
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Robert Fruscio,
University of Milano Bicocca, Italy

REVIEWED BY

Francesco Ricchetti,
Sacro Cuore Don Calabria
Hospital (IRCCS), Italy
Yi Zhu,
Sichuan Cancer Hospital, China

*CORRESPONDENCE

Ji Wu

gxnnwuji@163.com

RECEIVED 06 August 2025
ACCEPTED 27 October 2025

PUBLISHED 13 November 2025

CITATION

Wang J, Bao S, Huang T, Cai Y, Jin B and
Wu J (2025) Fusion model combining
ultrasound-based radiomics and deep
transfer learning with clinical parameters for
preoperative prediction of pelvic lymph node
metastasis in cervical cancer.
Front. Oncol. 15:1681029.
doi: 10.3389/fonc.2025.1681029

COPYRIGHT

© 2025 Wang, Bao, Huang, Cai, Jin and Wu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 13 November 2025

DOI 10.3389/fonc.2025.1681029
Fusion model combining
ultrasound-based radiomics
and deep transfer learning
with clinical parameters for
preoperative prediction of
pelvic lymph node metastasis
in cervical cancer
Jihan Wang1, Shengxian Bao2, Tongtong Huang1, Yongzhi Cai1,
Binbin Jin1 and Ji Wu1*

1Department of Ultrasonic Medicine, the First Affiliated Hospital of Guangxi Medical University,
Nanning, Guangxi, China, 2Department of Ultrasonic Medicine, the Affiliated Tumor Hospital of
Guangxi Medical University, Nanning, Guangxi, China
Background: To develop and validate a multimodal fusion model integrating

ultrasound-based radiomics, deep transfer learning (DTL), and clinical

parameters for preoperative pelvic lymph node metastasis (PLNM) prediction in

cervical cancer.

Methods: A retrospective cohort of 421 patients with surgically confirmed

cervical cancer was divided into the training (70%, n = 294) and testing (30%,

n = 127) sets. Ultrasound-based radiomics (1,561 handcrafted features) and 3 DTL

architectures (DenseNet121, ResNet50, AlexNet) were employed for feature

extraction. After redundancy reduction (Spearman correlation, least absolute

shrinkage and selection operator regression) and principal component analysis,

fused radiomics-DTL features were combined with clinical predictors. Eight

machine learning classifiers were evaluated, and the optimal model was used

to construct a nomogram. Performance was assessed using area under the curve

(AUC), calibration curves, and decision curve analysis (DCA).

Results: The multilayer perceptron-based fusion model achieved a testing AUC

of 0.753, outperforming standalone radiomics (AUC = 0.729) and DTL models

(best AUC = 0.702; DenseNet121). Integration of clinical predictors (maximum

tumor diameter and red blood cell count) further enhanced performance,

yielding a nomogram with training/testing AUCs of 0.871 and 0.764, and a

testing sensitivity and specificity of 58.1% and 84.4%,respectively. DCA

demonstrated superior clinical utility for the nomogram across threshold

probabilities (10%–50%).
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Conclusions: We developed a multimodal fusion model integrating ultrasound-

based radiomics, DTL, and clinical parameters for preoperative PLNM prediction

in cervical cancer. The proposed nomogram provides a clinically applicable,

cost-effective tool for preoperative PLNM prediction, particularly valuable for

optimizing treatment decisions in resource-limited settings.
KEYWORDS

cervical cancer, radiomics, lymph node metastasis, ultrasound, featurefusion,
nomogram, deep transfer learning
Introduction

Cervical cancer is a critical global health challenge, as it is the

fourth most prevalent malignancy among women worldwide (1).

The clinical management of this disease hinges on precise staging

according to the International Federation of Gynecology and

Obstetrics (FIGO) criteria, particularly the assessment of pelvic

lymph node metastasis (PLNM), which fundamentally alters the

therapeutic pathway (2, 3). Current National Comprehensive

Cancer Network (NCCN) guidelines recommend radical

hysterectomy with pelvic lymphadenectomy for stage IB–IIA

lesions (4), yet emerging evidence questions this approach given

that 70%–90% of patients with early-stage cervical cancer derive no

oncological benefit from nodal dissection while facing substantial

complication risks (2, 5). The 2018 revision of the FIGO criteria

emphasized this prognostic stratification by introducing stage IIIC

for radiologically suspected nodal involvement, and mandating

chemoradiation over surgical intervention for these lesions (6).

This staging evolution heightens the need for the accurate

preoperative assessment of PLNM status, as treatment algorithms

become increasingly dependent on imaging findings rather than

surgical pathology (7).The reliable preoperative prediction of

PLNM could significantly alter clinical management, potentially

sparing node-positive patients from primary surgery and its

associated morbidity, and instead directing them towards

definitive chemoradiation, as supported by clinical evidence (8).

Unfortunately, current diagnostic modalities exhibit critical

limitations in nodal evaluation, and the low incidence of

intraoperatively confirmed nodal metastases (3.9%) despite
, pelvic lymph node
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preoperative imaging evaluation (9). Compared to CT, magnetic

resonance imaging (MRI) demonstrates improved performance

through functional sequences, yet a meta-analysis has revealed

persistent interobserver variability exceeding 20% in lymph node

characterization (10). Positron-emission tomography (PET)/CT,

though valuable for metabolic assessment, suffers from limited

accessibility and high false-negative rates in sub-centimeter nodes

(11). Ultrasonography, the most widely available modality, shows

operator-dependent accuracy, with its sensitivity differing according

to the operator’s experience (12). Sentinel lymph node biopsy is the

most precise technique for assessing PLNM preoperatively; however,

this approach is invasive, and its outcomes may be affected by factors

such as atypical lymphatic drainage patterns, the effectiveness of

preoperative lymphoscintigraphy, and the level of surgical expertise

(13, 14). These diagnostic challenges have catalyzed innovation in

quantitative imaging analysis.

Radiomics enables the high-throughput extraction of subvisual

tumor features through the mathematical characterization of

texture heterogeneity, margin irregularity, and vascular patterns

(15), while deep learning (DL) techniques, especially convolutional

neural network architectures, can identify intricate patterns and

characteristics linked to lymph node metastasis (LNM). These

advanced computational approaches significantly improve the

precision of LNM prediction models (16). Although radiomic

characteristics and DL-derived features each possess unique

strengths and inherent constraints, the synergistic combination of

these methodologies provides mutually reinforcing diagnostic

insights. Consequently, this integrative approach has emerged as a

significant focus area in contemporary medical imaging research

(17). The multimodal fusion of handcrafted radiomic features and

deep transfer learning (DTL)-derived biomarkers has improved

diagnostic accuracy beyond single-modality approaches in breast

cancers (18).

The biological rationale for the utility of ultrasonography in

nodal assessment resides in its unique capacity to characterize

dynamic tumor-stromal interactions through real-time functional

imaging. Shear-wave elastography(SWE) provides biomechanical

insights by measuring alterations in tissue stiffness caused

by metastatic desmoplastic reactions, which are a critical

discriminator between reactive and malignant lymph nodes (19).
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This multifaceted capability for biological profiling positions

ultrasonography as the ideal platform for developing predictive

models that bridge radiological findings with underlying metastatic

pathophysiology (20).

The clinical imperative for non-invasive nodal assessment extends

beyond diagnostic accuracy. Unnecessary lymphadenectomy

contributes to chronic lymphedema and increased healthcare costs

(21, 22). In contrast, ultrasound-based predictive models offer cost-

effective solutions adaptable to diverse healthcare settings. This

methodology specifically addresses the limitations of prior MRI-

centric radiomic models that require specialized sequences (such as

diffusion-weighted imaging and apparent diffusion coefficient

mapping), which are unavailable in low-resource regions. Currently,

there is limited literature on the application of integrated models

combining ultrasound radiomics and deep transfer learning for

predicting pelvic lymph node metastasis in cervical cancer.

The primary objective of this investigation is to establish a

clinically translatable decision-support tool that enables the non-

invasive stratification of pelvic nodal metastasis risk in cervical

cancer patients. Specifically, we aim to accomplish the following

(1): validate ultrasound-derived radiomic signatures against

surgical pathology in a 421-patient cohort (2); determine the

complementary value of DTL-derived features in augmenting the

value of the ultrasound-based radiomic signatures; and (3) develop

an interpretable predictive model integrating quantitative imaging

biomarkers with routine clinical and hematological parameters.

This initiative directly responds to the guidelines of the European

Society of Gynecological Oncology, European Society for

Radiotherapy and Oncology, and European Society of Pathology,

which advocate for precision-medicine approaches in gynecological

oncology, while addressing healthcare disparities through

ultrasound-centric technology, which is accessible across resource

settings (23, 24).
Methods

Cohort selection

Patients from the First Affiliated Hospital of Guangxi

Medical University undergoing radical hysterectomy with pelvic

lymphadenectomy between May 2020 and September 2024 were

screened against predefined eligibility criteria. Inclusion required the

following (1): histopathologically confirmed cervical cancer with

definitive PLNM status (2), preoperative transvaginal ultrasound

imaging within 2 weeks before surgery capturing measurable lesions,

and (3) availability of complete clinical records. Individuals meeting

any of the following criteria were excluded from the study: prior

oncological treatments (chemotherapy/radiotherapy), other

concurrent gynecological malignancies, non-diagnostic ultrasound

images, or incomplete data. From an initial pool of 963 candidates,

421 patients met the selection criteria and were enrolled in the

study (Figure 1).
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Clinical and imaging data acquisition

We systematically extracted the following demographic,

hematological, and histopathological parameters from the patients’

electronic health records: age, parity, abortion history, body mass

index (BMI), hematological indices (red blood cell [RBC] count,

white blood cell [WBC] count, eosinophil count, and alkaline

phosphatase [ALP]), levels of tumor markers (cancer antigen 125

[CA125], CA153, CA199, carcinoembryonic antigen [CEA], and

squamous cell carcinoma [SCC] antigen), maximum lesion diameter,

histological type, and PLNM status according to the postoperative

pathological results (see the study design on Figure 2).

Ultrasound examinations were performed using the GE Voluson

E10 and Logiq E9 systems equipped with 5–9 MHz transvaginal

transducers. Standardized imaging protocols mandated bladder

evacuation 10 min before the procedure, lithotomy positioning,

and the acquisition of 6–10 representative images per patient in

orthogonal planes. A single maximally cross-sectional image per

patient was archived in the hospital’s picture archiving system for

blinded analysis by 2 sonographers with 5 and 11 years of experience.

Discrepancies in lesion characterization were resolved through

consensus review.
Tumor segmentation and reproducibility
assessment

Manual delineation of tumor boundaries was performed using

ITK-SNAP (v3.8.0) on the selected ultrasound slices. To assess inter-

observer variability, we implemented a dual-annotation protocol:

Sonographer A segmented all images, while Sonographer B

independently annotated 50 randomly selected images. Intra-

observer variability was assessed through repeated segmentations

by Sonographer A after an 8-week interval. Features exhibiting

intraclass correlation coefficients(ICCs) < 0.75 in both the inter-

and intra-observer analyses were excluded to ensure robustness.
Radiomic feature extraction and selection

Quantitative radiomic profiling extracted 1,561 handcrafted

features via PyRadiomics (v3.0.1), categorized into the following 3

domains: geometric morphology (42 features), intensity distributions

(744 features), and textural heterogeneity (775 features). Textural

characterization employed 4 matrix-based methods: gray-level co-

occurrence, gray-level run-length (GLRLM), gray-level size-zone, and

neighboring gray tone difference matrices. A triphasic feature-

reduction pipeline was applied (1): Mann-Whitney U tests (p <

0.05) identified metastasis-associated features (2); Spearman

correlation filtering (|r| > 0.9) eliminated redundant variables; and

(3) least absolute shrinkage and selection operator (LASSO)

regression with 10-fold cross-validation (l = 0.0450, minimum

criteria) selected 9 non-collinear predictors.
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Deep transfer learning architecture and
optimization

Three convolutional neural networks DenseNet121, ResNet50,

and AlexNet were adapted using transfer learning from ImageNet

pretrained weights. Input images underwent region of interest
Frontiers in Oncology 04
(ROI)-centered cropping to exclude extralesional tissue, followed

by Z-score normalization. To enhance the generalizability of the

images, we performed real-time data augmentation via random

cropping (± 15% volume), horizontal/vertical flipping (p = 0.5), and

intensity scaling (± 20%). Feature embeddings were extracted

from the penultimate fully connected layer (16,383 dimensions)
FIGURE 1

Flowchart of patient enrollment, exclusion, and grouping. TVS, transvaginal ultrasonography; PLNM, pelvic lymph node metastasis; US, ultrasound.
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of the optimal-performing network and reduced to 64

principal components via principal component analysis for

computational efficiency.
Multimodal feature fusion strategy

Hybrid biomarkers were developed by concatenating the

radiomic signatures with the DTL-derived principal components,

thereby generating a 73-dimensional feature space. Recursive

feature elimination was then performed, prioritizing variables that

demonstrated complementary predictive value. After this step, 7

radiomic and 9 DTL components were retained. The fused feature

set was standardized (using z-scores) prior to model integration.
Predictive modeling framework

Eight machine learning classifiers were evaluated: logistic

regression(LR; L2 regularization), support vector machines (SVM;

radial basis kernel), k-nearest neighbors (KNN; k = 5),

RandomForest (100 trees), ExtraTrees (50 trees), XGBoost

(max_depth = 6), LightGBM (num_leaves = 31), and multilayer

perceptron (MLP; 2 hidden layers, ReLU activation).

Hyperparameter optimization employed a grid search with 10-fold

cross-validation on the training cohort (70%, n = 294), prioritizing
Frontiers in Oncology 05
balanced accuracy. The MLP architecture incorporated dropout

regularization (rate = 0.3) and early stopping (patience = 10

epochs) to mitigate overfitting.
Clinical-radiomic nomogram development

Multivariate logistic regression identified independent clinical

predictors (maximum tumor diameter and RBC count), which were

integrated with the optimal fusion model outputs to construct a

nomogram. Calibration slopes were adjusted using Platt scaling to

align the predicted probabilities with the observed metastasis rates.
Statistical validation protocol

Model discrimination was quantified using area under the

receiver operating characteristic curve (AUC). Calibration

accuracy was assessed using the Hosmer-Lemeshow test and Brier

scores. Decision curve analysis evaluated clinical utility across

probability thresholds (0%–100%). Continuous variables were

analyzed using the Mann-Whitney U test or Student t-test

following Shapiro-Wilk normality testing, while categorical

variables were evaluated using the chi-square or Fisher exact test.

Correlation analyses were performed using Pearson (normal

distribution) or Spearman (non-parametric) coefficients.
FIGURE 2

Schematic workflow of the study design. The framework includes image acquisition, feature extraction (radiomics and deep transfer learning),
feature fusion, model construction, and nomogram development. US, ultrasonography; ROI, region of interest.
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Computational infrastructure

All analyses were implemented using Python v3.9 (scikit-learn v1.2,

PyTorch v1.13) on an NVIDIA A100 GPU cluster. Reproducibility was

ensured through fixed random seeds (NumPy = 42, PyTorch = 3407)

and version-controlled pipelines.
Results

Clinical and ultrasound characteristics

This retrospective analysis included 421 cervical cancer patients,

of whom 294 patients were allocated to the training cohort (218

[74.1%] PLNM-negative patients; 76 [25.9%] PLNM-positive patients)

and 127 to the testing cohort (96 [75.6%] PLNM-negative patients; 31

[24.4%] PLNM-positive patients; Table 1). The PLNM-negative and

PLNM-positive groups significantly differed in terms of parturition

(p = 0.037), WBC count (p = 0.027), ALP level (p = 0.003), CA125

level (p < 0.001), CEA level (p = 0.002), SCC antigen level (p < 0.001),

and maximum tumor diameter (p < 0.001). No significant differences

were detected in age, abortion history, BMI, RBC count, and histology.

Cohort stratification ensured balanced clinical characteristics between

the training and testing sets (p > 0.05 for all variables).
Frontiers in Oncology 06
Univariate logistic regression identified age, parturition,

abortion, BMI, RBC count, WBC count, ALP level, CA153 level,

histology, and maximum tumor diameter as potential predictors of

PLNM status (Table 2). Subsequent multivariate analysis confirmed

maximum tumor diameter (odds ratio [OR] = 1.055, 95%

confidence interval [CI]: 1.036–1.075) and RBC count (OR =

0.646, 95% CI: 0.459–0.910) as independent risk factors for PLNM.
Radiomics model development

A total of 1,561 handcrafted radiomic features were extracted

from the ultrasound images, and distributed across the geometric

(n = 42), intensity-based (n = 744), and texture-based (n = 775)

categories (Figure 3). Feature selection involved redundancy

elimination via Spearman correlation (|r| > 0.8) followed by

LASSO regression (l = 0.0450, 10-fold cross-validation), and

yielded 9 robust handcrafted radiomic features (Figures 4, 5). The

importance scores of these features, ranked by absolute LASSO

coefficients, are visualized in Figure 4B.

Eight machine-learning classifiers were evaluated using the

selected handcrafted radiomic features (Table 3). The MLP model

demonstrated optimal performance in the testing cohort (AUC =

0.729, 95% CI: 0.6249–0.8334), outperforming the logistic
TABLE 1 Demographic and ultrasonographic characteristics of the study participants.

Feature
Training
(N = 294)

PLNM (–) PLNM (+) P value Testing
(N = 127)

PLNM (–) PLNM (+) P value

Age 52.93 ± 10.68 52.78 ± 10.69 53.38 ± 10.72 0.671 51.98 ± 10.17 51.15 ± 10.22 54.55 ± 9.72 0.091

Parturition 2.46 ± 1.32 2.39 ± 1.28 2.64 ± 1.42 0.309 2.52 ± 1.48 2.40 ± 1.51 2.90 ± 1.35 0.037

Abortion 1.41 ± 1.38 1.41 ± 1.39 1.43 ± 1.38 0.767 1.30 ± 1.32 1.34 ± 1.40 1.16 ± 1.07 0.726

BMI 23.35 ± 3.53 23.29 ± 3.43 23.52 ± 3.82 0.596 23.29 ± 3.39 23.47 ± 3.54 22.75 ± 2.83 0.594

RBC count (10^12/L) 4.09 ± 0.91 4.12 ± 0.99 3.99 ± 0.59 0.500 4.05 ± 0.62 4.09 ± 0.56 3.90 ± 0.78 0.138

WBC count (10^9/L) 11.14 ± 3.62 11.31 ± 3.65 10.64 ± 3.52 0.163 11.26 ± 3.86 11.66 ± 3.98 10.01 ± 3.22 0.027

ALP (U/L) 63.08 ± 19.26 61.86 ± 19.22 66.59 ± 19.06 0.015 65.13 ± 22.48 61.36 ± 18.33 76.81 ± 29.53 0.003

Eosinophil count (10^9/L) 0.16 ± 1.23 0.18 ± 1.42 0.10 ± 0.22 <0.001 0.05 ± 0.10 0.04 ± 0.10 0.06 ± 0.09 0.122

CA125 (U/mL) 37.53 ± 117.05 26.16 ± 49.86 70.13 ± 211.85 <0.001 34.93 ± 73.63 25.58 ± 61.65 63.91 ± 97.91 <0.001

CA153 (U/mL) 14.31 ± 8.95 13.66 ± 9.03 16.15 ± 8.48 0.008 13.27 ± 7.33 12.69 ± 6.80 15.04 ± 8.67 0.21

CA199 (U/mL) 46.76 ± 390.57 13.23 ± 24.10 142.92 ± 762.65 <0.001 21.87 ± 86.47 25.11 ± 99.00 11.82 ± 15.04 0.31

CEA (U/mL) 6.04 ± 16.58 5.08 ± 10.85 8.80 ± 26.89 0.024 4.14 ± 6.14 3.43 ± 5.10 6.34 ± 8.33 0.002

SCC antigen (ng/mL) 6.17 ± 9.99 5.00 ± 8.47 9.53 ± 12.92 0.002 6.91 ± 12.64 3.87 ± 5.90 16.32 ± 20.96 <0.001

Maximum diameter (mm) 33.10 ± 13.55 30.25 ± 11.86 41.29 ± 14.81 <0.001 31.83 ± 11.84 29.47 ± 10.91 39.16 ± 11.77 <0.001

Histology 0.167 0.075

Squamous cell carcinoma 231 (78.57) 174 (79.82) 57 (75.00) 101 (79.53) 72 (75.00) 29 (93.55)

Adenocarcinoma 48 (16.33) 36 (16.51) 12 (15.79) 19 (14.96) 18 (18.75) 1 (3.23)

Others 15 (5.10) 8 (3.67) 7 (9.21) 7 (5.51) 6 (6.25) 1 (3.23)
PLNM, pelvic lymph node metastasis; BMI, body mass index; RBC, red blood cell; WBC, white blood cell; ALP, alkaline phosphatase; CA, cancer antigen; CEA, carcinoembryonic antigen; SCC
antigen, squamous cell carcinoma antigen.
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regression (AUC = 0.715), support vector machine (AUC = 0.711),

and other classifiers (Figure 6).
Deep transfer learning model performance

Three pre-trained convolutional neural networks (DenseNet121,

ResNet50, and AlexNet) were adapted for DTL analysis (Table 4).

DenseNet121 achieved the highest testing AUC of 0.702 (95% CI:

0.5853–0.8193), surpassing ResNet50 (AUC = 0.668) and AlexNet

(AUC = 0.684; Figure 7). Gradient-weighted Class Activation

Mapping was used to localize the tumor subregions that were

critical for the predictions made by DenseNet121, and the results

revealed preferential attention to areas of heterogeneous

echogenicity (Figure 8).
Feature fusion and combined model

After recursive feature elimination, a total of 7 handcrafted

radiomic features and 9 DTL features were retained from the fused

feature set comprising 1625 dimensions (Figures 9, 10). Among the

8 classifiers evaluated (Table 5), the MLP-based fusion model

achieved a testing AUC of 0.753 (95% CI: 0.6494–0.8560),

representing a 5.1% improvement over standalone DenseNet121

(AUC: 0.753 vs.0.702; Figure 11).
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Nomogram construction and validation

The fusion model was combined with independent clinical

predictors (maximum tumor diameter and RBC count) to

develop a nomogram (Figure 12). The nomogram exhibited

superior discrimination, with training and testing AUCs of 0.871

(95% CI: 0.8274–0.9156) and 0.764 (95% CI: 0.6604–0.8678),

respectively, outperforming the radiomics, DTL, and fusion

models (Table 6, Figure 13). Calibration curves demonstrated

excellent agreement between the predicted and observed PLNM

probabilities in both cohorts (Hosmer-Lemeshow test: training, p =

0.072; testing, p = 0.131; Figure 14). Decision curve analysis

confirmed that the nomogram provided a greater net benefit

across clinically relevant threshold probabilities (10%–50%) than

that associated with alternative models (Figure 15).
Discussion

Radiomics and deep learning synergy

While the acquisition of ultrasound images may be subject to

operator variability,

quantitative characterization of tumor heterogeneity through

radiomic feature extraction enables the objective assessment of

metastatic propensity, thereby circumventing subjective variability
TABLE 2 Univariate and multivariate logistic regression analysis of clinical predictors for PLNM.

Clinical and US characteristics

Univariate analysis Multivariate analysis

OR
Lower
95% CI

Upper
95% CI

P OR
Lower
95% CI

Upper
95% CI

P

Age 0.981 0.977 0.985 0.000 0.994 0.971 1.017 0.667

Parturition 0.730 0.672 0.792 0.000 1.155 0.951 1.404 0.222

Abortion 0.667 0.591 0.745 0.000 1.085 0.909 1.294 0.446

BMI 0.957 0.948 0.966 0.000 0.936 0.881 0.995 0.073

RBC count 0.771 0.731 0.815 0.000 0.646 0.459 0.910 0.036

WBC count 0.911 0.894 0.930 0.000 0.965 0.904 1.031 0.379

ALP 0.986 0.982 0.989 0.000 1.006 0.993 1.020 0.460

Eosinophil count 0.628 0.211 1.865 0.482

CA125 1.000 0.998 1.001 0.860

CA153 0.952 0.939 0.966 0.000 1.010 0.985 1.036 0.507

CA199 1.001 1.000 1.002 0.363

CEA 0.988 0.974 1.003 0.182

SCC antigen 0.981 0.964 0.999 0.077

Maximum tumor diameter 0.981 0.974 0.986 0.000 1.055 1.036 1.075 0.000

Histology 0.602 0.427 0.848 0.015 1.410 0.911 2.181 0.196
fr
PLNM, pelvic lymph node metastasis; US, ultrasonography; OR, odds ratio; CI, confidence interval; BMI, body mass index; RBC, red blood cell; WBC, white blood cell; ALP, alkaline phosphatase;
CA, cancer antigen; CEA, carcinoembryonic antigen; SCC antigen, squamous cell carcinoma antigen.
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in image interpretation (25). In our study, we implemented several

strategies to enhance robustness against operator variability. First,

all sonographers followed a standardized imaging protocol to

minimize acquisition differences. More importantly, during

feature extraction, we performed a rigorous reproducibility

assessment based on both inter- and intra-observer intraclass

correlation coefficients (ICCs). Features with ICCs below 0.75
Frontiers in Oncology 08
were excluded, ensuring that only stable and reproducible features

were used for model construction. This process helps to filter out

features that are highly sensitive to segmentation differences or

acquisition parameters, thereby increasing the generalizability and

reliability of the radiomic signature (26, 27). Future studies

employing automated segmentation algorithms could further

reduce this potential source of variability. Earlier research has
FIGURE 4

Handcrafted radiomic feature selection using LASSO (A) and histogram of the importance scores of selected radiomic features (B). The optimal l
value was 0.0450. LASSO, least absolute shrinkage and selection operator.
FIGURE 3

Distribution of 1,561 handcrafted radiomic features across 3 categories: geometric, intensity-based, and texture-based characteristics.
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demonstrated that radiomics-based approaches can effectively

predict lymph node metastasis across various cancer types (25,

28, 29). The radiomic component of our model demonstrated

robust validation performance (testing AUC = 0.729), which

was consistent with the performance of MRI-based radiomic

prediction of nodal involvement (AUC = 0.83) in a meta-analysis
Frontiers in Oncology 09
of cervical cancer patients (9). This concordance suggests the

potential of ultrasound-based radiomics as a cost-effective

alternative to advanced imaging modalities, particularly in

resource-constrained settings.

DL, a subset of machine learning, enables computational models

featuring multiple processing layers to acquire hierarchical
TABLE 3 Diagnostic performance of radiomic models using different classifiers.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-Training 0.747 0.6877–0.8059 0.697 0.711 0.693 0.446 0.873

SVM-Training 0.818 0.7583–0.8781 0.776 0.842 0.752 0.542 0.932

KNN-Training 0.850 0.8093–0.8914 0.772 0.368 0.913 0.596 0.806

RandomForest-Training 0.998 0.9950–1.0000 0.976 0.947 0.986 0.960 0.982

ExtraTrees-Training 1.000 1.0000–1.0000 0.741 0.000 1.000 0.000 0.741

XGBoost-Training 0.998 0.9941–1.0000 0.983 0.974 0.986 0.961 0.991

LightGBM-Training 0.934 0.9051–0.9633 0.874 0.882 0.872 0.705 0.955

MLP-Training 0.749 0.6906–0.8071 0.653 0.829 0.592 0.414 0.908

LR-Testing 0.715 0.6086–0.8222 0.732 0.548 0.792 0.459 0.844

SVM-Testing 0.711 0.6095–0.8118 0.614 0.806 0.552 0.368 0.898

KNN-Testing 0.677 0.5785–0.7750 0.717 0.097 0.917 0.273 0.759

RandomForest-Testing 0.624 0.5141–0.7342 0.685 0.194 0.844 0.286 0.764

ExtraTrees-Testing 0.662 0.5553–0.7693 0.567 0.710 0.521 0.324 0.847

XGBoost-Testing 0.622 0.5167–0.7266 0.504 0.871 0.385 0.314 0.902

LightGBM-Testing 0.659 0.5554–0.7632 0.535 0.839 0.437 0.325 0.894

MLP-Testing 0.729 0.6249–0.8334 0.677 0.677 0.677 0.404 0.867
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; KNN, k-nearest
neighbor; XGBoost, eXtreme gradient boost; LightGBM, light gradient boosting machine; MLP, multilayer perceptron.
FIGURE 5

Histogram of the Rad-scores of selected features.
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representations of data across various levels of abstraction (30). In

numerous real-world scenarios, convolutional neural networks that

have been initially trained on the ImageNet dataset are widely

utilized, a technique commonly referred to as transfer learning (31,

32). In our study, DTL architectures exhibited paradoxical

performance characteristics, with superior training accuracy (AUC

= 0.782) versus diminished validation metrics (AUC = 0.702). This

performance gap aligns with findings in gastrointestinal oncology

research, where DTL models consistently exhibit a higher risk of

overfitting than radiomic approaches (33, 34). In our study, the DTL

model was inferior to the conventional radiomic model in the testing

set. The possible reasons for this are as follows: First, DTL requires a

large number of training sets, whereas this is a single-center study; a

large multi-center is needed for further training in the future.

Second, despite the strong performance of DTL in diverse

classification and prediction tasks, its inherent lack of

interpretability, characteristic of black-box algorithms, limits its
Frontiers in Oncology 10
broader applicability (35, 36). Future iterations incorporating

three-dimensional ROI reconstructions and attention mechanisms

may enhance the generalizability of DTL (37).
Advantages of multimodal fusion

The feature-level integration of radiomic and DTL biomarkers

generated synergistic diagnostic improvements, with the testing AUC

(0.753) of the fusion model exceeding those of standalone approaches.

This aligns with the findings ofWang et al., who found that the fusion

of radiomics and deep learning features achieved a testing AUC of

0.934 for differentiating benign and malignant parotid gland tumors,

significantly surpassing standalone radiomics (AUC = 0.853) and

deep learning models (AUC = 0.883) (16). The fusion model

demonstrated enhanced capability in detecting small metastatic foci

(<5 mm) by leveraging complementary features: radiomics quantified
TABLE 4 Comparison of deep transfer learning models for PLNM prediction.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

DenseNet121-Training 0.782 0.7231–0.8400 0.694 0.776 0.665 0.447 0.895

AlexNet-Training 0.696 0.6306–0.7622 0.728 0.500 0.807 0.475 0.822

ResNet50-Training 0.756 0.6939–0.8179 0.660 0.803 0.610 0.418 0.899

DenseNet121-Testing 0.702 0.5853–0.8193 0.772 0.548 0.844 0.531 0.853

AlexNet-Testing 0.684 0.5742–0.7947 0.693 0.581 0.729 0.409 0.843

ResNet50-Testing 0.668 0.5516–0.7837 0.661 0.613 0.677 0.380 0.844
PLNM, pelvic lymph node metastasis; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
FIGURE 6

(A) Receiver operating characteristic (ROC) curves of 8 machine learning classifiers for the radiomics model in the training set. (B) ROC curves of 8
machine learning classifiers for the radiomics model in the testing set.
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FIGURE 8

Gradient-weighted Class Activation Mapping visualization of the predictions of DenseNet121. The highlighted regions indicate tumor areas critical for
PLNM classification. PLNM, pelvic lymph node metastasis.
FIGURE 7

Performance evaluation of 3 DTL models in the training set (A) and testing set (B). DenseNet121 outperformed ResNet50 and AlexNet, yielding an
AUC of 0.702 in the testing set. DTL, deep transfer learning; AUC, area under the curve.
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margin irregularities (e.g., GLRLM_ShortRunEmphasis), while DTL

identified subtle perilesional vascular patterns. This multimodal

synergy directly addresses the longstanding limitation of

conventional imaging in identifying micrometastases—a challenge

highlighted in studies such as that by Liu et al. (2017), who found that

conventional CT criteria (e.g., size thresholds) struggled to detect sub-

centimeter nodal metastases in esophageal cancer (38). By integrating

heterogeneous biomarkers, the fusion approach overcomes the

sensitivity-precision trade-off inherent to single-modality methods,

aligning with advancements in radiomics-deep learning fusion

frameworks observed in other oncologic contexts (17, 38).
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Toward a multiparametric ultrasound
fusion model

Our study utilized conventional B-mode ultrasound images,

which are the most widely available and cost-effective. However, we

acknowledge that emerging ultrasound technologies such as three-

dimensional (3D) ultrasonography can provide additional

quantitative information on tumor volume. Volumetric data from

3D imaging captures the full spatial complexity of a tumor

(39). SWE offers unique insights into underlying biological

characteristics. Tissue stiffness, as measured by SWE, often
FIGURE 9

Fusion feature selection using LASSO (A) and histogram of the importance scores of the selected features (B). The optimal l value was 0.0450.
LASSO, least absolute shrinkage and selection operator.
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correlates with pathological processes such as fibrosis and cellular

proliferation, which are hallmarks of malignancy (19, 40, 41).

Contrast-enhanced ultrasonography can assess the vitality of

tumors through contrast enhancement, and can depict the real-

time dynamic perfusion of tumors (42). These parameters have

shown promise in characterizing tumor aggressiveness and

predicting lymph node metastasis. Integrating these multi-

parametric ultrasound features into our fusion model represents a

compelling direction for future research, potentially further

boosting predictive accuracy.
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Clinical parameter integration

Multivariate analysis identified maximum tumor diameter

(OR = 1.055) and RBC count (OR = 0.646) as independent

predictors of PLNM, corroborating established oncopathological

mechanisms. Numerous research studies have indicated that tumor

size serves as a standalone predictor for lymph node metastasis in

cervical cancer; tumor size directly correlates with the probability of

lymphatic invasion (43, 44). Thus, large tumors (tumor diameter >

4 cm) are a risk factor for nodal metastasis and considerably
FIGURE 10

Selected fusion features and corresponding coefficients.
TABLE 5 Performance evaluation of feature fusion models across classifiers.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-Training 0.831 0.7768–0.8858 0.820 0.658 0.876 0.649 0.880

SVM-Training 0.922 0.8810–0.9627 0.857 0.921 0.835 0.660 0.968

KNN-Training 0.861 0.8179–0.9031 0.820 0.513 0.927 0.709 0.845

RandomForest-Training 0.869 0.8204–0.9176 0.776 0.816 0.761 0.544 0.922

ExtraTrees-Training 0.828 0.7727–0.8833 0.728 0.816 0.697 0.484 0.916

XGBoost-Training 0.975 0.9580–0.9924 0.935 0.895 0.950 0.861 0.963

LightGBM-Training 0.937 0.9051–0.9693 0.878 0.882 0.876 0.713 0.955

MLP-Training 0.857 0.8086–0.9064 0.762 0.829 0.739 0.525 0.925

LR-Testing 0.723 0.6243–0.8226 0.622 0.839 0.552 0.377 0.914

SVM-Testing 0.744 0.6451–0.8422 0.630 0.774 0.583 0.375 0.889

KNN-Testing 0.743 0.6451–0.8422 0.756 0.452 0.854 0.500 0.828

RandomForest-Testing 0.698 0.5956–0.8003 0.630 0.742 0.594 0.371 0.877

ExtraTrees-Testing 0.710 0.6053–0.8154 0.575 0.871 0.479 0.351 0.920

XGBoost-Testing 0.712 0.6058–0.8176 0.724 0.581 0.771 0.450 0.851

LightGBM-Testing 0.651 0.5399–0.7612 0.535 0.806 0.448 0.321 0.878

MLP-Testing 0.753 0.6494–0.8560 0.669 0.806 0.625 0.410 0.909
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; KNN, k-nearest
neighbor; XGBoost, eXtreme gradient boost; LightGBM, light gradient boosting machine; MLP, multilayer perceptron.
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FIGURE 12

Nomogram incorporating fused radiomic-DTL features, maximum tumor diameter, and RBC count for individualized PLNM risk prediction. DTL,
deep transfer learning; RBC, red blood cell; PLNM, pelvic lymph node metastasis.
FIGURE 11

Receiver operating characteristic curve analysis of fused feature models. The MLP-based combined model achieved superior performance (AUC:
0.753) in the testing cohort. MLP, multilayer perceptron; AUC, area under the curve.
TABLE 6 Comparison of AUCs of radiomics, DTL, fusion, and nomogram models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Radiomics-Training 0.749 0.6906–0.8071 0.653 0.829 0.592 0.414 0.908

DTL-Training 0.782 0.7231–0.8400 0.694 0.776 0.665 0.447 0.895

Fusion-Training 0.857 0.8086–0.9064 0.762 0.829 0.739 0.525 0.925

(Continued)
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FIGURE 13

Comparison of receiver operating characteristic curves of all models. The nomogram demonstrated optimal diagnostic accuracy in both the training
(A) and testing cohorts (B).
FIGURE 14

Calibration performance of the nomogram. (A) Training set calibration curve demonstrating concordance between the predicted and observed
pelvic lymph node metastasis rates (Hosmer-Lemeshow test: p = 0.072). (B) Testing set calibration curve validating model generalizability, with
maintained agreement between predictions and outcomes (Hosmer-Lemeshow test: p = 0.131).
TABLE 6 Continued

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Nomogram-Training 0.871 0.8274–0.9156 0.789 0.882 0.757 0.558 0.948

Radiomics-Testing 0.729 0.6249–0.8334 0.677 0.677 0.677 0.404 0.867

DTL-Testing 0.702 0.5853–0.8193 0.772 0.548 0.844 0.531 0.853

Fusion-Testing 0.753 0.6494–0.8560 0.669 0.806 0.625 0.410 0.909

Nomogram-Testing 0.764 0.6604–0.8678 0.780 0.581 0.844 0.545 0.862
F
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AUC, area under the curve; DTL, deep transfer learning; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; Fusion, radiomics-DTL fusion model.
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increase the incidence of PLNM (45). Conversely, anemia (reflected

by a low RBC count) can be associated with chronic tumor

hemorrhage and inflammatory microenvironment modifications

that are conducive to metastatic spread (46). Considering the

influence of clinical factors on PLNM, we developed a nomogram

incorporating the radiomics signature, the DTL signature,

maximum tumor diameter, and RBC count. The nomogram

displayed good calibration and excellent performance to evaluate

PLNM status with an AUC of 0.871 in the training cohort and 0.764

in the test cohort. The incorporation of these clinical parameters

with imaging biomarkers in the nomogram created a biologically

plausible decision tool that outperformed single-modal models,

which is consistent with the results reported in the literature (47,

48). However, it is important to note that our model was developed

and validated on a single-center retrospective dataset. While

internal validation showed promising results, the generalizability

of our model needs to be confirmed in multi-center, prospective

studies with diverse patient populations and imaging protocols.
Technical and clinical implications

This investigation represents the first implementation of

ultrasound-based radiomics-DTL fusion for cervical cancer nodal

staging, addressing 2 critical clinical needs (1): cost-effective

alternatives to MRI and PET-CT in low-resource settings (4, 10),

and (2) quantitative standardization of subjective ultrasound

interpretation (25). The achieved diagnostic accuracy (training

AUC: 0.871) positions our nomogram competitively against MRI-

based models requiring specialized sequences and contrast

administration (10, 49). Furthermore, the compatibility of our

methodology with portable ultrasound systems enables potential

deployment in screening/telemedicine contexts, which is

particularly valuable in geographically dispersed populations.
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However, a performance gap was observed between the training

(AUC = 0.871) and testing (AUC = 0.764) cohorts. This is an

expected phenomenon in machine learning, reflecting the model’s

adaptation to the specific patterns of the training data. It is crucial to

highlight that our modeling pipeline incorporated several strategies to

mitigate overfitting, including LASSO regularization and 10-fold

cross-validation during feature selection. The testing AUC of 0.764,

therefore, represents a more realistic estimate of the model’s

performance on unseen data, which remains clinically valuable and

competitive with existing literature (50). Most importantly, the DCA

demonstrated that the nomogram provided superior clinical net

benefit across a wide range of threshold probabilities (10%–50%) in

the testing set, underscoring its potential utility in clinical decision-

making despite the observed drop in AUC.
Limitations and future directions

Four principal limitations warrant consideration. First, the most

significant limitation of this study is its single-center, retrospective

nature. The absence of an external validation cohort from a different

institution limits the assessment of the model’s generalizability and

robustness against variations in ultrasound equipment and operator

expertise. Second, two-dimensional ROI analysis disregards volumetric

heterogeneity patterns, which are increasingly being recognized as

metastatic predictors. Third, the exclusion of functional ultrasound

parameters (Doppler indices, elastography) omitted potentially

discriminative hemodynamic data. Fourth, the monocentric training

dataset (n = 294) may insufficiently represent global population

diversity, requiring multicenter expansion for clinical implementation.

In the future, we will prioritize external validation in a multi-

center setting to confirm the clinical translatability of our nomogram,

and prospective validation efforts should focus on advancing

multidimensional tumor assessment by integrating volumetric
FIGURE 15

Decision curve analysis of the clinical utility of the model. (A) Training set: the nomogram achieves significantly higher net benefit than the
radiomics, DTL, and fusion models across clinically relevant threshold probabilities (10%–50%). (B) Testing set: sustained superiority of the
nomogram in the validation cohort, with net benefit outperforming that of the comparator models at all decision thresholds. DTL, deep transfer
learning.
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three-dimensional sampling techniques with dynamic perfusion

monitoring across treatment timelines, while concurrently

establishing molecular validation frameworks through longitudinal

tracking of circulating tumor DNA biomarkers.
Conclusions

The nomogram developed in this study establishes a clinically

viable framework for preoperative PLNM prediction in patients

with cervical cancer, and synergistically integrates the accessibility

of ultrasonography with advanced computational analytics. By

achieving a diagnostic accuracy comparable to those of resource-

intensive modalities through multimodal feature fusion, this

approach holds particular promise for optimizing therapeutic

stratification in resource-variable healthcare ecosystems.
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