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Objectives: To develop a non-invasive model for the preoperative prediction of
Cytokeratin 19 (CK19) expression in hepatocellular carcinoma (HCC) based on
clinical, radiologic, habitat radiomics, and deep learning features using gadoxetic
acid-enhanced MRI, and to assess its utility for RFS risk stratification.

Methods: In this retrospective study, 539 patients with HCC from two hospitals
were divided into training (n = 266), internal (n = 114), and external (n = 159) test
sets. Univariable and multivariable logistic regression analyses were conducted
on clinical and radiologic features to develop a clinical-radiologic model. Habitat
radiomics and deep learning (DL) features were extracted and selected to
develop the Habitat and DL models, respectively. The DL-HR nomogram
model incorporating clinical, radiologic, habitat radiomics, and deep learning
features was developed and evaluated. The Kaplan-Meier survival analysis
assessed recurrence-free survival (RFS) in the CK19-positive (CK19+) and
CK19-negative (CK19-) patients.

Results: AFP level and arterial phase (AP) enhancement were identified as
independent predictors of CK19 expression. The DL-HR nomogram model
showed superior performance compared to the clinical-radiologic model in
both internal and external test sets (all P < 0.05). The AUCs of the DL-HR
nomogram and clinical-radiologic models were 0.794 [95% CI. 0.708-0.864]
vs. 0.615[95% CI: 0.520-0.705] for the internal test set and 0.744 [95% CI: 0.669-
0.810] vs. 0.600 [95% CI: 0.520-0.677] for the external test set, respectively. RFS
was significantly different between the DL-HR nomogram model-predicted
CK19+ and CK19- HCC patients across all sets (all P < 0.05).
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Conclusions: The DL-HR nomogram model integrating clinical, radiologic,
habitat radiomics, and deep learning features effectively predicted the CK19
expression and served as an effective tool for RFS risk stratification in HCC.

magnetic resonance imaging, deep learning, habitat radiomics, cytokeratin 19,
hepatocellular carcinoma

1 Introduction

Cytokeratin 19 (CK19) is well acknowledged as a marker of
biliary/progenitor cells and tumor stem cells and represent a vital
marker of the proliferative subtype in Hepatocellular Carcinoma
(HCC) (1). Clinically, CK19 is expressed in approximately 10-30%
of the HCCs (2). Patients with CK19-positive (CK19+) HCC
demonstrate poorer prognosis, reduced overall survival (OS) and
recurrence-free survival (RFS), and higher recurrence rates,
compared with CK19-negative (CK19-) HCC patients (3, 4).
Therefore, accurate prediction of CK19 holds crucial importance
for early clinical decision-making.

Currently, the identification of CK19 in HCC relies on
pathological immunohistochemical assessment (5). Magnetic
resonance imaging (MRI) provides a valuable and non-invasive
method for preoperative pathologic evaluation of HCC (6). Despite
this, radiologists still face challenges in accurately identifying HCC
subtypes from original MRI images. In recent years, deep learning
(DL) algorithms have gained prominence for their ability to directly
mine the complex features of visual information from imaging data,
and are widely used in the fields of deep feature extraction of medical
images, tumor recognition, differential diagnosis, and grading (7-10).
Habitat radiomics analysis is an emerging method applied to various
diseases. Tumor subregions, or “habitats,” represent clusters of tissue
with similar properties, providing valuable insights into tumor
phenotypes and the tumor microenvironment. Habitat analysis can
provide tumor-specific multidimensional features, thereby improving
predictive performance (11). Previous studies have shown that
radiomics analysis of MRI models is helpful to assess CK19
expression (12-14). To our knowledge, few studies have combined
habitat radiomics and deep learning analyses for predicting
CK19 expression.

Abbreviations: AFP, Alpha-fetoprotein; ALT, Alanine aminotransferase; AP,
Arterial phase; AST, Aspartate aminotransferase; AUC, Area under the receiver
operating characteristic curve; CK19, Cytokeratin 19; GGT, Gamma-glutamyl
transferase; HBP, Hepatobiliary phase; HCC, Hepatocellular carcinoma; LR,
Logistic regression; MRI, Magnetic resonance imaging; OS, Overall survival;
PP, Portal venous phase; RFE, Recursive feature elimination; RFS, Recurrence-
free survival; ROC, Receiver operating characteristic; SVM, Support vector

machine; VIF, Variance inflation factor; VOI, Volume of interest.
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Therefore, this study aimed to develop and validate a predictive
model for CK19 expression and RFS in HCC by integrating clinical,
radiologic, habitat radiomics, and deep learning features derived
from gadoxetic acid-enhanced MRI.

2 Materials and methods

2.1 Patients

The institutional ethics review boards in our medical centers
approved this study and waived informed consent requirements due
to the study’s retrospective nature. Patients with HCC who
underwent gadoxetic acid-enhanced MRI examinations at two
medical centers between June 2016 and June 2024 were enrolled.
Inclusion criteria were as follows: (a) no less than 18 years of age,
(b) histologically confirmed HCC and available CK19
immunohistochemical staining data, (c) underwent gadoxetic
acid-enhanced MRI within 20 days before hepatic resection, and
(d) no prior treatment for HCC before the MRI examination.
Exclusion criteria were as follows: (a) Images with poor clarity,
(b) Incomplete clinical data or pathologic examination, and
(c) mixed liver malignancies other than HCC, including
combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and
intrahepatic cholangiocarcinoma (ICC). In patients with multiple
HCCs, the largest tumor was selected as the main object.

A total of 539 patients were included in this study, consisting of
117 CK19+ and 422 CK19- patients. Patients from institute 1 (n =
380) were randomly assigned to the training set (n = 266; 55 CK19+
and 211 CK19-) and internal test set (n = 114; 28 CK19+ and 86
CK19-) at a ratio of 7:3. Additionally, patients from institute 2
served as the external test set (n = 159; 34 CK19+ HCC and 125
CK19-).

Baseline clinical information was obtained from electronic
medical records, including age, sex, viral hepatitis status, liver
cirrhosis, alpha-fetoprotein (AFP), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma-glutamyl
transferase (GGT), tumor maximum diameter, and tumor
number. The definition of tumor maximum diameter is the
maximum length of the tumor in the axial plane. The workflow
of this study was shown in Figure 1.
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2.2 Histopathology and
immunohistochemistry

CK19 expression data were collected from pathology reports.
Pathologic evaluations were performed independently and
qualitatively by two pathologists (C.Y.G., Reader 1 and M.Z.D.,
Reader 2, with 8 and 10 years of experience in pathology,
respectively). Disagreements were resolved through consensus
discussion. CK19 positivity was defined as membranous or

cytoplasmic immunoreactivity presented in> 5% of tumor cells (4).

2.3 MRI acquisition and imaging analysis

Two 3.0-T MRI scanners (Siemens Magnetom Skyra and GE
Revolution) were used to acquire MR images. The sequences
employed T1-weighted in-phase, T2-weighted imaging, diffusion-
weighted imaging, as well as contrast-enhanced TIWI imaging
using gadoxetic acid (Bayer Healthcare, Germany). The detailed
imaging protocols are shown in Supplementary material Table S1.

Radiologic characteristics were evaluated by two radiologists
(W.H.C,, Reader 1, and Y.X.Y., Reader 2, with 2 and 11 years of
experience in liver imaging), respectively, in consensus to avoid
subjectivity. Although the Readers were aware that all patients had
HCC, they remained blinded to the clinical, laboratory, and
histologic data. The following 16 MRI imaging features were
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evaluated: Shape of tumor, Arterial phase (AP) enhancement,
Arterial peritumoral enhancement, Capsule, Washout, Delayed
enhancement, LI-RADSv2018 category, Intratumoral artery, Fat
in mass, Blood production in mass, Substantial necrosis,
Hepatobiliary phase (HBP) signal intensity, peritumoral
hepatobiliary phase hypointensity, and Diffusion-weighted
imaging (DWI) signal intensity.

2.4 Follow-up

Postoperative follow-up was performed using abdominal MRI
at 3-6month intervals. Tumor recurrence was defined through
typical imaging features at MRI or pathological results. RFS was
defined as the time from the surgery date to the date of the first
recurrence, metastasis, or last follow-up. The deadline for the
follow-up period was February 10, 2025.

2.5 Habitat radiomics and deep learning
features extraction

Three radiologists, each with two years of experience, used 3D
Slicer Software(http://www.slicer.org) for segmentation. Three-
dimensional masks (volumes of interest) of the tumors were
manually segmented on a slice-by-slice basis in arterial phase
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(AP), portal venous phase (PP), and hepatobiliary phase (HBP)
images. All VOIs were reviewed by a senior radiologist (Y.X.Y., 11
years of experience) for quality control. These tumor VOIs were
then used for the subsequent extraction of habitat radiomics and
deep learning features.

All MRI images underwent the following preprocessing steps:
Bias field correction was performed using the N4 algorithm to
mitigate intensity nonuniformity. Intensity normalization with a
scaling factor of 100 was applied to reduce signal variability across
scanners and to standardize voxel intensity distributions prior to
radiomic feature extraction. Voxel resampling was conducted to
achieve an isotropic resolution of 2x2x2mm?, ensuring consistency
in spatial resolution across all images.

3D Swin Transformer models were developed for feature
extraction from AP, PP, and HBP images, respectively. These
models were based on the “swin3d_s” architecture available in the
torchvision models. video module of PyTorch 2.1.0 (https://
github.com/pytorch/pytorch). Several techniques were
implemented to mitigate overfitting, including data augmentation
protocols (Resized, ScalelntensityRanged, RandFlipd, and
RandAffined) and learning rate decay algorithms. In this study, a
batch size of 16 and an initial learning rate of 0.0001 were used,
with the learning rate decaying by a factor of 0.1 every 7 epochs.
To handle class imbalance, we employed focal loss as the
loss function. The Adam optimizer was selected due to its
ability to adjust the learning rate automatically. Training
continued for 200-500 epochs. The finalized weights were
leveraged to extract robust feature representations from the
imaging data. Ultimately, 768 deep learning features were
obtained from each VOL

The unsupervised K-means clustering was applied to generate
similar subregions within tumor voxels using cluster numbers (k)
ranging from 2 to 10 to control clustering resolution. The optimal
number of clusters was determined to be 3 based on the highest
Calinski-Harabasz (CH) index value. After clustering, same colors
were assigned to pixels in the same cluster, creating subregion maps
that provided visually intuitive representation and served as
imaging biomarkers for quantifying intratumor heterogeneity.
Radiomics features were extracted from VOIs using the
PyRadiomics package (http://www.radiomics.io/pyradiomics.
html). Radiomics features can be calculated on the original or
pre-processed images using the wavelet and Laplacian of
2.0, 3.0, 4.0, 5.0). Feature
computation was performed at resampling voxel dimensions of

Gaussian (LoG) filters (sigma =
2x2x2mm®* and an intensity bin width of 5. Radiomics features
included first-order statistics and texture metrics derived from gray
level co-occurrence matrix, gray level dependence matrix, gray level
size zone matrix, and neighboring gray tone difference matrix.
Lastly, each cluster contained 1132 features, totaling 3396 habitat
radiomic features were obtained from each tumor VOI.
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2.6 Feature selection and models
development

On the basis of training set, univariable logistic regression
analyses identified clinical and radiologic features associated with
CK19 expression. The remaining features underwent multivariable
logistic regression to select the independent predictors. The
variables associated with CK19 in univariable analysis (p < 0.1)
were used to develop the clinical-radiologic model using stepwise
backward logistic regression.

Habitat radiomics and deep learning feature analysis were
performed using FAE software version 0.5.6 (https://github.com/
salan668/FAE), a PyRadiomics-based analytical platform. Data
preprocessing involved synthetic minority over-sampling
algorithm (SMOTE) for class imbalance correction and Z-score
normalization for feature standardization. Features with Pearson
correlation coefficients (PCC) >0.8 were considered highly
correlated. When two features were highly correlated, the feature
with a stronger correlation with CK19 expression was retained to
reduce redundancy and ensure statistical independence. Feature
selection utilized recursive feature elimination (RFE) and analysis of
variance (ANOVA) testing. Logistic regression (LR) and support
vector machine (SVM) algorithms were used for model
development. The Habitat and DL model scores for CK19 were
calculated based on the mean predicted probabilities from the
best model.

Model performance was evaluated using the area under the
receiver operating characteristic curve (AUC). The optimal habitat
radiomics and DL features were integrated with selected clinical and
radiologic features through multivariable logistic regression to
construct the DL-HR nomogram model. Highly collinear features
were removed using variance inflation factor (VIF) analysis.

2.7 Statistical analysis

Statistical analysis was conducted using SPSS Statistics (version
24.0) and MedCalc software. The Shapiro-Wilk test assessed
normality. Normally distributed continuous variables are
expressed as mean and standard deviation, while non-normally
distributed continuous variables are presented as medians with
interquartile range (IQRs). Categorical variables are presented as
frequencies with percentages. Independent sample t-tests or Mann-
Whitney U tests were used for quantitative variables and chi-square
tests for categorical variables. Univariable and multivariable logistic
regression analyses were conducted to identify the independent
predictors, using a stepwise backward selection.

Kaplan-Meier analysis with the log-rank test was used to
evaluate RFS outcomes. The correlation heatmap, decision curve
analysis (DCA), and nomogram were generated using the
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“corrplot”, “rmda”, and “rms” packages, respectively, in R software
(version 4.4.2). Model performance was evaluated using Receiver
operating characteristic (ROC) curves, AUC, sensitivity, and
specificity. The DeLong test was used for model comparison. P-
value < 0.05 (two-tailed) was considered statistically significant.

3 Results
3.1 Baseline characteristics

A total of 539 patients (mean age [+ SD], 59.9 years + 10.2; 412
male, 127 female) were included. Most patients had hepatitis virus
infection (414 of 539 [76.8%]). Clinical and radiologic
characteristics showed no statistically significant differences
between the training and internal test sets, except for washout.
The distribution of CK19 expression status remained consistent

TABLE 1 Clinical characteristics of patients with HCC.

Training set (n = 266)

Internal test set (n = 114)

10.3389/fonc.2025.1684264

across all sets: training set (CK19+ n = 55 [20.7%]; CK19- n = 211
[79.3%]), internal test set (CK19+ n = 28 [24.6%]; CK19- n = 86
[75.4%]), and external test set (CK19+ n = 34 [21.4%]; CK19- n =
125 [78.6%]). CK19 expression was similarly distributed between
the training and internal test set (p = 0.401, x> = 0.705) or external
test set (p = 0.862, ¥* = 0.030). All baseline characteristics are
detailed in Tables 1 and 2.

3.2 Performance evaluation of prediction
models

3.2.1 Performance of clinical-radiologic model
Univariable analysis showed that five clinical and radiologic
factors were associated with the expression of CK19 in the training
set, including age, AFP, AP enhancement, washout, and peritumoral
hepatobiliary phase hypointensity. Multivariable analysis revealed

External test set (n = 159)

Characteristics

Ck19 (-) Ck19(+) Ck19 (-) Ck19(+) Ck19 (-) Ck19(+)

(n=211) (n=55) (n=86) (n=28) (n=125) (n=34)
Sex* 0.211  0.251
Male 164(77.7) 40(72.7) 68(79.1) 26(92.3) 89(71.2) 25(73.5)
Female 47(22.3) 15(27.3) 18(20.9) 2(7.7) 36(28.8) 9(26.5)
Ageb(years) 61.0 + 10.0 572 +£11.9 61.9 + 10.9 56.8 £ 9.5 59.0 + 9.1 58.7 + 10.0 0.740 | 0.210
HBV* 0180 = <0.001
negative 62(29.4) 19(34.5) 24(27.9) 3(10.7) 14(11.2) 3(8.8)
positive 149(70.6) 36(65.5) 62(72.1) 25(89.3) 111(88.8) 31(91.2)
Cirrhosis® 0.194  <0.001
negative 110(52.1) 33(60.0) 39(45.3) 14 (50) 45(36.0) 12(35.3)
positive 101(47.9) 22(40.0) 47(54.7) 14 (50) 80(64.0) 22(64.7)
ALT*(U/L) 0.810 = 0.750
<50 167(79.1) 39(70.9) 70(81.4) 17(60.7) 91(72.8) 30(88.2)
>50 44(20.9) 16(29.1) 16(18.6) 11(39.3) 34(28.2) 4(11.8)
AST*(U/L) 0.961 @ 0.011
<40 149(70.6) 37(67.3) 61(70.9) 19(67.9) 68(54.4) 24(70.6)
>40 62(29.4) 18(32.7) 25(29.1) 9(32.1) 57(45.6) 10(29.4)
GGT*(U/L) 0.653 | 0.292
<100 118(55.9) 27(49.1) 51(59.3) 14(50.0) 75(60.0) 20(58.8)
>100 93(44.1) 28(50.9) 35(40.7) 14(50.0) 50(40.0) 14(41.2)
AFP*(ug/L) 0.449  0.003
<100 140(66.4) 25(45.5) 55(64.0) 11(39.3) 100(80.0) 21(61.8)
>100 71(33.6) 30(54.5) 31(36.0) 17(60.7) 25(20.0) 13(38.2)

* Data are numbers of patients, with percentages in parentheses. ® Data are means + SDs.P* < 0.05 indicates a statistically significant difference between the training and internal test; P* < 0.05
indicates a statistically significant difference between the training and external test set. HBV, hepatitis B virus; ALT, alanine aminotransferase; AST, aspartate amino-transferase; GGT, y-glutamyl
transferase; AFP, o-fetoprotein; CK19, Cytokeratin 19.
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TABLE 2 Radiologic characteristics of patients with HCC.

Internal test set (n = 114)  External test set (n = 159)

Training set (n = 266)

Characteristics

Ck19 (-) Ck19(+) Ck19 (-) Ck19(+) Ck19 (-) Ck19(+)

(n=211) (n=55) (n=86) (n=28) (n=125) (n=34)
Tumor margin® 0.649 0.536
smooth 139(65.9) 39(70.9) 60(69.8) 19(67.9) 90(72.0) 21(61.8)
non-smooth 72(34.1) 16(29.1) 26(30.2) 9(32.1) 35(28.0) 13(38.2)
Tumor number® 0.611 0.003
1 146(69.2) 36(65.5) 61(70.9) 20(71.4) 103(82.4) 27(79.4)
>2 65(30.8) 19(34.5) 25(29.1) 8(28.6) 22(17.6) 7(20.6)
Diameter(cm)* 4.7(2.9-7.5) 3.9(2.7-6.4) 42(2.6-6.7) 4.1(2.5-8.0) 2.7(1.7-4.2) 2.4(1.5-4.2) 0516 | <0.001
AP enhancement® 0.821 0912
negative 11(5.2) 2(3.6) 6(7.0) 1(3.6) 8(6.4) 1(2.9)
non-rim 186(88.2) 42(76.4) 72(83.7) 23(82.1) 106(84.8) 28(82.4)
rim 14(6.6) 11(20.0) 8(9.3) 4(14.3) 11(8.8) 5(14.7)
AP peritumor
enhancement® 0.567 0.347
negative 178(84.4) 42(76.4) 75(87.2) 22(78.6) 110(88.0) 27(79.4)
positive 33(15.6) 13(23.6) 11(12.8) 6(21.4) 15(12.0) 7(20.6)
capsule® 0.051 <0.001
without capsule 76(36.0) 25(45.5) 29(33.7) 8(28.6) 55(44.0) 14(41.2)
enhancing capsule 108(51.2) 25(45.5) 45(52.3) 16(57.1) 69(55.2) 17(50.0)
non-enhancing capsule 27(12.8) 5(9.1) 12(14.0) 4(14.3) 1(0.8) 3(8.8)
Washout® <0.001 = <0.001
without 64(30.3) 14(25.5) 23(26.7) 11(39.3) 20(16.0) 6(17.6)
nonperipheral washout 140(66.4) 35(63.6) 59(68.6) 13(46.4) 99(79.2) 24(70.6)
peripheral washout 7(3.3) 6(10.9) 4(4.7) 4(14.3) 6(4.8) 4(11.8)
Delayed enhancement® 0.790 | 0.041
negative 150(71.1) 41(74.5) 63(73.3) 18(64.3) 105(84.0) 26(76.5)
positive 61(28.9) 14(25.5) 23(26.7) 10(35.7) 20(16.0) 8(23.5)
LI-RADS category® 0.837 <0.001
LR-3 11(5.2) 2(3.6) 7(8.1) 2(7.1) 12(9.6) 4(11.8)
LR-4 32(15.2) 10(18.2) 13(15.1) 5(17.9) 9(7.2) 6(17.6)
LR-5 149(70.6) 30(54.5) 57(66.3) 16(57.1) 104(83.2) 24(70.6)
M 16(7.6) 13(23.6) 8(9.3) 5(17.9) 0(0.0) 0(0.0)
TIV 3(1.4) 0(0.0) 1(1.2) 0(0.0) 0(0.0) 0(0.0)
Intratumoral artery® 0.250 <0.001
negative 114(54.0) 30(54.1) 53(61.6) 16(57.1) 87(69.6) 25(73.5)
positive 97(46.0) 25(45.5) 33(38.4) 12(42.9) 38(30.4) 9(26.5)
Fat in mass® 0.687 | 0.601
negative 164(77.7) 41(74.5) 69(80.2) 21(75.0) 96(76.8) 30(88.2)

(Continued)
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TABLE 2 Continued

Training set (n = 266)

Internal test set (n = 114)

10.3389/fonc.2025.1684264

External test set (n = 159)

Characteristics Ck19 (-) Ck19(+) Ck19 (-) Ck19(+) Ck19 (-) Ck19(+)
(n=211) (n=55) (n=86) (n=28) (n=125) (n=34)
positive 47(22.3) 14(25.5) 17(19.8) 7(25.0) 29(23.2) 4(11.8)
Blood product in mass® 0.598 0.003
negative 155(73.5) 46(83.6) 67(77.9) 22(78.6) 109(87.2) 30(88.2)
positive 56(26.5) 9(16.4) 19(22.1) 6(21.4) 16(12.8) 4(11.8)
necrosis® 0.622 0.008
without necrosis 121(57.3) 33(60.0) 53(61.6) 16(27.1) 89(71.2) 27(79.4)
Patch necrosis 69(32.7) 16(29.1) 26(30.2) 11(39.3) 29(23.2) 4(11.8)
Mass necrosis 21(10.0) 6(10.9) 7(8.1) 1(3.6) 7(5.6) 3(8.8)
HBP signal intensity® 0.281 0.021
low 191(90.5) 54(98.2) 84(97.7) 26(92.9) 124(99.2) 32(94.1)
equal 11(5.2) 1(1.8) 1(1.2) 1(3.6) 1(0.8) 2(5.9)
high 9(4.3) 0(0.0) 1(1.2) 1(3.6) 0(0.0) 0(0.0)
HBP peritumoral 0209 | 0021
hypointensity®
negative 177(83.9) 40(72.7) 75(87.2) 24(85.7) 113(90.4) 30(88.2)
positive 34(16.1) 15(27.3) 11(12.8) 4(14.3) 12(9.6) 4(11.8)
DWI signal intensity” 0.422 0.537
slightly high 183(86.7) 51(92.7) 74(86.0) 23(82.1) 104(83.2) 30(88.2)
high 18(8.5) 4(7.3) 11(12.8) 3(10.7) 15(12.0) 3(8.8)
equal 10(4.7) 0(0.0) 1(1.2) 2(7.1) 6(4.8) 1(2.9)

* data are numbers of patients, with percentages in parentheses. ® Data are means + SDs. © Data are medians, with IQRs in parentheses. P* < 0.05 indicates a statistically significant difference
between the training and internal test; P* < 0.05 indicates a statistically significant difference between the training and external test set.
AP, arterial phase; HBP, hepatobiliary phase; DWT, Diffusion weighted imaging; LI-RADS, Liver Imaging Reporting and Data System; TIV, tumor in vein.

AFP level > 100 ug/L (OR = 2.519 [95% CI:1.129-5.617]; p = 0.024),
AP enhancement (OR = 2.996 [95% CI: 0.976-9.194]; p = 0.055) as
independent predictors of CK19 expression. These factors were used
to construct the clinical-radiologic model (Table 3).

TABLE 3 Explore the predictors with binary logistic regression analysis.

The clinical-radiologic model achieved AUCs of 0.645 [95% CI:
0.584-0.702], 0.615 [95% CI: 0.520-0.705] and 0.600 [95% CI: 0.520-
0.677] in the training, internal test and external test sets,
respectively, for predicting CK19 expression (Table 4).

Univariable Multivariable
Characteristics

B OR(95%Cl) B P OR(95%ClI)
age -0.034 0.018 0.966(0.939-0.994) NA NA
AFP 0.861 0.005 2.366(1.259-4.323) 0.924 0.024 2.519(1.129-5.617)
AP hyper enhancement 1.030 0.009 2.801(1.286-6.101) 1.097 0.055 2.996(0.976-9.194)
washout 0.659 0.030 1.933(1.067-3.503) NA NA
peritumoral hepatobiliary phase hypointensity 0.669 0.060 1.952(0.972-3.922) NA NA
Habitat 1.437 <0.001 4.208(2.846-6.222) 1.577 <0.001 4.839(3.073-7.621)
DL 0.842 <0.001 2.320(1.616-3.330) 1.070 <0.001 2.916(1.818-4.677)

OR, odds ratio; AFP, o-fetoprotein; AP, arterial phase; HBP, hepatobiliary phase; Habitat, Habitat radiomic; DL, deep learning; NA, not applicable.
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TABLE 4 Comparison of performance of DL-HR nomogram and clinical-radiologic model.

Model and metric DL-HR nomogram model Clinical-radiologic model P Z
Training Set (n =266)

Sensitivity 0.782 0.618

Specificity 0.825 0.645

AUC (95%CI) 0.863(0.815-0.902) 0.645(0.584-0.702) <0.001 4.159
Internal test Set (n = 114)

Sensitivity 0.750 0.607

Specificity 0.756 0.616

AUC (95%CI) 0.794(0.708-0.864) 0.615(0.520-0.705) 0.008 2.665
External test Set (n =159)

Sensitivity 0.618 0.441

Specificity 0.872 0.744

AUC (95%CI) 0.744(0.669-0.810) 0.600(0.520-0.677) 0.017 2.382

Sensitivity and specificity are percentages, AUC = area under the receiver operating characteristic curve. 95% CI = 95% confidence interval,

* The DL-HR nomogram includes AFP levels (>100 ng/mL), arterial enhancement, and predictive score of Habitat radiomics and deep learning models.

P and Z value was calculated with the DeLong test.

3.2.2 Performance of habitat, DL and habitat-DL
models

Four Habitat, four DL, and four Habitat-DL models were
developed using AP, PP, HBP, and combined phase images.
Performance metrics across training, internal, and external test
sets are presented in Supplementary material Table S2. Both the
Habitat and DL models in HBP showed higher AUCs compared
with other phase models in the internal test set.

In the external test set, the AUCs of the Habitat model were
0.590 [95% CI: 0.485-0.696], 0.547 [95% CI: 0.426-0.667], 0.715
[95% CI: 0.603-0.827], and 0.570 [95% CI: 0.461-0.678] for AP, PP,
HBP, and combined phase, respectively. The AUCs of the DL model
were 0.569 [95% CI: 0.467-0.670], 0.632 [95% CI: 0.526-0.737],
0.581 [95% CI: 0.470-0.697], and 0.584 [95% CI: 0.480-0.689] for
AP, PP, HBP, and combined phase, respectively. The visualization
of habitat and deep learning features for a CK19+ case is shown in
Figure 2. The CAM heatmaps highlight that tumor margin regions
receive significant attention, corresponding to the habitat
marginal regions.

Integration of habitat and deep learning features was
subsequently used to develop the Habitat-DL model.
(Correlation heatmaps of habitat radiomics and deep learning
features in HBP are shown in Supplementary material Figure SI).
The performance of Habitat-DL model was highest in combined
phase, achieving AUCs of 0.832 [95% CI: 0.775-0.888], 0.728 [95%
CI: 0.626-0.831], and 0.695 [95% CI: 0.586-0.804] in training,
internal, and external test sets, respectively (Supplementary
material Table S3).
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3.2.3 Comparison of performance between the
DL-HR nomogram and clinical-radiologic model

Multivariable analysis identified AFP level > 100 pg/L, AP
enhancement, and the predictive scores derived from DL and
Habitat models as independent predictors of CK19 expression
without multicollinearity (VIF <2) (Supplementary material Table
S4). By integrating clinical, radiologic, habitat radiomics, and deep
learning features, the DL-HR nomogram achieved improved AUCs
of 0.863 [95% CI: 0.815-0.902], 0.794 [95%CI: 0.708-0.864], and
0.744 [95% CI:0.669-0.810] in the training, internal, and external
test sets, respectively. The DL-HR nomogram significantly
outperformed the clinical-radiologic model across all sets
(Table 4), with statistically significant differences in both internal
and external test sets. (Delong test, all p < 0.05).

Calibration curves for the DL-HR nomogram model predicted
outcomes showed no observable difference from the calibration
curves for actual CKI19 expression across all sets (Hosmer-
Lemeshow test: training set, p = 0.504; internal test set, p = 0.849;
external test set, p = 0.588). The nomogram to predict the CK19
expression is shown in Figure 3. The evaluation of DL-HR
nomogram model is shown in Figure 4. Confusion matrices of
DL-HR nomogram model are shown in Figure 5.

3.3 DL-HR nomogram model for RFS

By February 10, 2025, 434 of 539 (80.5%) patients were enrolled
for RFS analysis. The overall recurrence rate was 36.7% (159 of 434),
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Visualization of habitat and deep learning features in CK19+ HCC. (a) Axial MRl image showing the habitat clustering of tumor regions. (b) HE
staining elucidated the hepatocytic origin of HCC. (c) IHC staining showing CK19 positivity. (d-f) Axial, coronal, and sagittal MRI views of the tumor
(g-i) Corresponding Class Activation Maps (CAM) from deep learning model showing attention weights. (j-) Overlay of CAM weights on the MRI
images, where the red color highlighted that model focuses attention on the tumor periphery. HCC, Hepatocellular carcinoma. HE, hematoxylin-

eosin; IHC, immunohistochemistry.

with rates of 36.2% (80 of 221), 33.7% (33 of 98), and 40% (46 of
115) in the training, internal, and external test sets. Patients have a
median RFS of 32.0 (IQR, 16.0-48.2) months. CK19+ HCC revealed
poorer RFS compared with CK19- HCC in the whole set (n = 434).
The median RFS was 26.0 [95%CI: 20.5-31.5] months for CK19+
patients and 34.6 [95%CI: 28.1-41.1] months for CK19- patients
(p = 0.031).

The DL-HR nomogram model had similar results, with patients
predicted to be CK19+ exhibiting significantly shorter median RFS
than across all sets: training set (14.8 vs. 29.0 months), internal test
set (12.0 vs. 32.0 months), and external test set (18.2 vs. 42.2
months). These differences were statistically significant (log-rank
test: p = 0.028, 0.040, and 0.040, respectively) (Figure 6).
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4 Discussion

CK19+ HCC is a hyperproliferative subtype of HCC that shows
higher AFP levels, poor differentiation, frequent vascular invasion,
and worse prognosis (15, 16). Therefore, developing non-invasive
methods to identify these hyperproliferative subtypes has significant
clinical value. In this multicenter study, we found four independent
predictors of CK19 expression: AFP level > 100 ug/L, AP
enhancement, and predictive scores derived from both Habitat
model and DL models. By integrating these factors, we developed
a DL-HR nomogram model showed the highest AUC values in the
internal test (AUC, 0.794) and maintained robust performance in
the external test set (AUC, 0.744), indicating its potential as a
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FIGURE 3

The utilization of the nomogram to predict the CK19 expression. The nomogram incorporates four independent predictors: AFP level, AP
enhancement, Habitat model score, and deep learning (DL) model score. AP, arterial phase. DL, deep learning.

valuable tool for CK19 prediction. Furthermore, the DL-HR
nomogram effectively stratified HCC patients into risk categories
for RES across all sets.

Logistic regression analysis showed that elevated AFP level and
AP enhancement were independent predictors. These findings
support the biological relationship between imaging phenotypes
and the molecular characteristics of CK19+ HCC, consistent with
previous studies (3). Traditional radiomics analysis typically
extracts features from the whole tumor, whereas habitat analysis
defines subregional divisions that reflect diverse voxel intensity
information to better characterize intratumoral heterogeneity (17,
18). Previous studies have utilized radiomics to predict CK19
expression, such as Fan Yang et al’s (19) predictive model
achieving AUCs of 0.857, 0.726, and 0.790 in training and
validation cohorts, respectively. Compared with their studies, our
method incorporates more comprehensive enhanced sequence
information and employs gadoxetic acid, a liver-specific contrast
agent that improves detection and differential diagnosis of liver
space-occupying lesions (20, 21). Additionally, combined habitat
analysis with deep learning approaches to enhance model
performance. While Wang et al.’s fusion radiomics prediction
model achieved higher AUCs of 0.951 and 0.822 in training and
validation data sets (14), it is important to note that HCC is a
heterogeneous disease with substantial variations in outcomes and
treatment responses. Information extracted from the entire tumor
may introduce significant interference factors, including
hemorrhage, necrosis, cystic changes, potentially confounding
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tumor heterogeneity and reducing predictive power. This study
implemented an unsupervised K-means clustering algorithm to
generate cluster label maps for intratumoral voxels. These label
maps visualized clustering pattern distributions and quantified
tumor heterogeneity. Therefore, our Habitat imaging enables
meticulous observation of the complex variations within the
tumor habitat, improving the ability to capture tumor complexity
and better represent actual tumor behavior. We speculate that
peripheral subregions may correspond to areas with abundant
vascularity and active cellular proliferation. Previous studies have
reported that CK19-positive HCC often exhibits arterial-phase rim
enhancement. These observations are consistent with our findings
and support the association of CK19 positivity with high
proliferative activity and poor differentiation. Transitional
subregions likely represent mixed cellular areas containing tumor
cells, fibrous septa, and other components. Conversely, subregions
closer to the tumor center may reflect necrosis or extensive fibrosis,
corresponding to hypoxic and necrotic areas within the tumor. In
fact, habitat radiomics-based predictive models have demonstrated
excellent performance across various cancers, including esophageal
cancer, breast cancer, and rectal cancers (22-24).

The deep learning methods in this study utilized a Swin
Transformer framework that effectively captures complex spatial
relationships through its multi-attention mechanisms, particularly
valuable for analyzing image features (25, 26). The self-attention
mechanism allows the model to focus on relevant image regions
while considering the global context, enhancing feature extraction
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FIGURE 4

Receiver operating characteristic curves, calibration curves, and decision curve of the DL-HR nomogram model. Five models are displayed: Clinical-
Radiological Model (blue), Habitat Model (orange), DL Model (green), DL-HR Model (red), and DL-HR nomogram Model (purple). The DL-HR
nomogram Model demonstrated superior performance with the highest AUC values in training (a), internal (b), and external test set (c). The
calibration curves exhibited satisfactory concordance between the predicted and observed probabilities of CK19+ HCC in both the training (d),
internal (e) and external test set (f). The decision curve analysis of the prediction model was performed for the training (g), internal (h), and external
test set (i). The curve of the DL-HR nomogram model demonstrated favorable benefits. AUC, area under the curve. ROC, receiver operating

characteristic.

capabilities beyond conventional CNNs (27, 28). Deep learning
models are increasingly applied to diagnose pathological features,
predict treatment response, and identify early recurrence in various
malignancies (29-31). Previous reports found that deep learning
can be applied to the HCC classification and identification (32, 33),
as shown by Charlie A. Hamm’s research (34). Compared with Hai-
Feng Liu et al.’s study (35), our research similarly integrated habitat
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and deep learning features. Moreover, we enhanced our model by
incorporating comprehensive clinical data and traditional imaging
features, increasing its clinical applicability. Furthermore, their
study was limited by its single-institution design, relatively
modest sample size, and lacked external validation cohorts.
Indeed, the integration of diverse features to create optimized
models has been substantiated across multiple studies (36-38).
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FIGURE 6

Kaplan-Meier survival curve of recurrence-free survival (RFS). DL-HR nomogram-predicted CK19 expression in training (a), internal (b), and external

test sets (c). RFS, recurrence-free survival.

This study has several limitations. First, this is a retrospective
study, which may introduce inherent biases, including potential
selection bias reflected in the predominance of male participants,
although this gender distribution aligns with the higher incidence of
primary liver cancer in East Asian males (39). Second, despite the
substantial sample size (n=539), it remains relatively modest for
deep learning applications. Third, variations in imaging equipment
and baseline characteristics across two institutions may affect deep
learning and habitat features. Finally, all tumor images were
manually outlined by radiologists and future research should
investigate automatic lesion segmentation to improve the stability
of our model.

In conclusion, we developed and validated a DL-HR nomogram
model combining clinical, radiologic, habitat radiomics, and deep
learning features for the prediction of CK19 expression in HCC.
Furthermore, the model effectively stratified patients into different
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risk categories for RFS, highlighting its potential clinical utility for
treatment planning and post-operative surveillance. Future
prospective studies are needed to validate the clinical applicability
of this model.
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