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Background: Hypopharyngeal squamous cell carcinoma (HSCC), an aggressive

HNSCC subtype characterized by high metastatic potential and poor prognosis,

frequently overexpresses hepatoma-derived growth factor (HDGF), a factor

implicated in tumor progression. This study investigates the functional role of

HDGF in HSCC and its regulatory mechanisms involving epithelial-mesenchymal

transition (EMT) and the AKT/mTOR/VEGF signaling pathway.

Methods: Bioinformatic analysis of TCGA data revealed elevated HDGF

expression in HSCC tissues, significantly correlating with clinical stage. HDGF

expression was depleted in the FaDu HSCC cell line using siRNA. Cell

proliferation, migration, and invasion were assessed using CCK-8, wound

healing, and Transwell assays, respectively. Western blotting evaluated changes

in EMT markers (E-cadherin, N-cadherin, Snail, Slug) and key components of the

AKT/mTOR/VEGF pathway (p-AKT, p-mTOR, VEGFA).

Results: Bioinformatics analysis confirmed HDGF overexpression across HNSCC

subtypes. In FaDu HSCC cells, siRNA-mediated HDGF knockdown significantly

attenuated proliferation, migration, and invasion. Mechanistically, HDGF

depletion reversed EMT progression, evidenced by E-cadherin upregulation

and concurrent N-cadherin, Snail, and Slug downregulation. Western blotting

demonstrated that HDGF knockdown suppressed AKT/mTOR signaling, as

indicated by reduced p-AKT and p-mTOR levels, and decreased

VEGFA expression.

Conclusion: Our findings establish HDGF as a key promoter of HSCC

progression through dual regulation of EMT and AKT/mTOR/VEGF pathways,

suggesting its potential as a therapeutic target. These results provide mechanistic

insights for developing HDGF-targeted strategies against this lethal malignancy,

warranting further clinical exploration.
KEYWORDS

HDGF, hypopharyngeal squamous cell carcinoma, tumorigenic phenotypes, AKT-
mTOR-VEGF signaling, epithelial-mesenchymal transition
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Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks as the

sixth most common malignancy worldwide, encompassing cancers

arising from the squamous epithelium of the oral cavity, oropharynx,

larynx, and hypopharynx (1). Among these, hypopharyngeal squamous

cell carcinoma (HSCC) is particularly aggressive and represents one of

the most lethal HNSCC subtypes (2). Although surgery remains the

primary treatment, outcomes are often poor and frequently result in

functional impairment. Despite multimodal therapy combining surgery,

chemotherapy, and radiotherapy, recurrence rates remain high, with up

to 80% of patients developing cervical metastases after initial surgery

and neck dissection. Emerging evidence suggests molecular targeted

therapy as a promising approach for HSCC, highlighting the crucial

need for identifying novel biomarkers.

Hepatoma-derived growth factor (HDGF), an acidic heparin-

binding growth factor, has been implicated in the progression of

diverse human malignancies, including hepatocellular carcinoma (3,

4), pancreatic cancer, esophageal cancer, gastric cancer (5) gastric

cancer (6–8), colorectal cancer (9–11), and gastrointestinal stromal

tumor (12). HDGF expression is significantly elevated in tumor

tissues compared to adjacent non-tumorous tissues in cancers such

as hepatocellular carcinoma and colorectal cancer. Furthermore, high

HDGF expression correlates with poor prognosis in patients with

hepatocellular carcinoma, pancreatic cancer, cholangiocarcinoma,

gallbladder adenocarcinoma, and esophageal cancer (10). HDGF

promotes proliferation, migration, and invasion in colorectal

cancer, prostate cancer, and bladder cancer (13). However, the role

of HDGF in HSCC progression remains unexplored.

This study aimed to investigate the functional role and

underlying mechanisms of HDGF in HSCC progression. We

performed HDGF knockdown in FaDu HSCC cells and examined

its effects on cell proliferation, migration, and invasion in vitro. We

further investigated alterations in the epithelial-mesenchymal

transition (EMT) process and the AKT/mTOR/VEGF signaling

pathway following HDGF depletion to elucidate its regulatory

mechanisms in HSCC tumorigenic phenotypes.
Materials and methods

Bioinformatic analysis of HDGF in HSCC

HDGF mRNA expression in head and neck cancer was assessed

using The Cancer Genome Atlas (TCGA) datasets. Differential

HDGF expression between normal and HSCC tumor tissues was

analyzed. Additionally, HDGF mRNA expression levels and their

prognostic significance in HNSCC were explored using the Gene

Expression Profiling Interactive Analysis (GEPIA) server.
Abbreviations: cDNA, complementary DNA; EMT, epithelial-mesenchymal

transition; GEPIA, Gene Expression Profiling Interactive Analysis; GFP, green

fluorescence protein; HNSCC, head and neck squamous cell carcinoma; HSCC,

hypopharyngeal squamous cell carcinoma; HDGF, hepatoma-derived growth

factor; lncRNAs, long non-coding RNAs; OD, optical density; qRT-PCR,

quantitative real-time PCR; shRNA, short hairpin RNA.
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Cell culture

The human FaDu HSCC cell line was obtained from the

American Type Cell Collection (ATCC; Manassas, VA, USA).

Cells were maintained in RPMI 1640 medium (Gibco, USA)

supplemented with 10% fetal bovine serum (FBS; Gibco, USA),

100 U/ml penicillin (Sigma-Aldrich, St Louis, MO), and 100 mg/ml

streptomycin (Sigma-Aldrich, St Louis, MO) at 37°C in a

humidified atmosphere with 5% CO2.
Lentiviral transduction

Recombinant lentivirus carrying short hairpin RNA (shRNA)

targeting HDGF and a control lentivirus were purchased from Bio-

Link (Shanghai, China). Cellular transduction was performed

according to the manufacturer’s protocol. Stable transductants

were selected using puromycin (Solarbio, Beijing, China). The

shRNA-HDGF target sequence was 5’-AACCGGCAGAAGG

AGTACAAA-3’, while the scrambled control sequence was

5’-TTCTCCGAACGTGTCACGT-3’ (14).
Quantitative real-time PCR

Total RNA was isolated using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA). Subsequently, 1 mg of RNA was reverse-

transcribed into complementary DNA (cDNA) using the

ReverTra Ace qPCR RT Kit (TOYOBO, Osaka, Japan). qRT-PCR

was performed using SYBR Green Realtime PCR Master Mix

(TOYOBO) on a QuantStudio 5 Real-Time PCR System (Thermo

Fisher Scientific, Waltham, MA, USA). Primers were as follows:

HDGF forward 5’-CTCTTCCCTTACGAGGAATCCA-3’, reverse

5’-CCTTGACAGTAGGGTTGTTCTC-3’; b-actin forward 5’-CAT

GTACGTTGCTATCCAGGC-3’, reverse 5’-CTCCTTAATGT

CACGCACGAT-3’. HDGF mRNA expression levels were

calculated using the 2-DDCt method normalized to b-actin.
CCK-8 cell proliferation assay

Stably transduced FaDu cells were seeded into 96-well plates at

2000 cells/well. Cell viability was assessed after 1, 2, 3, or 4 days

using the CCK-8 solution (Dojindo, Kumamoto, Japan).

Absorbance was measured at 450 nm using a Microplate Reader

(Bio-Rad Laboratories Inc, Hercules, CA, USA) after 1.5 hours of

incubation. Experiments were performed in quintuplicate and

repeated three times.
Colony formation assay

Stably transduced FaDu cells were seeded in 6-well plates at 800

cells/well. After 14 days, colonies were fixed with 4%

paraformaldehyde for 30 minutes and stained with 0.1% crystal
frontiersin.org
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violet for 15 minutes. Colonies containing >50 cells were counted.

Experiments were performed in triplicate and repeated three times.
Wound healing assay

Cells were seeded in 6-well plates and cultured to 70%-80%

confluency. A linear scratch was created using a 200 ml pipette tip.
After washing with PBS to remove debris, wound closure was

monitored at 0, 12, and 24 hours using an inverted microscope.

The wound area was quantified using ImageJ software to calculate

the migration ratio. Experiments were performed in triplicate.
Transwell assay

Cell migration and invasion were assessed using Transwell

chambers (8-mm pore size, Costar, New York, NY) (15). For

migration, cells (3 × 104/well) were seeded in the upper chamber

in serum-free medium; the lower chamber contained medium with

20% FBS. For invasion, the upper chamber was pre-coated with

Matrigel (1:8 dilution; BD Bioscience, San Jose, CA, USA). After 24

hours at 37°C with 5% CO2, migrated/invaded cells on the lower

membrane surface were fixed, stained with crystal violet, and

counted in five random high-power fields (×200). Experiments

were performed in triplicate and repeated three times.
Western blot assay

Total cellular protein was extracted using RIPA buffer

(Beyotime, Shanghai, China) supplemented with 1% 100 mM

PMSF (Solarbio, Beijing, China). Western blotting was performed

as described previously (16). Primary antibodies used were: b-actin
(1:1000, Abcam, Cambridge, MA, USA), HDGF (17), E-cadherin,

N-cadherin, Snail, Slug (all 1:1000, CST, Boston, USA), VEGFA, p-

AKT, p-mTOR (all 1:1000, Abcam). Membranes were incubated

with HRP-conjugated secondary antibodies (1:1000, CST) and

visualized using Western Blotting Luminol Reagent (Santa Cruz,

CA, USA). Experiments were performed in triplicate.
Statistical analysis

Data are presented as mean ± SD. Statistical analyses were

performed using SPSS 22.0 (IBM, USA) and GraphPad Prism 9

(GraphPad Software, USA). Two-way ANOVA was used for CCK-8

assay data. Student’s t-test was used for qRT-PCR, colony

formation, migration, and invasion assays. A p-value < 0.05 was

considered statistically significant.
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Results

HDGF is overexpressed in hypopharyngeal
squamous cell carcinoma

Analysis of TCGA data revealed that HDGF mRNA expression

was significantly higher in HSCC tumor tissues compared to normal

tissues in both unpaired and paired samples (Figures 1A, B).

HDGF expression increased with higher pathological grade

(Figure 1C) and advanced clinical stage (Figure 1D). Database

correlation analysis showed elevated HDGF expression in males

and individuals with a history of alcohol abuse (Figures 1E, F).

Furthermore, HDGF expression was increased in cases with

lymphovascular invasion and following radiation therapy

(Figures 1G, H). GO annotation analysis of the top 30 proteins

most correlated with HDGF in HSCC implicated these proteins in

telomeric DNA binding (molecular function), telomere maintenance

(biological process), and chromosomal regions (cellular component)

(Figures 1I–K) (Supplementary table 1). HDGF showed strong

gene expression correlations in both normal and HSCC

tissues (Figure 1L).
HDGF knockdown suppresses FaDu cell
proliferation and colony formation

HDGF knockdown in FaDu cells was achieved using lentiviral

shRNA. Transduction efficiency exceeded 80%, confirmed by GFP

expression (Figure 2A). Both HDGF mRNA (Figure 2B) and

protein (Figure 2C) levels were significantly reduced. The CCK-8

assay demonstrated that HDGF knockdown markedly

suppressed FaDu cell proliferation compared to control cells

(Figure 2D). Similarly, the colony formation assay revealed a

significant reduction in colony-forming capacity following

HDGF knockdown (Figures 2E, F). These results indicate

that HDGF critically regulates FaDu cell proliferation

and clonogenicity.
HDGF depletion inhibits FaDu cell
migration and invasion

Wound healing assays showed a significant reduction in

the migration ratio of FaDu cells after HDGF knockdown

(Figures 3A, B). Transwell migration assays confirmed a marked

inhibition of migratory ability (Figures 3C, D). Furthermore,

Transwell Matrigel invasion assays demonstrated that HDGF

depletion significantly suppressed the invasive capacity of FaDu cells

(Figures 3E, F). These findings highlight the essential role of HDGF in

regulating FaDu cell migration and invasion.
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FIGURE 1

Expression characteristics and functional enrichment of HDGF in hypopharyngeal squamous cell carcinoma (HSCC). (A) HDGF expression was
significantly higher in HSCC tissues than in normal tissues (P < 0.001). (B) Paired analysis confirmed HDGF upregulation in tumors compared with
matched normal samples (P < 0.001). (C) HDGF expression increased with histologic grade and was highest in G3 tumors (P < 0.001). (D) HDGF
levels elevated with clinical stage and were higher in stage IV than stage I (P < 0.05). (E) HDGF expression was higher in male patients. (G) HDGF
levels were elevated in patients with lymphovascular invasion (P < 0.05). (H) Patients with a history of radiotherapy showed higher HDGF expression
(P < 0.05). (I) GO Molecular Function analysis revealed enrichment in telomeric DNA binding and telomerase RNA binding. (J) GO Biological Process
terms included telomere maintenance, telomere organization, and regulation of chromosomal organization. (K) GO Cellular Component terms
included chromosomal region, centromeric region, kinetochore, condensed chromosome, and telomerase holoenzyme complex. (L) Heatmap of
differentially expressed genes (DEGs) between normal and HSCC tissues. Data are presented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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HDGF knockdown inhibits EMT in FaDu
cells

Western blot analysis revealed that HDGF knockdown in FaDu

cells significantly decreased the expression of the mesenchymal

marker N-cadherin and the EMT transcription factors Snail and

Slug, while increasing the expression of the epithelial marker E-

cadherin (Figures 4A, B). These changes indicate that HDGF

depletion reverses EMT progression.
HDGF knockdown suppresses the AKT/
mTOR/VEGF pathway in FaDu cells

Western blot analysis demonstrated that HDGF knockdown in

FaDu cells significantly decreased the phosphorylation levels of
Frontiers in Oncology 05
AKT (p-AKT) and mTOR (p-mTOR), and suppressed VEGFA

expression (Figures 4C, D). These findings suggest that HDGF

promotes tumor progression by activating the AKT/mTOR/VEGF

signaling pathway.
Discussion

Hypopharyngeal squamous cell carcinoma (HSCC) is an

aggressive HNSCC subtype characterized by high regional metastasis

rates and poor prognosis. The molecular mechanisms driving its

aggressive behavior remain incompletely understood, hindering

effective treatment development. Hepatoma-derived growth factor

(HDGF) has emerged as a key oncogenic factor in various cancers

(12), promoting tumor growth, angiogenesis, and metastasis. However,

its specific role in HSCC progression was previously undefined.
FIGURE 2

Effects of HDGF knockdown on proliferation and colony formation of FaDu cells. (A) Lentiviral transduction efficiency (>80% GFP-positive cells;
magnification, ×200).(B) Relative HDGF mRNA expression in FaDu cells after transduction.(C) HDGF protein expression in FaDu cells after
transduction. (D) CCK-8 assay showing reduced proliferation of FaDu cells after HDGF knockdown.(E, F) Colony formation assay demonstrating
reduced colony formation capacity after HDGF knockdown. Data are mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001.
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Our bioinformatic analysis of TCGA data confirmed HDGF

overexpression in HSCC tissues compared to normal tissues, and

revealed associations with higher grade, advanced stage, male

gender, alcohol abuse, lymphovascular invasion, and post-

radiation status (Figure 1). Functional studies employing siRNA-

mediated HDGF knockdown in FaDu HSCC cells demonstrated its

critical role in promoting malignant phenotypes. In vitro assays

revealed that HDGF depletion significantly attenuated proliferation,

migration, and invasion (Figure 3), aligning with reports linking

HDGF to poor prognosis in head and neck carcinomas (18) and

extending its mechanistic role specifically to HSCC.

Mechanistically, we provide evidence that HDGF depletion

suppresses EMT progression, as evidenced by increased E-
Frontiers in Oncology 06
cadherin and decreased N-cadherin, Snail, and Slug expression

(Figure 4A). This reversion from a mesenchymal to a more

epithelial state is associated with reduced tumor aggressiveness

(19). Furthermore, we identified that HDGF significantly impacts

the AKT/mTOR/VEGF signaling pathway (Figure 4B). HDGF

knockdown suppressed AKT and mTOR phosphorylation and

downregulated VEGFA expression. This pathway is central to

promoting cell survival, proliferation, metabolism (20), and

angiogenesis, processes crucial for HSCC growth and metastasis.

Our findings are consistent with HDGF’s role in activating growth

and angiogenic pathways in other cancers (21).

This study has limitations. First, findings are primarily based on in

vitro cell line models, which may not fully recapitulate the complex in
FIGURE 3

Effects of HDGF depletion on migration and invasion of FaDu cells. (A, B) Wound healing assay (representative images at x100 magnification).
(C, D) Transwell migration assay (representative images at x100 magnification). (E, F) Transwell Matrigel invasion assay (representative images at x100
magnification). HDGF knockdown significantly reduced migration (A-D) and invasion (E, F) capacities. Data are mean ± SD; *P < 0.05, **P < 0.01,
***P < 0.001,****P < 0.0001.
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vivo HSCC microenvironment. Second, while HDGF’s role in the

AKT/mTOR/VEGF pathway was established, potential crosstalk with

other signaling cascades remains unexplored. Future research should

address these aspects for a more comprehensive understanding.

Notably, recent preclinical studies on anti-HDGF antibodies

have provided robust support for our conclusion that “HDGF is an

important therapeutic target.” Research has demonstrated that in

non-small cell lung cancer (NSCLC) xenograft models, HDGF-

specific monoclonal antibodies (such as HDGF-C1 and HDGF-H3)

significantly inhibit tumor growth. It is particularly noteworthy that

in EGFR-mutant NSCLC models, the combination of anti-HDGF

antibodies and osimertinib not only achieved complete or near-

complete tumor regression but also markedly prolonged

progression-free survival (22, 23). The underlying mechanism

may involve synergistic inhibition of the AKT/mTOR and MAPK

pathways—which were also found to be activated in our study (24,

25). Furthermore, anti-HDGF antibodies exhibited significant

efficacy in pancreatic cancer models, with no observable toxicity

across all experimental models (25). These cross-cancer evidences

robustly validate the therapeutic value of targeting HDGF, laying a

solid foundation for developing mono- or combination therapies

involving anti-HDGF antibodies for the treatment of HSCC.
Frontiers in Oncology 07
This study has certain limitations. Firstly, the conclusions are

primarily derived from in vitro cell models, which cannot fully

recapitulate the complex tumor microenvironment in vivo.

Therefore, validating the tumor-promoting role of HDGF using

nude mouse xenograft models represents our primary follow-up

objective. Secondly, although this study provides key evidence

supporting HDGF’s regulation of the AKT/mTOR/VEGF

pathway, more comprehensive mechanistic verification, such as

pathway rescue experiments, remains to be conducted in the

future. Furthermore, exploring the upstream regulators

and broader downstream effector networks of HDGF will

be essential for a comprehensive understanding of its

oncogenic mechanisms.

In conclusion, our study establishes HDGF as a key promoter

of HSCC progression by demonstrating its critical role in driving

proliferation, migration, invasion, EMT, and activation of

the AKT/mTOR/VEGF pathway. These findings strongly

suggest HDGF as a promising therapeutic target for HSCC.

Developing HDGF-specific inhibitors (e.g., small molecules or

antibodies) or incorporating them into combination therapies

holds potential for improving the prognosis of patients with this

aggressive malignancy.
FIGURE 4

Effects of HDGF knockdown on EMT and AKT/mTOR/VEGF signaling in FaDu cells. (A, B) Western blot analysis of EMT-related proteins: N-cadherin,
Snail, and Slug decreased; E-cadherin increased after HDGF knockdown. (C, D) Western blot analysis of AKT/mTOR/VEGF pathway components: p-
AKT, p-mTOR, and VEGFA decreased after HDGF knockdown. Data are mean ± SD; *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001.
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