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Introduction: Hepatocellular carcinoma (HCC) progression shares metabolic-
epigenetic features with physiological liver regeneration, yet the regulatory
interplay remains poorly defined. We hypothesize that lactylation, a novel post-
translational modification, serves as a key nexus linking these processes.
Methods: We integrated lactylation modification profiles with transcriptomic data
from three murine liver regeneration datasets (GSE20426, GSE70593, GSE4528).
Machine learning algorithms, including LASSO regression and SVM-RFE, were
employed to prioritize core regulatory genes. Functional characterization involved
enrichment, immune infiltration, and correlation analyses. The prognostic and
diagnostic value of the identified genes was validated in HCC cohorts, and their
overexpression was confirmed in clinical HCC specimens using qPCR and
Western blot.

Results: Multi-omics analysis revealed 793 differentially expressed genes during
liver regeneration, with 18 overlapping lactylation-related candidates. Machine
learning prioritized six core genes (Ccna2, Csrp2, Ilf2, Kif2c, Racgapl, Vars)
enriched in cell cycle regulation and DNA repair pathways. These genes
demonstrated a strong correlation with immune microenvironment remodelling,
particularly CD8* T cells and M1 macrophages. Prognostic validation in HCC
cohorts revealed significant overexpression of these genes in tumours, with
elevated Kif2c and Ccna2 predicting poor survival. Crucially, Csrp2 exhibited
superior diagnostic efficacy (AUC > 0.8) compared to conventional biomarkers.
Experimental validation via gPCR and Western blot confirmed marked upregulation
of all six genes at both mRNA and protein levels in clinical HCC specimens (p
< 0.0001).
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Discussion: This work uniquely establishes lactylation as a metabolic-epigenetic
bridge linking physiological regenerative pathways to oncogenesis. By leveraging
liver regeneration models and machine learning, we propose the identified gene
panel as dual-purpose biomarkers for HCC diagnosis and therapeutic targeting,
offering new insights into the metabolic-epigenetic regulation of HCC.

lactylation, liver regeneration, hepatocellular carcinoma, machine learning,
bioinformatics analysis

1 Introduction

Liver regeneration represents a paradigmatic model of finely
regulated cellular proliferation, which is associated with the
characteristic uncontrolled growth seen in HCC. These two
processes may involve overlapping proliferative mechanisms, yet
the key molecular determinants of physiological repair versus
malignant transformation remain unclear (1). Recent studies
suggest that metabolic-epigenetic interactions, particularly
through lactylation, a novel post-translational modification, play a
central role in regulating hepatocyte fate decisions (2).

The liver’s unique regenerative capacity has long been
considered a classic model for studying controlled cell cycle
processes (3, 4). After partial hepatectomy, quiescent hepatocytes
initiate precise, time-dependent proliferation programs through
metabolic reprogramming and epigenetic remodeling, enabling
functional reconstruction within days (5). The transient activation
of this proliferative pathway requires the precise coordination of
energy metabolism and chromatin remodeling, with lactylation
potentially serving as a critical component of this regulatory
hub (6). Recent research has revealed that lactate-induced
histone modifications guide regenerative gene programs by
regulating chromatin accessibility (7). Interestingly, the tumor
microenvironment can hijack similar lactylation-driven mechanisms
to sustain oncogenic signaling (8), suggesting that lactylation may
serve as a molecular regulator controlling proliferative checkpoints.

Notably, lactylation modifications in HCC are often abnormally
hyperactivated, and this epigenetic regulation plays a key role in
driving HCC progression (9). Lactylation has gradually emerged as
a metabolically sensitive epigenetic mechanism linking glycolytic
flux to chromatin state. Its molecular nature involves the covalent
binding of lactate molecules to histone lysine residues, reshaping
the transcriptional landscape under metabolic stress. Physiological
processes such as liver regeneration demonstrate that lactylation
modifies promoter regions to activate pro-regenerative pathways (6,
7). Conversely, cancer cells exploit similar mechanisms to stabilize

Abbreviations: HCC, Hepatocellular Carcinoma; GSEA, Gene Set Enrichment
Analysis; AFP, alpha-fetoprotein; PHx, partial hepatectomy.
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oncogenic transcription factors and enhance chemoresistance. This
functional duality positions lactylation at the critical interface
between metabolic adaptation and epigenetic regulation,
potentially governing the phenotypic switch between regeneration
and carcinogenesis (10).

The role of lactylation in liver function remains poorly understood
both domestically and internationally. While its involvement in
macrophage polarization during liver injury and metabolic
regulation in HCC models has been documented, the specific
mechanisms by which this modification coordinates regeneration-
specific gene networks are yet to be elucidated (11-13). The
significance of this knowledge gap arises from the shared metabolic
features of regenerative hepatocytes and malignant cells: both exhibit a
Warburg-like effect, characterized by glycolysis, lactate accumulation,
and proliferation-dependent epigenetic remodeling (14). We
hypothesize that lactylation, as a conserved regulatory mechanism
across physiological and pathological environments, determines
divergent biological outcomes through its spatiotemporal-specific
modification patterns. Therefore, genes co-regulated by lactylation
in both physiological regeneration and tumor growth may constitute
core drivers of HCC pathogenesis.

Current traditional methods for identifying oncogenes face
significant limitations in exploring metabolic-epigenetic
interactions. Conventional differential expression analysis often
overlooks the environmental dependency of modification effects,
while bulk sequencing technologies struggle to capture cell type-
specific lactylation signatures (15). To overcome these limitations,
we employ an integrated bioinformatics strategy that combines
lactylome data with longitudinal regeneration transcriptomes.
Notably, several groups have previously investigated the role of
lactylation in HCC pathogenesis (16, 17), yet these studies rarely
integrated physiological liver regeneration models (a paradigm of
controlled hepatocyte proliferation) to distinguish “regenerative”
vs. “oncogenic” lactylation effects. This omission is notable, as
murine liver regeneration models have been widely validated to
recapitulate the core molecular pathways of human hepatic repair—
for instance, studies by Jian Zhao et al. (18) and Costanza Lamperti
et al. (19) demonstrated that key cell cycle regulators (e.g., cyclins,
CDKs) and metabolic reprogramming events in the murine partial
hepatectomy (PHx) model are highly conserved in human liver
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regeneration after surgical resection, confirming the translational
value of murine data for human liver biology research. To address
this gap, we employ an integrated bioinformatics strategy that
combines lactylome data with longitudinal regeneration
transcriptomes, and further uses machine learning (LASSO +
SVM-RFE) for gene prioritization. This approach circumvents
the limitations of single-omics analyses and single-model
designs, enabling precise pinpointing of modification-sensitive
oncogenic nodes that bridge physiological regeneration and
pathological carcinogenesis.

2 Methods
2.1 Data collection

The sequence of steps in our research methodology is depicted
in the workflow diagram below, labelled as Figure 1. To further
analyze the molecular mechanism of liver regeneration after PHx
and strengthen the correlation between the “mouse regeneration
model human HCC” in the original data system, we further clarified
the selection logic and analysis basis of the original dataset to ensure
the rigor of the research foundation:

To deeply understand the molecular mechanisms of liver
regeneration after partial hepatectomy in mice, we selected three
datasets (GSE20426, GSE70593, GSE4528) from the GEO database.
Also, we consulted literature [PMID:37242427 (16), PMID:35761067
(17), PMID:36092712 (20)] to compile known lactylation gene
information, ensuring the scientific and practical significance of the
gene list used in the research.

10.3389/fonc.2025.1683704

2.2 Data preprocessing

A series of methods was used for data quality control. The
“limma” and “sva” packages in R (v4.2.2) were applied to remove
batch effects across the merged datasets. This approach of integrating
multiple datasets followed by batch effect correction is an established
strategy to increase the effective sample size and statistical power,
particularly when individual cohort sizes are limited (21). Notably,
this multi-dataset integration strategy for mouse liver data has been
successfully applied to identify biomarkers for human HCC. For
instance, Zeyu Wang et al. (22) integrated 4 mouse liver regeneration
datasets and identified a 5-gene signature, which was later validated
to predict recurrence in human HCC patients. This finding
demonstrates the translational validity of the analytical framework.
PCA, with “FactoMineR” and “factoextra” packages in R, was
conducted to assess differential correction and visualize sample
distribution. The “preprocessCore” package was used for quantile
normalization and standardization to reduce the impact of outliers
and ensure comparability across samples. Quantile normalization is a
widely adopted and robust method for eliminating technical
variations between arrays in gene expression studies, effectively
aligning the distribution of probe intensities across all samples to a
common target distribution (23, 24).

2.3 Differential gene, intersection gene
screening and analysis

We used the “limma” package in R with strict criteria (|log fold
change(logFC)| > 0.5, adj.P.Val < 0.05) to identify differentially
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FIGURE 1

Study flow chart. The study investigates the molecular mechanisms of liver regeneration in mice by collecting and preprocessing gene expression
datasets, performing differential gene expression screening and enrichment analysis, and integrating machine learning with immune infiltration
analysis to identify and explore core lactylation-related genes. Regulatory network prediction, cancer expression profiling, and statistical validation
were conducted to further elucidate their functional roles. Moreover, key findings were experimentally validated through molecular biology

techniques, including quantitative PCR (qPCR) and Western blotting (WB)
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expressed genes between normal/sham-operated and liver-
regenerating groups after partial hepatectomy. The “Venn”
package was then used to find the intersection of lactylation genes
and differential genes. Volcano plots, heat maps, and box plots were
created using “ggplot2” and “pheatmap” packages to analyze
these genes.

2.4 Enrichment analysis

GO and KEGG analyses, performed with the “clusterProfiler”
package in R on differential and intersection genes, revealed their
involvement in biological processes, molecular functions, etc.
Results were sorted by gene ratio, with circle size and color
representing gene quantity and P-values.

2.5 ldentification of core lactylation genes
using machine learning

LASSO is performed using the glmnet function (alpha=1,
corresponding to an L1 penalty) and undergoes 10-fold cross-
validation via cv.glmnet (nfolds=10, type.measure=“deviance”),
with lambda.min set as the feature selection threshold. The SVM-
RFE method utilizes the caret:rfe function, applying svmRadial
(Radial Basis Kernel, RBF) as the core. RBF is selected for its
flexibility in capturing nonlinear boundaries. In the rfeControl
setting, the method is set to “cv” (default 10% discount), which
allows recursive feature elimination and automatically adjusts
parameters (sigma and C) for each subset of data through caret.
Given the priority of public datasets and the small sample size, the
predictive performance of these genes is so strong that all values are
1. Further screened genes by iteratively removing those with less
classification contribution. The gene sets from both methods were
intersected to determine core lactylation genes. Correlation analyses
and ROC curve analysis, with the “pROC” package, were conducted
to evaluate these genes.

2.6 Immune infiltration analysis

Based on gene expression data, the R package CIBERSORT, a
deconvolution-based tool, was used to estimate immune cell
composition in liver regeneration samples (GSE20426, GSE70593,
GSE4528). After inferring immune cell composition, the Wilcoxon
rank-sum test was used to compare differences between control and
experimental groups, with P < 0.05 considered significant. The
application of CIBERSORT in mouse regeneration data is
consistent with the previous work by Lea Lemaitre et al. (25).
They used mouse liver immune infiltration patterns to identify
macrophage-T cell crosstalk pathways, which were later confirmed
to regulate immune evasion in human HCC. This finding supports

the relevance of our mouse immune analysis to human diseases.
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2.7 Correlation analysis between core
lactylation genes, immune cells, and all
genes

Spearman correlation analysis, using “ggplot2” and “ggstatsplot”
packages in R, explored the relationship between core lactylation gene
expression and immune cell infiltration. A correlation heatmap,
created with the “pheatmap” package, showed the top 50 genes
positively correlated with core lactylation genes.

2.8 Single gene GSEA analysis of core
lactylation genes

Single-gene gene set enrichment analysis (GSEA), with the
“clusterProfiler” package in R on six core lactylation genes,
explored their enrichment in molecular functions and signaling
pathways. Results with adjusted P-values < 0.05 and FDR q < 0.025
were considered significant, and bar graphs were used to show the
top 20 findings.

2.9 Prediction of miRNA-lactylation core
gene - transcription factor regulatory
network

The RegNetwork database and Cytoscape software were used to
identify and construct the miRNA-lactylation core gene-transcription
factor regulatory network. The NetworkAnalyst platform and
MiRTarBase v8.0 database were further used to validate and
visualize the network, providing clues for upstream regulatory

mechanism research.

2.10 Differential expression analysis and
survival analysis of core lactylation genes
in hepatocellular carcinoma

Using the GEPIA2 database, we compared core lactylation gene
expression in hepatocellular carcinoma and normal liver tissues with t-
tests. Kaplan-Meier survival curves were used to analyze the correlation
between gene expression and patient prognosis, aiming to find new
biomarkers. It is noteworthy that multivariate Cox regression analysis
adjusting for clinical covariates (such as tumor stage, grade, age, and
liver function parameters) could not be performed due to the lack of
detailed clinical annotation in the utilized public databases (e.g., TCGA,
GEO). This limitation is common in large-scale bioinformatic studies
relying on publicly available datasets, where comprehensive clinical
information is often incomplete or unavailable (26, 27). Similarly, a
direct head-to-head comparison of the diagnostic accuracy of our
identified biomarkers with serum alpha-fetoprotein (AFP) levels was
not feasible, as gene expression datasets and serum biomarker datasets
are typically derived from distinct patient cohorts with different sample
types (tissue versus blood) (28, 29).
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2.11 Clinical cohort for experimental
validation

For the experimental validation, we analyzed a cohort comprising
n = 10 primary HCC tumors paired with n = 10 patient-matched
adjacent non-tumor liver tissues (collected >2 cm from the tumor
margin) from Yichang Central People’s Hospital. Inclusion criteria
were: (1) adults (=18 years) with pathologically confirmed, treatment-
naive primary HCC; (2) curative-intent surgical resection with available
tumor and adjacent non-tumor tissue; (3) adequate tissue quantity/
quality for RNA and protein extraction; (4) availability of complete
core clinical covariates; and (5) provision of written informed consent
with IRB approval. Patients were excluded based on: (1) prior loco-
regional or systemic anti-cancer therapy; (2) mixed histology (e.g.,
HCC-intrahepatic cholangiocarcinoma); (3) recurrent or metastatic
disease at sampling; (4) inadequate biospecimen quality (RIN < 6.0 or
>50% necrosis on pathology); (5) severe acute hepatitis or active
systemic infection at surgery; or (6) incomplete metadata. Regarding
specimen handling, tissues were snap-frozen in liquid nitrogen within
30 minutes of resection and stored at —80°C. Total RNA was extracted
using TRIzol reagent with chloroform phase separation, followed by
DNase treatment and quality control (Nanodrop 260/280 ratio,
Bioanalyzer RIN). Protein lysates were prepared in RIPA buffer
supplemented with protease and phosphatase inhibitors, with
concentrations determined by BCA assay. For qPCR, reactions were
performed in technical triplicates using GAPDH as the internal control,
and data were analyzed via the AACt method. Western blot signals
were normalized to GAPDH, and band densitometry was quantified
using Image] by analysts blinded to the clinical groupings.
Normalization and batch handling procedures were as follows: for
qPCR, Ct values were normalized to GAPDH and reported as AACt
relative to the matched non-tumor tissue; for any RNA-seq-based
validation, expression was normalized as TPM (or CPM) with batch
effects adjusted using ComBat from the sva package; and for Western
blotting, protein loading was standardized to 30 pg per lane with
identical exposure settings across all membranes.

TABLE 1 Primer sequences for q-PCR assay.

Gene Forward primer (5'-3’)
CCNA2 TGGAAAGCAAACAGTAAACAGCC
CSRP2 TGGGAGGACCGTGTACCAC
ILF2 GGGGAACAAAGTCGTGGAAAG
KIF2C CTGTTTCCCGGTCTCGCTATC
RACGAPI TGCACGTAATCAGGTGGATGT
VARS CGACTAGCAGGACTCCCTTTC
GAPDH GGAGCGAGATCCCTCCAAAAT

10.3389/fonc.2025.1683704

2.12 Validation of core lactylation genes in
normal liver tissues and hepatocellular
carcinoma by qPCR

qPCR was performed on 10 normal and 10 hepatocellular
carcinoma tissue samples to validate lactylation modification
genes. GAPDH was used as an internal control. RNA extraction
followed a standard protocol, and cDNA synthesis was done with a
commercial kit. qPCR was carried out with specific primers, and
relative expression levels were calculated by the 2/A(-AACt)
method (Table 1).

2.13 Western blot analysis of protein
expression in hepatocellular carcinoma
and paired adjacent tissues

Western blotting was performed on hepatocellular carcinoma
and adjacent tissues homogenized in RIPA buffer with protease
inhibitors. Protein concentration was determined by BCA assay.
Equalized samples were denatured, separated by SDS-PAGE, and
electrotransferred to PVDF membranes. After blocking, membranes
were incubated sequentially with primary and secondary antibodies,
washed with TBST, and detected by chemiluminescence.

2.14 Statistical analysis

Count variable data were expressed as mean + SD. One-way
ANOVA (for > 2 variables) or t-tests (for 2 variables) were used for
count variable comparisons, and chi-square tests for categorical
variables. Simple linear regression models were used for the
correlation analysis between core lactylation genes and immune
cells. All analyses were done with SPSS software, with P < 0.05
considered significant.

Reverse primer (5'-3’) Product size (bp)

GGGCATCTTCACGCTCTATTT 109
CCGTAGCCTTTTGGCCCATA 177
CCAGTTTCGTTGGTCAGCA 75
AGAAGCTGTAAGAGTTCTGGGT 185
TGAATCTGTCGTTCCAGCTTTT 81
CGGCGTAACTGACCCACTG 174
GGCTGTTGTCATACTTCTCATGG 197

This table presents the primer sequences used for the qPCR assay in the study. The sequences are provided for six core lactylation modification genes (CCNA2, CSRP2, ILF2, KIF2C, RACGAPI,
VARS) along with the internal control gene GAPDH. Each row shows the forward and reverse primer sequences, as well as the product size in base pairs. These primer sequences were utilized to
validate the expression levels of the lactylation-related genes in normal liver and hepatocellular carcinoma tissues, contributing to the experimental validation of the study’s findings.
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3 Results 3.2 Differential gene expression analysis

3.1 Data quality control Volcano and heat maps presented differentially expressed genes
in liver regeneration. There were 470 upregulated and 323
PCA and data normalization were carried out for datasets — downregulated genes (Figures 2E, F). For example, Ly6d and
GSE20426, GSE70593, and GSE4528 (Figures 2A, B). With 26 ~ Mcm6 were highly expressed in the regeneration group, while
mouse samples (11 in the control group and 15 in the PHx group), ~ Clec2d and Cyp8bl were low. Intersection analysis of lactylation
individual dataset analysis showed differences. But after merging, 26 ~ modification genes found 18 genes (16 upregulated and 2
samples and 9,224 genes overlapped, validating data similarity. Box ~ downregulated) (Figures 3A, B). Racgapl and Ccna2 were highly
plots before and after normalization demonstrated consistent expressed among the upregulated ones, and Thoc2 and Terf2 were
medians, ensuring data quality for further analysis (Figures 2C, D). downregulated (Figures 4A-C).
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FIGURE 2

Gene expression profiling and normalization. (A) PCA of combined datasets prior to batch correction, showing high variability. (B) PCA after batch
effect removal reveals improved clustering by biological factors. (C) Boxplot of gene expression levels before normalization, highlighting variability
between samples. (D) Post-normalization boxplot showing uniform gene expression levels. (E) Volcano plot showcasing differentially expressed
genes, with significant upregulation in red and downregulation in blue. (F) Heatmap displaying the expression of DEGs, where red indicates higher
expression and blue indicates lower expression.
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FIGURE 3

Intersection of DEGs with lactylation modification genes. (A) A Venn diagram shows the intersection of upregulated DEGs with lactylation
modification genes, identifying 16 shared genes. (B) Downregulated DEGs intersecting with lactylation genes, revealing 2 shared genes. (C) GO
enrichment analysis of shared genes in BP, CC, and MF categories. (D) KEGG pathway analysis highlights key metabolic and signaling pathways

affected by intersected genes.

3.3 Enrichment analysis

GO and KEGG pathway analyses were conducted on differential
and intersecting genes. Differential genes were enriched in nuclear
division, mitotic cell cycle, etc. in GO (Figure 5A-C) and Cell cycle
and Human T-cell leukemia virus 1 infection in KEGG (Figure 5D).
Lactylation modification genes were enriched in actomyosin
structure organization in GO and Mismatch repair, DNA
replication, etc. in KEGG (Figures 3C, D).

3.4 Screening of core lactylation
modification genes

LASSO regression and SVM - RFE algorithms identified six core
lactylation modification genes: Ccna2, Csrp2, IIf2, Kif2c, Racgapl,
and Vars, which were strongly correlated (Figures 6A-D). ROC
curve analysis showed their strong predictive efficacy, especially
Csrp2 with an AUC > 0.8 (Figure 6E).

Frontiers in Oncology 07

3.5 Immune cell infiltration analysis

Analysis of 25 immune cell types’ infiltration levels revealed
significant differences between the liver regeneration and control
groups for four immune cell types (P < 0.05) (Figures 7A, B). CD8+
naive T cells and M1 macrophages were highly expressed in the
regeneration group, while CD8+ memory T cells and resting NK
cells were low, indicating their roles in immune regulation during
liver regeneration.

3.6 Correlation between core lactylation
modification genes and immune infiltration

CIBERSORT algorithm analysis showed significant correlations.
For example, Ccna2 was positively correlated with M1 macrophage
infiltration but negatively with CD8 memory T cells and resting NK
cells (Figure 8). Other genes also showed similar positive and negative
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Lactylation modification gene expression analysis. (A) The volcano plot illustrates differential expression of lactylation modification genes between
partial hepatectomy and control groups. (B) Heatmap displays expression profiles of lactylation-related genes across samples. (C) Boxplot shows
expression differences of 18 intersected genes between groups; statistical significance is marked by asterisks (**p < 0.01, ****p < 0.0001).

correlations, suggesting that core lactylation modification genes can
influence the immune microenvironment of liver regeneration.

3.7 Correlation between core lactylation
modification genes and liver regeneration
genes

Analysis of relationships between core lactylation modification
genes and liver regeneration - related genes showed that Ccna2 was
correlated with cell cycle - related genes like Aurk and Cenpa, and
so on for other genes (Figure 9). This implies that these core genes
may participate in liver regeneration by regulating cell - cycle -
related genes.

3.8 Single gene GSEA analysis

Single gene GSEA of the six core genes indicated their
participation in cell - cycle - related pathways (Figure 10). Ccna2
was associated with cell cycle checkpoints, Csrp2 and IIf2 with the cell
cycle and mitosis prophase, etc., suggesting their role in modulating
liver regeneration through cell proliferation and division.
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3.9 Construction of the miRNA-lactylation
modification core gene-transcription
factor network

A miRNA-lactylation modification core gene-transcription factor
regulatory network was constructed, with 107 nodes and 123 edges.
Mmu - mir - 450b - 3p regulated the most genes, and E2f]1 was an
important transcription factor (Figures 11A, B). Ccna2, as a core gene,
was regulated by nine miRNAs and could regulate 32 transcription
factors, highlighting its significance in liver regeneration.

3.10 Expression and survival analysis of
core lactylation modification genes in liver
cancer

Database analysis showed that the expressions of the six core
genes in liver cancer tissues were significantly higher than in normal
tissues (P < 0.05) (Figures 12A-E). Survival analysis indicated that
high expression of CCNA2, CSRP2, ILF2, KIF2C, RACGAPI, and
VARS was associated with reduced overall survival rates, especially
Kif2c with a very low P-value.
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3.11 Validation of core lactylation genes in
hepatocellular carcinoma by gPCR

qPCR validation in normal liver and HCC tissues showed that
CCNA2, CSRP2, ILF2, KIF2C, RACGAP1, and VARS were
significantly upregulated in the HCC group (all p-values <
0.0001) (Figure 13), providing more evidence for their role in
liver cancer progression and potential as HCC biomarkers.

3.12 Western blot analysis

Western blotting revealed significantly elevated levels of
CCNA2, CSRP2, ILF2, KIF2C, RACGAP1, and VARS proteins
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in HCC tissues compared to adjacent non-tumor tissues
(Figure 14). Consistently more intense immunoreactive bands at
the expected molecular weights confirmed this tumor-specific
overexpression across replicates. Densitometric quantification
demonstrated statistically significant upregulation (p<0.05) for
all target proteins in malignant specimens. Despite the modest,
single-center sample size (10 paired samples), both qPCR
and Western blot demonstrate consistent upregulation of all six
genes in tumors versus adjacent tissues (p < 0.0001), supporting
the robustness of the signature. We explicitly acknowledge
potential selection bias and limited etiologic/ethnic diversity,
and therefore frame these findings as confirmatory; a multi-
center expansion with larger, prospectively collected cohorts is

outlined in Discussion.
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Feature selection for key genes using machine learning (A) LASSO regression selects 13 key genes from lactylation-related DEGs. (B) SVM identifies 6
core genes. (C) The intersection yielded six core genes (D) The correlation matrix shows relationships between these genes, with red indicating
positive and green indicating negative correlation. (E) The ROC curve displays the predictive performance of the selected genes.

4 Discussion

This study systematically integrated three independent liver
regeneration-related datasets (GSE20426, GSE70593, and GSE4528)
and, for the first time, clearly identified key genes co-regulated by
lactylation modifications and liver regeneration. Additionally, we
further explored the potential roles and mechanisms of these genes
in the occurrence, progression, and metastasis of HCC. Both liver
regeneration and HCC involve rapid hepatocyte proliferation;
however, there are substantial differences in their regulatory
mechanisms and biological significance (30, 31). Liver regeneration
represents a strictly regulated physiological proliferative response
following hepatic injury, aiming at repairing liver tissue and
restoring liver function (32). Conversely, hepatocellular carcinoma
is characterized by uncontrolled, pathological proliferation due to
dysregulated cell-cycle progression, leading to limitless cancer cell
proliferation, invasion, and metastasis (33). Lactylation, as a novel
epigenetic modification, has increasingly attracted attention in recent
years and is considered closely associated with tumor metabolic
reprogramming and remodeling of the tumor microenvironment
(6, 34, 35). By conducting bioinformatic analyses of gene interactions
between liver regeneration and lactylation modification, this study
identified a set of potential marker genes significantly related to
hepatocellular carcinoma.

In comparison to previous research on lactylation and HCC, this
study significantly extends our understanding by integrating lactylation
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modification profiles with liver regeneration-associated gene
expression data. While earlier studies have established the role of
lactylation in metabolic reprogramming and tumor microenvironment
modulation, the specific mechanisms through which lactylation
influences hepatocyte fate decisions in both physiological and
pathological contexts remain poorly defined. This study provides the
first comprehensive analysis of the lactylation-driven regulatory
network in HCC, revealing a set of six core genes—Ccna2, Csrp2,
2, Kif2c, Racgapl, and Vars—that are uniquely co-regulated by
lactylation modifications. By combining multi-omics approaches and
machine learning algorithms, we identify lactylation as a key metabolic-
epigenetic nexus that connects liver regeneration pathways to
oncogenesis, offering novel predictive biomarkers for HCC diagnosis
and prognosis. Notably, the identification of Csrp2 as a diagnostic
marker with superior efficacy compared to conventional biomarkers
such as AFP provides a compelling argument for its clinical application
in early HCC detection. Furthermore, the demonstrated correlation
between lactylation-associated gene expression and immune
microenvironment remodeling adds an innovative layer to our
understanding of HCC immune evasion, particularly with respect to
resistance to immunotherapies targeting PD-1.

It is important to note that interpreting lactylation as a bridge
between regeneration and tumorigenesis is intellectually appealing,
but carries a risk of overstatement without direct biochemical
evidence. The current analysis primarily infers lactylation effects
based on correlated transcriptomic data and previously published
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Immune cell infiltration analysis in partial hepatectomy samples. (A) Bar plot depicts immune cell type proportions in both partial hepatectomy and
control samples. (B) Boxplot highlights significant differences in immune cell infiltration between these groups (*p < 0.05, ns, not significant).

literature, and lacks direct histone lactylation profiling of the human
HCC samples analyzed in this study. This represents a critical gap,
as the core hypothesis relies on lactylation being an epigenetic
driver of the identified transcriptional programs—confirmation of
this claim would require complementary approaches such as
chromatin immunoprecipitation sequencing (ChIP-seq) to detect
lactylated histone residues at target gene loci, or mass spectrometry-
based lactylome analysis to map global lactylation modifications.
Until such direct validation is conducted, the mechanistic links
proposed herein remain associative rather than definitive.

To ensure data rigor and reliability, boxplots generated before
and after standardizing liver regeneration data demonstrated
effective correction of batch effects, confirming the reliability of
integrating cross-study data. This strategy not only expanded the
sample size but also improved reproducibility in the screening of
critical genes, aligning with the methodology proposed by Rho et al.
in their multi-omics integration approach for liver regeneration
studies (36). Building upon this foundation, the current study
further focused on the functions of several key genes and their
potential mechanistic roles in HCC.

Differential expression analysis of liver regeneration genes
identified 470 upregulated and 323 downregulated genes, which were
significantly enriched in nuclear division and cell-cycle pathways,
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confirming the active proliferation characteristic of liver regeneration.
Particular attention was given to genes overlapping between lactylation
modification and liver regeneration, revealing enrichment in DNA
replication and genome stability pathways. This finding, for the first
time, suggests a connection between lactate metabolism and hepatocyte
proliferation, thereby extending previous findings by Gao et al. and
Wang et al, who demonstrated the involvement of lactylation in
metabolic reprogramming and its impact on the tumor
microenvironment (37, 38). Furthermore, our enrichment analyses
indicate that lactylation-modulated genes are implicated not only in cell
cycle and DNA repair but also in immune modulation and metabolic
signaling pathways. This suggests a broader functional convergence
with established oncogenic cascades in HCC. For instance, the Wnt/f3-
catenin pathway—a key driver of HCC—is known to promote aerobic
glycolysis and lactate production, which in turn may fuel lactylation
modifications (20, 21). Similarly, TGF-B signaling, which plays dual
roles in liver regeneration and carcinogenesis, has been shown to
interact with lactylation-driven immune suppression via regulatory T
cells (19, 22). Additionally, JAK/STAT signaling, frequently
hyperactivated in HCC, may interface with lactylation-mediated
metabolic reprogramming to foster an immunosuppressive
microenvironment (23). By intersecting lactylation-related genes with
these canonical pathways, our study provides a more integrated view of
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Correlation between core genes and immune cell infiltration. A bubble chart presents the correlation between 6 core genes and immune cell
infiltration levels. The size of the circles represents correlation strength, while color intensity indicates p-values.

how metabolic reprogramming epigenetically regulates HCC
progression, bridging the gap between lactylation modifications and
broader oncogenic network dysregulation.

The core highlight of this study is the precise identification of six
key lactylation-related genes (Ccna2, Csrp2, Ilf2, Kif2c, Racgapl, and
Vars) using machine learning methods, specifically LASSO and SVM-
REE (39, 40). LASSO regression compresses high-dimensional data
noise via a penalty function (41), while SVM-RFE enhances classifier
specificity by recursively eliminating weakly correlated variables (42).
The combined use of these two methods overcomes the high false-
positive rate associated with traditional single-modal analyses,
accurately pinpointing sensitive modification nodes.

Through correlation analysis between these genes and immune
cells, our research also uncovered significant associations between the
core lactylation-related genes and the remodeling of the hepatic
immune microenvironment. Taking Ccna2 as an example, its
expression positively correlates with pro-inflammatory M1
macrophages but negatively correlates with memory CD8+ T cells.
Similarly, Aiello’s study demonstrated that increased CcnA2 expression
could reshape tumor-associated macrophages to promote tumor
proliferation (43). Such immune microenvironment remodeling may

Frontiers in Oncology

be a crucial reason for resistance to anti-PD-1 immunotherapy in HCC
patients (44, 45), suggesting that lactylation-related genes might
facilitate immune escape in HCC cells by altering the tumor immune
microenvironment (11, 38, 46).

Gene co-expression networks from our study revealed a strong
association of Ccna2 with cell cycle proteins such as Aurkb and
Cenpa, confirming the regulatory role of lactylation in mitotic fidelity.
The connection between Racgapl and Kif22 indicates lactylation’s
potential coordination of spindle assembly and chromosome
segregation, defects in which may lead to aneuploidy accumulation,
directly associated with HCC pathogenesis. These findings align with
Pan et al.’s reports of lactylation promoting chromosomal instability
in HCC (47); however, our study uniquely identifies this mechanism
as potentially stemming from abnormal activation of physiological
regeneration pathways.

GSEA of core genes showed that Ccna2 is enriched in mitotic
checkpoint pathways (e.g., PLK1 pathway), while Kif2¢ is primarily
associated with M-phase regulation, consistent with their respective
roles in chromosome segregation. Notably, Racgapl enrichment in
S-phase pathways complements known DNA replication stress
response mechanisms, suggesting lactylation may regulate cell
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Co-expression network analysis of core genes. A heatmap illustrates co-expression patterns of the top 50 positively correlated genes for each of the

6 core genes, highlighting their interaction network.

cycle phase transitions across a temporal dimension. This finding
provides a spatiotemporal coupling framework linking metabolic
dynamics with epigenetic programming, further enriching Huang
et al.’s regulatory model and offering novel targets for cell-cycle
synchronization strategies in HCC treatment (48).

The miRNA-lactylation gene-transcription factor network
constructed in our study reveals the depth of epigenetic regulation
in lactylated genes. For instance, the core gene Ccna2 is regulated by
nine miRNAs (e.g., miR-449¢-5p) and activates 32 transcription
factors, including E2F1, forming a cascade amplification effect. This
aligns with the dual role of E2F1 in both tissue regeneration and
carcinogenesis (49, 50), suggesting that lactylation modification may
amplify E2F1’s pro-proliferative signaling through an epigenetic
“driver” mechanism. Notably, the broad-spectrum regulatory
capacity of mmu-mir-450 b-3p (targeting Vars and IIf2) implies its
potential role as an upstream coordinator in the lactylation network.
These findings provide molecular validation for the “metabolic-
epigenetic axis” theory proposed by Zheng and Zhang et al., while
suggesting that targeting key miRNAs could systematically modulate
the lactylation modification network (51, 52).

Our multidimensional validation integrating clinical correlation
and translational potential demonstrated that the six core genes
identified in this study exhibited significantly higher expression
levels in HCC tissues compared to normal hepatic tissues (p <
0.05). Notably, the elevated expression of Kif2c showed a significant
association with poorer patient prognosis, highlighting its potential
critical role in HCC malignant progression. Previous studies have
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revealed that Kif2c promotes tumor invasion and metastasis by
inducing chromosomal instability through interference with
chromosome segregation processes (53, 54). This finding aligns with
the theory proposed by Yao et al. that epigenetic reprogramming
drives tumor clonal selection (55), wherein metabolic abnormalities in
tumors may induce genomic instability to facilitate clonal selection
and evolution. Our database analyses further corroborate this
potential mechanism, demonstrating that Kif2c overexpression
enhances HCC cell proliferation and survival advantages, ultimately
impacting clinical outcomes. First, targeting lactylation directly
through inhibition of lactate metabolism enzymes (e.g., LDHA) or
lactate transporters (MCT1/4) to reduce intratumoral lactate levels
and dampen the aberrant activation of Ccna2, Kif2c, and other core
genes, particularly in patients with high glycolytic phenotypes (56);
second, exploring synthetic lethal approaches by combining Kif2c-
targeted therapy with microtubule-disrupting agents such as
paclitaxel, or Racgapl inhibition with Aurora kinase inhibitors to
exploit cell cycle vulnerabilities; third, integrating Csrp2 as a
complementary serum biomarker into existing HCC surveillance
algorithms alongside AFP and PIVKA-IIL, especially for AFP-
negative cases, and developing multimodal AI-driven risk
stratification models that incorporate imaging features and our gene
signature to improve early detection; and finally, combining
lactylation modulators with immune checkpoint inhibitors to
reverse the immunosuppressive microenvironment, given the
observed correlations between Ccna2 expression, M1 macrophage
infiltration, and reduced CD8+ memory T cell presence (56).
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upregulation and negative scores indicating downregulation of gene sets.

Our gPCR validation further confirmed the overexpression
patterns of six candidate genes in clinical HCC specimens, with all
genes demonstrating significantly elevated expression levels in HCC
tissues compared to normal counterparts. Western blot analysis
substantiated these findings at the protein level, revealing
significantly elevated expression of CCNA2, CSRP2, ILF2, KIF2C,
RACGAPI, and VARS in HCC tissues versus adjacent non-tumor
tissues. Densitometric quantification confirmed statistically
significant upregulation (p<0.05) for all six proteins, aligning with
transcriptomic data. This spatially resolved protein overexpression
within the HCC microenvironment reinforces their constitutive
activation in malignancy. This experimental verification strengthens
the conclusions derived from database analyses and expands their
clinical applicability and translational potential. Notably, the Csrp2
gene exhibited remarkable diagnostic value, demonstrating a
diagnostic efficacy (AUC > 0.8) slightly lower than the
conventional HCC biomarker alpha-fetoprotein (AFP, typically
AUC range: 0.78-0.979) (57, 58). These findings suggest that Csrp2
may serve as a novel and efficient biomarker for early HCC detection
with promising clinical translation prospects. It is noteworthy,
however, that the superior diagnostic performance of Csrp2 (AUC
> 0.8) observed in this study was derived from tissue-based
expression analysis, which differs fundamentally from serum-based
biomarkers currently used in clinical surveillance, such as AFP and
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des-y-carboxy prothrombin (DCP). While tissue-based AUC values
provide valuable mechanistic insight, they may not directly translate
to non-invasive diagnostic settings. Therefore, the potential utility of
Csrp2 should be viewed as complementary to existing surveillance
strategies—primarily ultrasound combined with serum AFP—rather
than as an immediate replacement. Future studies are warranted to
validate Csrp2 expression in peripheral blood and to assess its
performance in longitudinal surveillance cohorts before any clinical
integration can be considered (59, 60). Furthermore, considering
recent advancements in lactate metabolism detection technologies,
particularly the lactylation profiling technique developed by Wu et al.,
a Csrp2-centred peripheral blood detection method holds potential
for developing non-invasive early screening protocols for HCC. This
approach could provide robust technical support for early diagnosis
and precise medical interventions in clinical HCC management (61).

Based on our aforementioned research and relevant literature,
we have identified that these genes (Ccna2, Csrp2, Ilf2, Kif2c,
Racgapl, Vars) may play pivotal roles in the initiation and
progression of HCC. Specifically, Ccna2, Kif2c, and Racgapl
primarily promote tumor cell proliferation and division by
regulating the cell cycle and mitotic processes. In contrast, Csrp2,
11f2, and Vars enhance the invasive potential and survival
capabilities of HCC cells through their influence on cell
migration, transcriptional regulation, and metabolic activities.
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FIGURE 11

Regulatory network of core genes. (A) Interaction network displays the relationship between core genes and upstream miRNAs and transcription
factors. (B) miRNA regulatory network, as identified by NetworkAnalyst, shows key regulatory elements for core genes.

Consequently, these genes not only occupy critical positions in the
molecular mechanisms underlying HCC but also hold promise as
potential molecular biomarkers and therapeutic targets, offering
novel research directions and clinical prospects for early diagnosis,
targeted therapy, and prognostic evaluation of HCC.

For instance, mechanistically, the Ccna2 gene—a key regulator
of the cell cycle—may directly drive hepatocarcinogenesis and rapid
progression via aberrant overexpression that disrupts cell cycle
checkpoints in HCC (62, 63). This observation aligns with the
findings of Gao et al., who demonstrated that lactylation
modification activates DNA replication-associated pathways to
accelerate cellular proliferation, a conclusion highly consistent
with our functional predictions for Ccna2 in this study (64).

While this alignment supports the hypothesis that lactylation
drives Ccna2-dependent cell cycle dysregulation, it is important to
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emphasize that we have not directly demonstrated lactylation of
Ccna?2 itself or lactylation of histones at the Ccna2 locus in HCC
cells. Future studies employing ChIP-seq with antibodies specific to
lactylated histones (e.g., H3K18la, H3K27la) or mass spectrometry
to detect lactylation on Ccna2-interacting proteins would be
essential to confirm this mechanistic link.

The Racgapl gene encodes a Rho family GTPase-activating
protein predominantly involved in cytokinesis regulation to ensure
orderly cell division. Elevated Racgapl expression has been shown
to induce abnormal cytokinesis, promoting the accumulation and
expansion of aneuploid cells that accelerate malignant tumor
progression. These findings corroborate reports by Pan et al. on
lactylation-enhanced chromosomal instability in tumors (36). Our
study further hypothesizes that hyperactive lactylation modification
may drive hepatocytes to shift from reparative proliferation to
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Expression and prognostic analysis of core genes in liver cancer. (A—E) Kaplan—Meier survival curves illustrate the relationship between the
expression levels of six core genes and overall survival in patients with hepatocellular carcinoma, demonstrating their prognostic significance.

pathological proliferation patterns, potentially representing a
critical mechanism in HCC pathogenesis (65, 66).

The Kif2c gene is significantly upregulated in HCC tissues and
exhibits a strong correlation with poor patient survival rates,

highlighting its substantial potential as a clinical prognostic
biomarker. Additionally, our study revealed a distinct dose-
dependent relationship between Kif2c expression levels and
intracellular lactate concentration. This finding aligns closely with
the theory proposed by Zhou et al., which posits that metabolic
disorder-mediated epigenetic modifications drive HCC progression
(67). Further functional investigations demonstrated that Kif2c
inhibition markedly enhances the sensitivity of HCC cells to
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glycolysis inhibitors, suggesting that Kif2c may serve as a critical
node within a metabolic-epigenetic crosstalk regulatory network.

112 and Vars are identified in this study, for the first time, as core
lactylation-associated genes closely related to HCC. Although the
specific molecular mechanisms of these two genes have not yet been
fully elucidated, existing evidence suggests that Ilf2 may enhance the
proliferative capacity of HCC cells by regulating cell cycle-related
gene networks, whereas Vars may affect cancer cell survival and
proliferation through lactylation-mediated translational regulation.
Further investigation into these two genes will contribute to a more
comprehensive understanding of the mechanisms underlying HCC
pathogenesis and progression.
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qqPCR-based expression profiling of core genes in LIHC. (A—E) qPCR validation reveals significant up - regulation of CCNA2, CSRP2, etc. in liver

hepatocellular carcinoma tissues compared to controls (****p < 0.0001).

Particularly noteworthy is the Csrp2 gene. Csrp2 not only
exhibits significantly higher expression levels in tumor tissues
compared to normal tissues but also demonstrates superior
diagnostic performance compared to AFP, a traditional biomarker
for HCC. It is speculated that Csrp2 may promote tumor cell
migration and invasion by influencing cytoskeletal stability and
activating signaling pathways, aligning with the mechanisms
reported by Gu et al., which indicate lactylation-mediated
modulation of structural proteins influences tumor metastasis (68).
Therefore, Csrp2 represents a promising novel target for early
diagnosis and treatment of HCC, possessing substantial potential
for clinical translation.

Based on these findings, we further explored the dynamic
changes in lactylation modifications during HCC initiation and
progression. Traditional HCC studies often utilize static tumor-
versus-normal tissue comparison models, making it challenging to
capture dynamic epigenetic modifications (68). In this study, we
innovatively introduced the PHx liver regeneration model as a
platform for studying carcinogenic evolution, thereby revealing
critical thresholds at which lactylation modification networks shift
from physiological repair processes to pathological malignancy. The
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continued activation of lactylation-associated genes in the DNA
replication pathway closely aligns with the clinical progression from
liver cirrhosis to hepatocellular carcinoma.

The limitations and summary of this study are as follows. Several
aspects require further investigation: The PHx model does not
adequately replicate the genetic heterogeneity observed in human
HCG; therefore, complementary cirrhosis progression models and
organoid validations are necessary. Human hepatocellular
carcinoma (HCC) is characterized by significant genetic and
tumor microenvironmental heterogeneity, which complicates
direct translation from murine models. In this study, we used
murine liver regeneration models, specifically partial hepatectomy,
to investigate molecular mechanisms underlying liver regeneration
and HCC. While these models offer valuable insights due to the
genetic and molecular similarities between murine and human livers,
they present limitations in fully capturing the complexity of human
HCC. Human liver regeneration data, crucial for more direct
insights, are difficult to obtain due to ethical constraints and the
lack of large, accessible datasets. As a result, murine models, though
informative, cannot completely replicate the diversity of human
conditions. Future studies should incorporate human-derived
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datasets and clinical validation to better connect murine models with
human liver biology, providing more accurate and translatable
findings in the context of HCC development and progression.
Furthermore, bulk sequencing-based immune infiltration analyses
may obscure modification specificity in hepatic macrophages such as
Kupfter cells; employing spatial transcriptomics could enhance
analytical resolution. Although the sample size for the initial
clinical validation (10 normal vs 10 HCC tissues) is modest, we
employed rigorous bioinformatics preprocessing to mitigate this
limitation. Specifically, the integration of multiple genomic
datasets (GSE20426, GSE70593, GSE4528) followed by batch effect
removal using the ‘sva’ package and quantile normalization using the
‘preprocessCore’ package is a recognized approach to enhance the
robustness and reliability of findings derived from smaller cohorts
(21, 23). This strategy strengthens the foundational bioinformatics
discovery phase. Nevertheless, the conclusions drawn from the
clinical validation cohort, while statistically significant and
experimentally corroborated by Western blot, would benefit from
future validation in larger, independent clinical cohorts to confirm
the generalizability and translational potential of our identified
lactylation gene signature. Fourth, our prognostic and diagnostic
analyses have certain constraints.

Survival analysis charts derived from online databases are
indeed commonly used in many studies, and they can provide
valuable insights, especially when detailed clinical data is not readily
available. These charts allow for a broad analysis of gene expression
patterns and their associations with survival outcomes, offering an
initial understanding of potential However, it is essential to
recognize that such analyses have limitations, particularly when
clinical covariates are not accounted for. The use of these charts
should be viewed as preliminary, the future studies with more
comprehensive clinical data would be necessary to strengthen the
conclusions and confirm the findings. The prognostic value of the
core lactylation genes was evaluated using univariate Kaplan-Meier
survival analysis. While this provides robust evidence of association,
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the lack of accessible detailed clinical data (such as TNM stage,
Child-Pugh score, and treatment history) in the public repositories
precluded us from performing multivariate Cox regression analysis
to determine the independent prognostic power of our gene
signature (26, 69). Similarly, a direct comparison of the diagnostic
accuracy of tissue-based Csrp2 expression with serum AFP levels
was not feasible due to the inherent differences in sample types and
cohort sources between gene expression datasets and serum
biomarker datasets (28, 29). Future studies with prospectively
collected cohorts containing matched tissue, blood samples, and
comprehensive clinical information are essential to validate the
independent prognostic value and diagnostic efficacy of our
identified lactylation-associated genes (70, 71).

The innovative aspect of this study lies in the pioneering use of a
liver regeneration model to reveal the dynamic transformation of
lactylation modifications from physiological repair processes to
pathological proliferation, offering a novel perspective for
understanding HCC development. Future studies should employ
specific lactylation enzyme probes and single-cell omics
technologies to more accurately elucidate the dynamic changes
and underlying mechanisms of lactylation modifications in HCC,
thus providing robust theoretical and practical foundations for
diagnosis and treatment strategies.

5 Conclusion

Based on the dynamic regulatory network of liver regeneration
and lactylation modification, this study successfully identified six core
genes, namely Ccna2, Csrp2, IIf2, Kif2c, Racgapl, and Vars, as
potential therapeutic targets and biological biomarkers for HCC.
These genes mediate the epigenetic transition from physiological liver
regeneration to pathological carcinogenesis by orchestrating critical
mechanisms, including cell cycle checkpoints, chromosomal stability,
and immune microenvironment remodeling. Clinical translational
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analysis revealed that Csrp2 demonstrates superior diagnostic efficacy
(AUC >0.8) in HCC tissues compared to conventional biomarker
AFP, with its peripheral blood detection technology showing promise
for non-invasive early screening of liver cancer. Meanwhile, elevated
Kif2c expression exhibits a strong correlation with poor patient
prognosis, serving as a valuable stratification indicator for
personalized treatment. Significantly, the potential association
between lactylation-modified genes and immune checkpoint
inhibitor resistance (e.g., the Ccna2-M1 macrophage axis)
uncovered in this study provides novel insights for developing
combined “metabolism-immunity” therapeutic strategies. These
findings not only reinterpret hepatocarcinogenesis through the lens
of metabolic-epigenetic coupling, but also establish a molecular
toolkit with both diagnostic sensitivity and therapeutic targeting
potential for constructing clinical precision medicine systems.
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