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Introduction: Hepatocellular carcinoma (HCC) progression shares metabolic-

epigenetic features with physiological liver regeneration, yet the regulatory

interplay remains poorly defined. We hypothesize that lactylation, a novel post-

translational modification, serves as a key nexus linking these processes.

Methods: We integrated lactylation modification profiles with transcriptomic data

from three murine liver regeneration datasets (GSE20426, GSE70593, GSE4528).

Machine learning algorithms, including LASSO regression and SVM-RFE, were

employed to prioritize core regulatory genes. Functional characterization involved

enrichment, immune infiltration, and correlation analyses. The prognostic and

diagnostic value of the identified genes was validated in HCC cohorts, and their

overexpression was confirmed in clinical HCC specimens using qPCR and

Western blot.

Results: Multi-omics analysis revealed 793 differentially expressed genes during

liver regeneration, with 18 overlapping lactylation-related candidates. Machine

learning prioritized six core genes (Ccna2, Csrp2, Ilf2, Kif2c, Racgap1, Vars)

enriched in cell cycle regulation and DNA repair pathways. These genes

demonstrated a strong correlation with immune microenvironment remodelling,

particularly CD8+ T cells and M1 macrophages. Prognostic validation in HCC

cohorts revealed significant overexpression of these genes in tumours, with

elevated Kif2c and Ccna2 predicting poor survival. Crucially, Csrp2 exhibited

superior diagnostic efficacy (AUC > 0.8) compared to conventional biomarkers.

Experimental validation via qPCR andWestern blot confirmedmarked upregulation

of all six genes at both mRNA and protein levels in clinical HCC specimens (p

< 0.0001).
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Discussion: This work uniquely establishes lactylation as a metabolic-epigenetic

bridge linking physiological regenerative pathways to oncogenesis. By leveraging

liver regeneration models and machine learning, we propose the identified gene

panel as dual-purpose biomarkers for HCC diagnosis and therapeutic targeting,

offering new insights into the metabolic-epigenetic regulation of HCC.
KEYWORDS

lactylation, liver regeneration, hepatocellular carcinoma, machine learning,
bioinformatics analysis
1 Introduction

Liver regeneration represents a paradigmatic model of finely

regulated cellular proliferation, which is associated with the

characteristic uncontrolled growth seen in HCC. These two

processes may involve overlapping proliferative mechanisms, yet

the key molecular determinants of physiological repair versus

malignant transformation remain unclear (1). Recent studies

suggest that metabolic-epigenetic interactions, particularly

through lactylation, a novel post-translational modification, play a

central role in regulating hepatocyte fate decisions (2).

The liver’s unique regenerative capacity has long been

considered a classic model for studying controlled cell cycle

processes (3, 4). After partial hepatectomy, quiescent hepatocytes

initiate precise, time-dependent proliferation programs through

metabolic reprogramming and epigenetic remodeling, enabling

functional reconstruction within days (5). The transient activation

of this proliferative pathway requires the precise coordination of

energy metabolism and chromatin remodeling, with lactylation

potentially serving as a critical component of this regulatory

hub (6). Recent research has revealed that lactate-induced

histone modifications guide regenerative gene programs by

regulating chromatin accessibility (7). Interestingly, the tumor

microenvironment can hijack similar lactylation-driven mechanisms

to sustain oncogenic signaling (8), suggesting that lactylation may

serve as a molecular regulator controlling proliferative checkpoints.

Notably, lactylation modifications in HCC are often abnormally

hyperactivated, and this epigenetic regulation plays a key role in

driving HCC progression (9). Lactylation has gradually emerged as

a metabolically sensitive epigenetic mechanism linking glycolytic

flux to chromatin state. Its molecular nature involves the covalent

binding of lactate molecules to histone lysine residues, reshaping

the transcriptional landscape under metabolic stress. Physiological

processes such as liver regeneration demonstrate that lactylation

modifies promoter regions to activate pro-regenerative pathways (6,

7). Conversely, cancer cells exploit similar mechanisms to stabilize
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oncogenic transcription factors and enhance chemoresistance. This

functional duality positions lactylation at the critical interface

between metabolic adaptation and epigenetic regulation,

potentially governing the phenotypic switch between regeneration

and carcinogenesis (10).

The role of lactylation in liver function remains poorly understood

both domestically and internationally. While its involvement in

macrophage polarization during liver injury and metabolic

regulation in HCC models has been documented, the specific

mechanisms by which this modification coordinates regeneration-

specific gene networks are yet to be elucidated (11–13). The

significance of this knowledge gap arises from the shared metabolic

features of regenerative hepatocytes andmalignant cells: both exhibit a

Warburg-like effect, characterized by glycolysis, lactate accumulation,

and proliferation-dependent epigenetic remodeling (14). We

hypothesize that lactylation, as a conserved regulatory mechanism

across physiological and pathological environments, determines

divergent biological outcomes through its spatiotemporal-specific

modification patterns. Therefore, genes co-regulated by lactylation

in both physiological regeneration and tumor growth may constitute

core drivers of HCC pathogenesis.

Current traditional methods for identifying oncogenes face

significant limitations in exploring metabolic-epigenetic

interactions. Conventional differential expression analysis often

overlooks the environmental dependency of modification effects,

while bulk sequencing technologies struggle to capture cell type-

specific lactylation signatures (15). To overcome these limitations,

we employ an integrated bioinformatics strategy that combines

lactylome data with longitudinal regeneration transcriptomes.

Notably, several groups have previously investigated the role of

lactylation in HCC pathogenesis (16, 17), yet these studies rarely

integrated physiological liver regeneration models (a paradigm of

controlled hepatocyte proliferation) to distinguish “regenerative”

vs. “oncogenic” lactylation effects. This omission is notable, as

murine liver regeneration models have been widely validated to

recapitulate the core molecular pathways of human hepatic repair—

for instance, studies by Jian Zhao et al. (18) and Costanza Lamperti

et al. (19) demonstrated that key cell cycle regulators (e.g., cyclins,

CDKs) and metabolic reprogramming events in the murine partial

hepatectomy (PHx) model are highly conserved in human liver
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regeneration after surgical resection, confirming the translational

value of murine data for human liver biology research. To address

this gap, we employ an integrated bioinformatics strategy that

combines lactylome data with longitudinal regeneration

transcriptomes, and further uses machine learning (LASSO +

SVM-RFE) for gene prioritization. This approach circumvents

the limitations of single-omics analyses and single-model

designs, enabling precise pinpointing of modification-sensitive

oncogenic nodes that bridge physiological regeneration and

pathological carcinogenesis.
2 Methods

2.1 Data collection

The sequence of steps in our research methodology is depicted

in the workflow diagram below, labelled as Figure 1. To further

analyze the molecular mechanism of liver regeneration after PHx

and strengthen the correlation between the “mouse regeneration

model human HCC” in the original data system, we further clarified

the selection logic and analysis basis of the original dataset to ensure

the rigor of the research foundation:

To deeply understand the molecular mechanisms of liver

regeneration after partial hepatectomy in mice, we selected three

datasets (GSE20426, GSE70593, GSE4528) from the GEO database.

Also, we consulted literature [PMID:37242427 (16), PMID:35761067

(17), PMID:36092712 (20)] to compile known lactylation gene

information, ensuring the scientific and practical significance of the

gene list used in the research.
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2.2 Data preprocessing

A series of methods was used for data quality control. The

“limma” and “sva” packages in R (v4.2.2) were applied to remove

batch effects across the merged datasets. This approach of integrating

multiple datasets followed by batch effect correction is an established

strategy to increase the effective sample size and statistical power,

particularly when individual cohort sizes are limited (21). Notably,

this multi-dataset integration strategy for mouse liver data has been

successfully applied to identify biomarkers for human HCC. For

instance, Zeyu Wang et al. (22) integrated 4 mouse liver regeneration

datasets and identified a 5-gene signature, which was later validated

to predict recurrence in human HCC patients. This finding

demonstrates the translational validity of the analytical framework.

PCA, with “FactoMineR” and “factoextra” packages in R, was

conducted to assess differential correction and visualize sample

distribution. The “preprocessCore” package was used for quantile

normalization and standardization to reduce the impact of outliers

and ensure comparability across samples. Quantile normalization is a

widely adopted and robust method for eliminating technical

variations between arrays in gene expression studies, effectively

aligning the distribution of probe intensities across all samples to a

common target distribution (23, 24).
2.3 Differential gene, intersection gene
screening and analysis

We used the “limma” package in R with strict criteria (|log fold

change(logFC)| > 0.5, adj.P.Val < 0.05) to identify differentially
FIGURE 1

Study flow chart. The study investigates the molecular mechanisms of liver regeneration in mice by collecting and preprocessing gene expression
datasets, performing differential gene expression screening and enrichment analysis, and integrating machine learning with immune infiltration
analysis to identify and explore core lactylation-related genes. Regulatory network prediction, cancer expression profiling, and statistical validation
were conducted to further elucidate their functional roles. Moreover, key findings were experimentally validated through molecular biology
techniques, including quantitative PCR (qPCR) and Western blotting (WB).
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expressed genes between normal/sham-operated and liver-

regenerating groups after partial hepatectomy. The “Venn”

package was then used to find the intersection of lactylation genes

and differential genes. Volcano plots, heat maps, and box plots were

created using “ggplot2” and “pheatmap” packages to analyze

these genes.
2.4 Enrichment analysis

GO and KEGG analyses, performed with the “clusterProfiler”

package in R on differential and intersection genes, revealed their

involvement in biological processes, molecular functions, etc.

Results were sorted by gene ratio, with circle size and color

representing gene quantity and P-values.
2.5 Identification of core lactylation genes
using machine learning

LASSO is performed using the glmnet function (alpha=1,

corresponding to an L1 penalty) and undergoes 10-fold cross-

validation via cv.glmnet (nfolds=10, type.measure=“deviance”),

with lambda.min set as the feature selection threshold. The SVM-

RFE method utilizes the caret::rfe function, applying svmRadial

(Radial Basis Kernel, RBF) as the core. RBF is selected for its

flexibility in capturing nonlinear boundaries. In the rfeControl

setting, the method is set to “cv” (default 10% discount), which

allows recursive feature elimination and automatically adjusts

parameters (sigma and C) for each subset of data through caret.

Given the priority of public datasets and the small sample size, the

predictive performance of these genes is so strong that all values are

1. Further screened genes by iteratively removing those with less

classification contribution. The gene sets from both methods were

intersected to determine core lactylation genes. Correlation analyses

and ROC curve analysis, with the “pROC” package, were conducted

to evaluate these genes.
2.6 Immune infiltration analysis

Based on gene expression data, the R package CIBERSORT, a

deconvolution-based tool, was used to estimate immune cell

composition in liver regeneration samples (GSE20426, GSE70593,

GSE4528). After inferring immune cell composition, the Wilcoxon

rank-sum test was used to compare differences between control and

experimental groups, with P < 0.05 considered significant. The

application of CIBERSORT in mouse regeneration data is

consistent with the previous work by Lea Lemaitre et al. (25).

They used mouse liver immune infiltration patterns to identify

macrophage-T cell crosstalk pathways, which were later confirmed

to regulate immune evasion in human HCC. This finding supports

the relevance of our mouse immune analysis to human diseases.
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2.7 Correlation analysis between core
lactylation genes, immune cells, and all
genes

Spearman correlation analysis, using “ggplot2” and “ggstatsplot”

packages in R, explored the relationship between core lactylation gene

expression and immune cell infiltration. A correlation heatmap,

created with the “pheatmap” package, showed the top 50 genes

positively correlated with core lactylation genes.
2.8 Single gene GSEA analysis of core
lactylation genes

Single-gene gene set enrichment analysis (GSEA), with the

“clusterProfiler” package in R on six core lactylation genes,

explored their enrichment in molecular functions and signaling

pathways. Results with adjusted P-values < 0.05 and FDR q < 0.025

were considered significant, and bar graphs were used to show the

top 20 findings.
2.9 Prediction of miRNA-lactylation core
gene - transcription factor regulatory
network

The RegNetwork database and Cytoscape software were used to

identify and construct the miRNA-lactylation core gene-transcription

factor regulatory network. The NetworkAnalyst platform and

MiRTarBase v8.0 database were further used to validate and

visualize the network, providing clues for upstream regulatory

mechanism research.
2.10 Differential expression analysis and
survival analysis of core lactylation genes
in hepatocellular carcinoma

Using the GEPIA2 database, we compared core lactylation gene

expression in hepatocellular carcinoma and normal liver tissues with t-

tests. Kaplan-Meier survival curves were used to analyze the correlation

between gene expression and patient prognosis, aiming to find new

biomarkers. It is noteworthy that multivariate Cox regression analysis

adjusting for clinical covariates (such as tumor stage, grade, age, and

liver function parameters) could not be performed due to the lack of

detailed clinical annotation in the utilized public databases (e.g., TCGA,

GEO). This limitation is common in large-scale bioinformatic studies

relying on publicly available datasets, where comprehensive clinical

information is often incomplete or unavailable (26, 27). Similarly, a

direct head-to-head comparison of the diagnostic accuracy of our

identified biomarkers with serum alpha-fetoprotein (AFP) levels was

not feasible, as gene expression datasets and serum biomarker datasets

are typically derived from distinct patient cohorts with different sample

types (tissue versus blood) (28, 29).
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2.11 Clinical cohort for experimental
validation

For the experimental validation, we analyzed a cohort comprising

n = 10 primary HCC tumors paired with n = 10 patient-matched

adjacent non-tumor liver tissues (collected ≥2 cm from the tumor

margin) from Yichang Central People’s Hospital. Inclusion criteria

were: (1) adults (≥18 years) with pathologically confirmed, treatment-

naïve primary HCC; (2) curative-intent surgical resection with available

tumor and adjacent non-tumor tissue; (3) adequate tissue quantity/

quality for RNA and protein extraction; (4) availability of complete

core clinical covariates; and (5) provision of written informed consent

with IRB approval. Patients were excluded based on: (1) prior loco-

regional or systemic anti-cancer therapy; (2) mixed histology (e.g.,

HCC–intrahepatic cholangiocarcinoma); (3) recurrent or metastatic

disease at sampling; (4) inadequate biospecimen quality (RIN < 6.0 or

>50% necrosis on pathology); (5) severe acute hepatitis or active

systemic infection at surgery; or (6) incomplete metadata. Regarding

specimen handling, tissues were snap-frozen in liquid nitrogen within

30 minutes of resection and stored at −80°C. Total RNA was extracted

using TRIzol reagent with chloroform phase separation, followed by

DNase treatment and quality control (Nanodrop 260/280 ratio,

Bioanalyzer RIN). Protein lysates were prepared in RIPA buffer

supplemented with protease and phosphatase inhibitors, with

concentrations determined by BCA assay. For qPCR, reactions were

performed in technical triplicates using GAPDH as the internal control,

and data were analyzed via the DDCt method. Western blot signals

were normalized to GAPDH, and band densitometry was quantified

using ImageJ by analysts blinded to the clinical groupings.

Normalization and batch handling procedures were as follows: for

qPCR, Ct values were normalized to GAPDH and reported as DDCt
relative to the matched non-tumor tissue; for any RNA-seq-based

validation, expression was normalized as TPM (or CPM) with batch

effects adjusted using ComBat from the sva package; and for Western

blotting, protein loading was standardized to 30 µg per lane with

identical exposure settings across all membranes.
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2.12 Validation of core lactylation genes in
normal liver tissues and hepatocellular
carcinoma by qPCR

qPCR was performed on 10 normal and 10 hepatocellular

carcinoma tissue samples to validate lactylation modification

genes. GAPDH was used as an internal control. RNA extraction

followed a standard protocol, and cDNA synthesis was done with a

commercial kit. qPCR was carried out with specific primers, and

relative expression levels were calculated by the 2^(-DDCt)
method (Table 1).
2.13 Western blot analysis of protein
expression in hepatocellular carcinoma
and paired adjacent tissues

Western blotting was performed on hepatocellular carcinoma

and adjacent tissues homogenized in RIPA buffer with protease

inhibitors. Protein concentration was determined by BCA assay.

Equalized samples were denatured, separated by SDS-PAGE, and

electrotransferred to PVDF membranes. After blocking, membranes

were incubated sequentially with primary and secondary antibodies,

washed with TBST, and detected by chemiluminescence.
2.14 Statistical analysis

Count variable data were expressed as mean ± SD. One-way

ANOVA (for ≥ 2 variables) or t-tests (for 2 variables) were used for

count variable comparisons, and chi-square tests for categorical

variables. Simple linear regression models were used for the

correlation analysis between core lactylation genes and immune

cells. All analyses were done with SPSS software, with P < 0.05

considered significant.
TABLE 1 Primer sequences for q-PCR assay.

Gene Forward primer (5′–3′) Reverse primer (5′–3′) Product size (bp)

CCNA2 TGGAAAGCAAACAGTAAACAGCC GGGCATCTTCACGCTCTATTT 109

CSRP2 TGGGAGGACCGTGTACCAC CCGTAGCCTTTTGGCCCATA 177

ILF2 GGGGAACAAAGTCGTGGAAAG CCAGTTTCGTTGGTCAGCA 75

KIF2C CTGTTTCCCGGTCTCGCTATC AGAAGCTGTAAGAGTTCTGGGT 185

RACGAP1 TGCACGTAATCAGGTGGATGT TGAATCTGTCGTTCCAGCTTTT 81

VARS CGACTAGCAGGACTCCCTTTC CGGCGTAACTGACCCACTG 174

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG 197
This table presents the primer sequences used for the qPCR assay in the study. The sequences are provided for six core lactylation modification genes (CCNA2, CSRP2, ILF2, KIF2C, RACGAP1,
VARS) along with the internal control gene GAPDH. Each row shows the forward and reverse primer sequences, as well as the product size in base pairs. These primer sequences were utilized to
validate the expression levels of the lactylation-related genes in normal liver and hepatocellular carcinoma tissues, contributing to the experimental validation of the study’s findings.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1683704
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1683704
3 Results

3.1 Data quality control

PCA and data normalization were carried out for datasets

GSE20426, GSE70593, and GSE4528 (Figures 2A, B). With 26

mouse samples (11 in the control group and 15 in the PHx group),

individual dataset analysis showed differences. But after merging, 26

samples and 9,224 genes overlapped, validating data similarity. Box

plots before and after normalization demonstrated consistent

medians, ensuring data quality for further analysis (Figures 2C, D).
Frontiers in Oncology 06
3.2 Differential gene expression analysis

Volcano and heat maps presented differentially expressed genes

in liver regeneration. There were 470 upregulated and 323

downregulated genes (Figures 2E, F). For example, Ly6d and

Mcm6 were highly expressed in the regeneration group, while

Clec2d and Cyp8b1 were low. Intersection analysis of lactylation

modification genes found 18 genes (16 upregulated and 2

downregulated) (Figures 3A, B). Racgap1 and Ccna2 were highly

expressed among the upregulated ones, and Thoc2 and Terf2 were

downregulated (Figures 4A–C).
FIGURE 2

Gene expression profiling and normalization. (A) PCA of combined datasets prior to batch correction, showing high variability. (B) PCA after batch
effect removal reveals improved clustering by biological factors. (C) Boxplot of gene expression levels before normalization, highlighting variability
between samples. (D) Post-normalization boxplot showing uniform gene expression levels. (E) Volcano plot showcasing differentially expressed
genes, with significant upregulation in red and downregulation in blue. (F) Heatmap displaying the expression of DEGs, where red indicates higher
expression and blue indicates lower expression.
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3.3 Enrichment analysis

GO and KEGG pathway analyses were conducted on differential

and intersecting genes. Differential genes were enriched in nuclear

division, mitotic cell cycle, etc. in GO (Figure 5A–C) and Cell cycle

and Human T-cell leukemia virus 1 infection in KEGG (Figure 5D).

Lactylation modification genes were enriched in actomyosin

structure organization in GO and Mismatch repair, DNA

replication, etc. in KEGG (Figures 3C, D).
3.4 Screening of core lactylation
modification genes

LASSO regression and SVM - RFE algorithms identified six core

lactylation modification genes: Ccna2, Csrp2, Ilf2, Kif2c, Racgap1,

and Vars, which were strongly correlated (Figures 6A–D). ROC

curve analysis showed their strong predictive efficacy, especially

Csrp2 with an AUC > 0.8 (Figure 6E).
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3.5 Immune cell infiltration analysis

Analysis of 25 immune cell types’ infiltration levels revealed

significant differences between the liver regeneration and control

groups for four immune cell types (P < 0.05) (Figures 7A, B). CD8+

naive T cells and M1 macrophages were highly expressed in the

regeneration group, while CD8+ memory T cells and resting NK

cells were low, indicating their roles in immune regulation during

liver regeneration.
3.6 Correlation between core lactylation
modification genes and immune infiltration

CIBERSORT algorithm analysis showed significant correlations.

For example, Ccna2 was positively correlated with M1 macrophage

infiltration but negatively with CD8 memory T cells and resting NK

cells (Figure 8). Other genes also showed similar positive and negative
FIGURE 3

Intersection of DEGs with lactylation modification genes. (A) A Venn diagram shows the intersection of upregulated DEGs with lactylation
modification genes, identifying 16 shared genes. (B) Downregulated DEGs intersecting with lactylation genes, revealing 2 shared genes. (C) GO
enrichment analysis of shared genes in BP, CC, and MF categories. (D) KEGG pathway analysis highlights key metabolic and signaling pathways
affected by intersected genes.
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correlations, suggesting that core lactylation modification genes can

influence the immune microenvironment of liver regeneration.
3.7 Correlation between core lactylation
modification genes and liver regeneration
genes

Analysis of relationships between core lactylation modification

genes and liver regeneration - related genes showed that Ccna2 was

correlated with cell cycle - related genes like Aurk and Cenpa, and

so on for other genes (Figure 9). This implies that these core genes

may participate in liver regeneration by regulating cell - cycle -

related genes.
3.8 Single gene GSEA analysis

Single gene GSEA of the six core genes indicated their

participation in cell - cycle - related pathways (Figure 10). Ccna2

was associated with cell cycle checkpoints, Csrp2 and Ilf2 with the cell

cycle and mitosis prophase, etc., suggesting their role in modulating

liver regeneration through cell proliferation and division.
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3.9 Construction of the miRNA-lactylation
modification core gene-transcription
factor network`

A miRNA-lactylation modification core gene-transcription factor

regulatory network was constructed, with 107 nodes and 123 edges.

Mmu - mir - 450b - 3p regulated the most genes, and E2f1 was an

important transcription factor (Figures 11A, B). Ccna2, as a core gene,

was regulated by nine miRNAs and could regulate 32 transcription

factors, highlighting its significance in liver regeneration.
3.10 Expression and survival analysis of
core lactylation modification genes in liver
cancer

Database analysis showed that the expressions of the six core

genes in liver cancer tissues were significantly higher than in normal

tissues (P < 0.05) (Figures 12A–E). Survival analysis indicated that

high expression of CCNA2, CSRP2, ILF2, KIF2C, RACGAP1, and

VARS was associated with reduced overall survival rates, especially

Kif2c with a very low P-value.
FIGURE 4

Lactylation modification gene expression analysis. (A) The volcano plot illustrates differential expression of lactylation modification genes between
partial hepatectomy and control groups. (B) Heatmap displays expression profiles of lactylation-related genes across samples. (C) Boxplot shows
expression differences of 18 intersected genes between groups; statistical significance is marked by asterisks (**p < 0.01, ****p < 0.0001).
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3.11 Validation of core lactylation genes in
hepatocellular carcinoma by qPCR

qPCR validation in normal liver and HCC tissues showed that

CCNA2, CSRP2, ILF2, KIF2C, RACGAP1, and VARS were

significantly upregulated in the HCC group (all p-values <

0.0001) (Figure 13), providing more evidence for their role in

liver cancer progression and potential as HCC biomarkers.
3.12 Western blot analysis

Western blotting revealed significantly elevated levels of

CCNA2, CSRP2, ILF2, KIF2C, RACGAP1, and VARS proteins
Frontiers in Oncology 09
in HCC tissues compared to adjacent non-tumor tissues

(Figure 14). Consistently more intense immunoreactive bands at

the expected molecular weights confirmed this tumor-specific

overexpression across replicates. Densitometric quantification

demonstrated statistically significant upregulation (p<0.05) for

all target proteins in malignant specimens. Despite the modest,

single-center sample size (10 paired samples), both qPCR

and Western blot demonstrate consistent upregulation of all six

genes in tumors versus adjacent tissues (p < 0.0001), supporting

the robustness of the signature. We explicitly acknowledge

potential selection bias and limited etiologic/ethnic diversity,

and therefore frame these findings as confirmatory; a multi-

center expansion with larger, prospectively collected cohorts is

outlined in Discussion.
FIGURE 5

Functional enrichment analysis of DEGs. (A–C) GO enrichment analysis presents biological processes, cellular components, and molecular functions
impacted by DEGs. (D) KEGG pathway analysis reveals pathways significantly influenced by DEGs, providing insights into potential biological mechanisms.
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4 Discussion

This study systematically integrated three independent liver

regeneration-related datasets (GSE20426, GSE70593, and GSE4528)

and, for the first time, clearly identified key genes co-regulated by

lactylation modifications and liver regeneration. Additionally, we

further explored the potential roles and mechanisms of these genes

in the occurrence, progression, and metastasis of HCC. Both liver

regeneration and HCC involve rapid hepatocyte proliferation;

however, there are substantial differences in their regulatory

mechanisms and biological significance (30, 31). Liver regeneration

represents a strictly regulated physiological proliferative response

following hepatic injury, aiming at repairing liver tissue and

restoring liver function (32). Conversely, hepatocellular carcinoma

is characterized by uncontrolled, pathological proliferation due to

dysregulated cell-cycle progression, leading to limitless cancer cell

proliferation, invasion, and metastasis (33). Lactylation, as a novel

epigenetic modification, has increasingly attracted attention in recent

years and is considered closely associated with tumor metabolic

reprogramming and remodeling of the tumor microenvironment

(6, 34, 35). By conducting bioinformatic analyses of gene interactions

between liver regeneration and lactylation modification, this study

identified a set of potential marker genes significantly related to

hepatocellular carcinoma.

In comparison to previous research on lactylation and HCC, this

study significantly extends our understanding by integrating lactylation
Frontiers in Oncology 10
modification profiles with liver regeneration-associated gene

expression data. While earlier studies have established the role of

lactylation in metabolic reprogramming and tumor microenvironment

modulation, the specific mechanisms through which lactylation

influences hepatocyte fate decisions in both physiological and

pathological contexts remain poorly defined. This study provides the

first comprehensive analysis of the lactylation-driven regulatory

network in HCC, revealing a set of six core genes—Ccna2, Csrp2,

Ilf2, Kif2c, Racgap1, and Vars—that are uniquely co-regulated by

lactylation modifications. By combining multi-omics approaches and

machine learning algorithms, we identify lactylation as a keymetabolic-

epigenetic nexus that connects liver regeneration pathways to

oncogenesis, offering novel predictive biomarkers for HCC diagnosis

and prognosis. Notably, the identification of Csrp2 as a diagnostic

marker with superior efficacy compared to conventional biomarkers

such as AFP provides a compelling argument for its clinical application

in early HCC detection. Furthermore, the demonstrated correlation

between lactylation-associated gene expression and immune

microenvironment remodeling adds an innovative layer to our

understanding of HCC immune evasion, particularly with respect to

resistance to immunotherapies targeting PD-1.

It is important to note that interpreting lactylation as a bridge

between regeneration and tumorigenesis is intellectually appealing,

but carries a risk of overstatement without direct biochemical

evidence. The current analysis primarily infers lactylation effects

based on correlated transcriptomic data and previously published
frontiersin.or
FIGURE 6

Feature selection for key genes using machine learning (A) LASSO regression selects 13 key genes from lactylation-related DEGs. (B) SVM identifies 6
core genes. (C) The intersection yielded six core genes (D) The correlation matrix shows relationships between these genes, with red indicating
positive and green indicating negative correlation. (E) The ROC curve displays the predictive performance of the selected genes.
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literature, and lacks direct histone lactylation profiling of the human

HCC samples analyzed in this study. This represents a critical gap,

as the core hypothesis relies on lactylation being an epigenetic

driver of the identified transcriptional programs—confirmation of

this claim would require complementary approaches such as

chromatin immunoprecipitation sequencing (ChIP-seq) to detect

lactylated histone residues at target gene loci, or mass spectrometry-

based lactylome analysis to map global lactylation modifications.

Until such direct validation is conducted, the mechanistic links

proposed herein remain associative rather than definitive.

To ensure data rigor and reliability, boxplots generated before

and after standardizing liver regeneration data demonstrated

effective correction of batch effects, confirming the reliability of

integrating cross-study data. This strategy not only expanded the

sample size but also improved reproducibility in the screening of

critical genes, aligning with the methodology proposed by Rho et al.

in their multi-omics integration approach for liver regeneration

studies (36). Building upon this foundation, the current study

further focused on the functions of several key genes and their

potential mechanistic roles in HCC.

Differential expression analysis of liver regeneration genes

identified 470 upregulated and 323 downregulated genes, which were

significantly enriched in nuclear division and cell-cycle pathways,
Frontiers in Oncology 11
confirming the active proliferation characteristic of liver regeneration.

Particular attention was given to genes overlapping between lactylation

modification and liver regeneration, revealing enrichment in DNA

replication and genome stability pathways. This finding, for the first

time, suggests a connection between lactate metabolism and hepatocyte

proliferation, thereby extending previous findings by Gao et al. and

Wang et al., who demonstrated the involvement of lactylation in

metabolic reprogramming and its impact on the tumor

microenvironment (37, 38). Furthermore, our enrichment analyses

indicate that lactylation-modulated genes are implicated not only in cell

cycle and DNA repair but also in immune modulation and metabolic

signaling pathways. This suggests a broader functional convergence

with established oncogenic cascades in HCC. For instance, the Wnt/b-
catenin pathway—a key driver of HCC—is known to promote aerobic

glycolysis and lactate production, which in turn may fuel lactylation

modifications (20, 21). Similarly, TGF-b signaling, which plays dual

roles in liver regeneration and carcinogenesis, has been shown to

interact with lactylation-driven immune suppression via regulatory T

cells (19, 22). Additionally, JAK/STAT signaling, frequently

hyperactivated in HCC, may interface with lactylation-mediated

metabolic reprogramming to foster an immunosuppressive

microenvironment (23). By intersecting lactylation-related genes with

these canonical pathways, our study provides a more integrated view of
frontiersin.or
FIGURE 7

Immune cell infiltration analysis in partial hepatectomy samples. (A) Bar plot depicts immune cell type proportions in both partial hepatectomy and
control samples. (B) Boxplot highlights significant differences in immune cell infiltration between these groups (*p < 0.05, ns, not significant).
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how metabolic reprogramming epigenetically regulates HCC

progression, bridging the gap between lactylation modifications and

broader oncogenic network dysregulation.

The core highlight of this study is the precise identification of six

key lactylation-related genes (Ccna2, Csrp2, Ilf2, Kif2c, Racgap1, and

Vars) using machine learning methods, specifically LASSO and SVM-

RFE (39, 40). LASSO regression compresses high-dimensional data

noise via a penalty function (41), while SVM-RFE enhances classifier

specificity by recursively eliminating weakly correlated variables (42).

The combined use of these two methods overcomes the high false-

positive rate associated with traditional single-modal analyses,

accurately pinpointing sensitive modification nodes.

Through correlation analysis between these genes and immune

cells, our research also uncovered significant associations between the

core lactylation-related genes and the remodeling of the hepatic

immune microenvironment. Taking Ccna2 as an example, its

expression positively correlates with pro-inflammatory M1

macrophages but negatively correlates with memory CD8+ T cells.

Similarly, Aiello’s study demonstrated that increased CcnA2 expression

could reshape tumor-associated macrophages to promote tumor

proliferation (43). Such immune microenvironment remodeling may
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be a crucial reason for resistance to anti-PD-1 immunotherapy in HCC

patients (44, 45), suggesting that lactylation-related genes might

facilitate immune escape in HCC cells by altering the tumor immune

microenvironment (11, 38, 46).

Gene co-expression networks from our study revealed a strong

association of Ccna2 with cell cycle proteins such as Aurkb and

Cenpa, confirming the regulatory role of lactylation in mitotic fidelity.

The connection between Racgap1 and Kif22 indicates lactylation’s

potential coordination of spindle assembly and chromosome

segregation, defects in which may lead to aneuploidy accumulation,

directly associated with HCC pathogenesis. These findings align with

Pan et al.’s reports of lactylation promoting chromosomal instability

in HCC (47); however, our study uniquely identifies this mechanism

as potentially stemming from abnormal activation of physiological

regeneration pathways.

GSEA of core genes showed that Ccna2 is enriched in mitotic

checkpoint pathways (e.g., PLK1 pathway), while Kif2c is primarily

associated with M-phase regulation, consistent with their respective

roles in chromosome segregation. Notably, Racgap1 enrichment in

S-phase pathways complements known DNA replication stress

response mechanisms, suggesting lactylation may regulate cell
FIGURE 8

Correlation between core genes and immune cell infiltration. A bubble chart presents the correlation between 6 core genes and immune cell
infiltration levels. The size of the circles represents correlation strength, while color intensity indicates p-values.
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cycle phase transitions across a temporal dimension. This finding

provides a spatiotemporal coupling framework linking metabolic

dynamics with epigenetic programming, further enriching Huang

et al.’s regulatory model and offering novel targets for cell-cycle

synchronization strategies in HCC treatment (48).

The miRNA-lactylation gene-transcription factor network

constructed in our study reveals the depth of epigenetic regulation

in lactylated genes. For instance, the core gene Ccna2 is regulated by

nine miRNAs (e.g., miR-449c-5p) and activates 32 transcription

factors, including E2F1, forming a cascade amplification effect. This

aligns with the dual role of E2F1 in both tissue regeneration and

carcinogenesis (49, 50), suggesting that lactylation modification may

amplify E2F1’s pro-proliferative signaling through an epigenetic

“driver” mechanism. Notably, the broad-spectrum regulatory

capacity of mmu-mir-450 b-3p (targeting Vars and Ilf2) implies its

potential role as an upstream coordinator in the lactylation network.

These findings provide molecular validation for the “metabolic-

epigenetic axis” theory proposed by Zheng and Zhang et al., while

suggesting that targeting key miRNAs could systematically modulate

the lactylation modification network (51, 52).

Our multidimensional validation integrating clinical correlation

and translational potential demonstrated that the six core genes

identified in this study exhibited significantly higher expression

levels in HCC tissues compared to normal hepatic tissues (p <

0.05). Notably, the elevated expression of Kif2c showed a significant

association with poorer patient prognosis, highlighting its potential

critical role in HCC malignant progression. Previous studies have
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revealed that Kif2c promotes tumor invasion and metastasis by

inducing chromosomal instability through interference with

chromosome segregation processes (53, 54). This finding aligns with

the theory proposed by Yao et al. that epigenetic reprogramming

drives tumor clonal selection (55), wherein metabolic abnormalities in

tumors may induce genomic instability to facilitate clonal selection

and evolution. Our database analyses further corroborate this

potential mechanism, demonstrating that Kif2c overexpression

enhances HCC cell proliferation and survival advantages, ultimately

impacting clinical outcomes. First, targeting lactylation directly

through inhibition of lactate metabolism enzymes (e.g., LDHA) or

lactate transporters (MCT1/4) to reduce intratumoral lactate levels

and dampen the aberrant activation of Ccna2, Kif2c, and other core

genes, particularly in patients with high glycolytic phenotypes (56);

second, exploring synthetic lethal approaches by combining Kif2c-

targeted therapy with microtubule-disrupting agents such as

paclitaxel, or Racgap1 inhibition with Aurora kinase inhibitors to

exploit cell cycle vulnerabilities; third, integrating Csrp2 as a

complementary serum biomarker into existing HCC surveillance

algorithms alongside AFP and PIVKA-II, especially for AFP-

negative cases, and developing multimodal AI-driven risk

stratification models that incorporate imaging features and our gene

signature to improve early detection; and finally, combining

lactylation modulators with immune checkpoint inhibitors to

reverse the immunosuppressive microenvironment, given the

observed correlations between Ccna2 expression, M1 macrophage

infiltration, and reduced CD8+ memory T cell presence (56).
FIGURE 9

Co-expression network analysis of core genes. A heatmap illustrates co-expression patterns of the top 50 positively correlated genes for each of the
6 core genes, highlighting their interaction network.
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Our qPCR validation further confirmed the overexpression

patterns of six candidate genes in clinical HCC specimens, with all

genes demonstrating significantly elevated expression levels in HCC

tissues compared to normal counterparts. Western blot analysis

substantiated these findings at the protein level, revealing

significantly elevated expression of CCNA2, CSRP2, ILF2, KIF2C,

RACGAP1, and VARS in HCC tissues versus adjacent non-tumor

tissues. Densitometric quantification confirmed statistically

significant upregulation (p<0.05) for all six proteins, aligning with

transcriptomic data. This spatially resolved protein overexpression

within the HCC microenvironment reinforces their constitutive

activation in malignancy. This experimental verification strengthens

the conclusions derived from database analyses and expands their

clinical applicability and translational potential. Notably, the Csrp2

gene exhibited remarkable diagnostic value, demonstrating a

diagnostic efficacy (AUC > 0.8) slightly lower than the

conventional HCC biomarker alpha-fetoprotein (AFP, typically

AUC range: 0.78–0.979) (57, 58). These findings suggest that Csrp2

may serve as a novel and efficient biomarker for early HCC detection

with promising clinical translation prospects. It is noteworthy,

however, that the superior diagnostic performance of Csrp2 (AUC

> 0.8) observed in this study was derived from tissue-based

expression analysis, which differs fundamentally from serum-based

biomarkers currently used in clinical surveillance, such as AFP and
Frontiers in Oncology 14
des-g-carboxy prothrombin (DCP). While tissue-based AUC values

provide valuable mechanistic insight, they may not directly translate

to non-invasive diagnostic settings. Therefore, the potential utility of

Csrp2 should be viewed as complementary to existing surveillance

strategies—primarily ultrasound combined with serum AFP—rather

than as an immediate replacement. Future studies are warranted to

validate Csrp2 expression in peripheral blood and to assess its

performance in longitudinal surveillance cohorts before any clinical

integration can be considered (59, 60). Furthermore, considering

recent advancements in lactate metabolism detection technologies,

particularly the lactylation profiling technique developed byWu et al.,

a Csrp2-centred peripheral blood detection method holds potential

for developing non-invasive early screening protocols for HCC. This

approach could provide robust technical support for early diagnosis

and precise medical interventions in clinical HCC management (61).

Based on our aforementioned research and relevant literature,

we have identified that these genes (Ccna2, Csrp2, Ilf2, Kif2c,

Racgap1, Vars) may play pivotal roles in the initiation and

progression of HCC. Specifically, Ccna2, Kif2c, and Racgap1

primarily promote tumor cell proliferation and division by

regulating the cell cycle and mitotic processes. In contrast, Csrp2,

Ilf2, and Vars enhance the invasive potential and survival

capabilities of HCC cells through their influence on cell

migration, transcriptional regulation, and metabolic activities.
FIGURE 10

GSEA of core genes. The top 20 reactome pathways enriched for each core gene are shown, with positive enrichment scores indicating
upregulation and negative scores indicating downregulation of gene sets.
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Consequently, these genes not only occupy critical positions in the

molecular mechanisms underlying HCC but also hold promise as

potential molecular biomarkers and therapeutic targets, offering

novel research directions and clinical prospects for early diagnosis,

targeted therapy, and prognostic evaluation of HCC.

For instance, mechanistically, the Ccna2 gene—a key regulator

of the cell cycle—may directly drive hepatocarcinogenesis and rapid

progression via aberrant overexpression that disrupts cell cycle

checkpoints in HCC (62, 63). This observation aligns with the

findings of Gao et al., who demonstrated that lactylation

modification activates DNA replication-associated pathways to

accelerate cellular proliferation, a conclusion highly consistent

with our functional predictions for Ccna2 in this study (64).

While this alignment supports the hypothesis that lactylation

drives Ccna2-dependent cell cycle dysregulation, it is important to
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emphasize that we have not directly demonstrated lactylation of

Ccna2 itself or lactylation of histones at the Ccna2 locus in HCC

cells. Future studies employing ChIP-seq with antibodies specific to

lactylated histones (e.g., H3K18la, H3K27la) or mass spectrometry

to detect lactylation on Ccna2-interacting proteins would be

essential to confirm this mechanistic link.

The Racgap1 gene encodes a Rho family GTPase-activating

protein predominantly involved in cytokinesis regulation to ensure

orderly cell division. Elevated Racgap1 expression has been shown

to induce abnormal cytokinesis, promoting the accumulation and

expansion of aneuploid cells that accelerate malignant tumor

progression. These findings corroborate reports by Pan et al. on

lactylation-enhanced chromosomal instability in tumors (36). Our

study further hypothesizes that hyperactive lactylation modification

may drive hepatocytes to shift from reparative proliferation to
FIGURE 11

Regulatory network of core genes. (A) Interaction network displays the relationship between core genes and upstream miRNAs and transcription
factors. (B) miRNA regulatory network, as identified by NetworkAnalyst, shows key regulatory elements for core genes.
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pathological proliferation patterns, potentially representing a

critical mechanism in HCC pathogenesis (65, 66).

The Kif2c gene is significantly upregulated in HCC tissues and

exhibits a strong correlation with poor patient survival rates,

highlighting its substantial potential as a clinical prognostic

biomarker. Additionally, our study revealed a distinct dose-

dependent relationship between Kif2c expression levels and

intracellular lactate concentration. This finding aligns closely with

the theory proposed by Zhou et al., which posits that metabolic

disorder-mediated epigenetic modifications drive HCC progression

(67). Further functional investigations demonstrated that Kif2c

inhibition markedly enhances the sensitivity of HCC cells to
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glycolysis inhibitors, suggesting that Kif2c may serve as a critical

node within a metabolic-epigenetic crosstalk regulatory network.

Ilf2 and Vars are identified in this study, for the first time, as core

lactylation-associated genes closely related to HCC. Although the

specific molecular mechanisms of these two genes have not yet been

fully elucidated, existing evidence suggests that Ilf2 may enhance the

proliferative capacity of HCC cells by regulating cell cycle-related

gene networks, whereas Vars may affect cancer cell survival and

proliferation through lactylation-mediated translational regulation.

Further investigation into these two genes will contribute to a more

comprehensive understanding of the mechanisms underlying HCC

pathogenesis and progression.
FIGURE 12

Expression and prognostic analysis of core genes in liver cancer. (A–E) Kaplan–Meier survival curves illustrate the relationship between the
expression levels of six core genes and overall survival in patients with hepatocellular carcinoma, demonstrating their prognostic significance.
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Particularly noteworthy is the Csrp2 gene. Csrp2 not only

exhibits significantly higher expression levels in tumor tissues

compared to normal tissues but also demonstrates superior

diagnostic performance compared to AFP, a traditional biomarker

for HCC. It is speculated that Csrp2 may promote tumor cell

migration and invasion by influencing cytoskeletal stability and

activating signaling pathways, aligning with the mechanisms

reported by Gu et al., which indicate lactylation-mediated

modulation of structural proteins influences tumor metastasis (68).

Therefore, Csrp2 represents a promising novel target for early

diagnosis and treatment of HCC, possessing substantial potential

for clinical translation.

Based on these findings, we further explored the dynamic

changes in lactylation modifications during HCC initiation and

progression. Traditional HCC studies often utilize static tumor-

versus-normal tissue comparison models, making it challenging to

capture dynamic epigenetic modifications (68). In this study, we

innovatively introduced the PHx liver regeneration model as a

platform for studying carcinogenic evolution, thereby revealing

critical thresholds at which lactylation modification networks shift

from physiological repair processes to pathological malignancy. The
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continued activation of lactylation-associated genes in the DNA

replication pathway closely aligns with the clinical progression from

liver cirrhosis to hepatocellular carcinoma.

The limitations and summary of this study are as follows. Several

aspects require further investigation: The PHx model does not

adequately replicate the genetic heterogeneity observed in human

HCC; therefore, complementary cirrhosis progression models and

organoid validations are necessary. Human hepatocellular

carcinoma (HCC) is characterized by significant genetic and

tumor microenvironmental heterogeneity, which complicates

direct translation from murine models. In this study, we used

murine liver regeneration models, specifically partial hepatectomy,

to investigate molecular mechanisms underlying liver regeneration

and HCC. While these models offer valuable insights due to the

genetic and molecular similarities between murine and human livers,

they present limitations in fully capturing the complexity of human

HCC. Human liver regeneration data, crucial for more direct

insights, are difficult to obtain due to ethical constraints and the

lack of large, accessible datasets. As a result, murine models, though

informative, cannot completely replicate the diversity of human

conditions. Future studies should incorporate human-derived
FIGURE 13

qqPCR-based expression profiling of core genes in LIHC. (A–E) qPCR validation reveals significant up - regulation of CCNA2, CSRP2, etc. in liver
hepatocellular carcinoma tissues compared to controls (****p < 0.0001).
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datasets and clinical validation to better connect murine models with

human liver biology, providing more accurate and translatable

findings in the context of HCC development and progression.

Furthermore, bulk sequencing-based immune infiltration analyses

may obscure modification specificity in hepatic macrophages such as

Kupffer cells; employing spatial transcriptomics could enhance

analytical resolution. Although the sample size for the initial

clinical validation (10 normal vs 10 HCC tissues) is modest, we

employed rigorous bioinformatics preprocessing to mitigate this

limitation. Specifically, the integration of multiple genomic

datasets (GSE20426, GSE70593, GSE4528) followed by batch effect

removal using the ‘sva’ package and quantile normalization using the

‘preprocessCore’ package is a recognized approach to enhance the

robustness and reliability of findings derived from smaller cohorts

(21, 23). This strategy strengthens the foundational bioinformatics

discovery phase. Nevertheless, the conclusions drawn from the

clinical validation cohort, while statistically significant and

experimentally corroborated by Western blot, would benefit from

future validation in larger, independent clinical cohorts to confirm

the generalizability and translational potential of our identified

lactylation gene signature. Fourth, our prognostic and diagnostic

analyses have certain constraints.

Survival analysis charts derived from online databases are

indeed commonly used in many studies, and they can provide

valuable insights, especially when detailed clinical data is not readily

available. These charts allow for a broad analysis of gene expression

patterns and their associations with survival outcomes, offering an

initial understanding of potential However, it is essential to

recognize that such analyses have limitations, particularly when

clinical covariates are not accounted for. The use of these charts

should be viewed as preliminary, the future studies with more

comprehensive clinical data would be necessary to strengthen the

conclusions and confirm the findings. The prognostic value of the

core lactylation genes was evaluated using univariate Kaplan-Meier

survival analysis. While this provides robust evidence of association,
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the lack of accessible detailed clinical data (such as TNM stage,

Child-Pugh score, and treatment history) in the public repositories

precluded us from performing multivariate Cox regression analysis

to determine the independent prognostic power of our gene

signature (26, 69). Similarly, a direct comparison of the diagnostic

accuracy of tissue-based Csrp2 expression with serum AFP levels

was not feasible due to the inherent differences in sample types and

cohort sources between gene expression datasets and serum

biomarker datasets (28, 29). Future studies with prospectively

collected cohorts containing matched tissue, blood samples, and

comprehensive clinical information are essential to validate the

independent prognostic value and diagnostic efficacy of our

identified lactylation-associated genes (70, 71).

The innovative aspect of this study lies in the pioneering use of a

liver regeneration model to reveal the dynamic transformation of

lactylation modifications from physiological repair processes to

pathological proliferation, offering a novel perspective for

understanding HCC development. Future studies should employ

specific lactylation enzyme probes and single-cell omics

technologies to more accurately elucidate the dynamic changes

and underlying mechanisms of lactylation modifications in HCC,

thus providing robust theoretical and practical foundations for

diagnosis and treatment strategies.
5 Conclusion

Based on the dynamic regulatory network of liver regeneration

and lactylation modification, this study successfully identified six core

genes, namely Ccna2, Csrp2, Ilf2, Kif2c, Racgap1, and Vars, as

potential therapeutic targets and biological biomarkers for HCC.

These genes mediate the epigenetic transition from physiological liver

regeneration to pathological carcinogenesis by orchestrating critical

mechanisms, including cell cycle checkpoints, chromosomal stability,

and immune microenvironment remodeling. Clinical translational
FIGURE 14

Expression levels of the core gene in normal and tumor liver tissues. (A) This figure presents the comparative expression levels of the identified core gene
between normal liver tissues and liver hepatocellular carcinoma (LIHC) samples. The bar chart demonstrates a markedly higher expression of the core
gene in tumor tissues. (B) Statistical analysis reveals that this upregulation is significant, indicating that the core gene may play a critical role in the
tumorigenesis and progression of hepatocellular carcinoma. Error bars represent standard deviation across biological replicates (p < 0.05, *p < 0.01).
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analysis revealed that Csrp2 demonstrates superior diagnostic efficacy

(AUC >0.8) in HCC tissues compared to conventional biomarker

AFP, with its peripheral blood detection technology showing promise

for non-invasive early screening of liver cancer. Meanwhile, elevated

Kif2c expression exhibits a strong correlation with poor patient

prognosis, serving as a valuable stratification indicator for

personalized treatment. Significantly, the potential association

between lactylation-modified genes and immune checkpoint

inhibitor resistance (e.g., the Ccna2-M1 macrophage axis)

uncovered in this study provides novel insights for developing

combined “metabolism-immunity” therapeutic strategies. These

findings not only reinterpret hepatocarcinogenesis through the lens

of metabolic-epigenetic coupling, but also establish a molecular

toolkit with both diagnostic sensitivity and therapeutic targeting

potential for constructing clinical precision medicine systems.
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