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Background: This study aimed to preoperatively predict spread through air
spaces (STAS) in stage | lung adenocarcinoma presenting as part-solid and
solid nodules by leveraging clinical features and machine learning models,
thereby guiding surgical decision-making and enhancing patient counseling.
Methods: A total of 473 patients were retrospectively enrolled, including 353
from our center and 120 from an validation cohort. Predictive features were
selected using maximum relevance minimum redundancy (mMRMR) and least
absolute shrinkage and selection operator (LASSO) algorithms. Seven machine
learning models—logistic regression, random forest, support vector machine
(SVM), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), light
gradient boosting machine (LightGBM), and category boosting (CatBoost) —were
developed and evaluated using receiver operating characteristic curves,
calibration plots, and decision curve analysis (DCA). Feature importance was
assessed using Shapley Additive Explanations (SHAP). A web-based nomogram
was constructed for clinical application.

Result: STAS was present in 44.76% of the training set and 50.83% of the
validation cohort. Seven predictors were selected to construct the predictive
models. The XGBoost model demonstrated superior performance with an AUC
of 0.889 (95% Cl, 0.852-0.926) in training and 0.856 (95% CI, 0.789-0.928) in
validation. The calibration curves in training and validation set exhibited good
agreement between the predictions and actual observations. The Decision Curve
Analyses (DCA) provide significant clinical utility. SHAP analysis identified the
most important predictors for STAS as CEA, vascular convergence, proGRP, age,
AFP, smoking history, and CTR.
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Conclusion: The XGBoost model provides robust preoperative prediction of
STAS and may assist clinicians in optimizing surgical strategies for patients with
stage | lung adenocarcinoma.

spread through air spaces, lung adenocarcinoma, machine learning, solid and part solid
component, surgical strategy

Introduction

Lung cancer remains one of the most commonly diagnosed
malignancies and the leading cause of cancer-related mortality
globally. In China, it accounts for approximately 1.06 million new
cases and 0.73 million deaths annually (1). Lung adenocarcinoma
(LUAD) is the predominant histological subtype, comprising
approximately 85% of non-small cell lung cancer (NSCLC) cases
(2, 3). For stage I NSCLC patients undergoing curative RO
resection, 5-year recurrence-free survival (RFS) and overall
survival (OS) range from 62.5%-64.7% and 78.7%-81.9%,
respectively (4). Despite achieving negative resection margins,
early-stage LUAD patients continue to face high locoregional
recurrence rates.

Spread through air spaces (STAS) is a newly recognized form of
invasion in lung cancer, first proposed in the 2015 WHO
classification. It is defined as micropapillary clusters, solid nests,
or single cancer cells infiltrating into air spaces beyond the main
tumor edge (5, 6), STAS is an independent predictor of poor
outcomes in stage I NSCLC and is associated with increased
recurrence and reduced survival (7, 8). It also raises recurrence
risk in LUAD patients treated with limited resection (9, 10).

With advances in imaging technology, lung cancer is being
detected earlier, and smaller nodules are considered suitable for
sublobar resection, providing surgeons with more opportunities to

Abbreviations: AdaBoost, Adaptive boosting; AFP, Alpha-fetoprotein; AUC,
Area under the receiver operating characteristics curve; CA125, Carbohydrate
antigen 125; CatBoost, Categorical boosting; CEA, Carcinoembryonic antigen;
CTR, Consolidation/Tumor Ratio; cyfra21-1, Cytokeratin 19 Fragment 21-1;
DCA, Decision curve analysis; DLCO, Diffusing Capacity of the Lungs for Carbon
Monoxide; FEV1, Forced Expiratory Volume in 1 second; GGO, Pure Ground-
Glass Opacity; LASSO, Least absolute shrinkage and selection operator;
LightGBM, Light Gradient Boosting Machine; LLL, Left Lower Lobe; LUAD,
Lung adenocarcinoma; LUL, Left Upper Lobe; ML, Machine Learning; MLR,
Monocyte to Lymphocyte Ratio; mRMR, Maximum Relevance Minimum
Relevance; NLR, Neutrophil to Lymphocyte Ratio; NSCLC, Non-Small Cell
Lung Cancer; NSE, Neuron-Specific Enolase; OS, Overall survival; PLR, Platelet
to Lymphocyte Ratio; proGRP, Pro-Gastrin-Releasing Peptide; RFS, Recurrence-
Free Survival; RLL, Right Lower Lobe; RML,Right Middle Lobe; RUL, Right
Upper Lobe; SHAP, Shapley Additive Explanations; STAS, Spread Through Air
Spaces; SVM, Support Vector Machine; WBC, White Blood Cell; XGBoost,

Extreme Gradient Boosting.
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choose this approach. providing surgeons with more opportunities
to opt for sublobar resection. However, several studies have shown
that, compared to lobectomy, sublobar resection is associated with
lower RFS and OS in patients with STAS-positive tumors. Patients
who underwent wedge resection had significantly worse RES and
OS than those who underwent lobectomy (11). Thus, lobectomy is
associated with better outcomes for STAS-positive T1 LUAD
compared to sublobar resection (12, 13). Therefore, accurately
selecting the surgical approach preoperatively is critical.

Given the importance of preoperative STAS identification for
optimal surgical decision-making, enhancing the accuracy of these
predictions is crucial for improving patient outcomes. Machine
learning (ML) models have gained significant traction in disease
prediction due to their ability to process high-dimensional data
efficiently (14, 15). However, further optimization and validation of
ML models for preoperative STAS prediction are needed to improve
their clinical applicability.

We developed several ML models for preoperative STAS
prediction using clinical and radiological data from our
institution, followed by external validation in an independent
cohort from another medical center. The primary goal of this
study is to accurately identify STAS preoperatively, facilitating
precise surgical decisions, improving patient prognosis, and
providing valuable insights for clinical treatment strategies.

Materials and methods
Patients

Clinical data were collected from 158 cases of stage I lung
adenocarcinoma with STAS admitted to Northern Jiangsu People’s
Hospital between January 2021 and June 2025. These cases were
compared with clinical data from 195 stage I lung adenocarcinoma
patients without STAS (the flowchart of this study is shown in
Figure 1). This study was approved by the Ethics Committee of
Northern Jiangsu People’s Hospital.

Inclusion criteria
1. Lung adenocarcinoma confirmed by pathology with or
without STAS and single nodule.
2. Solid or part-solid nodule.
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3. No preoperative radiotherapy, chemotherapy or
targeted therapy.

. No history of other malignant tumors.

. No lymph node metastases or distant metastases.

. Complete clinical data and CT images available.

NN U

. Maximum tumor diameter < 4 cm on CT.

Exclusion criteria
1. Rare histological variants of lung adenocarcinoma.
. Pure ground-glass opacity (GGO) nodules.
. Multiple nodules.
. Preoperative radiotherapy, chemotherapy, or targeted

=W N

therapy (neoadjuvant therapy).
. History of other malignancies.
. Incomplete clinical data or unavailable CT images.
. Lymph node metastases or distant metastases.

[ BN B O |

. Maximum tumor diameter on CT images >4cm on CT.

Based on the postoperative pathological results, patients were
classified as either STAS-positive or STAS-negative.

Radiological and histological evaluation

Based on findings in the lung window, the solid component was
defined as a patch that completely obscures the underlying lung
parenchyma and the GGO component was defined as a hazy area of
increased lung attenuation with preserved bronchial and vascular
margins. The part-solid nodule was defined as a lesion containing
both GGO and solid components, solid nodule was defined as a
lesion consisting solely of solid components. In histological
evaluation, we focused on stage I lung adenocarcinoma with
nodules consisting of solid components, excluding pure
GGO nodules.

CT features evaluated included pleural invasion, vascular
invasion, spiculation, lobulation, vascular convergence, pleural
traction, pleural indention, air bronchogram, vacuole, and
consolidation/tumor ratio (CTR). CTR was quantified as the ratio
of the tumor consolidation diameter to the total diameter. These CT
features were defined and assessed according to previous reports
(16-19). Two radiologists with over 10 years of chest imaging
experience validated the reliability of the radiological assessments.
Only features with good inter-observer agreement between the two
radiologists were included in subsequent analyses. Both radiologists
were blinded to the patients’ STAS status.

Clinical data collection

Clinical information was obtained through the hospital’s
medical record system. The clinicopathologic features included
the age at surgery, sex, smoking history, BMI, pathologic tumor
(T) stage (seventh edition of the lung cancer staging system) (20),
tumor location, operative methods, forced expiratory volume in 1 s
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(FEV1), and diffusing capacity of the carbon monoxide (DLCO).
Laboratory findings on admission included serum levels of white
blood cell (WBC), neutrophil, lymphocyte, monocyte, platelet,
albumin, neutrophil to lymphocyte ratio (NLR), monocyte to
lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR),
carbohydrate antigen 125 (CA125), alpha-Fetoprotein (AFP),
carcinoembryonic antigen (CEA), neuron-specific enolase (NSE),
cytokeratin 19 Fragment 21-1(cyfra21-1) and pro-Gastrin-
Releasing Peptide (proGRP) within 2 weeks prior to surgery. In
this study, patients who underwent lobectomy, segmentectomy, or
wedge resection were reviewed. Variables with >30% missingness
were removed. Likewise, patients whose records exceeded this
threshold across candidate predictors were excluded from model
development. For the remaining data, missing values were imputed
using the mode for categorical variables and the mean for
continuous variables.

We aimed to develop a machine learning model to predict the
presence of STAS in stage I lung adenocarcinoma patients using
preoperative indicators. Thus, operative methods were excluded
from the construction of the machine learning model.

External validation

A validation cohort from Wuxi People’s Hospital, affiliated with
Nanjing MedicalFI University, was included for external validation.
This cohort included 120 patients, 59 of whom were pathologically
confirmed as STAS-positive and 61 as STAS-negative, all meeting
the inclusion and exclusion criteria.

Predictive model construction and
evaluation

Maximum relevance minimum redundancy (mRMR) was
applied to the initial feature set to reduce data dimensionality
(21). Subsequently, the least absolute shrinkage and selection
operator (LASSO) logistic regression was employed to identify
key features and develop a predictive model for STAS (22).

To reduce dimensionality while retaining non-redundant
information, we first applied maximum relevance minimum
redundancy (mRMR) using the mRMRe framework (mutual-
information-based relevance with redundancy penalization). We
15 and
solution_count = 1, targeting the binary outcome (STAS positive

used ensemble selection with feature_count =

or negative). The retained candidates were then passed to LASSO
logistic regression (glmnet) with oo = 1. The regularization
parameter A was tuned by 10-fold stratified cross-validation,
minimizing binomial deviance. We used A_min = 0.03469344 for
subsequent selection, yielding seven non-zero predictors (CTR, age,
smoking history, AFP, CEA, proGRP, vascular convergence).
Seven predictive models were constructed, including logistic
regression, random forest, support vector machines (SVM), extreme
gradient boosting (XGBoost), adaptive boosting (AdaBoost), light
gradient boosting machine (LightGBM), and category boosting
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(CatBoost) (23-26) and were trained on the selected clinical
features using stratified cross-validation (primary metric AUC).
Logistic regression (logit link) reported class probabilities without
additional penalties. Random Forest used the Gini criterion with 500
trees and CV-tuned mitry (final mtry = 5). SVM (RBF kernel) tuned C
and 7 (selected: C = 1x10°, y = 1x10°®). XGBoost (objective = binary:
logistic) tuned learning rate (1), tree depth, min_child_weight,
and subsample by 10-fold CV with early stopping, then trained
for nrounds = 1000. AdaBoost used mfinal = 10 based on the training-
error plateau. LightGBM (metric = AUC) used max_depth = 8 and
nrounds = 1000 with leaf/sampling controls chosen by CV. CatBoost
(loss = Logloss, eval_metric = AUC) trained with iterations = 1000,
learning_rate = 0.1, depth = 8, while 12_leaf reg and rsm were tuned
by CV. After hyperparameter tuning within the training set by stratified
10-fold CV (primary metric AUC), each model was refitted on the
full training set and evaluated once on an validation set; we report
both cross-validation and external validation performance.

Model performance was evaluated using area under the receiver
operating characteristics curve (AUC) and decision curve analysis
(DCA) to assess both discriminatory power and clinical utility.
Additionally, Shapley additive explanations (SHAP) analysis was
employed to interpret model results and assess feature importance,
with particular focus on the top-performing machine
learning model.

Statistical methods

Statistical analyses were performed using R software (version
4.3.1). Variables with a missing data rate exceeding 20% and outliers
were excluded, with remaining missing values addressed via
multiple imputation. Continuous variables following a normal
distribution were expressed as mean + standard deviation (x % s)
and compared using the t-test. For non-normally distributed
continuous variables, data were presented as median (25th
percentile, 75th percentile) [M (P25, P75)] and analyzed using the
Mann-Whitney U test. Categorical variables were summarized as
counts and percentages [n (%)] and compared using the chi-square
test or Fisher’s exact test, as appropriate.

Results
Baseline characteristics of patients

A total of 473 stage I lung adenocarcinoma patients, with either
STAS-positive or STAS-negative status, met the eligibility criteria for
this study. These patients were divided into the training set (n = 353;
data from Northern Jiangsu People’s Hospital) and the independent
validation cohort (n = 120; data from Wuxi People’s Hospital, affiliated
with Nanjing Medical University).

In the training set, 158 patients were STAS-positive, accounting
for 44.76%. In the validation set, 61 patients were STAS-positive,
representing 50.83%. Demographic data of all patients were
thoroughly examined before modeling.
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Table 1 summarizes the baseline characteristics and
perioperative serum variables of the 473 patients. Variables such
as age, CEA, CYFRA 21-1, proGRP, NLR, CTR, gender, smoking
history, pleural invasion, and vascular convergence demonstrated
statistically significant differences between groups in the training set
(p< 0.05) but not in the validation set. CEA was the only variable
that showed significant differences in both cohorts.

Selection of variables

We first employed mRMR for initial variable screening to
maximize the correlation between features while minimizing
inter-feature redundancy, followed by LASSO to identify key
STAS-related variables (Figures 2A, B). The selected predictive
variables were: CTR, age, smoking history, AFP, CEA, proGRP,
and vascular convergence.

Model construction and validation

Using the 7 selected variables, seven machine learning
algorithms—logistic regression, random forest, SVM, XGBoost,
AdaBoost, LightGBM, and CatBoost—were employed to construct
and validate predictive models.

the AdaBoost model demonstrated the highest discriminative
ability, with an area under the curve (AUC) of 0.963 (95% CI:
0.947-0.980), along with a sensitivity of 0.886, specificity of 0.908,
positive predictive value (PPV) of 0.886, and negative predictive
value (NPV) of 0.907. However, the Hosmer-Lemeshow test
indicated poor calibration (P = 1.33 x 10'°), suggesting a
significant discrepancy between the predicted probabilities and
the observed outcomes.

In contrast, the XGBoost model exhibited strong and more
balanced performance across both the training and validation sets.
In the training set, XGBoost achieved an AUC of 0.889 (95% CI:
0.852-0.926), with a sensitivity of 0.810, specificity of 0.805, PPV of
0.701, and NPV of 0.840. In the validation cohort, the model
demonstrated an AUC of 0.856 (95% CI: 0.789-0.928), with
sensitivity, specificity, PPV, and NPV of 0.738, 0.881, 0.865, and
0.765, respectively (see Figure 3). Its calibration curve demonstrated
close agreement between observed and predicted risks (Figure 4),
indicating good calibration. A comprehensive summary of all
models is provided in Table 2. The calibration plot demonstrated
close agreement between observed and predicted outcomes,
indicating good predictive accuracy of the model. (see Figure 4).
A comprehensive performance summary for each model is
presented in Table 2.

The DCA revealed all seven models consistently provided a net
benefit greater than 0 across a range of threshold probabilities (0.0
to 0.8), suggesting their potential clinical utility in guiding STAS
prediction decisions (Figure 5). The net benefit rate for all models
remained above 0 in both the training and validation sets. The
XGBoost model maintained a favorable net benefit within the
clinically relevant cost-benefit ratio range (1:4 to 4:1), highlighting
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TABLE 1 Characteristics baseline of patients in train set and validation set.

Train-total STAS _ STA_S_ Validation = STAS _ STA'S'
(n = 353) negative = positive P value -total negative  positive P value

(n=195) (n=158) (n=120) (n=59) (n = 61)
Age, (years) 0.004 0.426
Mean + SD 63.13 (10.01) 61.82 (20.30) | 64.74 (10.15) 64.18 (9.44) 65.08 (9.35) 63.31 (9.52)
Gender, No. (%) 0.012 0.102
Female 186 (52.69) 115 (58.97) 71 (44.94) 57 (47.50) 33 (55.93) 24 (39.34)
male 167 (47.31) 80 (41.03) 87 (55.06) 63 (52.50) 26 (44.07) 37 (60.66)
BMI (Kg/m?) 0.773 0.257
Mean + SD 25.12 (3.42) 25.21 (3.49) 25.01 (3.33) 23.85 (2.73) 23.62 (2.87) 24.08 (2.59)
smoke, No. (%) 0.013 0.187
no 244 (69.12) 146 (74.87) 98 (62.03) 69 (57.50) 38 (64.41) 31 (50.82)
yes 109 (30.88) 49 (25.13) 60 (37.97) 51 (42.50) 21 (35.59) 30 (49.18)
FEV1, (L) 0.612 0.589
Mean + SD 2.33 (0.89) 2.29 (0.63) 2.39 (1.13) 2.34 (0.71) 2.30 (0.64) 2.38 (1.08)
. 0.856 0.785
(mmol/min/kPa)
Mean + SD 6.04 (1.71) 6.01 (1.74) 6.07 (1.68) 6.12 (1.51) 6.10 (1.68) 6.14 (1.81)
CE125, (U/ml) 0.761 0.916
Mean + SD 11.26 (10.47) 10.68 (4.99) 11.97 (14.63) 11.15 (11.46) 9.79 (8.90) 12.48 (13.42)
AFP, (ng/ml) 0.636 0.364
Mean + SD 3.01 (2.42) 3.15 (3.05) 2.83 (1.28) 2.90 (1.33) 2.73 (1.08) 3.06 (1.52)
CEA, (ng/ml) 0.004 0.048
Mean + SD 330 (3.73) 2.83 (2.39) 3.88 (4.86) 3.92 (7.23) 4.38 (7.59) 3.47 (6.88)
NSE, (ng/ml) 0.266 0.209
Mean + SD 13.73 (3.76) 13.92 (4.05) 13.49 (3.36) 11.64 (3.66) 11.35 (3.66) 11.93 (3.67)
cyfra.21.1, (ng/ml) 0.038 0.238
Mean + SD 2.29 (1.01) 2.19 (1.00) 2.41 (1.02) 2.94 (1.41) 2.90 (1.55) 2,99 (1.27)
proGRP, (pg/ml)
Mean + SD 4215 (23.98) 39.16 (21.27) | 45.83 (26.56) 0.002 4122 (18.87) 4224 (23.15) 4023 (13.65) 0.395
WBC, (x10°/L) 0.689 0.283
Mean + SD 5.97 (1.83) 5.96 (1.77) 5.98 (1.90) 5.84 (1.58) 5.61 (1.33) 6.06 (1.78)
Neut, (x10°/L) 0.347 0.389
Mean + SD 3.92 (3.44) 4.01 (4.37) 3.81 (1.72) 3.57 (3.04) 3.19 (0.90) 3.94 (4.15)
L&Tg;i;yte’ 0.093 0.313
Mean + SD 1.69 (0.56) 1.73 (0.52) 1.66 (0.61) 1.84 (0.62) 1.78 (0.62) 1.89 (0.62)
Af:';gﬁ)’; 0.571 0472
Mean + SD 0.39 (0.20) 0.39 (0.17) 0.40 (0.23) 0.49 (0.19) 0.46 (0.14) 0.51 (0.23)
Platelet, (x 10°/L) 0.594 0.781

(Continued)
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TABLE 1 Continued

Train-total STAS . STA.S. Validation = STAS . STA_S_
i = 5531 negative  positive P value -total negative  positive P value
(h=195) (n=158) (h=120) (h=59) (n=61)
Men .50 oy |0 e sy 227 2
Albumin, (g/L) 0.317 0.063
Mean + SD 45.56 (13.87) 44.68 (4.11) 46.65 (20.21) 39.06 (2.70) 39.53 (2.59) 38.61 (2.75)
NLR 0.05 0.852
Mean + SD 2.56 (2.26) 249 (2.53) 2.65 (1.89) 2.09 (1.44) 1.96 (0.80) 2.21 (1.86)
MLR 0.232 0.783
Mean + SD 0.25 (0.13) 0.24 (0.11) 0.26 (0.14) 0.29 (0.16) 0.28 (0.10) 0.30 (0.20)
PLR 0.378 0.350
M .5 w00 2o sy 0B
CTR 0.012 0.219
Mean + SD 0.88 (0.54) 0.84 (0.58) 0.91 (0.48) 0.87 (0.52) 0.84 (0.58) 0.90 (0.48)
Maximum solid
component diameter (cm) 0-214 0.001
1.75 (1.40) 1.72 (1.32) 1.79 (1.48) 1.82 (1.72) 1.57 (1.64) 2.06 (1.66)
T, No. (%) 0.333 0.367
T1A 43 (12.18) 28 (14.36) 15 (9.49) 6 (5.00) 5 (8.47) 1(1.64)
T1B 203 (57.51) 114 (58.46) 89 (56.33) 46 (38.33) 23 (38.98) 23 (37.70)
T1C 71 (20.11) 34 (17.44) 37 (23.42) 46 (38.33) 21 (35.59) 25 (40.98)
T2A 36 (10.20) 19 (9.74) 17 (10.76) 22 (18.33) 10 (16.95) 12 (19.67)
Pleural invasion, No. (%) 0.028 0.322
no 307 (86.97) 177 (90.77) 130 (82.28) 75 (62.50) 40 (67.80) 35 (57.38)
yes 46 (13.03) 18 (9.23) 28 (17.72) 45 (37.50) 19 (32.20) 26 (42.62)
Vascular invasion, No. (%) 0.343 0.013
no 338 (95.75) 189 (96.92) 149 (94.30) 106 (88.33) 57 (96.61) 49 (80.33)
yes 15 (4.25) 6 (3.08) 9 (5.70) 14 (11.67) 2 (3.39) 12 (19.67)
Spiculation, No. (%) 0.237 0.727
no 136 (38.53) 81 (41.54) 55 (34.81) 54 (45.00) 28 (47.46) 26 (42.62)
yes 217 (61.47) 114 (58.46) 103 (65.19) 66 (55.00) 31 (52.54) 35 (57.38)
Lobulation, No. (%) 0.297 0.747
no 98 (27.76) 59 (30.26) 39 (24.68) 80 (66.67) 38 (64.41) 42 (68.85)
yes 255 (72.24) 136 (69.74) 119 (75.32) 40 (33.33) 21 (35.59) 19 (31.15)
Vascular convergence, No. (%) <0.001 0.532
no 88 (24.93) 70 (35.90) 18 (11.39) 77 (64.17) 40 (67.80) 37 (60.66)
yes 265 (75.07) 125 (64.10) 140 (88.61) 43 (35.83) 19 (32.20) 24 (39.34)
Pleural traction, No. (%) 0.685 0.740
no 193 (54.67) 109 (55.90) 84 (53.16) 46 (38.33) 24 (40.68) 22 (36.07)

(Continued)

Frontiers in Oncology 06 frontiersin.org


https://doi.org/10.3389/fonc.2025.1682633
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ren et al.

TABLE 1 Continued

10.3389/fonc.2025.1682633

Train-total STAS . STA.S_ Validation = STAS . STA_S_
i = 5531 negative  positive P value -total negative  positive P value
(h=195) (n=158) (h=120) (h=59) (n=61)
yes 160 (45.33) 86 (44.10) 74 (46.84) 74 (61.67) 35 (59.32) 39 (63.93)
Pleural indentation, No. (%) 0.86 0.826
no 253 (71.67) 141 (72.31) 112 (70.89) 49 (40.83) 23 (38.98) 26 (42.62)
yes 100 (28.33) 54 (27.69) 46 (29.11) 71 (59.17) 36 (61.02) 35 (57.38)
Air bronchogram, No. (%) 0.142 0.881
no 271 (76.77) 156 (80.00) 115 (72.78) 98 (81.67) 49 (83.05) 49 (80.33)
yes 82 (23.23) 39 (20.00) 43 (27.22) 22 (18.33) 10 (16.95) 12 (19.67)
Vacuole, No. (%) 0.841 0.708
no 231 (65.44) 129 (66.15) 102 (64.56) 97 (80.83) 49 (83.05) 48 (78.69)
yes 122 (34.56) 66 (33.85) 56 (35.44) 23 (19.17) 10 (16.95) 13 (21.31)
Tumor location, No. (%) 0.128 0.756
LUL 94 (26.63) 53 (27.18) 41 (25.95) 36 (30.00) 15 (25.42) 21 (34.43)
LLL 78 (22.10) 35 (17.95) 43 (27.22) 22 (18.33) 12 (20.34) 10 (16.39)
RUL 103 (29.18) 64 (32.82) 39 (24.68) 26 (21.67) 15 (25.42) 11 (18.03)
RML 19 (5.38) 8 (4.10) 11 (6.96) 4(3.33) 2 (3.39) 2 (3.28)
RLL 59 (16.71) 35 (17.95) 24 (15.19) 32 (26.67) 15 (25.42) 17 (27.87)
Operative mode, No. (%) <0.001 0.900
wedge resection 50 (14.16) 40 (20.51) 10 (6.33) 17 (14.17) 9 (15.25) 8 (13.11)
sublobar resection 47 (13.31) 29 (14.87) 18 (11.39) 7 (5.83) 3 (5.08) 4 (6.56)
lobectomy 256 (72.52) 126 (64.62) 130 (82.28) 96 (80.00) 47 (79.66) 49 (80.33)

SD, Standard deviation; STAS, Spread through air space; WBC, white blood cell; RLL, Lower Lobe; FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity of the carbon monoxide;
WBC, white blood cell; NLR, neutrophil to lymphocyte ratio; MLR, monocyte to lymphocyte ratio; PLR, platelet to lymphocyte ratio; CA125, carbohydrate antigen 125; AFP, alpha-Fetoprotein;
CEA, carcinoembryonic antigen; NSE, Neuron-Specific Enolase; cyfra21-1, cytokeratin 19 Fragment 21-1; proGRP, pro-Gastrin-Releasing Peptide.

its robustness and practical value in clinical settings. To clarify
threshold selection and clinical use, we focused on 0.20-0.80 as a
prespecified, clinically plausible range based on the accepted trade-
off between missing STAS and unnecessary escalation. Within this
range—particularly around 0.30-0.50—XGBoost offers the most
consistent net benefit, supporting model-guided escalation when
the consequence of missing STAS is considered high, whereas
higher thresholds (20.60) help limit overtreatment.

Taken together, while AdaBoost delivered the highest AUC,
however, its calibration performance was markedly unsatisfactory,
as indicated by the Hosmer-Lemeshow test (P = 1.33x10"°) and
the corresponding calibration curves (see Supplementary Figure 1),
which revealed a considerable discrepancy between predicted and
observed outcomes. In contrast, XGBoost provided a more balanced
performance: it maintained strong discrimination while
demonstrating good calibration, with predicted risks well aligned
with actual probabilities (see Figure 3). From a clinical perspective,
accurate probability estimates are crucial for risk stratification and
surgical decision-making, where over- or underestimation of risk
may lead to inappropriate treatment choices. Therefore, despite its
slightly lower AUC, XGBoost was chosen as the preferred model.
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Model explanation

To enhance clinical interpretability, we used SHAP to quantify
both the direction and magnitude of each feature’s contribution to
the final XGBoost model’s predictions. Figure 6A summarizes
global importance as the mean absolute SHAP value for each
feature, with CEA contributing the most overall, followed by
vascular convergence, proGRP, age, AFP, smoking history, and
CTR. In the beeswarm plot (Figure 6B), features are ordered by
mean absolute SHAP value (global importance). Horizontal
position reflects the SHAP value for each case (positive values
increase the predicted probability of STAS; negative values
decrease it), while color encodes the feature value (yellow =
higher value, purple = lower value). Consistent with the
biological rationale, higher CEA values (yellow points) cluster
toward positive SHAP values, indicating that elevated CEA is
associated with an increased predicted risk of STAS. A similar
positive directionality is observed for vascular convergence and
CTR (higher values tend to push predictions toward higher STAS
probability). proGRP and AFP exhibit modest positive
contributions at higher values, and smoking history (ever vs.
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Data prepartion

Model validation
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patients with confirmed pathology from surgery patients with confirmed pathology from surgery
between between
January 2021 and June 2025 June 2024 and June 2025
AUC
Inclusion criteria
1.Lung adenocarcinoma confirmed by pathology with /without STAS, single nodule
2. Solid nodule or part-solid nodule
3. No preoperative radiotherapy, chemotherapy or targeted therapy
4. No history of other malignant tumors ROC 1
5. No lymph node metastases or distant metastases curve
6. Complete clinical data and CT images
7. Maximum tumor diameter on CT images<4cm
Exclusion criteria
1.Rare histological variants of lung adenocarcinoma The SHAP
2.Pure'ground-glass opacity (GGO) nodule Accuracy funct‘u’)n
3.Multiple nodules was utilized
4.Preoperative radiotherapy, chemotherapy, or for
targeted therapy (neoadjuvant therapy) visualization
5. History of other tumors
6. Incomplete clinical data and unavailable CT images
7. Lymph node metastases or distant metastases
8. maximum tumor diameter on CT images >4cm
Sensitivity
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FIGURE 1
The flow diagram of the study.
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FIGURE 2

Process of selecting variables through LASSO regression. (A) LASSO coefficient profiles across a sequence of log(A) values. The optimal penalty
parameter A was determined via ten-fold cross-validation. (B) Validation of the optimal A, with dotted vertical lines indicating the chosen value.

Seven variables with nonzero coefficients were selected by A. min.
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FIGURE 3

ROC curves for seven machine learning models. (A) Training set, (B) validation set. ROC, receiver operating characteristic.

never) shifts predictions toward higher risk. Age shows a smaller
but directionally consistent effect.

To facilitate clinical utility, a final prediction nomogram was
constructed using the seven predictive variables (CEA, vascular
convergence, proGRP, age, AFP, smoking history, CTR) and
implemented in a web-based application for clinical use. The web
application is accessible online at: https://cuncun.shinyapps.io/
DynNomapp/.

Discussion

This study presents a retrospective analysis of clinical features
associated with STAS in stage I lung adenocarcinoma, utilizing

seven risk factors (CEA, vascular convergence, proGRP, age, AFP,
smoking history, and CTR) to develop predictive models. We
compared seven machine learning models, with AdaBoost
demonstrating the best diagnostic performance. However,
XGBoost exhibited superior discriminatory power and predictive
accuracy, We employed the SHAP function to visualize model
interpretability, thereby enhancing the model’s transparency.

Our study has several advantages (1). Multi-center design: This
is a multi-center retrospective study leveraging preoperative clinical
indicators to predict STAS in stage I lung adenocarcinoma, aiming
to develop a predictive model for assessing STAS risk. (2) Clinical
variables: Unlike radiomics-based studies, the clinical variables (27,
28), used in this model are easily accessible, significantly improving
the model’s generalizability. Additionally, we developed a web-
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TABLE 2 Performance of seven models.

10.3389/fonc.2025.1682633

AUC (95%Cl) Accuracy  Specificity  Sensitivity
logistic regression train 0.719 ( 0.667 - 0.772) 0.677 0.703 0.646 0.710 0.638 0.642
validation 0.586 (0.483 - 0.689) 0.567 0814 0328 0.541 0.645 0.435
random forest train 0.890 ( 0.857 - 0.923) 0.793 0.821 0.759 0.805 0.774 0.767
validation 0.922 (0.886-0.97) 0.867 0.881 0.852 0.865 0.881 0.867
SVM train 0.721 ( 0.667 - 0.774) 0.669 0.672 0.665 0.726 0.621 0.642
validation 0.770 ( 0.686 - 0.853) 0.633 0.898 0377 0.582 0.793 0.511
XGBoost train 0.889 ( 0.852- 0.926) 0.807 0.805 0381 0.840 0.771 0.79
validation 0.859 ( 0.789 - 0.928) 0.808 0.881 0.738 0.765 0.865 0.796
AdaBoost train 0.963 ( 0.947 - 0.980) 0.898 0.908 0.886 0.907 0.886 0.886
validation 0.919 ( 0.866 - 0.972) 0.817 0915 0721 0.761 0.898 0.8
LightGBM train 0.876 (0.838 - 0.913)  0.822 0.831 081 0.853 0.795 0.803
validation 0.788 (0.705 - 0.872)  0.725 0.814 0.639 0.685 0.78 0.703
CatBoost train 0904 (0.872-0935) 0819 0.836 0.797 0.836 0.797 0.797
validation 0.882 (0.8226 - 0.942) | 0.792 0.864 0721 0.750 0.846 0.779

CI, Confidence interval; AUC, Area under the receiver operating characteristics curve; F1, F1 score; SVM, support vector machines; XGBoost, Extreme Gradient Boosting; AdaBoost, adaptive
boosting; LightGBM, light gradient boosting machine; CatBoost, category boosting; NPV, negative predictive value; PPV, positive predictive value.

based nomogram, which facilitates practical use in clinical settings.
(3) Superior interpretability: Compared to other ML models, our
nomogram shows similar diagnostic performance but offers
superior interpretability and operational ease.

STAS has emerged as a critical pathological feature linked to
local recurrence and poor prognosis in lung cancer (10, 29, 30). It is
a powerful independent predictor of recurrence and prognosis in
stage I lung adenocarcinoma. STAS-positive patients exhibit
significantly worse postoperative outcomes than STAS-negative
patients in stage IA, with prognosis approaching that of stage IB

patients (31, 32). STAS also predicts recurrence and prognosis in
stage I lung squamous cell carcinoma, although this association
does not extend to stages II-III (8). Radiologically, the presence of
solid components correlates with higher STAS risk, with a threefold
increase in STAS risk for every 1% increase in the solid component
of the tumor (33).

Surgical outcomes are significantly influenced by STAS. In
TINOMO lung adenocarcinoma, patients with STAS who undergo
sublobar resection have higher recurrence rates and lung cancer-
specific mortality than those treated with lobectomy (34).
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XGBoost model interpretability using SHAP.SHAP summary bar plot ranking feature importance (A). SHAP summary dot plot illustrating feature
contributions (B). Each dot represents an individual patient’'s SHAP value for a given feature, with color intensity indicating the feature’s actual value.

Higher SHAP values reflect an increased probability of STAS positivity.

Moreover, among sublobar approaches, wedge resection is
associated with inferior OS and RFS compared with
segmentectomy or lobectomy (11). Therefore, accurate
preoperative identification of STAS-positive patients is crucial for
surgical decision-making—particularly when considering sublobar
resection—as failure to recognize STAS preoperatively may lead to
undertreatment and a substantially increased risk of recurrence.
Patients at high predicted risk may be considered for lobectomy to
mitigate recurrence risk.

Our study identified several predictive factors, including
baseline characteristics, CT imaging features and tumor markers,
Smoking, the most significant risk factor for lung cancer, has been
linked to increased STAS risk, particularly in older patients (10, 32).
However, the exact relationship between smoking, age, and STAS
positivity remains unclear and warrants further investigation.

Tumor markers, including CEA, proGRP, AFP reflect tumor
biology and systemic disease burden (35). CEA, a glycoprotein
associated with cell adhesion, is typically absent in healthy adult
blood (36). Our feature interpretability analysis revealed CEA as the
most significant factor in the XGBoost model, which is consistent
with findings from other studies (37, 38). High CEA expression can
promote epithelial-mesenchymal transition (EMT) by modulating
various signaling molecules within the EMT pathway. During EMT,
tumor cells lose epithelial adhesion markers and gain mesenchymal
markers, enhancing motility and invasiveness, which in turn
increases STAS likelihood (31, 39).

ProGRP plays a vital role in diagnosing and subtyping lung
cancer (40), particularly in small cell lung cancer(SCLC). It has been
widely applied as a biomarker for SCLC diagnosis, monitoring, and
evaluation of treatment response (41, 42), and is also considered an
effective marker for diagnosing lung neuroendocrine neoplasms
(43). Recent studies further suggest that ProGRP, when combined

Frontiers in Oncology

with artificial intelligence approaches, can accurately predict lung
cancer risk (44). Nevertheless, the role of ProGRP in lung
adenocarcinoma remains insufficiently understood, and further
research is warranted to clarify its potential diagnostic and
prognostic value.

AFP is a glycoprotein originally identified as the first oncoprotein
and is now widely used as a biomarker in hepatocellular carcinoma
screening (45, 46), Elevated serum AFP levels have also been reported
in some patients with primary lung cancer (47, 48), and extremely
high concentrations are a distinguishing feature of hepatoid
adenocarcinoma of the lung (49), However, the intrinsic
relationship between AFP and lung adenocarcinoma remains
poorly understood and warrants further investigation.

Vascular convergence has been identified as a strong indicator
of STAS, appearing frequently in STAS-positive patients (50, 51).

The aggressiveness of lung cancer is also linked to the
proportion of solid tumor components observed on CT, a higher
solid component indicates a more significant, CTR have a positive
correlation with STAS (32, 52) and as the most accurate CT
characteristic for forecasting STAS in lung adenocarcinomas
measuring <2 cm (53). Our research shows that an increase in
solid components is an independent predictor of STAS, significantly
heightening the risk, consistent with previous studies.

In this study, we utilized clinical baseline characteristics,
imaging characteristics and tumor markers to develop various
machine learning models to preoperatively predict the presence of
STAS preoperatively. the XGBoost model, which effectively
manages high-dimensional data and complex interactions,
showed superior performance, with the predicted values aligning
closely with actual results. The SHAP algorithm was used to
enhance model interpretability, making the results more
accessible to clinicians.
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Previous studies based on CT radiomics models have faced
challenges due to the low incidence of STAS and the typically
single-center design of such studies, limiting their
generalizability. Multi-center studies have also struggled with
robustness (28, 54).

Additionally, radiomics models often suffer from a lack of
interpretability, creating a “black box” effect that reduces clinical
confidence. In contrast, the clinical variables in our model are
derived from preoperative data and CT images, which are easily
accessible. The use of the SHAP algorithm further enhances
interpretability, and the model can be accessed through a web-
based platform, improving clinical applicability.

Nonetheless, this study has several limitations. First, the
retrospective design introduces potential selection bias,
highlighting the need for prospective validation. Second, although
external validation was performed, it was derived from a single-
center cohort, which limits the generalizability of the findings.
Third, the relatively small sample size raises concerns about
potential overfitting of the model, and the lack of long-term
follow-up further restricts the strength of the conclusions. In
addition, pure GGO nodules and patients with multiple nodules
were excluded; future investigations should develop strategies to
better evaluate STAS in these subgroups. Overall, larger multi-
center prospective studies with extended follow-up are required to
confirm and extend our findings. However, the web-based tool
developed in this study has not yet undergone prospective, multi-
center validation or formal clinical impact assessment, and thus its
clinical applicability remains preliminary. At this stage, it should be
regarded as a research prototype rather than a tool to guide
individual patient care.

The predictive models based on XGBoost regression
demonstrated significant preoperative predictive accuracy for
STAS in stage I LUAD solid and part-solid nodules. The
application of SHAP analysis augmented the model’s
interpretability by establishing associations between predictions
and relevant clinical variables, thereby enhancing its clinical
applicability. This interpretable model offers a promising tool for
personalized preoperative surgical planning and tailored
postoperative management.
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