (d),
internal (e) and external test set (f). The decision curve analysis of the prediction model was performed for the training (g), internal (h), and external
test set (i). The curve of the DL-HR nomogram model demonstrated favorable benefits. AUC, area under the curve. ROC, receiver operating
characteristic.
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This study has several limitations. First, this is a retrospective

study, which may introduce inherent biases, including potential

selection bias reflected in the predominance of male participants,

although this gender distribution aligns with the higher incidence of

primary liver cancer in East Asian males (39). Second, despite the

substantial sample size (n=539), it remains relatively modest for

deep learning applications. Third, variations in imaging equipment

and baseline characteristics across two institutions may affect deep

learning and habitat features. Finally, all tumor images were

manually outlined by radiologists and future research should

investigate automatic lesion segmentation to improve the stability

of our model.

In conclusion, we developed and validated a DL-HR nomogram

model combining clinical, radiologic, habitat radiomics, and deep

learning features for the prediction of CK19 expression in HCC.

Furthermore, the model effectively stratified patients into different
Frontiers in Oncology 12
risk categories for RFS, highlighting its potential clinical utility for

treatment planning and post-operative surveillance. Future

prospective studies are needed to validate the clinical applicability

of this model.
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test sets (c). RFS, recurrence-free survival.
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