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Background: This study aims to develop and validate a survival prediction model

for T4 or N3 locally advanced nasopharyngeal carcinoma (NPC) patients

undergoing chemoradiotherapy (CRT) using machine learning methods.

Methods: A total of 293 patients with locally advanced NPC (T4 or N3 stage)

treated with CRT were included in the study. The cohort was divided into a

training set (173 patients) and a validation set (120 patients). LASSO regression

was used to identify significant prognostic factors, and Cox regression analysis

was performed to assess the independent impact of these factors on

progression-free survival (PFS). A nomogram was constructed based on the

identified prognostic factors to predict 1-, 2-, and 3-year PFS. Model

performance was validated using ROC curves, calibration curves, and decision

curve analysis (DCA).

Results: The training cohort showed 1-, 2-, and 3-year PFS rates of 92.4%, 81.3%,

and 75.2%, respectively. In the validation cohort, the 1-, 2-, and 3-year PFS rates

were 90.1%, 83.5%, and 76.0%, respectively, with no significant differences

between the groups (P = 0.94). The LASSO-Cox model identified N stage and

Epstein-Barr virus (EBV) levels as key prognostic factors. The nomogram

demonstrated good discrimination with AUC values of 0.802, 0.709, and 0.686

at 1, 2, and 3 years, respectively. The ROC curve shows the model’s performance

with AUC values at 1 year (0.802), 2 years (0.709), and 3 years (0.686),

demonstrating the model’s ability to distinguish between different survival

outcomes. The calibration curves and DCA confirmed the model’s good

agreement with observed outcomes and its clinical net benefit across different

risk thresholds.

Conclusion: The survival prediction model based on LASSO and Cox regression

provides a robust and interpretable tool for predicting PFS in patients with T4 or

N3 locally advanced NPC undergoing CRT.
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Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy that

originates in the epithelial cells of the nasopharynx (1). It is

notably prevalent in Southeast Asia, particularly in China, with a

strong association with Epstein-Barr virus (EBV) infection (2). NPC

is often diagnosed at advanced stages, with local invasion and

extensive lymph node metastasis being significant features (3).

Among the various stages, locally advanced NPC, particularly in

T4 and N3 stages, presents a challenge for treatment due to its poor

prognosis, despite aggressive therapies such as concurrent

chemoradiotherapy (CRT) (4).

Standard treatment for advanced-stage NPC, including T4 and

N3, involves CRT, which has improved survival outcomes (5).

However, even with this treatment approach, many patients still

experience high rates of recurrence and distant metastasis (6).

Therefore, accurately predicting survival outcomes for these

patients is critical in tailoring treatment strategies to maximize

therapeutic benefit and minimize unnecessary toxicity. Traditional

prognostic models, which often rely on clinical factors such as

tumor size, lymph node involvement, and EBV status, have

limitations in predicting individual patient outcomes due to the

complexity of disease progression and treatment responses (7–9).

Recent advances in statistical and machine learning methods

have provided new avenues for improving survival prediction.

Among these, LASSO and Cox regression models have become

increasingly popular. LASSO is an effective technique for selecting

the most important variables from a large dataset, ensuring the final

model is both efficient and interpretable (10, 11). The Cox

proportional hazards model, widely used in survival analysis,

allows for examining the relationship between various prognostic

factors and patient survival outcomes (12).

For locally advanced NPC patients, particularly those with T4 or

N3 disease, a survival prediction model based on LASSO and Cox

regression can be highly effective (13). By integrating multiple clinical

variables, such as age, sex, tumor stage, treatment modalities, and

response to therapy, this model can offer a more personalized

prediction of patient survival. The LASSO method selects the most

significant factors, while Cox regression provides insights into how

these factors influence survival outcomes over time (14).

The ability to generate accurate and interpretable survival

predictions is essential for clinicians, as it helps them identify high-

risk patients early, allowing for the optimization of treatment regimens.

By providing more tailored care, this approach has the potential to

significantly improve survival rates and quality of life for patients with

locally advanced NPC, thereby advancing personalizedmedicine in this

challenging clinical context.
Method

Patients

This study retrospectively collected data from 293 patients with

locally advanced NPC from three tertiary hospitals in China,
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covering the period from 2012 to 2020. The inclusion criteria

were: 1) a pathological diagnosis of NPC, 2) disease classified as

T4 or N3 stage according to the 8th edition of the AJCC staging

system, 3) receipt of concurrent chemoradiotherapy (CRT), and 4)

availability of follow-up data. Exclusion criteria included: 1)

previous treatment with other therapies, such as surgery or non-

standard treatments, and 2) incomplete or missing data, which

hindered the ability to conduct a comprehensive analysis.

This study was approved by the ethics committee of General

Hospital of Ningxia Medical University, and all patients provided

informed consent for participation in the study.
Model construction

Firstly, a LASSO regression analysis was performed to select

prognostic factors associated with PFS. Patients were randomly

divided into training and validation sets in a 6:4 ratio. In the training

set, univariate and multivariate Cox regression analyses were

conducted to identify independent prognostic factors associated with

progression-free survival (PFS). These independent prognostic factors

were then used to construct a nomogram for predicting PFS. The PFS

was defined as the time from the initiation of CRT to the first

occurrence of disease progression, recurrence, distant metastasis, or

death from any cause. Patients without such events at the last follow-up

were censored at that time point.
Model validation

In the validation set, the performance of the model was assessed

using receiver operating characteristic (ROC) curves, calibration

curves, and decision curve analysis (DCA). In the training set, model

performance was further validated using partial dependence plots

(PDP), time-dependent variable importance plots, and the Brier score.
Statistical analysis

Categorical variables and continuous variables were compared

using the Chi-square test and appropriate parametric or non-

parametric tests, respectively. The risk dependence plot was used

to explain the PFS outcomes. Kaplan-Meier (KM) curves were used

to analyze the survival rates of the training and validation sets, and

Log-rank tests were used to compare differences. All statistical

analyses were conducted using R software, and a p-value of <0.05

was considered statistically significant.
Result

Baseline

In the total cohort of 293 patients with locally advanced NPC,

the distribution of baseline variables is as follows: 77.1% are male,
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with an average age of 45.6 years, and 53.9% are aged 45 or older.

Tumor staging shows that 57.3% of patients are classified as T4, and

49.1% have N3 stage. Regarding EBV DNA levels, 36.9% of patients

have levels ≥10000. Upon comparing the training set (173 patients)

and the test set (120 patients), no significant differences were

observed in the distribution of these variables (Table 1).
Survival

In the training cohort, the 1-, 2-, and 3-year PFS rates were

92.4%, 81.3%, and 75.2%, respectively. In the validation cohort, the

1-, 2-, and 3-year PFS rates were 90.1%, 83.5%, and 76.0%,

respectively. There were no significant differences in PFS between

the two groups (P = 0.94, Figure 1).
Model construction

The LASSO model identified age, T stage, N stage, and EBV as

risk factors influencing PFS (Supplementary Figures 1A, B). In the

training cohort, multivariate Cox analysis confirmed that N stage

and EBV levels were independent prognostic factors for PFS
Frontiers in Oncology 03
(Table 2). Based on N and EBV, a nomogram was constructed to

predict 1-, 2-, and 3-year PFS (Figure 2).
Model validation

The ROC curve shows the model’s performance with AUC

values at 1 year (0.802), 2 years (0.709), and 3 years (0.686),

indicating varying discrimination ability (Supplementary

Figure 2A). The calibration curve confirms how well the

predicted PFS aligns with observed outcomes (Supplementary

Figure 2B). The decision curve analysis demonstrates the clinical

net benefi t of the model at different risk thresholds

(Supplementary Figure 2C).
Model interpretation

In the training cohort, partial dependence plots (PDP)

confirmed that higher EBV levels, older age, and more advanced

T and N stages were associated with worse survival (Figure 3).

Supplementary Figure 3A shows the model’s performance over

time, with the Brier score decreasing, indicating improved
TABLE 1 Baseline characteristics of the training and validation sets.

Variable Total (N = 293) Test (N = 120) Train (N = 173) p-value

Sex 1.000

Female 67 (22.9%) 27 (22.5%) 40 (23.1%)

Male 226 (77.1%) 93 (77.5%) 133 (76.9%)

Age 45.6 (11.1) 45.5 (11.8) 45.7 (10.7) 0.85

< 45 135 (46.1%) 61 (50.8%) 74 (42.8%) 0.214

≥ 45 158 (53.9%) 59 (49.2%) 99 (57.2%)

T 0.376

T2 29 (9.90%) 13 (10.8%) 16 (9.25%)

T3 96 (32.8%) 44 (36.7%) 52 (30.1%)

T4 168 (57.3%) 63 (52.5%) 105 (60.7%)

N 0.297

N1 75 (25.6%) 25 (20.8%) 50 (28.9%)

N2 74 (25.3%) 32 (26.7%) 42 (24.3%)

N3 144 (49.1%) 63 (52.5%) 81 (46.8%)

EBV 0.930

<1000 87 (29.7%) 37 (30.8%) 50 (28.9%)

1000-10000 98 (33.4%) 39 (32.5%) 59 (34.1%)

≥ 10000 108 (36.9%) 44 (36.7%) 64 (37.0%)
EBV, Epstein-Barr virus.
Bold values P < 0.05 was considered statistically significant.
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prediction accuracy. The graph demonstrates that the model’s

ability to discriminate between different survival outcomes

improves over time, as indicated by the gradual increase in AUC.

Supplementary Figure 3B shows that EBV and N stage are the most

important factors affecting PFS. Figure 4A shows the distribution of

risk scores, with a cutoff of 1.65 separating low-risk (blue) and high-

risk (red) groups. Figure 4B indicates that high-risk patients have

shorter PFS, while low-risk patients have longer survival. Figure 4C

highlights clinical variables (EBV, N/T stage, age), showing higher

EBV levels and more advanced stages in the high-risk group.
Frontiers in Oncology 04
Discussion

Locally advanced NPC, particularly those at T4 and N3 stages,

presents significant treatment challenges and is associated with

poor prognosis (15). Despite the aggressive nature of concurrent

CRT, many patients with advanced NPC experience high rates of

recurrence and distant metastasis, which worsens their survival

outcomes (16). This research is focused on improving

prognostication for these high-risk patients by developing a

survival prediction model using advanced statistical and machine
FIGURE 1

Kaplan-Meier curves for training and validation sets.
TABLE 2 Univariate and multivariate Cox regression for progression-free survival.

Variable Category HR (univariable) p-value (univariable) HR (multivariable) p-value (multivariable)

N

N1 – – – –

N2 2.01 (0.83-4.85) 0.12 1.85 (0.76-4.50) 0.176

N3 2.52 (1.15-5.52) 0.021 2.25 (1.02-4.96) 0.044

Age
< 45 – – – –

≥ 45 1.35 (0.76-2.40) 0.312 – –

T

T2 – – – –

T3 1.51 (0.51-4.46) 0.457 – –

T4 1.05 (0.37-2.99) 0.931 – –

EBV

< 1000 – – – –

1000-10000 1.58 (0.66-3.77) 0.302 1.61 (0.67-3.85) 0.285

≥ 10000 3.33 (1.51-7.32) 0.003 3.12 (1.42-6.88) 0.005
EBV, Epstein-Barr virus.
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learning techniques, such as LASSO and Cox regression. By

integrating clinical variables, the aim is to enhance personalized

treatment planning and offer more accurate survival predictions for

patients diagnosed with locally advanced NPC.

The current standard treatment for locally advanced NPC,

including T4 and N3 stages, remains concurrent CRT (17). While

CRT has shown to improve survival rates, the long-term prognosis

for these patients remains suboptimal. High rates of recurrence and

distant metastasis suggest that conventional treatment strategies

may not be sufficient for all patients, underscoring the importance

of developing better prognostic tools to guide treatment decisions

(18). Effective prediction models can potentially identify high-risk

individuals early, enabling more tailored and aggressive

interventions while avoiding unnecessary toxicity in low-

risk patients.

In this study, we leveraged LASSO regression to select the most

influential prognostic factors, followed by Cox regression for

survival analysis. This combination allows for the creation of a

robust and interpretable model, which provides both predictive

power and clinical applicability. LASSO helps mitigate overfitting

by performing variable selection from a broad set of potential

predictors, ensuring that only the most relevant factors are

included in the final model (19, 20). The use of Cox regression

further enhances model interpretability by quantifying the impact

of each variable on survival outcomes (21). Additionally, we utilized
Frontiers in Oncology 05
PDP to visualize the relationship between continuous predictors

(e.g., EBV levels and age) and survival, providing valuable insights

into how these factors influence prognosis. This feature makes the

model more interpretable and clinically relevant, offering a deeper

understanding of patient outcomes (22).

The performance of our model is reflected in its ROC curve,

with AUC values of 0.802, 0.709, and 0.686 for 1, 2, and 3 years,

respectively. This demonstrates good predictive ability and

discrimination power, particularly in the short term, which is

crucial for clinical decision-making. However, the gradual decline

in AUC also highlights the limitations of long-term prediction.

Possible explanations include the increasing influence of

unmeasured factors (such as genetic or immune characteristics),

treatment heterogeneity, and biological variability of the disease

over time, all of which may reduce the accuracy of long-term

prognostic estimation. Despite these limitations, the model

remains clinically valuable: it can help identify high-risk patients

with locally advanced NPC who are prone to recurrence or

metastasis, thereby guiding clinicians in selecting appropriate

treatment regimens and enabling more timely, personalized

interventions. Future models incorporating multi-omics or

immune-related data may further enhance long-term prediction

and improve patient outcomes.

Furthermore, our model may have practical implications in

guiding future treatment strategies. Patients identified by the model
FIGURE 2

Nomogram construction based on N stage and Epstein-Barr virus levels in the training set.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1683501
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2025.1683501
as having poor predicted outcomes could be considered as

candidates for novel therapeutic approaches, such as

immunotherapy (23, 24). Recent studies have shown that PD-1/

PD-L1 inhibitors provide meaningful clinical benefits in recurrent

or metastatic NPC, and ongoing trials are exploring their role in

combination with chemoradiotherapy in locally advanced disease

(25, 26). By integrating prognostic prediction with treatment

selection, our model could help clinicians identify high-risk

patients who may benefit from immunotherapy, thereby

improving individualized treatment planning.

Despite the promising results, several limitations must be

acknowledged (27, 28). Firstly, this study is retrospective, which

introduces potential biases inherent in observational studies. The
Frontiers in Oncology 06
cohort is derived from three tertiary hospitals, which may limit its

generalizability to other regions with different patient populations

and healthcare settings. Additionally, while we included several

clinical variables in the model, the lack of genetic, radiomics, and

immune profiling data could reduce the model’s predictive accuracy.

Importantly, the study only performed internal validation, and the

absence of external validation in independent cohorts limits the

robustness and generalizability of the findings. Moreover, detailed

information on recurrence sites (local, regional, distant) was not

available, which may restrict deeper understanding of prognostic

implications. Finally, treatment heterogeneity across hospitals, such

as variations in radiation doses or chemotherapy regimens, could

influence outcomes and complicate the interpretation of results.
FIGURE 3

The partial dependence plots (PDPs) in the figure illustrate the relationship between different prognostic factors (Age, Epstein-Barr virus, N stage, and
T stage) and progression-free survival (PFS).
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Conclusion

In conclusion, this study presents a novel survival prediction

model for patients with locally advanced NPC, particularly those

with T4 and N3 stages.
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