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Background: To develop and validate a multimodal fusion model integrating
ultrasound-based radiomics, deep transfer learning (DTL), and clinical
parameters for preoperative pelvic lymph node metastasis (PLNM) prediction in
cervical cancer.

Methods: A retrospective cohort of 421 patients with surgically confirmed
cervical cancer was divided into the training (70%, n = 294) and testing (30%,
n = 127) sets. Ultrasound-based radiomics (1,561 handcrafted features) and 3 DTL
architectures (DenseNet121, ResNet50, AlexNet) were employed for feature
extraction. After redundancy reduction (Spearman correlation, least absolute
shrinkage and selection operator regression) and principal component analysis,
fused radiomics-DTL features were combined with clinical predictors. Eight
machine learning classifiers were evaluated, and the optimal model was used
to construct a nomogram. Performance was assessed using area under the curve
(AUC), calibration curves, and decision curve analysis (DCA).

Results: The multilayer perceptron-based fusion model achieved a testing AUC
of 0.753, outperforming standalone radiomics (AUC = 0.729) and DTL models
(best AUC = 0.702; DenseNetl121). Integration of clinical predictors (maximum
tumor diameter and red blood cell count) further enhanced performance,
yielding a nomogram with training/testing AUCs of 0.871 and 0.764, and a
testing sensitivity and specificity of 58.1% and 84.4%,respectively. DCA
demonstrated superior clinical utility for the nomogram across threshold
probabilities (10%—-50%).
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Conclusions: We developed a multimodal fusion model integrating ultrasound-
based radiomics, DTL, and clinical parameters for preoperative PLNM prediction
in cervical cancer. The proposed nomogram provides a clinically applicable,
cost-effective tool for preoperative PLNM prediction, particularly valuable for
optimizing treatment decisions in resource-limited settings.

cervical cancer, radiomics, lymph node metastasis, ultrasound, featurefusion,
nomogram, deep transfer learning

Introduction

Cervical cancer is a critical global health challenge, as it is the
fourth most prevalent malignancy among women worldwide (1).
The clinical management of this disease hinges on precise staging
according to the International Federation of Gynecology and
Obstetrics (FIGO) criteria, particularly the assessment of pelvic
lymph node metastasis (PLNM), which fundamentally alters the
therapeutic pathway (2, 3). Current National Comprehensive
Cancer Network (NCCN) guidelines recommend radical
hysterectomy with pelvic lymphadenectomy for stage IB-IIA
lesions (4), yet emerging evidence questions this approach given
that 70%-90% of patients with early-stage cervical cancer derive no
oncological benefit from nodal dissection while facing substantial
complication risks (2, 5). The 2018 revision of the FIGO criteria
emphasized this prognostic stratification by introducing stage IIIC
for radiologically suspected nodal involvement, and mandating
chemoradiation over surgical intervention for these lesions (6).
This staging evolution heightens the need for the accurate
preoperative assessment of PLNM status, as treatment algorithms
become increasingly dependent on imaging findings rather than
surgical pathology (7).The reliable preoperative prediction of
PLNM could significantly alter clinical management, potentially
sparing node-positive patients from primary surgery and its
associated morbidity, and instead directing them towards
definitive chemoradiation, as supported by clinical evidence (8).

Unfortunately, current diagnostic modalities exhibit critical
limitations in nodal evaluation, and the low incidence of
intraoperatively confirmed nodal metastases (3.9%) despite

Abbreviations: DTL, deep transfer learning; PLNM, pelvic lymph node
metastasis; AUC, area under the curve; DCA, decision curve analysis; FIGO,
International Federation of Gynecology and Obstetrics; NCCN, National
Comprehensive Cancer Network; ICC, intraclass correlation coefficients; CT,
computed tomography; MRI, magnetic resonance imaging; PET, Positron-
emission tomography; BMI, body mass index; RBC, red blood cell; WBC, white
blood cell; ALP, alkaline phosphatase; CEA, carcinoembryonic antigen; SCC,
squamous cell carcinoma; LASSO, least absolute shrinkage and selection
operator; ROI, region of interest; LR, logistic regression; SVM, support vector

machines; KNN, k-nearest neighbors; MLP, multilayer perceptron.
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preoperative imaging evaluation (9). Compared to CT, magnetic
resonance imaging (MRI) demonstrates improved performance
through functional sequences, yet a meta-analysis has revealed
persistent interobserver variability exceeding 20% in lymph node
characterization (10). Positron-emission tomography (PET)/CT,
though valuable for metabolic assessment, suffers from limited
accessibility and high false-negative rates in sub-centimeter nodes
(11). Ultrasonography, the most widely available modality, shows
operator-dependent accuracy, with its sensitivity differing according
to the operator’s experience (12). Sentinel lymph node biopsy is the
most precise technique for assessing PLNM preoperatively; however,
this approach is invasive, and its outcomes may be affected by factors
such as atypical lymphatic drainage patterns, the effectiveness of
preoperative lymphoscintigraphy, and the level of surgical expertise
(13, 14). These diagnostic challenges have catalyzed innovation in
quantitative imaging analysis.

Radiomics enables the high-throughput extraction of subvisual
tumor features through the mathematical characterization of
texture heterogeneity, margin irregularity, and vascular patterns
(15), while deep learning (DL) techniques, especially convolutional
neural network architectures, can identify intricate patterns and
characteristics linked to lymph node metastasis (LNM). These
advanced computational approaches significantly improve the
precision of LNM prediction models (16). Although radiomic
characteristics and DL-derived features each possess unique
strengths and inherent constraints, the synergistic combination of
these methodologies provides mutually reinforcing diagnostic
insights. Consequently, this integrative approach has emerged as a
significant focus area in contemporary medical imaging research
(17). The multimodal fusion of handcrafted radiomic features and
deep transfer learning (DTL)-derived biomarkers has improved
diagnostic accuracy beyond single-modality approaches in breast
cancers (18).

The biological rationale for the utility of ultrasonography in
nodal assessment resides in its unique capacity to characterize
dynamic tumor-stromal interactions through real-time functional
imaging. Shear-wave elastography(SWE) provides biomechanical
insights by measuring alterations in tissue stiffness caused
by metastatic desmoplastic reactions, which are a critical
discriminator between reactive and malignant lymph nodes (19).
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This multifaceted capability for biological profiling positions
ultrasonography as the ideal platform for developing predictive
models that bridge radiological findings with underlying metastatic
pathophysiology (20).

The clinical imperative for non-invasive nodal assessment extends
beyond diagnostic accuracy. Unnecessary lymphadenectomy
contributes to chronic lymphedema and increased healthcare costs
(21, 22). In contrast, ultrasound-based predictive models offer cost-
effective solutions adaptable to diverse healthcare settings. This
methodology specifically addresses the limitations of prior MRI-
centric radiomic models that require specialized sequences (such as
diffusion-weighted imaging and apparent diffusion coefficient
mapping), which are unavailable in low-resource regions. Currently,
there is limited literature on the application of integrated models
combining ultrasound radiomics and deep transfer learning for
predicting pelvic lymph node metastasis in cervical cancer.

The primary objective of this investigation is to establish a
clinically translatable decision-support tool that enables the non-
invasive stratification of pelvic nodal metastasis risk in cervical
cancer patients. Specifically, we aim to accomplish the following
(1): validate ultrasound-derived radiomic signatures against
surgical pathology in a 421-patient cohort (2); determine the
complementary value of DTL-derived features in augmenting the
value of the ultrasound-based radiomic signatures; and (3) develop
an interpretable predictive model integrating quantitative imaging
biomarkers with routine clinical and hematological parameters.
This initiative directly responds to the guidelines of the European
Society of Gynecological Oncology, European Society for
Radiotherapy and Oncology, and European Society of Pathology,
which advocate for precision-medicine approaches in gynecological
oncology, while addressing healthcare disparities through
ultrasound-centric technology, which is accessible across resource
settings (23, 24).

Methods
Cohort selection

Patients from the First Affiliated Hospital of Guangxi
Medical University undergoing radical hysterectomy with pelvic
lymphadenectomy between May 2020 and September 2024 were
screened against predefined eligibility criteria. Inclusion required the
following (1): histopathologically confirmed cervical cancer with
definitive PLNM status (2), preoperative transvaginal ultrasound
imaging within 2 weeks before surgery capturing measurable lesions,
and (3) availability of complete clinical records. Individuals meeting
any of the following criteria were excluded from the study: prior
oncological treatments (chemotherapy/radiotherapy), other
concurrent gynecological malignancies, non-diagnostic ultrasound
images, or incomplete data. From an initial pool of 963 candidates,
421 patients met the selection criteria and were enrolled in the
study (Figure 1).
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Clinical and imaging data acquisition

We systematically extracted the following demographic,
hematological, and histopathological parameters from the patients’
electronic health records: age, parity, abortion history, body mass
index (BMI), hematological indices (red blood cell [RBC] count,
white blood cell [WBC] count, eosinophil count, and alkaline
phosphatase [ALP]), levels of tumor markers (cancer antigen 125
[CA125], CA153, CA199, carcinoembryonic antigen [CEA], and
squamous cell carcinoma [SCC] antigen), maximum lesion diameter,
histological type, and PLNM status according to the postoperative
pathological results (see the study design on Figure 2).

Ultrasound examinations were performed using the GE Voluson
E10 and Logiq E9 systems equipped with 5-9 MHz transvaginal
transducers. Standardized imaging protocols mandated bladder
evacuation 10 min before the procedure, lithotomy positioning,
and the acquisition of 6-10 representative images per patient in
orthogonal planes. A single maximally cross-sectional image per
patient was archived in the hospital’s picture archiving system for
blinded analysis by 2 sonographers with 5 and 11 years of experience.
Discrepancies in lesion characterization were resolved through

consensus review.

Tumor segmentation and reproducibility
assessment

Manual delineation of tumor boundaries was performed using
ITK-SNAP (v3.8.0) on the selected ultrasound slices. To assess inter-
observer variability, we implemented a dual-annotation protocol:
Sonographer A segmented all images, while Sonographer B
independently annotated 50 randomly selected images. Intra-
observer variability was assessed through repeated segmentations
by Sonographer A after an 8-week interval. Features exhibiting
intraclass correlation coefficients(ICCs) < 0.75 in both the inter-
and intra-observer analyses were excluded to ensure robustness.

Radiomic feature extraction and selection

Quantitative radiomic profiling extracted 1,561 handcrafted
features via PyRadiomics (v3.0.1), categorized into the following 3
domains: geometric morphology (42 features), intensity distributions
(744 features), and textural heterogeneity (775 features). Textural
characterization employed 4 matrix-based methods: gray-level co-
occurrence, gray-level run-length (GLRLM), gray-level size-zone, and
neighboring gray tone difference matrices. A triphasic feature-
reduction pipeline was applied (1): Mann-Whitney U tests (p <
0.05) identified metastasis-associated features (2); Spearman
correlation filtering (|p| > 0.9) eliminated redundant variables; and
(3) least absolute shrinkage and selection operator (LASSO)
regression with 10-fold cross-validation (A = 0.0450, minimum
criteria) selected 9 non-collinear predictors.
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Cervical cancer diagnosed with histopathologically confirmed and
undergone TVS (n=963)

Inclusion:

-Radical hysterectomy and pelvic lymph node
dissection were performed

-Cervical cancer and PLNM status were
confirmed by histopathology

-Transvaginal sonography was performed <2
wk before surgery

-Clinical characteristics were available

patients according to inclusion criteria
(n=502)

Exclusion:

-Undergone chemotherapy or radiotherapy
before surgery (n=44)

-Patients with a history of other gynecological
malignancies (n=5)

-US images were lost or of poor quality (n=10)
-Incomplete clinical information (n=22)

Patients enrolled in this respective study

(n=421)
\ 4 \ 4
Training set Testing set
(n=294) (n=127)
\ 4 ‘l’ \ 4 ‘1’
PLNM(+) PLNM(-) PLNM(+) PLNM(-)
(n=76) (n=218) (n=31) (n=96)

FIGURE 1

Flowchart of patient enrollment, exclusion, and grouping. TVS, transvaginal ultrasonography; PLNM, pelvic lymph node metastasis; US, ultrasound

Deep transfer learning architecture and
optimization

Three convolutional neural networks DenseNet121, ResNet50,

and AlexNet were adapted using transfer learning from ImageNet
pretrained weights. Input images underwent region of interest

Frontiers in Oncology

(ROI)-centered cropping to exclude extralesional tissue, followed
by Z-score normalization. To enhance the generalizability of the
images, we performed real-time data augmentation via random
cropping (+ 15% volume), horizontal/vertical flipping (p = 0.5), and
intensity scaling (+ 20%). Feature embeddings were extracted
from the penultimate fully connected layer (16,383 dimensions)
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Radiomics Model

Handcrafted Feature Extraction

1

Feature
Fusion

Deep Transfer
Learning Model

Image segmentation

= TR

Deep Transfer
Learning Feature Extraction

Max ROI

FIGURE 2

Model Construction Perfomance Comparison

Schematic workflow of the study design. The framework includes image acquisition, feature extraction (radiomics and deep transfer learning),
feature fusion, model construction, and nomogram development. US, ultrasonography; ROI, region of interest.

of the optimal-performing network and reduced to 64
principal components via principal component analysis for
computational efficiency.

Multimodal feature fusion strategy

Hybrid biomarkers were developed by concatenating the
radiomic signatures with the DTL-derived principal components,
thereby generating a 73-dimensional feature space. Recursive
feature elimination was then performed, prioritizing variables that
demonstrated complementary predictive value. After this step, 7
radiomic and 9 DTL components were retained. The fused feature
set was standardized (using z-scores) prior to model integration.

Predictive modeling framework

Eight machine learning classifiers were evaluated: logistic
regression(LR; L2 regularization), support vector machines (SVM;
radial basis kernel), k-nearest neighbors (KNN; k = 5),
RandomForest (100 trees), ExtraTrees (50 trees), XGBoost
(max_depth = 6), LightGBM (num_leaves = 31), and multilayer
perceptron (MLP; 2 hidden layers, ReLU activation).
Hyperparameter optimization employed a grid search with 10-fold
cross-validation on the training cohort (70%, n = 294), prioritizing
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balanced accuracy. The MLP architecture incorporated dropout
regularization (rate = 0.3) and early stopping (patience = 10

epochs) to mitigate overfitting.

Clinical-radiomic nomogram development

Multivariate logistic regression identified independent clinical
predictors (maximum tumor diameter and RBC count), which were
integrated with the optimal fusion model outputs to construct a
nomogram. Calibration slopes were adjusted using Platt scaling to
align the predicted probabilities with the observed metastasis rates.

Statistical validation protocol

Model discrimination was quantified using area under the
receiver operating characteristic curve (AUC). Calibration
accuracy was assessed using the Hosmer-Lemeshow test and Brier
scores. Decision curve analysis evaluated clinical utility across
probability thresholds (0%-100%). Continuous variables were
analyzed using the Mann-Whitney U test or Student t-test
following Shapiro-Wilk normality testing, while categorical
variables were evaluated using the chi-square or Fisher exact test.
Correlation analyses were performed using Pearson (normal
distribution) or Spearman (non-parametric) coefficients.
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TABLE 1 Demographic and ultrasonographic characteristics of the study participants.

10.3389/fonc.2025.1681029

Feature Training PLNM (=) PLNM (+)  Pvalue Testing PLNM (=) PLNM (+) P value
(N = 294) (N = 127)
Age 52.93 +10.68 52.78 + 10.69 53.38 £ 10.72 0.671 51.98 +10.17 51.15 + 10.22 54.55 +9.72 0.091
Parturition 2.46 + 1.32 2.39 +1.28 2.64 +1.42 0.309 2.52 + 1.48 240 £+ 1.51 2.90 + 1.35 0.037
Abortion 141 +1.38 141 £ 1.39 143 +£1.38 0.767 1.30 + 1.32 1.34 + 1.40 1.16 £ 1.07 0.726
BMI 23.35+3.53 23.29 +3.43 23.52 +3.82 0.596 23.29 +3.39 2347 £ 3.54 22.75+2.83 0.594
RBC count (1072/L) 4.09 + 091 412 £0.99 3.99 £ 0.59 0.500 4.05 £ 0.62 4.09 £ 0.56 3.90 +0.78 0.138
WBC count (10A%/L) 11.14 + 3.62 11.31 £ 3.65 10.64 + 3.52 0.163 11.26 + 3.86 11.66 + 3.98 10.01 + 3.22 0.027
ALP (U/L) 63.08 + 19.26 61.86 + 19.22 66.59 + 19.06 0.015 65.13 + 22.48 61.36 + 18.33 76.81 + 29.53 0.003
Eosinophil count (10A°/L) | 0.16 + 1.23 0.18 + 1.42 0.10 + 0.22 <0.001 0.05 £ 0.10 0.04 £ 0.10 0.06 + 0.09 0.122
CA125 (U/mL) 37.53 £ 117.05 = 26.16 + 49.86 70.13 + 211.85 <0.001 34.93 + 73.63 25.58 £+ 61.65 63.91 + 97.91 <0.001
CA153 (U/mL) 14.31 £ 8.95 13.66 + 9.03 16.15 + 8.48 0.008 1327 £7.33 12.69 + 6.80 15.04 + 8.67 0.21
CA199 (U/mL) 46.76 + 390.57 = 13.23 £ 24.10 142.92 £ 762.65 = <0.001 21.87 £ 86.47 25.11 £ 99.00 11.82 + 15.04 0.31
CEA (U/mL) 6.04 £ 16.58 5.08 £ 10.85 8.80 + 26.89 0.024 4.14 £ 6.14 3.43 £5.10 6.34 £ 8.33 0.002
SCC antigen (ng/mL) 6.17 £ 9.99 5.00 + 8.47 9.53 +12.92 0.002 691 + 12.64 3.87 +£5.90 16.32 + 20.96 <0.001
Maximum diameter (mm) | 33.10 + 13.55 30.25 + 11.86 41.29 + 14.81 <0.001 31.83 +11.84 29.47 + 1091 39.16 + 11.77 <0.001
Histology 0.167 0.075
Squamous cell carcinoma 231 (78.57) 174 (79.82) 57 (75.00) 101 (79.53) 72 (75.00) 29 (93.55)
Adenocarcinoma 48 (16.33) 36 (16.51) 12 (15.79) 19 (14.96) 18 (18.75) 1(3.23)
Others 15 (5.10) 8 (3.67) 7 (9.21) 7 (5.51) 6 (6.25) 1(3.23)

PLNM, pelvic lymph node metastasis; BMI, body mass index; RBC, red blood cell; WBC, white blood cell; ALP, alkaline phosphatase; CA, cancer antigen; CEA, carcinoembryonic antigen; SCC

antigen, squamous cell carcinoma antigen.

Computational infrastructure

All analyses were implemented using Python v3.9 (scikit-learn v1.2,
PyTorch v1.13) on an NVIDIA A100 GPU cluster. Reproducibility was
ensured through fixed random seeds (NumPy = 42, PyTorch = 3407)
and version-controlled pipelines.

Results
Clinical and ultrasound characteristics

This retrospective analysis included 421 cervical cancer patients,
of whom 294 patients were allocated to the training cohort (218
[74.1%] PLNM-negative patients; 76 [25.9%] PLNM-positive patients)
and 127 to the testing cohort (96 [75.6%] PLNM-negative patients; 31
[24.4%] PLNM-positive patients; Table 1). The PLNM-negative and
PLNM-positive groups significantly differed in terms of parturition
(p = 0.037), WBC count (p = 0.027), ALP level (p = 0.003), CA125
level (p < 0.001), CEA level (p = 0.002), SCC antigen level (p < 0.001),
and maximum tumor diameter (p < 0.001). No significant differences
were detected in age, abortion history, BMI, RBC count, and histology.
Cohort stratification ensured balanced clinical characteristics between
the training and testing sets (p > 0.05 for all variables).

Frontiers in Oncology

Univariate logistic regression identified age, parturition,
abortion, BMI, RBC count, WBC count, ALP level, CA153 level,
histology, and maximum tumor diameter as potential predictors of
PLNM status (Table 2). Subsequent multivariate analysis confirmed
maximum tumor diameter (odds ratio [OR] = 1.055, 95%
confidence interval [CI]: 1.036-1.075) and RBC count (OR =
0.646, 95% CI: 0.459-0.910) as independent risk factors for PLNM.

Radiomics model development

A total of 1,561 handcrafted radiomic features were extracted
from the ultrasound images, and distributed across the geometric
(n = 42), intensity-based (n = 744), and texture-based (n = 775)
categories (Figure 3). Feature selection involved redundancy
elimination via Spearman correlation (|p| > 0.8) followed by
LASSO regression (A = 0.0450, 10-fold cross-validation), and
yielded 9 robust handcrafted radiomic features (Figures 4, 5). The
importance scores of these features, ranked by absolute LASSO
coefficients, are visualized in Figure 4B.

Eight machine-learning classifiers were evaluated using the
selected handcrafted radiomic features (Table 3). The MLP model
demonstrated optimal performance in the testing cohort (AUC =
0.729, 95% CI: 0.6249-0.8334), outperforming the logistic
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TABLE 2 Univariate and multivariate logistic regression analysis of clinical predictors for PLNM.

Univariate analysis

Clinical and US characteristics

Multivariate analysis

OR Lower Upper p OR Lower Upper p
95% Cl  95% ClI 95% Cl  95% ClI

Age 0.981 0.977 0.985 0.000 0.994 0.971 1.017 0.667
Parturition 0.730 0.672 0.792 0.000 1.155 0.951 1.404 0.222
Abortion 0.667 0.591 0.745 0.000 1.085 0.909 1.294 0.446
BMI 0.957 0.948 0.966 0.000 0.936 0.881 0.995 0.073
RBC count 0.771 0.731 0.815 0.000 0.646 0.459 0.910 0.036
WBC count 0.911 0.894 0.930 0.000 0.965 0.904 1.031 0.379
ALP 0.986 0.982 0.989 0.000 1.006 0.993 1.020 0.460
Eosinophil count 0.628 0.211 1.865 0.482

CA125 1.000 0.998 1.001 0.860

CA153 0.952 0.939 0.966 0.000 1.010 0.985 1.036 0.507
CA199 1.001 1.000 1.002 0.363

CEA 0.988 0.974 1.003 0.182

SCC antigen 0.981 0.964 0.999 0.077

Maximum tumor diameter 0.981 0.974 0.986 0.000 1.055 1.036 1.075 0.000
Histology 0.602 0.427 0.848 0.015 1.410 0.911 2.181 0.196

PLNM, pelvic lymph node metastasis; US, ultrasonography; OR, odds ratio; CI, confidence interval; BMI, body mass index; RBC, red blood cell; WBC, white blood cell; ALP, alkaline phosphatase;
CA, cancer antigen; CEA, carcinoembryonic antigen; SCC antigen, squamous cell carcinoma antigen.

regression (AUC = 0.715), support vector machine (AUC = 0.711),
and other classifiers (Figure 6).

Deep transfer learning model performance

Three pre-trained convolutional neural networks (DenseNet121,
ResNet50, and AlexNet) were adapted for DTL analysis (Table 4).
DenseNet121 achieved the highest testing AUC of 0.702 (95% CI:
0.5853-0.8193), surpassing ResNet50 (AUC = 0.668) and AlexNet
(AUC = 0.684; Figure 7). Gradient-weighted Class Activation
Mapping was used to localize the tumor subregions that were
critical for the predictions made by DenseNetl21, and the results
revealed preferential attention to areas of heterogeneous
echogenicity (Figure 8).

Feature fusion and combined model

After recursive feature elimination, a total of 7 handcrafted
radiomic features and 9 DTL features were retained from the fused
feature set comprising 1625 dimensions (Figures 9, 10). Among the
8 classifiers evaluated (Table 5), the MLP-based fusion model
achieved a testing AUC of 0.753 (95% CI: 0.6494-0.8560),
representing a 5.1% improvement over standalone DenseNet121
(AUC: 0.753 v5.0.702; Figure 11).
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Nomogram construction and validation

The fusion model was combined with independent clinical
predictors (maximum tumor diameter and RBC count) to
develop a nomogram (Figure 12). The nomogram exhibited
superior discrimination, with training and testing AUCs of 0.871
(95% CI: 0.8274-0.9156) and 0.764 (95% CI: 0.6604-0.8678),
respectively, outperforming the radiomics, DTL, and fusion
models (Table 6, Figure 13). Calibration curves demonstrated
excellent agreement between the predicted and observed PLNM
probabilities in both cohorts (Hosmer-Lemeshow test: training, p =
0.072; testing, p = 0.131; Figure 14). Decision curve analysis
confirmed that the nomogram provided a greater net benefit
across clinically relevant threshold probabilities (10%-50%) than
that associated with alternative models (Figure 15).

Discussion
Radiomics and deep learning synergy

While the acquisition of ultrasound images may be subject to
operator variability,

quantitative characterization of tumor heterogeneity through
radiomic feature extraction enables the objective assessment of
metastatic propensity, thereby circumventing subjective variability
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FIGURE 3

Distribution of 1,561 handcrafted radiomic features across 3 categories: geometric, intensity-based, and texture-based characteristics.

in image interpretation (25). In our study, we implemented several
strategies to enhance robustness against operator variability. First,
all sonographers followed a standardized imaging protocol to
minimize acquisition differences. More importantly, during
feature extraction, we performed a rigorous reproducibility
assessment based on both inter- and intra-observer intraclass
correlation coefficients (ICCs). Features with ICCs below 0.75

were excluded, ensuring that only stable and reproducible features
were used for model construction. This process helps to filter out
features that are highly sensitive to segmentation differences or
acquisition parameters, thereby increasing the generalizability and
reliability of the radiomic signature (26, 27). Future studies
employing automated segmentation algorithms could further
reduce this potential source of variability. Earlier research has
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001

demonstrated that radiomics-based approaches can effectively
predict lymph node metastasis across various cancer types (25,
28, 29). The radiomic component of our model demonstrated
robust validation performance (testing AUC = 0.729), which
was consistent with the performance of MRI-based radiomic
prediction of nodal involvement (AUC = 0.83) in a meta-analysis

of cervical cancer patients (9). This concordance suggests the
potential of ultrasound-based radiomics as a cost-effective
alternative to advanced imaging modalities, particularly in
resource-constrained settings.

DL, a subset of machine learning, enables computational models
featuring multiple processing layers to acquire hierarchical

TABLE 3 Diagnostic performance of radiomic models using different classifiers.

Model AUC 95% ClI Accuracy Sensitivity = Specificity PPV NPV
LR-Training 0.747 0.6877-0.8059  0.697 0.711 0.693 0.446 0.873
SVM-Training 0.818 0.7583-0.8781 0776 0.842 0.752 0.542 0.932
KNN-Training 0.850 0.8093-0.8914  0.772 0.368 0913 0.596 0.806
RandomForest-Training 0.998 0.9950-1.0000  0.976 0.947 0.986 0.960 0.982
ExtraTrees-Training 1.000 1.0000-1.0000  0.741 0.000 1.000 0.000 0.741
XGBoost-Training 0.998 0.9941-1.0000  0.983 0.974 0.986 0.961 0.991
LightGBM-Training 0.934 0.9051-0.9633  0.874 0.882 0.872 0.705 0.955
MLP-Training 0.749 0.6906-0.8071  0.653 0.829 0.592 0414 0.908
LR-Testing 0715 0.6086-0.8222  0.732 0.548 0.792 0.459 0.844
SVM-Testing 0.711 0.6095-0.8118  0.614 0.806 0.552 0.368 0.898
KNN-Testing 0.677 0.5785-0.7750  0.717 0.097 0917 0273 0.759
RandomForest-Testing 0.624 05141-0.7342  0.685 0.194 0.844 0.286 0.764
ExtraTrees-Testing 0.662 0.5553-0.7693 0.567 0.710 0.521 0.324 0.847
XGBoost-Testing 0.622 0.5167-0.7266 0504 0.871 0.385 0314 0.902
LightGBM-Testing 0.659 0.5554-0.7632  0.535 0.839 0.437 0.325 0.894
MLP-Testing 0.729 0.6249-0.8334  0.677 0.677 0.677 0.404 0.867

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; KNN, k-nearest
neighbor; XGBoost, eXtreme gradient boost; LightGBM, light gradient boosting machine; MLP, multilayer perceptron.
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FIGURE 6
(A) Receiver operating characteristic (ROC) curves of 8 machine learning classifiers for the radiomics model in the training set. (B) ROC curves of 8
machine learning classifiers for the radiomics model in the testing set.

representations of data across various levels of abstraction (30). In  broader applicability (35, 36). Future iterations incorporating
numerous real-world scenarios, convolutional neural networks that  three-dimensional ROI reconstructions and attention mechanisms
have been initially trained on the ImageNet dataset are widely — may enhance the generalizability of DTL (37).

utilized, a technique commonly referred to as transfer learning (31,

32). In our study, DTL architectures exhibited paradoxical

performance characteristics, with superior training accuracy (AUC ~ Adva ntages of multimodal fusion

= 0.782) versus diminished validation metrics (AUC = 0.702). This

performance gap aligns with findings in gastrointestinal oncology The feature-level integration of radiomic and DTL biomarkers
research, where DTL models consistently exhibit a higher risk of  generated synergistic diagnostic improvements, with the testing AUC
overfitting than radiomic approaches (33, 34). In our study, the DTL  (0.753) of the fusion model exceeding those of standalone approaches.
model was inferior to the conventional radiomic model in the testing  This aligns with the findings of Wang et al., who found that the fusion
set. The possible reasons for this are as follows: First, DTL requiresa  of radiomics and deep learning features achieved a testing AUC of
large number of training sets, whereas this is a single-center study;a  0.934 for differentiating benign and malignant parotid gland tumors,
large multi-center is needed for further training in the future.  significantly surpassing standalone radiomics (AUC = 0.853) and
Second, despite the strong performance of DTL in diverse  deep learning models (AUC = 0.883) (16). The fusion model
classification and prediction tasks, its inherent lack of  demonstrated enhanced capability in detecting small metastatic foci
interpretability, characteristic of black-box algorithms, limits its (<5 mm) by leveraging complementary features: radiomics quantified

TABLE 4 Comparison of deep transfer learning models for PLNM prediction.

Model AUC 95% Cl Accuracy Sensitivity Specificity PPV NPV
DenseNet121-Training  0.782 0.7231-0.8400 0.694 0.776 0.665 0447 0.895
AlexNet-Training 0.696 0.6306-0.7622 0728 0.500 0.807 0475 0.822
ResNet50-Training 0.756 0.6939-0.8179 0.660 0.803 0.610 0418 0.899
DenseNet121-Testing | 0.702 0.5853-0.8193 0772 0548 0.844 0531 0.853
AlexNet-Testing 0.684 0.5742-0.7947 0.693 0.581 0.729 0.409 0.843
ResNet50-Testing 0.668 0.5516-0.7837 0.661 0613 0.677 0380 0.844

PLNM, pelvic lymph node metastasis; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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Performance evaluation of 3 DTL models in the training set (A) and testing set (B). DenseNet121 outperformed ResNet50 and AlexNet, yielding an
AUC of 0.702 in the testing set. DTL, deep transfer learning; AUC, area under the curve.

FIGURE 8

Gradient-weighted Class Activation Mapping visualization of the predictions

PLNM classification. PLNM, pelvic lymph node metastasis.

of DenseNet121. The highlighted regions indicate tumor areas critical for
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Fusion feature selection using LASSO (A) and histogram of the importance scores of the selected features (B). The optimal | value was 0.0450.

LASSO, least absolute shrinkage and selection operator.

margin irregularities (e.g.,, GLRLM_ShortRunEmphasis), while DTL
identified subtle perilesional vascular patterns. This multimodal
synergy directly addresses the longstanding limitation of
conventional imaging in identifying micrometastases—a challenge
highlighted in studies such as that by Liu et al. (2017), who found that
conventional CT criteria (e.g., size thresholds) struggled to detect sub-
centimeter nodal metastases in esophageal cancer (38). By integrating
heterogeneous biomarkers, the fusion approach overcomes the
sensitivity-precision trade-off inherent to single-modality methods,
aligning with advancements in radiomics-deep learning fusion
frameworks observed in other oncologic contexts (17, 38).
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Toward a multiparametric ultrasound
fusion model

Our study utilized conventional B-mode ultrasound images,
which are the most widely available and cost-effective. However, we
acknowledge that emerging ultrasound technologies such as three-
dimensional (3D) ultrasonography can provide additional
quantitative information on tumor volume. Volumetric data from
3D imaging captures the full spatial complexity of a tumor
(39). SWE offers unique insights into underlying biological
characteristics. Tissue stiffness, as measured by SWE, often
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Selected fusion features and corresponding coefficients.

correlates with pathological processes such as fibrosis and cellular
proliferation, which are hallmarks of malignancy (19, 40, 41).
Contrast-enhanced ultrasonography can assess the vitality of
tumors through contrast enhancement, and can depict the real-
time dynamic perfusion of tumors (42). These parameters have
shown promise in characterizing tumor aggressiveness and
predicting lymph node metastasis. Integrating these multi-
parametric ultrasound features into our fusion model represents a
compelling direction for future research, potentially further
boosting predictive accuracy.

TABLE 5 Performance evaluation of feature fusion models across classifiers.

Clinical parameter integration

Multivariate analysis identified maximum tumor diameter
(OR = 1.055) and RBC count (OR = 0.646) as independent
predictors of PLNM, corroborating established oncopathological
mechanisms. Numerous research studies have indicated that tumor
size serves as a standalone predictor for lymph node metastasis in
cervical cancer; tumor size directly correlates with the probability of
lymphatic invasion (43, 44). Thus, large tumors (tumor diameter >
4 cm) are a risk factor for nodal metastasis and considerably

Model AUC 95% Cl Accuracy Sensitivity = Specificity = PPV NPV
LR-Training 0.831 0.7768-0.8858 0.820 0.658 0.876 0.649 0.880
SVM-Training 0.922 0.8810-0.9627 0.857 0.921 0.835 0.660 0.968
KNN-Training 0.861 0.8179-0.9031 0.820 0.513 0.927 0.709 0.845
RandomForest-Training 0.869 0.8204-0.9176 0.776 0.816 0.761 0.544 0.922
ExtraTrees-Training 0.828 0.7727-0.8833 0.728 0.816 0.697 0.484 0.916
XGBoost-Training 0.975 0.9580-0.9924 0.935 0.895 0.950 0.861 0.963
LightGBM-Training 0.937 0.9051-0.9693 0.878 0.882 0.876 0.713 0.955
MLP-Training 0.857 0.8086-0.9064 0.762 0.829 0.739 0.525 0.925
LR-Testing 0.723 0.6243-0.8226 0.622 0.839 0.552 0.377 0.914
SVM-Testing 0.744 0.6451-0.8422 0.630 0.774 0.583 0.375 0.889
KNN-Testing 0.743 0.6451-0.8422 0.756 0.452 0.854 0.500 0.828
RandomForest-Testing 0.698 0.5956-0.8003 0.630 0.742 0.594 0.371 0.877
ExtraTrees-Testing 0.710 0.6053-0.8154 0.575 0.871 0.479 0.351 0.920
XGBoost-Testing 0.712 0.6058-0.8176 0.724 0.581 0.771 0.450 0.851
LightGBM-Testing 0.651 0.5399-0.7612 0.535 0.806 0.448 0.321 0.878
MLP-Testing 0.753 0.6494-0.8560 0.669 0.806 0.625 0.410 0.909

AUCG, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; KNN, k-nearest
neighbor; XGBoost, eXtreme gradient boost; LightGBM, light gradient boosting machine; MLP, multilayer perceptron.
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FIGURE 12
Nomogram incorporating fused radiomic-DTL features, maximum tumor diameter, and RBC count for individualized PLNM risk prediction. DTL,
deep transfer learning; RBC, red blood cell; PLNM, pelvic lymph node metastasis.

TABLE 6 Comparison of AUCs of radiomics, DTL, fusion, and nomogram models.

Model AUC 95% ClI Accuracy Sensitivity Specificity PPV NPV
Radiomics-Training  0.749 0.6906-0.8071 0.653 0.829 0.592 0.414 0.908
DTL-Training 0.782 0.7231-0.8400 0.694 0.776 0.665 0.447 0.895
Fusion-Training 0.857 0.8086-0.9064 0.762 0.829 0.739 0525 0.925

(Continued)
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95% ClI Accuracy Sensitivity Specificity
Nomogram-Training = 0.871 0.8274-0.9156 0.789 0.882 0.757 0.558 0.948
Radiomics-Testing 0.729 0.6249-0.8334 0.677 0.677 0.677 0.404 0.867
DTL-Testing 0.702 0.5853-0.8193 0.772 0.548 0.844 0.531 0.853
Fusion-Testing 0.753 0.6494-0.8560 0.669 0.806 0.625 0.410 0.909
Nomogram-Testing 0.764 0.6604-0.8678 0.780 0.581 0.844 0.545 0.862

AUCG, area under the curve; DTL, deep transfer learning; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; Fusion, radiomics-DTL fusion model.
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FIGURE 13

Comparison of receiver operating characteristic curves of all models. The nomogram demonstrated optimal diagnostic accuracy in both the training

(A) and testing cohorts (B).
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Calibration performance of the nomogram. (A) Training set calibration curve demonstrating concordance between the predicted and observed
pelvic lymph node metastasis rates (Hosmer-Lemeshow test: p = 0.072). (B) Testing set calibration curve validating model generalizability, with
maintained agreement between predictions and outcomes (Hosmer-Lemeshow test: p = 0.131).
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radiomics, DTL, and fusion models across clinically relevant threshold probabilities (10%—-50%). (B) Testing set: sustained superiority of the
nomogram in the validation cohort, with net benefit outperforming that of the comparator models at all decision thresholds. DTL, deep transfer

learning.

increase the incidence of PLNM (45). Conversely, anemia (reflected
by a low RBC count) can be associated with chronic tumor
hemorrhage and inflammatory microenvironment modifications
that are conducive to metastatic spread (46). Considering the
influence of clinical factors on PLNM, we developed a nomogram
incorporating the radiomics signature, the DTL signature,
maximum tumor diameter, and RBC count. The nomogram
displayed good calibration and excellent performance to evaluate
PLNM status with an AUC of 0.871 in the training cohort and 0.764
in the test cohort. The incorporation of these clinical parameters
with imaging biomarkers in the nomogram created a biologically
plausible decision tool that outperformed single-modal models,
which is consistent with the results reported in the literature (47,
48). However, it is important to note that our model was developed
and validated on a single-center retrospective dataset. While
internal validation showed promising results, the generalizability
of our model needs to be confirmed in multi-center, prospective
studies with diverse patient populations and imaging protocols.

Technical and clinical implications

This investigation represents the first implementation of
ultrasound-based radiomics-DTL fusion for cervical cancer nodal
staging, addressing 2 critical clinical needs (1): cost-effective
alternatives to MRI and PET-CT in low-resource settings (4, 10),
and (2) quantitative standardization of subjective ultrasound
interpretation (25). The achieved diagnostic accuracy (training
AUC: 0.871) positions our nomogram competitively against MRI-
based models requiring specialized sequences and contrast
administration (10, 49). Furthermore, the compatibility of our
methodology with portable ultrasound systems enables potential
deployment in screening/telemedicine contexts, which is
particularly valuable in geographically dispersed populations.
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However, a performance gap was observed between the training
(AUC = 0.871) and testing (AUC = 0.764) cohorts. This is an
expected phenomenon in machine learning, reflecting the model’s
adaptation to the specific patterns of the training data. It is crucial to
highlight that our modeling pipeline incorporated several strategies to
mitigate overfitting, including LASSO regularization and 10-fold
cross-validation during feature selection. The testing AUC of 0.764,
therefore, represents a more realistic estimate of the model’s
performance on unseen data, which remains clinically valuable and
competitive with existing literature (50). Most importantly, the DCA
demonstrated that the nomogram provided superior clinical net
benefit across a wide range of threshold probabilities (10%-50%) in
the testing set, underscoring its potential utility in clinical decision-
making despite the observed drop in AUC.

Limitations and future directions

Four principal limitations warrant consideration. First, the most
significant limitation of this study is its single-center, retrospective
nature. The absence of an external validation cohort from a different
institution limits the assessment of the model’s generalizability and
robustness against variations in ultrasound equipment and operator
expertise. Second, two-dimensional ROI analysis disregards volumetric
heterogeneity patterns, which are increasingly being recognized as
metastatic predictors. Third, the exclusion of functional ultrasound
parameters (Doppler indices, elastography) omitted potentially
discriminative hemodynamic data. Fourth, the monocentric training

dataset (n = 294) may insufficiently represent global population
diversity, requiring multicenter expansion for clinical implementation.

In the future, we will prioritize external validation in a multi-
center setting to confirm the clinical translatability of our nomogram,
and prospective validation efforts should focus on advancing

multidimensional tumor assessment by integrating volumetric
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three-dimensional sampling techniques with dynamic perfusion
monitoring across treatment timelines, while concurrently
establishing molecular validation frameworks through longitudinal
tracking of circulating tumor DNA biomarkers.

Conclusions

The nomogram developed in this study establishes a clinically
viable framework for preoperative PLNM prediction in patients
with cervical cancer, and synergistically integrates the accessibility
of ultrasonography with advanced computational analytics. By
achieving a diagnostic accuracy comparable to those of resource-
intensive modalities through multimodal feature fusion, this
approach holds particular promise for optimizing therapeutic
stratification in resource-variable healthcare ecosystems.
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