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CT radiomics analysis facilitates
preoperative risk stratification
of central lymph node metastasis
in papillary thyroid cancer: a
multicenter study
Zeyong Li1, Li Zhang1, Shuangxin Li1, Guishen Jiang1,
Zhenqi Zhang1, Dan Liu1, Hongwei Li2, Bo Xiao1 and Jialin Yu3*

1Department of Radiology, Bishan Hospital of Chongqing Medical University, Chongqing, China,
2Department of Radiology, The Affiliated Mianyang Hospital of Chongqing Medical University,
Mianyang, China, 3Department of Radiology, The Second Affiliated Hospital of Army Medical
University, Chongqing, China
Rationale and objectives: To develop a CT-based radiomics model to predict

central lymph node metastasis (CLNM) in papillary thyroid cancer (PTC) patients

and classify risk.

Materials and methods: 218 PTC patients from institution 1 were retrospectively

enrolled and randomly assigned to a training set and an internal test set (ratio 7:3).

Another 64 patients from institution 2 were assigned to an independent test set.

Radiomics features were extracted from the arterial phase CT images of PTC. A

radiomics signature (Rad-score) was developed using the least absolute

shrinkage and selection operator (LASSO) method. Three models, combined

model, clinical model, and Rad-score, were established by logistic regression

analysis. These models were comprehensively assessed by the area under the

receiver operating characteristic curve (AUC), the calibration curve, and

the decision curve analysis (DCA). The improvement in predictive efficacy of

the combined nomogram was evaluated using the integrated discrimination

improvement index (IDI) and net reclassification improvement index (NRI). The

defined threshold of the predicted risk score was set at 0.5, and the stratification

effect of the combined nomogram was evaluated by subgroup analysis.

Results: The Rad-score and another three independent predictors (tumor margin,

thyroid capsule state and tumor site) were integrated into a combined nomogram.

The AUCs of the combined nomogram were 0.848, 0.858, and 0.840 in the

training, internal test, and external test sets, respectively, which were greater than

those of the clinical model and the Rad-score. The IDI and NRI were greater than 0

indicating better discriminatory accuracy of the combined nomogram than the
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clinical nomogram and Rad-score. The net benefit of the combined nomogram in

the clinical setting was reflected in the DCA. The combined model allows for the

effective stratification of patients in diverse risk subgroups.

Conclusion:Combining Rad-score and clinical predictors in an integrated model

allow formore accurate prediction of CLNM in PTC patients and enables effective

risk stratification.
KEYWORDS

papillary thyroid cancer, radiomics, lymph node metastasis, computed
tomography, nomogram
1 Introduction

Papillary thyroid cancer (PTC) is the commonest pathological

type of thyroid cancer (1, 2) and generally has a favorable prognosis,

but central cervical lymph node metastasis (CLNM) occurs at an

incidence of 30%-80% (3, 4), which is strongly associated with

tumor recurrence and poor prognosis (5, 6). Therapeutic central

lymph node dissection is therefore recommended, but controversy

exists over whether prophylactic central lymph node dissection

(pCND) should be performed in patients with low-risk PTC (4).

pCND facilitates the detection of occult CLNM, provides accurate

clinical staging, and reduces the risk of tumor recurrence and

reoperation. Relatively, it increases the risk of postoperative

complications and may lower the quality of life (7–10). In

addition, owing to the high incidence and concealment of CLNM,

11.7% to 63.8% of cases with CLNM are not identified

preoperatively (11). For these patients, more aggressive clinical

management may be required. Therefore, accurately predicting

CLNM preoperatively is crucial.

Ultrasound (US) and computed tomography (CT) are commonly

used to assess CLNM among PTC patients. Nevertheless, the

effectiveness of US is limited by the presence of the esophagus,

trachea, and bones. The sensitivity of US for diagnosing CLNM is

poor and can only affect the surgical procedure in 20% of patients (4,

12). CT provides higher sensitivity than US in CLNM evaluation, and

the combination of CT and US further improves detection

performance, but it is still poor, with a sensitivity of 40%-55% (13–

15). In addition, conventional imaging evaluations are susceptible to

radiologists’ subjectivity. Moreover, patients with the same clinical

features can exhibit different outcomes of CLNM. Thus, it is

necessary to further explore methods to accurately predict CLNM

and enable risk stratification.

Radiomics, a novel method based on medical imaging, has

emerged as a noninvasive approach to assess tumor heterogeneity

by quantifying the spatial distribution and gray variation of voxels

(16, 17). Recently, it has attracted widespread attention and

application in tumor research (18, 19). Several studies have

illustrated the availability of CT image-based radiomics to predict

CLNM in PTC, but mainly focused on patients with single or micro
02
PTC (20–24), which makes the clinical applicability limited because

multifocal cases are quite common in clinical practice. Furthermore,

the patients recruited in these studies might exhibit varying degrees

of invasive risk, but no studies investigated whether radiomics could

stratify CLNM risks in patients with diverse clinical characteristics.

Hence, the aim of this research is to develop a preoperative

nomogram utilizing CT radiomics and clinical characteristics to

predict CLNM among PTC patients and to stratify the risk of

CLNM for personalized clinical management.
2 Materials and methods

2.1 Patients

The research project was approved by the Ethics Committee of

Bishan Hospital of Chongqing Medical University (ethical approval

code: cqbykyll-20230705-10). The informed consents were waived

due to the retrospective nature of this study. Patients with

pathologically diagnosed PTC who underwent surgical resection

at institution 1 from November 2020 to May 2024 and at institution

2 from August 2021 to December 2023 were retrospectively

included in this study. This study adheres to the criteria of

METhodological RadiomICs Score (METRICS) (25).

The inclusion criteria include (a) patients with PTC confirmed

by pathology and no other concomitant malignancy; (b) patients

who received thyroidectomy and central neck lymph node

dissection. The exclusion criteria include (a) patients who had

underwent radiofrequency ablation, radiotherapy, or any other

antitumor treatments prior to the current operation; (b) patients

without enhanced CT images within 2 weeks prior to surgery; (c)

PTC was not clearly visible on CT images; (d) PTC was

indistinguishable from nodular goiter or lymphocytic thyroiditis;

(e) patients whose maximum tumor diameter was less than 0.4 cm;

and (f) patients without complete clinical and pathological

information. Ultimately, this study included 282 consecutive PTC

patients. Among these, 218 patients recruited from institution 1

were randomized into a training set and an internal test set (ratio

7:3). A total of 64 patients from institution 2 served as an external
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test set. The patient recruitment process is depicted in Figure 1 and

the study flow is depicted in Figure 2.
2.2 Image acquisition and evaluation

CT scan procedures were conducted at institution 1 and

institution 2 using one of the two 128-slice CT scanners
Frontiers in Oncology 03
(SOMATOM Definition Flash, SIEMENS; Discovery CT750HD,

GE). The technical parameters include 120 kV, 300 mAs or

automatic modulation of the tube current, 0.5 s rotation time,

0.6mm or 0.625 mm collimator width, 2.5mm or 5 mm scanning

slice thickness, 512×512 matrix, and 0.625mm or 1mm

reconstructed slice thickness. After the non-contrast CT scan, 70

mL or 60mL of iohexol (General Electric Pharmaceutical Co., Ltd)

and 30 mL of saline were injected sequentially at a rate of 3.0 mL/s.
FIGURE 2

Workflow of the necessary steps in the present study.
FIGURE 1

Flowchart of patient recruitment process.
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The arterial phase was scanned with 30-second delay, the venous

phase with 45-second delay, and the scan was performed from the

base of the skull to the subclavian region.

Radiologists 1 (ZL with 7 years of experience in diagnostic

radiology) and 2 (LZ with 9 years of experience in diagnostic

radiology) independently evaluated the following semantic CT

features: tumor site (unilateral or bilateral), tumor diameter (the

maximum diameter on axial section), multifocal (yes or no), thyroid

capsule (intrathyroid or capsule contact), tumor shape (round and

irregular), tumor margin (smooth or unsmooth), tumor

calcification (absent or present), and enhancement patterns

(homogeneous or heterogeneous). Both radiologists made their

assessments independently without knowledge of the patients’

clinical data or follow-up information, and any divergence was

resolved through consultation.
2.3 Clinical characteristics

The clinical characteristics were as follows: age, sex (female and

male), free triiodothyronine (FT3), free thyroxine (FT4), thyroid-

stimulating hormone (TSH), thyroglobulin antibody (TGAb), and

thyroid peroxidase antibody (TPOAb). The normal standards in

institution 1 are as follows: TGAb (<115 IU/mL), TPOAb (< 34 IU/

mL), FT3 (3.1–6.8 pmol/L), FT4 (12–22 pmol/L), and TSH (0.27–

4.2 µIU/mL). The normal standards in institution 2 are as follows:

TGAb (<115 IU/mL), TPOAb (0–5.61 IU/mL), FT3 (2.43–6.01

pmol/L), FT4 (9.01–19.05 pmol/L), and TSH (0.35–4.94 µIU/mL).
2.4 Imaging segmentation and radiomics
feature extraction

The volume of each primary tumor on arterial phase CT images

was manually delineated by Radiologist 1 using 3D Slicer (version

4.9.0; http://www.slicer.org). One month later, radiologists 1 and 2

randomly delineated the tumor of 30 patients to assess the inter-

and intra-class consistency of the radiomics features. For patients

with multifocal PTC, all visible tumors were delineated.

Radiomics features were extracted via PyRadiomics package

(version 2.2.0), including first-order features, shape-based features,

texture features, and derived features of the wavelet and Laplacian

of Gaussian filters. Before extracting the features, we set

normalization to true, the resampling pixel spacing to 1×1×1 mm,

the bin width to 25, and the interpolator to sitkNearestNeighbor

(18). The radiomics features were standardized by the z score.
2.5 Rad-score construction

A Rad-score was constructed based on the training set.

Radiomics features with inter- and intra-class correlation

coefficients (ICC) greater than 0.85 were screened for the
Frontiers in Oncology 04
subsequent univariate logistic regression analysis, and the features

with a p-value less than 0.05 were selected. The logistic regression

algorithm of least absolute shrinkage and selection operator

(LASSO) was subsequently used to select non-zero coefficient

features to construct the Rad-score.
2.6 Nomogram development and
evaluation

Univariate logistic analyses were performed based on the training

set data to select statistically different variables (p < 0.05), multivariate

logistic analysis was subsequently performed to identify independent

risk factors (p < 0.05). The variables with variance inflation factor (VIF)

greater than 10 were excluded due to multicollinearity (26). The

combined nomogram included the Rad-score, clinically and semantic

CT independent risk factors, and the clinical model included only

clinically and semantic CT independent risk factors.

The models’ performance was evaluated and compared. The

predictive efficiency was assessed using the area under the receiver

operating characteristic curve (AUC). The incremental predictive value

of the combined model was evaluated via integrated discrimination

improvement (IDI) and net reclassification improvement (NRI) (27).

The concordance between predicted and actual probabilities was

assessed by the calibration curve and Hosmer-Lemeshow test (H-L

test), and the clinical utility was evaluated by the decision curve analysis

(DCA) (28). The validation of the combined model was conducted on

both the internal and external test sets.
2.7 Risk stratification of CLNM

The cutoff value for the predicted risk of the combined model was

defined as 0.5. Patients with a predicted risk value > 0.5 were defined as

high risk, and those with a value ≤ 0.5 were defined as low risk. Risk

stratification analysis was performed based on the entire dataset, which

is presented in the form of bar-risk plots and forest plots.
2.8 Statistical analysis

R software (version 4.1.3) was used for statistical analysis. The three

datasets were compared using analysis of variance (ANOVA) or

Kruskal-Wallis test for continuous variables and Chi-square test or

Fisher’s exact test for categorical variables. LASSO analysis was

conducted via the ‘glmnet’ package. Logistic regression analyses were

performed with the ‘MASS’ package. The calibration curves were

constructed via the ‘rms’ package. the AUC calculation and DeLong-

test were performed using the ‘pROC’ package. The IDI and NRI were

computed with the ‘PredictABEL’ package. The H-L test was

performed with the ‘ResourceSelection’ package. The DCA was

executed with the ‘rmda’ package. A two-tailed p-value less than 0.05

indicates statistical significance.
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3 Results

3.1 Demographics characteristics

Ultimately, 282 patients were included in this study, including

153 in the training set (male: 36, female: 117, age range: 22–72), 65

in the internal test set (male: 12, female: 53, age range: 28–69),

and 64 in the external test set (male: 15, female: 49, age range: 22–

74). The clinical baseline data are presented in Table 1.

The CLNM rates were 56.2% (86/153), 64.4% (42/65), and 68.8%

(44/64) in the training, internal test, and external test sets

(p = 0.178), respectively.
Frontiers in Oncology 05
3.2 Rad-score construction

A total of 1070 radiomics features were calculated, of which 771

features with ICC > 0.85. 181 features with a p-value less than 0.05 were

then selected by univariate analysis, and 5 features were ultimately

screened via LASSO to generate the Rad-score (Figure 3). The

arithmetic formula of the Rad-score is presented in Table 2.
3.3 Nomogram construction

The outcomes of the logistic regression analyses, both univariate

and multivariate, are presented in Table 3. The variables that were
TABLE 1 Baseline characteristics of the training, internal test, and external test sets.

Parameter Training set (n=153) Internal test set (n=65) External test set (n=64) P-value

CLNM 0.178

positive 86 (56.2) 42 (64.6) 44 (68.8)

negative 67 (43.8) 23 (35.4) 20 (31.2)

Age (years) 0.033

<45 60 (39.2) 38 (58.5) 29 (45.3)

≥45 93 (60.8) 27 (41.5) 35 (54.7)

Sex 0.693

female 117 (76.5) 53 (81.5) 49 (76.6)

male 36 (23.5) 12 (18.5) 15 (23.4)

Tumor diameter (mm) 0.001

<10 101 (66.0) 40 (61.5) 25 (39.1)

≥10 52 (34.0) 25 (38.5) 39 (60.9)

Tumor site 0.034

unilateral 136 (88.9) 55 (84.6) 48 (75.0)

bilateral 17 (11.1) 10 (15.4) 16 (25.0)

Thyroid capsule 0.514

intrathyroidal 47 (30.7) 17 (26.2) 15 (23.4)

contact 106 (69.3) 48 (73.8) 49 (76.6)

Tumor shape 0.889

round 47 (30.7) 22 (33.8) 21 (32.8)

irregular 106 (69.3) 43 (66.2) 43 (67.2)

Tumor margin 0.254

smooth 44 (28.8) 26 (40.0) 22 (34.4)

unsmooth 109 (71.2) 39 (60.0) 42 (65.6)

Tumor calcification 0.144

absent 111 (72.5) 49 (75.4) 39 (60.9)

present 42 (27.5) 16 (24.6) 25 (39.1)

(Continued)
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TABLE 1 Continued

Parameter Training set (n=153) Internal test set (n=65) External test set (n=64) P-value

Multifocal 0.011

no 130 (85.0) 49 (75.4) 43 (67.2)

yes 23 (15.0) 16 (24.6) 21 (32.8)

Enhancement patterns 0.184

homogeneous 63 (41.2) 23 (35.4) 18 (28.1)

heterogeneous 90 (58.8) 42 (64.6) 46 (71.9)

TPOAb 0.777

normal 120 (78.4) 52 (80.0) 48 (75.0)

abnormal 33 (21.6) 13 (20.0) 16 (25.0)

TGAb 0.601

normal 122 (79.7) 48 (73.8) 51 (79.7)

abnormal 31 (20.3) 17 (26.2) 13 (20.3)

FT3 0.535

normal 150 (98.0) 64 (98.5) 64 (100.0)

abnormal 3 (2.0) 1 (1.5) 0 (0.0)

FT4 0.909

normal 147 (96.1) 62 (95.4) 62 (96.9)

abnormal 6 (3.9) 3 (4.6) 2 (3.1)

TSH 0.660

normal 142 (92.8) 58 (89.2) 58 (90.6)

abnormal 11 (7.2) 7 (10.8) 6 (9.4)

Rad-score 0.34 ± 0.63 0.51 ± 0.64 0.68 ± 0.70 0.001
F
rontiers in Oncology
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Normally distributed variables are presented as the mean ± standard deviation, and categorical variables are presented as n (%).
CLNM, central cervical lymph node metastasis; TPOAb, thyroid peroxidase antibody; TGAb, anti-thyroglobulin antibodies; FT3, free triiodothyronine; FT4, free tetraiodothyronine; TSH,
thyroid stimulating hormone; Rad-score, radiomics signature.
The normal standards in institution 1 were as follows: TGAb (<115 IU/mL), TPOAb (< 34 IU/mL), FT3 (3.1–6.8 pmol/L), FT4 (12–22 pmol/L), and TSH (0.27–4.2 µIU/mL). The normal
standards in institution 2 were as follows: TGAb (<115 IU/mL), TPOAb (0–5.61 IU/mL), FT3 (2.43–6.01 pmol/L), FT4 (9.01–19.05 pmol/L), and TSH (0.35–4.94 µIU/mL).
FIGURE 3

Radiomics features selection by using the logistic regression algorithm of LASSO. (A) Coefficients convergence plot of the radiomics features.
(B) Penalty parameter selection by using 10-fold cross-validation via criteria of minimum bias variance. The dotted vertical line indicates the optimal
Lambda value of 0.07145 (ln (Lambda)= -2.63875) resulting in five features with nonzero coefficients.
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statistically significant in the univariate analysis include the Rad-

score, tumor diameter, tumor site, thyroid capsule, tumor shape,

tumor margin, multifocal and calcification. The independent

predictors identified by multivariate analysis (p < 0.05) include

the Rad-score, tumor margin, tumor site and thyroid capsule state

(range of VIF: 1.00-1.05). The Rad-score, tumor margin, tumor site

and thyroid capsule were integrated into a combined nomogram
Frontiers in Oncology 07
(Figures 4A, B). The tumor margin, tumor site and thyroid capsule

were integrated into a clinical model.
3.4 Performance of the models

The AUCs of the combined model were 0.848 (95% confidence

interval [CI]: 0.786–0.911), 0.858 (95% CI: 0.755–0.962), and 0.840

(95% CI: 0.728–0.952) in the training, internal test, and external test

sets, respectively, which were greater than those of the clinical model

and the Rad-score (Table 4 and Figures 4C–E). The IDI and NRI were

greater than 0 indicating that the classification accuracy of the

combined model was improved by combining clinical predictors and

Rad-score (Table 5). The calibration curves revealed that the predicted

probabilities of the combined model for CLNM were well consistent

with the actual probabilities (H-L test >0.05) (Figures 4F–H). The DCA

results indicated that the combined model had favorable clinical

utility (Figure 5).
3.5 Risk stratification

The CLNM rates were significantly different between the high-

and low-risk groups of PTC patients in the training (p < 0.001; odds
TABLE 2 Radiomics features selected for Rad-score construction.

Radiomics feature name Coefficient

(Intercept) -0.47752046

Wavelet.HHH_glcm_MaximumProbability -1.146981297

Wavelet.HHH_glrlm_RunEntropy 0.288989842

Log.sigma.2.0.mm.3D_glcm_MCC 0.588084624

Wavelet.LLL_glcm_Correlation 0.641078365

Wavelet.HLL_glszm_ZoneEntropy 1.364064898
Rad-score=-0.47752046.
-1.146981297×Wavelet.HHH_glcm_MaximumProbability.
+0.288989842×Wavelet.HHH_glrlm_RunEntropy.
+0.588084624×Log.sigma.2.0.mm.3D_glcm_MCC.
+0.641078365×Wavelet.LLL_glcm_Correlation.
+1.364064898×Wavelet.HLL_glszm_ZoneEntropy.
TABLE 3 Univariate and multivariate logistic regression analyses.

Variable

Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P-value

Age (≥45) 0.78 (0.40-1.49) 0.448

Sex (male) 1.30 (0.61-2.84) 0.498

Tumor diameter (≥10mm) 3.99 (1.92-8.76) <0.001* 0.68 (0.23-1.99) 0.484

Tumor site (bilateral) 15.09(2.95-276.07) 0.009* 21.70(1.39-664.01) 0.037*

Multifocal (yes) 4.47 (1.58-16.05) 0.010* 0.29 (0.04-2.49) 0.235

Thyroid capsule (contact) 4.99 (2.41-10.80) <0.001* 2.63 (1.06-6.73) 0.038*

Tumor shape (irregular) 2.53 (1.26-5.18) 0.010* 0.76 (0.24-2.32) 0.642

Tumor margin (unsmooth) 4.84 (2.30-10.64) <0.001* 4.55 (1.50-15.09) 0.009*

Tumor calcification (present) 3.38 (1.56-7.85) 0.003* 0.78 (0.24-2.51) 0.676

Enhancement patterns
(heterogeneous)

0.82 (0.36-1.84) 0.425

TPOAb (abnormal) 0.67 (0.31-1.46) 0.314

TGAb (abnormal) 0.67 (0.30-1.49) 0.327

FT3 1.01 (0.79-1.35) 0.912

FT4 0.98 (0.88-1.08) 0.651

TSH 1.08 (0.88-1.38) 0.493

Rad-score 7.79 (3.80-17.82) <0.001* 7.35 (2.56-24.25) <0.001*
TPOAb: thyroid peroxidase antibody, TGAb: anti-thyroglobulin antibodies, FT3: free triiodothyronine, FT4: free tetraiodothyronine, TSH: thyroid stimulating hormone, Rad-score: radiomics
signature.
*p < 0.05.
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ratio [OR] = 13.35, 95% CI: 6.29–30.05), internal test (p < 0.001;

OR = 13.71, 95% CI: 4.21–51.40), and external test (p < 0.001; OR =

9.53, 95% CI: 2.78–37.31) datasets. The subgroup analyses

demonstrated that the combined model enables subgroup risk

stratification of CLNM among PTC patients with different clinical

characteristics. For instance, regardless of whether the tumor

diameter was less than 1 cm (p < 0.001; OR = 9.84, 95% CI: 4.89–

20.74) or greater than 1 cm (p = 0.005; OR = 5.93, 95% CI:1.68–

20.76), or whether the PTC was intrathyroid (p = 0.002; OR = 5.80,

95% CI: 1.92–18.78) or thyroid capsule contact (p < 0.001; OR =

10.72, 95% CI:5.22–22.90), the combined model could effectively

perform stratification (Figure 6).
Frontiers in Oncology 08
4 Discussion

In this study, a Rad-score based on arterial-phase CT images

was recognized as a valid biomarker of CLNM in PTC and served to

improve the predictive efficacy of the combined model. The

combined model enables subgroup risk stratification of CLNM

among PTC patients with different clinical characteristics.

For the decision-making process in clinical practice, accurate

assessment of CLNM is crucial (5, 6). Consistent with several

previous studies (20–22), the Rad-score based on CT images

serves as an independent predictor for CLNM, and helps improve

the predictive efficacy of the nomogram. The reason for this is that
frontiersin.or
FIGURE 4

Nomogram, AUC, and calibration curves. (A) The forest plot for multivariate logistic regression analysis. (B) The nomogram of the combined model.
The AUC of the combined model, clinical model, and Rad-score in the training (C), internal test (D), and external test (E) sets. The calibration curves
of the combined model, clinical model, and Rad-score in the training (F), internal test (G), and external test (H) sets.
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radiomics can quantify tumor heterogeneity by characterizing the

spatial distribution and gray variation of voxels, which strongly

correlates with the biological aggressiveness of tumors (16, 17, 29,

30). In our study, five radiomics features were selected for Rad-score

construction. These features characterize the randomness and

uncertainty in the distribution of zone sizes, run lengths, and gray

levels of voxels in the CT images, which reflects the spatial

heterogeneity of tumors in multiple dimensions. And the close

connection between the radiomics features and the biological

characteristics of PTC has been revealed by previous studies at

the genetic and molecular levels (21, 23, 31).

Although previous studies have suggested that radiomics

analysis based on CT images is an effective method for predicting

CLNM in PTC patients, relevant studies are still limited (20–24).

Peng et al. (20) reported the usefulness of CT radiomics in
Frontiers in Oncology 09
predicting CLNM for cN0 PTC patients, but the study was a

single-center research with a small sample size and did not

include clinical features. Several high-quality studies have further

explored and validated the good predictive performance of the

radiomics, while these studies mainly focused on patients with

single or micro PTC and the role of the radiomics for risk

stratification in subgroups of diverse clinical characteristics

remains unclear (21–24). In this study, we extended the use of

radiomics to patients with multiple or bilateral lesions. The

combined model based on Rad-score achieved good efficacy for

CLNM prediction and outperforms clinical model and Rad-score.

Furthermore, subgroup analysis in this study indicated that the

combined model could effectively stratify CLNM risk among nearly

all clinical characteristics. However, we noted that the risk

stratification for multifocal and bilateral lesions lost its statistical
TABLE 4 The AUC of models in the training set, internal test set, and external test set.

AUC (95% CI) Sensitivity (95% CI) Specifcity (95% CI)
P-value
(DeLong-test)

Training set

Combined model 0.848 (0.786-0.911) 0.791 (0.705-0.877) 0.791 (0.694-0.888) reference

Clinical model 0.779 (0.709-0.849) 0.756 (0.665-0.847) 0.731 (0.625-0.837) 0.005*

Rad-score 0.793 (0.720-0.866) 0.802 (0.718-0.886) 0.701 (0.592-0.811) 0.019*

Internal test set

Combined model 0.858 (0.755-0.962) 0.762 (0.633-0.891) 0.826 (0.671-0.981) reference

Clinical model 0.784 (0.670-0.898) 0.690 (0.551-0.830) 0.783 (0.614-0.951) 0.117

Rad-score 0.775 (0.637-0.914) 0.881 (0.783-0.979) 0.696 (0.508-0.884) 0.118

External test set

Combined model 0.840 (0.728-0.952) 0.864 (0.762-0.965) 0.750 (0.560-0.940) reference

Clinical model 0.779 (0.658-0.901) 0.750 (0.622-0.878) 0.750 (0.560-0.940) 0.132

Rad-score 0.765 (0.632-0.898) 0.682 (0.544-0.819) 0.800 (0.625-0.975) 0.089
AUC: area under the receiver operating characteristic curves, CI: confidence interval, Rad-score: radiomics signature.
*p < 0.05.
TABLE 5 The NRI and IDI of Combined model compared with Clinical model and Rad-score.

Model comparison NRI (95% CI) P-value IDI (95% CI) P-value

Training set

Combined model VS Clinical model 0.616 (0.312-0.920) <0.001* 0.102 (0.055-0.149) <0.001*

Combined model VS Rad-score 0.752 (0.456-1.047) <0.001* 0.113 (0.064-0.161) <0.001*

Internal test set

Combined model VS Clinical model 0.694 (0.214-1.173) 0.005* 0.092 (-0.001-0.185) 0.050

Combined model VS Rad-score 0.899 (0.457-1.340) <0.001* 0.110 (0.033-0.187) 0.005*

External test set

Combined model VS Clinical model 0.527 (0.052-1.002) 0.030* 0.084 (-0.011-0.180) 0.084

Combined model VS Rad-score 0.664 (0.163-1.164) 0.009* 0.107 (0.027-0.187) 0.009*
NRI: net reclassification improvement, IDI: integrated discrimination improvement index, CI: confidence interval.
*p < 0.05.
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FIGURE 5

Decision curve analysis of the combined model, clinical model, and Rad-score in the training (A), internal test (B), and external test (C) sets.
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efficacy. This is because most patients with multifocal or bilateral

PTC in this study exhibited CLNM, and nearly all of them achieved

accurate prediction and classification. This may also be related to

selection bias or relatively limited sample size, ultimately resulting

in a lack of sufficient low-risk control patients with multifocal or

bilateral lesions. But this does not affect the model’s generalizability

for both unifocal and multifocal PTC, as its good predictive

performance was validated in an external validation group. While

it is still necessary to conduct further research on multifocal PTC as

an independent topic.

Furthermore, the tumor margin, thyroid capsule state and

tumor site were independent predictors of CLNM in this study.

Consistent with previous studies (22, 32, 33), unsmooth margin,

thyroid capsule contact and bilateral PTC suggested a high risk of

CLNM. An unsmooth margin reflects the more aggressive of

malignant cells (32). Similarly, bilateral PTC is more aggressive

than unilateral PTC, exhibiting a higher rate of lymph node

metastasis and a worse prognosis (33). The sign of thyroid

capsule contact is closely associated with extrathyroidal extension

in PTC (34, 35), while extrathyroidal extension is a well-established
Frontiers in Oncology 11
prognostic biomarker for CLNM (11, 36). It is worth noting that

tumor diameter, multifocal, tumor shape, and calcification were

independent predictors of CLNM in previous studies (21, 23, 32, 37,

38), but these variables lost statistical significance in the

multivariate analysis of this study. This is attribute to the

difference of cases composition and the interaction among

variables. For example, although tumor diameter greater than

1cm is generally considered as a risk factor for CLNM, a

considerable portion of patients with tumor diameter less than

1cm still develop CLNM in clinical practice, and the incidence was

reported to be 20.7%~62% (21). In our training dataset, the CLNM

rate was 45.5% (46/101) in PTC patients with tumor diameter less

than 1cm. Thus, the statistical significance of these variables were

masked. And precisely the difference in patients’ characteristics and

the interaction among variables further illustrate the importance

and necessity of effective risk stratification for PTC patients.

There are several limitations in this study. First, this is a

retrospective study, which may be associated with greater patient

selection bias. Second, even though this is a multicenter study, the

sample size is still relatively limited. Third, the pathological and
FIGURE 6

Risk stratification of the combined model. Risk bar charts for the training (A), internal test (B), and external test (C) sets. The forest plot of the
subgroup analysis for the risk stratification (D).
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molecular biological basis of radiomics features is not addressed in

this paper. Therefore, further validation and improvement through

large sample, prospective studies is necessary. It is also necessary to

further reveal the molecular biology and pathological nature

of radiomics.
5 Conclusion

Rad-score is a valid biomarker of CLNM in PTC patients and

contributes to improving the predictive efficiency of the combined

model. The combined model enables subgroup risk stratification of

CLNM. This allows for personalized evaluation of CLNM risk

preoperatively, thus facilitating personalized clinical management

for PTC patients.
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