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Development and validation
of machine learning models
for predicting STAS in
stage I lung adenocarcinoma
with part-solid and solid
nodules: a two-center study
Qing-Lin Ren1†, Liu Lin2†, Kai Chu3, Xin-Rong Xu4,
Hui-Jun Wang1, Jun Wu4, Jin-Zhi You5, Jun-Xi Hu4,
Xiao-Lin Wang4* and Yu-Sheng Shu4*

1Department of Graduate School, Dalian Medical University, Dalian, China, 2Department of Thoracic
Surgery, Wuxi People’s Hospital, Wuxi, China, 3Department of Graduate School, Xuzhou Medical
University, Xuzhou, China, 4Department of Thoracic Surgery, Northern Jiangsu People’s Hospital,
Yangzhou, China, 5Department of Thoracic Surgery, The Affiliated Suqian Hospital of Xuzhou Medical
University, Suqian, China
Background: This study aimed to preoperatively predict spread through air

spaces (STAS) in stage I lung adenocarcinoma presenting as part-solid and

solid nodules by leveraging clinical features and machine learning models,

thereby guiding surgical decision-making and enhancing patient counseling.

Methods: A total of 473 patients were retrospectively enrolled, including 353

from our center and 120 from an validation cohort. Predictive features were

selected using maximum relevance minimum redundancy (mRMR) and least

absolute shrinkage and selection operator (LASSO) algorithms. Seven machine

learning models—logistic regression, random forest, support vector machine

(SVM), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), light

gradient boosting machine (LightGBM), and category boosting (CatBoost)—were

developed and evaluated using receiver operating characteristic curves,

calibration plots, and decision curve analysis (DCA). Feature importance was

assessed using Shapley Additive Explanations (SHAP). A web-based nomogram

was constructed for clinical application.

Result: STAS was present in 44.76% of the training set and 50.83% of the

validation cohort. Seven predictors were selected to construct the predictive

models. The XGBoost model demonstrated superior performance with an AUC

of 0.889 (95% CI, 0.852–0.926) in training and 0.856 (95% CI, 0.789–0.928) in

validation. The calibration curves in training and validation set exhibited good

agreement between the predictions and actual observations. The Decision Curve

Analyses (DCA) provide significant clinical utility. SHAP analysis identified the

most important predictors for STAS as CEA, vascular convergence, proGRP, age,

AFP, smoking history, and CTR.
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Conclusion: The XGBoost model provides robust preoperative prediction of

STAS and may assist clinicians in optimizing surgical strategies for patients with

stage I lung adenocarcinoma.
KEYWORDS

spread through air spaces, lung adenocarcinoma, machine learning, solid and part solid
component, surgical strategy
Introduction

Lung cancer remains one of the most commonly diagnosed

malignancies and the leading cause of cancer-related mortality

globally. In China, it accounts for approximately 1.06 million new

cases and 0.73 million deaths annually (1). Lung adenocarcinoma

(LUAD) is the predominant histological subtype, comprising

approximately 85% of non-small cell lung cancer (NSCLC) cases

(2, 3). For stage I NSCLC patients undergoing curative R0

resection, 5-year recurrence-free survival (RFS) and overall

survival (OS) range from 62.5%–64.7% and 78.7%–81.9%,

respectively (4). Despite achieving negative resection margins,

early-stage LUAD patients continue to face high locoregional

recurrence rates.

Spread through air spaces (STAS) is a newly recognized form of

invasion in lung cancer, first proposed in the 2015 WHO

classification. It is defined as micropapillary clusters, solid nests,

or single cancer cells infiltrating into air spaces beyond the main

tumor edge (5, 6), STAS is an independent predictor of poor

outcomes in stage I NSCLC and is associated with increased

recurrence and reduced survival (7, 8). It also raises recurrence

risk in LUAD patients treated with limited resection (9, 10).

With advances in imaging technology, lung cancer is being

detected earlier, and smaller nodules are considered suitable for

sublobar resection, providing surgeons with more opportunities to
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choose this approach. providing surgeons with more opportunities

to opt for sublobar resection. However, several studies have shown

that, compared to lobectomy, sublobar resection is associated with

lower RFS and OS in patients with STAS-positive tumors. Patients

who underwent wedge resection had significantly worse RFS and

OS than those who underwent lobectomy (11). Thus, lobectomy is

associated with better outcomes for STAS-positive T1 LUAD

compared to sublobar resection (12, 13). Therefore, accurately

selecting the surgical approach preoperatively is critical.

Given the importance of preoperative STAS identification for

optimal surgical decision-making, enhancing the accuracy of these

predictions is crucial for improving patient outcomes. Machine

learning (ML) models have gained significant traction in disease

prediction due to their ability to process high-dimensional data

efficiently (14, 15). However, further optimization and validation of

MLmodels for preoperative STAS prediction are needed to improve

their clinical applicability.

We developed several ML models for preoperative STAS

prediction using clinical and radiological data from our

institution, followed by external validation in an independent

cohort from another medical center. The primary goal of this

study is to accurately identify STAS preoperatively, facilitating

precise surgical decisions, improving patient prognosis, and

providing valuable insights for clinical treatment strategies.
Materials and methods

Patients

Clinical data were collected from 158 cases of stage I lung

adenocarcinoma with STAS admitted to Northern Jiangsu People’s

Hospital between January 2021 and June 2025. These cases were

compared with clinical data from 195 stage I lung adenocarcinoma

patients without STAS (the flowchart of this study is shown in

Figure 1). This study was approved by the Ethics Committee of

Northern Jiangsu People’s Hospital.

Inclusion criteria

1. Lung adenocarcinoma confirmed by pathology with or

without STAS and single nodule.

2. Solid or part-solid nodule.
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3. No preoperative radiotherapy, chemotherapy or

targeted therapy.

4. No history of other malignant tumors.

5. No lymph node metastases or distant metastases.

6. Complete clinical data and CT images available.

7. Maximum tumor diameter ≤ 4 cm on CT.
Exclusion criteria

1. Rare histological variants of lung adenocarcinoma.

2. Pure ground-glass opacity (GGO) nodules.

3. Multiple nodules.

4. Preoperative radiotherapy, chemotherapy, or targeted

therapy (neoadjuvant therapy).

5. History of other malignancies.

6. Incomplete clinical data or unavailable CT images.

7. Lymph node metastases or distant metastases.

8. Maximum tumor diameter on CT images >4cm on CT.
Based on the postoperative pathological results, patients were

classified as either STAS-positive or STAS-negative.
Radiological and histological evaluation

Based on findings in the lung window, the solid component was

defined as a patch that completely obscures the underlying lung

parenchyma and the GGO component was defined as a hazy area of

increased lung attenuation with preserved bronchial and vascular

margins. The part-solid nodule was defined as a lesion containing

both GGO and solid components, solid nodule was defined as a

lesion consisting solely of solid components. In histological

evaluation, we focused on stage I lung adenocarcinoma with

nodules consisting of solid components, excluding pure

GGO nodules.

CT features evaluated included pleural invasion, vascular

invasion, spiculation, lobulation, vascular convergence, pleural

traction, pleural indention, air bronchogram, vacuole, and

consolidation/tumor ratio (CTR). CTR was quantified as the ratio

of the tumor consolidation diameter to the total diameter. These CT

features were defined and assessed according to previous reports

(16–19). Two radiologists with over 10 years of chest imaging

experience validated the reliability of the radiological assessments.

Only features with good inter-observer agreement between the two

radiologists were included in subsequent analyses. Both radiologists

were blinded to the patients’ STAS status.
Clinical data collection

Clinical information was obtained through the hospital’s

medical record system. The clinicopathologic features included

the age at surgery, sex, smoking history, BMI, pathologic tumor

(T) stage (seventh edition of the lung cancer staging system) (20),

tumor location, operative methods, forced expiratory volume in 1 s
tiers in Oncology 03
(FEV1), and diffusing capacity of the carbon monoxide (DLCO).

Laboratory findings on admission included serum levels of white

blood cell (WBC), neutrophil, lymphocyte, monocyte, platelet,

albumin, neutrophil to lymphocyte ratio (NLR), monocyte to

lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR),

carbohydrate antigen 125 (CA125), alpha-Fetoprotein (AFP),

carcinoembryonic antigen (CEA), neuron-specific enolase (NSE),

cytokeratin 19 Fragment 21-1(cyfra21-1) and pro-Gastrin-

Releasing Peptide (proGRP) within 2 weeks prior to surgery. In

this study, patients who underwent lobectomy, segmentectomy, or

wedge resection were reviewed. Variables with >30% missingness

were removed. Likewise, patients whose records exceeded this

threshold across candidate predictors were excluded from model

development. For the remaining data, missing values were imputed

using the mode for categorical variables and the mean for

continuous variables.

We aimed to develop a machine learning model to predict the

presence of STAS in stage I lung adenocarcinoma patients using

preoperative indicators. Thus, operative methods were excluded

from the construction of the machine learning model.
External validation

A validation cohort fromWuxi People’s Hospital, affiliated with

Nanjing MedicalFI University, was included for external validation.

This cohort included 120 patients, 59 of whom were pathologically

confirmed as STAS-positive and 61 as STAS-negative, all meeting

the inclusion and exclusion criteria.
Predictive model construction and
evaluation

Maximum relevance minimum redundancy (mRMR) was

applied to the initial feature set to reduce data dimensionality

(21). Subsequently, the least absolute shrinkage and selection

operator (LASSO) logistic regression was employed to identify

key features and develop a predictive model for STAS (22).

To reduce dimensionality while retaining non-redundant

information, we first applied maximum relevance minimum

redundancy (mRMR) using the mRMRe framework (mutual-

information–based relevance with redundancy penalization). We

used ensemble selection with feature_count = 15 and

solution_count = 1, targeting the binary outcome (STAS positive

or negative). The retained candidates were then passed to LASSO

logistic regression (glmnet) with a = 1. The regularization

parameter l was tuned by 10-fold stratified cross-validation,

minimizing binomial deviance. We used l_min = 0.03469344 for

subsequent selection, yielding seven non-zero predictors (CTR, age,

smoking history, AFP, CEA, proGRP, vascular convergence).

Seven predictive models were constructed, including logistic

regression, random forest, support vector machines (SVM), extreme

gradient boosting (XGBoost), adaptive boosting (AdaBoost), light

gradient boosting machine (LightGBM), and category boosting
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(CatBoost) (23–26) and were trained on the selected clinical

features using stratified cross-validation (primary metric AUC).

Logistic regression (logit link) reported class probabilities without

additional penalties. Random Forest used the Gini criterion with 500

trees and CV-tuned mtry (final mtry = 5). SVM (RBF kernel) tuned C

and g (selected: C = 1×106, g = 1×10-6). XGBoost (objective = binary:

logistic) tuned learning rate (h), tree depth, min_child_weight,

and subsample by 10-fold CV with early stopping, then trained

for nrounds = 1000. AdaBoost used mfinal = 10 based on the training-

error plateau. LightGBM (metric = AUC) used max_depth = 8 and

nrounds = 1000 with leaf/sampling controls chosen by CV. CatBoost

(loss = Logloss, eval_metric = AUC) trained with iterations = 1000,

learning_rate = 0.1, depth = 8, while l2_leaf_reg and rsm were tuned

by CV. After hyperparameter tuning within the training set by stratified

10-fold CV (primary metric AUC), each model was refitted on the

full training set and evaluated once on an validation set; we report

both cross-validation and external validation performance.

Model performance was evaluated using area under the receiver

operating characteristics curve (AUC) and decision curve analysis

(DCA) to assess both discriminatory power and clinical utility.

Additionally, Shapley additive explanations (SHAP) analysis was

employed to interpret model results and assess feature importance,

with particular focus on the top-performing machine

learning model.
Statistical methods

Statistical analyses were performed using R software (version

4.3.1). Variables with a missing data rate exceeding 20% and outliers

were excluded, with remaining missing values addressed via

multiple imputation. Continuous variables following a normal

distribution were expressed as mean ± standard deviation (x ± s)

and compared using the t-test. For non-normally distributed

continuous variables, data were presented as median (25th

percentile, 75th percentile) [M (P25, P75)] and analyzed using the

Mann-Whitney U test. Categorical variables were summarized as

counts and percentages [n (%)] and compared using the chi-square

test or Fisher’s exact test, as appropriate.
Results

Baseline characteristics of patients

A total of 473 stage I lung adenocarcinoma patients, with either

STAS-positive or STAS-negative status, met the eligibility criteria for

this study. These patients were divided into the training set (n = 353;

data from Northern Jiangsu People’s Hospital) and the independent

validation cohort (n = 120; data fromWuxi People’s Hospital, affiliated

with Nanjing Medical University).

In the training set, 158 patients were STAS-positive, accounting

for 44.76%. In the validation set, 61 patients were STAS-positive,

representing 50.83%. Demographic data of all patients were

thoroughly examined before modeling.
Frontiers in Oncology 04
Table 1 summarizes the baseline characteristics and

perioperative serum variables of the 473 patients. Variables such

as age, CEA, CYFRA 21-1, proGRP, NLR, CTR, gender, smoking

history, pleural invasion, and vascular convergence demonstrated

statistically significant differences between groups in the training set

(p< 0.05) but not in the validation set. CEA was the only variable

that showed significant differences in both cohorts.
Selection of variables

We first employed mRMR for initial variable screening to

maximize the correlation between features while minimizing

inter-feature redundancy, followed by LASSO to identify key

STAS-related variables (Figures 2A, B). The selected predictive

variables were: CTR, age, smoking history, AFP, CEA, proGRP,

and vascular convergence.
Model construction and validation

Using the 7 selected variables, seven machine learning

algorithms—logistic regression, random forest, SVM, XGBoost,

AdaBoost, LightGBM, and CatBoost—were employed to construct

and validate predictive models.

the AdaBoost model demonstrated the highest discriminative

ability, with an area under the curve (AUC) of 0.963 (95% CI:

0.947–0.980), along with a sensitivity of 0.886, specificity of 0.908,

positive predictive value (PPV) of 0.886, and negative predictive

value (NPV) of 0.907. However, the Hosmer-Lemeshow test

indicated poor calibration (P = 1.33 × 10-15), suggesting a

significant discrepancy between the predicted probabilities and

the observed outcomes.

In contrast, the XGBoost model exhibited strong and more

balanced performance across both the training and validation sets.

In the training set, XGBoost achieved an AUC of 0.889 (95% CI:

0.852–0.926), with a sensitivity of 0.810, specificity of 0.805, PPV of

0.701, and NPV of 0.840. In the validation cohort, the model

demonstrated an AUC of 0.856 (95% CI: 0.789–0.928), with

sensitivity, specificity, PPV, and NPV of 0.738, 0.881, 0.865, and

0.765, respectively (see Figure 3). Its calibration curve demonstrated

close agreement between observed and predicted risks (Figure 4),

indicating good calibration. A comprehensive summary of all

models is provided in Table 2. The calibration plot demonstrated

close agreement between observed and predicted outcomes,

indicating good predictive accuracy of the model. (see Figure 4).

A comprehensive performance summary for each model is

presented in Table 2.

The DCA revealed all seven models consistently provided a net

benefit greater than 0 across a range of threshold probabilities (0.0

to 0.8), suggesting their potential clinical utility in guiding STAS

prediction decisions (Figure 5). The net benefit rate for all models

remained above 0 in both the training and validation sets. The

XGBoost model maintained a favorable net benefit within the

clinically relevant cost-benefit ratio range (1:4 to 4:1), highlighting
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TABLE 1 Characteristics baseline of patients in train set and validation set.

Train-total
(n = 353)

STAS
negative
(n = 195)

STAS
positive
(n = 158)

P value
Validation
-total
(n = 120)

STAS
negative
(n = 59)

STAS
positive
(n = 61)

P value

Age, (years) 0.004 0.426

Mean ± SD 63.13 (10.01) 61.82 (20.30) 64.74 (10.15) 64.18 (9.44) 65.08 (9.35) 63.31 (9.52)

Gender, No. (%) 0.012 0.102

Female 186 (52.69) 115 (58.97) 71 (44.94) 57 (47.50) 33 (55.93) 24 (39.34)

male 167 (47.31) 80 (41.03) 87 (55.06) 63 (52.50) 26 (44.07) 37 (60.66)

BMI (Kg/m2) 0.773 0.257

Mean ± SD 25.12 (3.42) 25.21 (3.49) 25.01 (3.33) 23.85 (2.73) 23.62 (2.87) 24.08 (2.59)

smoke, No. (%) 0.013 0.187

no 244 (69.12) 146 (74.87) 98 (62.03) 69 (57.50) 38 (64.41) 31 (50.82)

yes 109 (30.88) 49 (25.13) 60 (37.97) 51 (42.50) 21 (35.59) 30 (49.18)

FEV1, (L) 0.612 0.589

Mean ± SD 2.33 (0.89) 2.29 (0.63) 2.39 (1.13) 2.34 (0.71) 2.30 (0.64) 2.38 (1.08)

DLCO,
(mmol/min/kPa)

0.856 0.785

Mean ± SD 6.04 (1.71) 6.01 (1.74) 6.07 (1.68) 6.12 (1.51) 6.10 (1.68) 6.14 (1.81)

CE125, (U/ml) 0.761 0.916

Mean ± SD 11.26 (10.47) 10.68 (4.99) 11.97 (14.63) 11.15 (11.46) 9.79 (8.90) 12.48 (13.42)

AFP, (ng/ml) 0.636 0.364

Mean ± SD 3.01 (2.42) 3.15 (3.05) 2.83 (1.28) 2.90 (1.33) 2.73 (1.08) 3.06 (1.52)

CEA, (ng/ml) 0.004 0.048

Mean ± SD 3.30 (3.73) 2.83 (2.39) 3.88 (4.86) 3.92 (7.23) 4.38 (7.59) 3.47 (6.88)

NSE, (ng/ml) 0.266 0.209

Mean ± SD 13.73 (3.76) 13.92 (4.05) 13.49 (3.36) 11.64 (3.66) 11.35 (3.66) 11.93 (3.67)

cyfra.21.1, (ng/ml) 0.038 0.238

Mean ± SD 2.29 (1.01) 2.19 (1.00) 2.41 (1.02) 2.94 (1.41) 2.90 (1.55) 2.99 (1.27)

proGRP, (pg/ml)

Mean ± SD 42.15 (23.98) 39.16 (21.27) 45.83 (26.56) 0.002 41.22 (18.87) 42.24 (23.15) 40.23 (13.65) 0.395

WBC, (×109/L) 0.689 0.283

Mean ± SD 5.97 (1.83) 5.96 (1.77) 5.98 (1.90) 5.84 (1.58) 5.61 (1.33) 6.06 (1.78)

Neut, (×109/L) 0.347 0.389

Mean ± SD 3.92 (3.44) 4.01 (4.37) 3.81 (1.72) 3.57 (3.04) 3.19 (0.90) 3.94 (4.15)

Lymphocyte,
(×109/L)

0.093 0.313

Mean ± SD 1.69 (0.56) 1.73 (0.52) 1.66 (0.61) 1.84 (0.62) 1.78 (0.62) 1.89 (0.62)

Monocyte,
(× 109/L)

0.571 0.472

Mean ± SD 0.39 (0.20) 0.39 (0.17) 0.40 (0.23) 0.49 (0.19) 0.46 (0.14) 0.51 (0.23)

Platelet, (× 109/L) 0.594 0.781

(Continued)
F
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TABLE 1 Continued

Train-total
(n = 353)

STAS
negative
(n = 195)

STAS
positive
(n = 158)

P value
Validation
-total
(n = 120)

STAS
negative
(n = 59)

STAS
positive
(n = 61)

P value

Mean ± SD 190.08 (62.55)
193.10
(65.32)

186.35
(58.93)

213.53 (61.84)
212.73
(52.61)

214.31
(70.06)

Albumin, (g/L) 0.317 0.063

Mean ± SD 45.56 (13.87) 44.68 (4.11) 46.65 (20.21) 39.06 (2.70) 39.53 (2.59) 38.61 (2.75)

NLR 0.05 0.852

Mean ± SD 2.56 (2.26) 2.49 (2.53) 2.65 (1.89) 2.09 (1.44) 1.96 (0.80) 2.21 (1.86)

MLR 0.232 0.783

Mean ± SD 0.25 (0.13) 0.24 (0.11) 0.26 (0.14) 0.29 (0.16) 0.28 (0.10) 0.30 (0.20)

PLR 0.378 0.350

Mean ± SD 120.12 (47.88)
118.19
(46.27)

122.49
(49.84)

127.27 (54.44)
131.45
(55.08)

123.22
(53.96)

CTR 0.012 0.219

Mean ± SD 0.88 (0.54) 0.84 (0.58) 0.91 (0.48) 0.87 (0.52) 0.84 (0.58) 0.90 (0.48)

Maximum solid
component diameter (cm)

0.214 0.001

1.75 (1.40) 1.72 (1.32) 1.79 (1.48) 1.82 (1.72) 1.57 (1.64) 2.06 (1.66)

T, No. (%) 0.333 0.367

T1A 43 (12.18) 28 (14.36) 15 (9.49) 6 (5.00) 5 (8.47) 1 (1.64)

T1B 203 (57.51) 114 (58.46) 89 (56.33) 46 (38.33) 23 (38.98) 23 (37.70)

T1C 71 (20.11) 34 (17.44) 37 (23.42) 46 (38.33) 21 (35.59) 25 (40.98)

T2A 36 (10.20) 19 (9.74) 17 (10.76) 22 (18.33) 10 (16.95) 12 (19.67)

Pleural invasion, No. (%) 0.028 0.322

no 307 (86.97) 177 (90.77) 130 (82.28) 75 (62.50) 40 (67.80) 35 (57.38)

yes 46 (13.03) 18 (9.23) 28 (17.72) 45 (37.50) 19 (32.20) 26 (42.62)

Vascular invasion, No. (%) 0.343 0.013

no 338 (95.75) 189 (96.92) 149 (94.30) 106 (88.33) 57 (96.61) 49 (80.33)

yes 15 (4.25) 6 (3.08) 9 (5.70) 14 (11.67) 2 (3.39) 12 (19.67)

Spiculation, No. (%) 0.237 0.727

no 136 (38.53) 81 (41.54) 55 (34.81) 54 (45.00) 28 (47.46) 26 (42.62)

yes 217 (61.47) 114 (58.46) 103 (65.19) 66 (55.00) 31 (52.54) 35 (57.38)

Lobulation, No. (%) 0.297 0.747

no 98 (27.76) 59 (30.26) 39 (24.68) 80 (66.67) 38 (64.41) 42 (68.85)

yes 255 (72.24) 136 (69.74) 119 (75.32) 40 (33.33) 21 (35.59) 19 (31.15)

Vascular convergence, No. (%) <0.001 0.532

no 88 (24.93) 70 (35.90) 18 (11.39) 77 (64.17) 40 (67.80) 37 (60.66)

yes 265 (75.07) 125 (64.10) 140 (88.61) 43 (35.83) 19 (32.20) 24 (39.34)

Pleural traction, No. (%) 0.685 0.740

no 193 (54.67) 109 (55.90) 84 (53.16) 46 (38.33) 24 (40.68) 22 (36.07)

(Continued)
F
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its robustness and practical value in clinical settings. To clarify

threshold selection and clinical use, we focused on 0:20 – 0:80 as a

prespecified, clinically plausible range based on the accepted trade-

off between missing STAS and unnecessary escalation. Within this

range—particularly around 0.30–0.50—XGBoost offers the most

consistent net benefit, supporting model-guided escalation when

the consequence of missing STAS is considered high, whereas

higher thresholds (≥0.60) help limit overtreatment.

Taken together, while AdaBoost delivered the highest AUC,

however, its calibration performance was markedly unsatisfactory,

as indicated by the Hosmer–Lemeshow test (P = 1.33×10-15) and

the corresponding calibration curves (see Supplementary Figure 1),

which revealed a considerable discrepancy between predicted and

observed outcomes. In contrast, XGBoost provided a more balanced

performance: it maintained strong discrimination while

demonstrating good calibration, with predicted risks well aligned

with actual probabilities (see Figure 3). From a clinical perspective,

accurate probability estimates are crucial for risk stratification and

surgical decision-making, where over- or underestimation of risk

may lead to inappropriate treatment choices. Therefore, despite its

slightly lower AUC, XGBoost was chosen as the preferred model.
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Model explanation

To enhance clinical interpretability, we used SHAP to quantify

both the direction and magnitude of each feature’s contribution to

the final XGBoost model’s predictions. Figure 6A summarizes

global importance as the mean absolute SHAP value for each

feature, with CEA contributing the most overall, followed by

vascular convergence, proGRP, age, AFP, smoking history, and

CTR. In the beeswarm plot (Figure 6B), features are ordered by

mean absolute SHAP value (global importance). Horizontal

position reflects the SHAP value for each case (positive values

increase the predicted probability of STAS; negative values

decrease it), while color encodes the feature value (yellow =

higher value, purple = lower value). Consistent with the

biological rationale, higher CEA values (yellow points) cluster

toward positive SHAP values, indicating that elevated CEA is

associated with an increased predicted risk of STAS. A similar

positive directionality is observed for vascular convergence and

CTR (higher values tend to push predictions toward higher STAS

probability). proGRP and AFP exhibit modest positive

contributions at higher values, and smoking history (ever vs.
TABLE 1 Continued

Train-total
(n = 353)

STAS
negative
(n = 195)

STAS
positive
(n = 158)

P value
Validation
-total
(n = 120)

STAS
negative
(n = 59)

STAS
positive
(n = 61)

P value

yes 160 (45.33) 86 (44.10) 74 (46.84) 74 (61.67) 35 (59.32) 39 (63.93)

Pleural indentation, No. (%) 0.86 0.826

no 253 (71.67) 141 (72.31) 112 (70.89) 49 (40.83) 23 (38.98) 26 (42.62)

yes 100 (28.33) 54 (27.69) 46 (29.11) 71 (59.17) 36 (61.02) 35 (57.38)

Air bronchogram, No. (%) 0.142 0.881

no 271 (76.77) 156 (80.00) 115 (72.78) 98 (81.67) 49 (83.05) 49 (80.33)

yes 82 (23.23) 39 (20.00) 43 (27.22) 22 (18.33) 10 (16.95) 12 (19.67)

Vacuole, No. (%) 0.841 0.708

no 231 (65.44) 129 (66.15) 102 (64.56) 97 (80.83) 49 (83.05) 48 (78.69)

yes 122 (34.56) 66 (33.85) 56 (35.44) 23 (19.17) 10 (16.95) 13 (21.31)

Tumor location, No. (%) 0.128 0.756

LUL 94 (26.63) 53 (27.18) 41 (25.95) 36 (30.00) 15 (25.42) 21 (34.43)

LLL 78 (22.10) 35 (17.95) 43 (27.22) 22 (18.33) 12 (20.34) 10 (16.39)

RUL 103 (29.18) 64 (32.82) 39 (24.68) 26 (21.67) 15 (25.42) 11 (18.03)

RML 19 (5.38) 8 (4.10) 11 (6.96) 4 (3.33) 2 (3.39) 2 (3.28)

RLL 59 (16.71) 35 (17.95) 24 (15.19) 32 (26.67) 15 (25.42) 17 (27.87)

Operative mode, No. (%) <0.001 0.900

wedge resection 50 (14.16) 40 (20.51) 10 (6.33) 17 (14.17) 9 (15.25) 8 (13.11)

sublobar resection 47 (13.31) 29 (14.87) 18 (11.39) 7 (5.83) 3 (5.08) 4 (6.56)

lobectomy 256 (72.52) 126 (64.62) 130 (82.28) 96 (80.00) 47 (79.66) 49 (80.33)
SD, Standard deviation; STAS, Spread through air space; WBC, white blood cell; RLL, Lower Lobe; FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity of the carbon monoxide;
WBC, white blood cell; NLR, neutrophil to lymphocyte ratio; MLR, monocyte to lymphocyte ratio; PLR, platelet to lymphocyte ratio; CA125, carbohydrate antigen 125; AFP, alpha-Fetoprotein;
CEA, carcinoembryonic antigen; NSE, Neuron-Specific Enolase; cyfra21-1, cytokeratin 19 Fragment 21-1; proGRP, pro-Gastrin-Releasing Peptide.
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FIGURE 1

The flow diagram of the study.
FIGURE 2

Process of selecting variables through LASSO regression. (A) LASSO coefficient profiles across a sequence of log(l) values. The optimal penalty
parameter l was determined via ten-fold cross-validation. (B) Validation of the optimal l, with dotted vertical lines indicating the chosen value.
Seven variables with nonzero coefficients were selected by l. min.
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never) shifts predictions toward higher risk. Age shows a smaller

but directionally consistent effect.

To facilitate clinical utility, a final prediction nomogram was

constructed using the seven predictive variables (CEA, vascular

convergence, proGRP, age, AFP, smoking history, CTR) and

implemented in a web-based application for clinical use. The web

application is accessible online at: https://cuncun.shinyapps.io/

DynNomapp/.
Discussion

This study presents a retrospective analysis of clinical features

associated with STAS in stage I lung adenocarcinoma, utilizing
Frontiers in Oncology 09
seven risk factors (CEA, vascular convergence, proGRP, age, AFP,

smoking history, and CTR) to develop predictive models. We

compared seven machine learning models, with AdaBoost

demonstrating the best diagnostic performance. However,

XGBoost exhibited superior discriminatory power and predictive

accuracy, We employed the SHAP function to visualize model

interpretability, thereby enhancing the model’s transparency.

Our study has several advantages (1). Multi-center design: This

is a multi-center retrospective study leveraging preoperative clinical

indicators to predict STAS in stage I lung adenocarcinoma, aiming

to develop a predictive model for assessing STAS risk. (2) Clinical

variables: Unlike radiomics-based studies, the clinical variables (27,

28), used in this model are easily accessible, significantly improving

the model’s generalizability. Additionally, we developed a web-
FIGURE 3

ROC curves for seven machine learning models. (A) Training set, (B) validation set. ROC, receiver operating characteristic.
FIGURE 4

Calibration curves for XGBoost model in the train set (A) and validation (B) set.
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based nomogram, which facilitates practical use in clinical settings.

(3) Superior interpretability: Compared to other ML models, our

nomogram shows similar diagnostic performance but offers

superior interpretability and operational ease.

STAS has emerged as a critical pathological feature linked to

local recurrence and poor prognosis in lung cancer (10, 29, 30). It is

a powerful independent predictor of recurrence and prognosis in

stage I lung adenocarcinoma. STAS-positive patients exhibit

significantly worse postoperative outcomes than STAS-negative

patients in stage IA, with prognosis approaching that of stage IB
Frontiers in Oncology 10
patients (31, 32). STAS also predicts recurrence and prognosis in

stage I lung squamous cell carcinoma, although this association

does not extend to stages II–III (8). Radiologically, the presence of

solid components correlates with higher STAS risk, with a threefold

increase in STAS risk for every 1% increase in the solid component

of the tumor (33).

Surgical outcomes are significantly influenced by STAS. In

T1N0M0 lung adenocarcinoma, patients with STAS who undergo

sublobar resection have higher recurrence rates and lung cancer–

specific mortality than those treated with lobectomy (34).
TABLE 2 Performance of seven models.

Model Group AUC (95%CI) Accuracy Specificity Sensitivity NPV PPV F1

logistic regression train 0.719 ( 0.667 - 0.772) 0.677 0.703 0.646 0.710 0.638 0.642

validation 0.586 (0.483 - 0.689) 0.567 0.814 0.328 0.541 0.645 0.435

random forest train 0.890 ( 0.857 - 0.923) 0.793 0.821 0.759 0.805 0.774 0.767

validation 0.922 (0.886-0.97) 0.867 0.881 0.852 0.865 0.881 0.867

SVM train 0.721 ( 0.667 - 0.774) 0.669 0.672 0.665 0.726 0.621 0.642

validation 0.770 ( 0.686 - 0.853) 0.633 0.898 0.377 0.582 0.793 0.511

XGBoost train 0.889 ( 0.852- 0.926) 0.807 0.805 0.81 0.840 0.771 0.79

validation 0.859 ( 0.789 - 0.928) 0.808 0.881 0.738 0.765 0.865 0.796

AdaBoost train 0.963 ( 0.947 - 0.980) 0.898 0.908 0.886 0.907 0.886 0.886

validation 0.919 ( 0.866 - 0.972) 0.817 0.915 0.721 0.761 0.898 0.8

LightGBM train 0.876 ( 0.838 - 0.913 ) 0.822 0.831 0.81 0.853 0.795 0.803

validation 0.788 ( 0.705 - 0.872 ) 0.725 0.814 0.639 0.685 0.78 0.703

CatBoost train 0.904 ( 0.872 - 0.935 ) 0.819 0.836 0.797 0.836 0.797 0.797

validation 0.882 ( 0.8226 - 0.942 ) 0.792 0.864 0.721 0.750 0.846 0.779
fro
CI, Confidence interval; AUC, Area under the receiver operating characteristics curve; F1, F1 score; SVM, support vector machines; XGBoost, Extreme Gradient Boosting; AdaBoost, adaptive
boosting; LightGBM, light gradient boosting machine; CatBoost, category boosting; NPV, negative predictive value; PPV, positive predictive value.
FIGURE 5

Decision curves for seven machine learning models: (A) training set, (B) validation set.
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Moreover, among sublobar approaches, wedge resection is

associated with inferior OS and RFS compared with

segmentectomy or lobectomy (11). Therefore, accurate

preoperative identification of STAS-positive patients is crucial for

surgical decision-making—particularly when considering sublobar

resection—as failure to recognize STAS preoperatively may lead to

undertreatment and a substantially increased risk of recurrence.

Patients at high predicted risk may be considered for lobectomy to

mitigate recurrence risk.

Our study identified several predictive factors, including

baseline characteristics, CT imaging features and tumor markers,

Smoking, the most significant risk factor for lung cancer, has been

linked to increased STAS risk, particularly in older patients (10, 32).

However, the exact relationship between smoking, age, and STAS

positivity remains unclear and warrants further investigation.

Tumor markers, including CEA, proGRP, AFP reflect tumor

biology and systemic disease burden (35). CEA, a glycoprotein

associated with cell adhesion, is typically absent in healthy adult

blood (36). Our feature interpretability analysis revealed CEA as the

most significant factor in the XGBoost model, which is consistent

with findings from other studies (37, 38). High CEA expression can

promote epithelial-mesenchymal transition (EMT) by modulating

various signaling molecules within the EMT pathway. During EMT,

tumor cells lose epithelial adhesion markers and gain mesenchymal

markers, enhancing motility and invasiveness, which in turn

increases STAS likelihood (31, 39).

ProGRP plays a vital role in diagnosing and subtyping lung

cancer (40), particularly in small cell lung cancer(SCLC). It has been

widely applied as a biomarker for SCLC diagnosis, monitoring, and

evaluation of treatment response (41, 42), and is also considered an

effective marker for diagnosing lung neuroendocrine neoplasms

(43). Recent studies further suggest that ProGRP, when combined
Frontiers in Oncology 11
with artificial intelligence approaches, can accurately predict lung

cancer risk (44). Nevertheless, the role of ProGRP in lung

adenocarcinoma remains insufficiently understood, and further

research is warranted to clarify its potential diagnostic and

prognostic value.

AFP is a glycoprotein originally identified as the first oncoprotein

and is now widely used as a biomarker in hepatocellular carcinoma

screening (45, 46), Elevated serum AFP levels have also been reported

in some patients with primary lung cancer (47, 48), and extremely

high concentrations are a distinguishing feature of hepatoid

adenocarcinoma of the lung (49), However, the intrinsic

relationship between AFP and lung adenocarcinoma remains

poorly understood and warrants further investigation.

Vascular convergence has been identified as a strong indicator

of STAS, appearing frequently in STAS-positive patients (50, 51).

The aggressiveness of lung cancer is also linked to the

proportion of solid tumor components observed on CT, a higher

solid component indicates a more significant, CTR have a positive

correlation with STAS (32, 52) and as the most accurate CT

characteristic for forecasting STAS in lung adenocarcinomas

measuring ≤2 cm (53). Our research shows that an increase in

solid components is an independent predictor of STAS, significantly

heightening the risk, consistent with previous studies.

In this study, we utilized clinical baseline characteristics,

imaging characteristics and tumor markers to develop various

machine learning models to preoperatively predict the presence of

STAS preoperatively. the XGBoost model, which effectively

manages high-dimensional data and complex interactions,

showed superior performance, with the predicted values aligning

closely with actual results. The SHAP algorithm was used to

enhance model interpretability, making the results more

accessible to clinicians.
FIGURE 6

XGBoost model interpretability using SHAP.SHAP summary bar plot ranking feature importance (A). SHAP summary dot plot illustrating feature
contributions (B). Each dot represents an individual patient’s SHAP value for a given feature, with color intensity indicating the feature’s actual value.
Higher SHAP values reflect an increased probability of STAS positivity.
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Previous studies based on CT radiomics models have faced

challenges due to the low incidence of STAS and the typically

s ing le-center des ign of such studies , l imi t ing the i r

generalizability. Multi-center studies have also struggled with

robustness (28, 54).

Additionally, radiomics models often suffer from a lack of

interpretability, creating a “black box” effect that reduces clinical

confidence. In contrast, the clinical variables in our model are

derived from preoperative data and CT images, which are easily

accessible. The use of the SHAP algorithm further enhances

interpretability, and the model can be accessed through a web-

based platform, improving clinical applicability.

Nonetheless, this study has several limitations. First, the

retrospective design introduces potential selection bias,

highlighting the need for prospective validation. Second, although

external validation was performed, it was derived from a single-

center cohort, which limits the generalizability of the findings.

Third, the relatively small sample size raises concerns about

potential overfitting of the model, and the lack of long-term

follow-up further restricts the strength of the conclusions. In

addition, pure GGO nodules and patients with multiple nodules

were excluded; future investigations should develop strategies to

better evaluate STAS in these subgroups. Overall, larger multi-

center prospective studies with extended follow-up are required to

confirm and extend our findings. However, the web-based tool

developed in this study has not yet undergone prospective, multi-

center validation or formal clinical impact assessment, and thus its

clinical applicability remains preliminary. At this stage, it should be

regarded as a research prototype rather than a tool to guide

individual patient care.

The predictive models based on XGBoost regression

demonstrated significant preoperative predictive accuracy for

STAS in stage I LUAD solid and part-solid nodules. The

application of SHAP analysis augmented the model ’s

interpretability by establishing associations between predictions

and relevant clinical variables, thereby enhancing its clinical

applicability. This interpretable model offers a promising tool for

personalized preoperative surgical planning and tailored

postoperative management.
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