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randomization and
functional interrogation
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Background: Hepatobiliary malignancies—including hepatocellular carcinoma

and cholangiocarcinoma—are major causes of cancer-related mortality

worldwide, yet their regulatory pathways remain incompletely defined.

Methods: We employed a two-sample Mendelian randomization (MR) approach

to systematically investigate causal relationships between 1,400 serum

metabolites and hepatobiliary cancer risk. Through stringent quality control (all

SNPs with F-statistics > 10) and sensitivity analyses (MR-Egger regression,

we ighted median method, and MR-PRESSO) , we ident ified 10

candidate metabolites.

Results: Meta-analysis confirmed three metabolites with robust associations:

risk-increasing dimethylarginine (SDMA+ADMA) and 4-hydroxyhippurate, and

protective 3-hydroxyisobutyrate. Multivariable MR validated the independent

effects of 4-hydroxyhippurate and 3-hydroxyisobutyrate. In vitro functional

experiments demonstrated that 4-hydroxyhippurate promoted, whereas 3-

hydroxyisobutyrate inhibited, hepatocellular carcinoma cell proliferation.

Conclusion: These findings advance understanding of metabolic dysregulation

in hepatobiliary malignancies and nominate candidate diagnostic biomarkers and

therapeutic targets, providing translationally relevant hypotheses for

precision medicine.
KEYWORDS

circulating metabolites, multivariable mendelian randomization analysis, hepatobiliary
malignancies, 4-hydroxyhippurate, 3-hydroxyisobutyrate
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1 Introduction

Hepatobiliary malignancies—including hepatocellular

carcinoma (HCC) and cholangiocarcinoma (CCA)—account for a

rising share of global cancer mortality, with marked geographic

variation driven by viral hepatitis, metabolic dysfunction–

associated steatotic liver disease, alcohol, aflatoxin exposure, and

primary sclerosing cholangitis (1–3). Despite advances in

surveillance and therapy, late-stage presentation and molecular

heterogeneity continue to limit outcomes (4, 5).

Metabolic reprogramming is a hallmark of hepatobiliary

tumorigenesis (6, 7). Perturbations have been reported across

amino-acid metabolism (e.g., branched-chain and aromatic amino

acids), one-carbon/arginine–NO pathways (including asymmetric

and symmetric dimethylarginine), short-chain and hydroxy–

carboxylic acids (e.g., 3-hydroxyisobutyrate from valine

catabolism), bile acid and lipid remodeling, and host–microbiome

co-metabolites such as hippurate derivatives (e.g. , 4-

hydroxyhippurate) (8–10). Several case–control and prospective

metabolomics studies suggest associations of these metabolites

with HCC/CCA risk or progression, yet effect directions and

specificity vary across platforms, biospecimens, and populations

(11–13).

Observational associations between circulating metabolites and

cancer risk are prone to confounding (e.g., lifestyle, liver function,

inflammation) and reverse causation due to subclinical disease (14).

Mendelian randomization (MR) leverages germline variants as

instruments to strengthen causal inference under three

assumptions (relevance, independence, exclusion restriction) and

has been increasingly applied to metabolic traits. Recent mGWAS

provide strong instruments for hundreds of metabolites, enabling

two-sample MR while minimizing sample overlap and enhancing

generalizability (15, 16).

To address uncertainties from observational metabolomics, we

aimed to systematically evaluate the potential causal effects of 1,400

circulating metabolites and ratios on the risk of hepatobiliary

cancers using a two-sample MR framework. Specifically, we

prespecified a discovery–replication design across independent

outcome GWAS (FinnGen; UK Biobank via Neale lab/IEU),

applied stringent instrument selection, harmonization, and

robustness analyses (IVW, MR-Egger, weighted median/mode,

MR-PRESSO, MR-RAPS), and conducted multivariable MR to

account for correlated metabolites (17–20). We also integrated

targeted in vitro experiments to explore biological plausibility for

priority metabolites.
2 Methods and materials

2.1 Study design

Mendelian randomization (MR) inference relies on three core

assumptions: (i) relevance (genetic instruments are strongly

associated with the exposure), (ii) independence (instruments are

independent of confounders), and (iii) exclusion restriction
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(instruments affect the outcome only via the exposure). We

conducted a two-sample MR within a discovery–replication

framework (21). The discovery stage used metabolite GWAS

(exposures) from the Canadian Longitudinal Study of Aging

(CLSA) and outcome GWAS for hepatobiliary malignancies from

FinnGen. The replication stage used independent outcome GWAS

from the UK Biobank (Neale lab releases) accessed via the IEU

OpenGWAS platform, ensuring non-overlapping samples and

matched European ancestry; results were combined by meta-

analysis. The prespecified workflow comprised: (i) exposure

definition and instrument selection, (ii) outcome data

ascertainment, (iii) harmonization and instrument diagnostics,

(iv) primary and robustness MR estimations, and (v) replication

and meta-analysis. A schematic overview is provided in Figure 1.

Exposure and outcome GWAS primarily include participants of

European ancestry; we minimized potential bias from sample

overlap by using independent consortia and confirming non-

overlap via data source documentation. We acknowledge that the

European-ancestry focus may limit generalizability to other

populations and highlight this limitation in the Discussion.

Reporting followed STROBE-MR guidelines.
2.2 Exposure definition and instrument
selection

Exposure definition: Circulating metabolite levels (and ratios)

were quantified in the CLSA mGWAS by Richards et al. among

8,299 unrelated participants, covering 1,091 metabolites and 309

ratios across amino acids, carbohydrates, cofactors/vitamins,

energy-related metabolites, lipids, nucleotides, peptides, and

xenobiotics (22). Metabolites with “X-” prefixes denote chemically

unidentified features. The GWAS data for plasma metabolites were

sourced f rom the GWAS Cata log (GCST90199621-

GCST90201020) (23, 24).

Instrument selection: We selected SNPs associated with each

metabolite at genome-wide significance (p < 5×10−8); for sparse

traits, a relaxed threshold (p < 1×10−6) was allowed conditional on

instrument strength (F > 10). We applied LD clumping using a

European LD reference with r2 < 0.001 within a 10,000 kb window

to ensure instrument independence, and excluded palindromic

SNPs with intermediate allele frequencies. Effect alleles were

harmonized across exposure and outcome datasets (25–27).

Instrument strength and directionality: We computed per-

exposure F-statistics and applied Steiger filtering to remove

variants explaining more variance in the outcome than in the

exposure. Summary instrument metrics are provided in

Supplementary Table S1.
2.3 Outcome data

Discovery outcomes: We obtained GWAS summary statistics

for hepatobiliary malignancies from FinnGen (release R4;

phenotype code C3_LIVER_INTRAHEPATIC_BILE_DUCTS),
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including 1,046 cases and 10,459 controls. The FinnGen phenotype

corresponds to “malignant neoplasm of liver and intrahepatic bile

ducts,” primarily based on ICD-10 C22 (malignant neoplasm of

liver and intrahepatic bile ducts; including hepatocellular carcinoma

and intrahepatic cholangiocarcinoma) and mapped ICD-9 codes.

Extrahepatic cholangiocarcinoma (ICD-10 C24.0) and gallbladder

cancer (ICD-10 C23) are excluded, as are benign neoplasms.

Case/control status and coding followed the FinnGen

phenotype documentation.

Replication outcomes: We used the UK Biobank GWAS

released by the Neale lab and accessible via the IEU OpenGWAS

platform (MRC Integrative Epidemiology Unit, University of

Bristol). Specifically, dataset ieu-b-4915 (UK Biobank; 350 cases,

372,016 controls; 7,687,713 SNPs) was analyzed. Summary of

GWAS datasets used for outcomes and replication are listed in

Supplementary Table S2.

The Neale lab UK Biobank GWAS used imputed genotypes

from HRC plus UK10K & 1000 Genomes reference panels (GWAS

round 2; as released in March 2018; see http://www.nealelab.is/uk-

biobank). The corresponding phenotype reflects “malignant

neoplasm of liver and intrahepatic bile ducts” derived from ICD-

coded hospital records and cancer registries; benign neoplasms and

extrahepatic cholangiocarcinoma are not included. To ensure

comparability, all outcome effect sizes were harmonized to the

log-odds scale prior to MR and meta-analysis. Data sources and

accession IDs for all exposure–outcome pairs are listed in

Supplementary Table S3.

Ethics: Ethical approvals were granted by the original studies

(FinnGen Scientific Committee; UK Biobank Ethics Committee for
Frontiers in Oncology 03
Neale lab analyses). Our MR used de-identified, publicly available

summary statistics.
2.4 Instrumental variable selection

The study flowchart is presented in Figure 1. Circulating plasma

metabolites served as exposures and hepatobiliary malignancies as

outcomes. For descriptive purposes, metabolites were summarized

by chemical classes (e.g., carbohydrates, lipids, amino acids,

nucleotides, organic acids, vitamins, hormones, xenobiotics).

Instrument selection followed the criteria detailed in Section 2.2

(p-thresholds, LD clumping at r2 < 0.001 within 10,000 kb, MAF ≥

0.01, allele harmonization, and Steiger filtering). Pleiotropy

screening used MR-PRESSO (global and outlier tests) iteratively

to identify outliers, complemented by MR-Egger intercept tests.

Outliers were removed until the MR-PRESSO global test was non-

significant (p > 0.05); the resulting instrument sets were carried

forward; to avoid over-correction, we capped removal at a single

outlier-deletion step per analysis and retained unfiltered IVW as

primary when the global test remained significant, noting that main

findings were directionally consistent with and without

this filtering.
2.5 Statistical analysis

Primary MR estimation used inverse-variance weighted (IVW)

models under a random-effects framework when ≥2 instruments
FIGURE 1

Overview of the design and methods used in this Mendelian randomization study. MR analysis was used to explore the causal relationships, including
the following three assumptions: 1. Instrument validity assumption: the genetic variant used as an instrument for the exposure of interest is strongly
associated with the exposure but not directly associated with any confounding factors that might influence the outcome. 2. Independence assumption:
the genetic variant is independent of any other factors that might influence the outcome, except through its effect on the exposure. 3. Exclusion
restriction assumption: the genetic variant affects the outcome only through its effect on the exposure, and not through any other pathways.
frontiersin.org

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://doi.org/10.3389/fonc.2025.1680865
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tuo et al. 10.3389/fonc.2025.1680865
were available; for single-instrument exposures, we used the Wald

ratio. Robustness estimators included MR-Egger, weighted median,

and weighted mode; for sparse or potentially weak-instrument

settings, we additionally report MR-RAPS where applicable.

Heterogeneity and influence diagnostics included Cochran’s Q,

leave-one-out analyses, and Radial MR for outlier detection; when

feasible, we performed platform-stratified sensitivity analyses (28,

29). All analyses were conducted in R using TwoSampleMR,

MRPRESSO, and RadialMR; meta-analysis employed random-

effects models implemented in Review Manager 5.4. Decision

criteria for putative causal metabolites were: (1) IVW p < 0.05

with consistent effect directions across robust estimators, (2) no

evidence of directional pleiotropy (MR-Egger intercept p ≥ 0.05)

and acceptable heterogeneity, (3) stability in leave-one-out and after

removing Radial MR/MR-PRESSO outliers, and (4) retained

instrument strength (mean F > 10) (28, 30). For binary outcomes,

SNP–outcome associations were on the log-odds scale; MR effect

estimates are reported as odds ratios per SD increase in metabolite

levels, with corresponding 95% confidence intervals.
2.6 Replication and meta-analysis

Replication was conducted using the UK Biobank outcome

GWAS (Neale lab; IEU OpenGWAS dataset ieu-b-4915), ensuring

independence from FinnGen and matched European ancestry. We

repeated the harmonization and MR pipeline in the replication

dataset. We then combined discovery (FinnGen) and replication

(UK Biobank) MR estimates using random-effects inverse-

variance–weighted meta-analysis of Wald-type effect estimates on

the log-odds scale; between-dataset heterogeneity was assessed via

Cochran’s Q and I2 (31). When between-dataset heterogeneity

was substantial (I2 > 50% or Q p < 0.10), we prioritized

random-effects results and examined sources of heterogeneity in

sensitivity analyses.
2.7 Confounding analysis and multivariable
MR analysis

To further mitigate confounding via horizontal pleiotropy, we

queried PhenoScanner V2 for associations of instruments with

hepatobiliary cancer risk factors (alcohol intake, type 2 diabetes,

viral hepatitis, medication use, autoimmune traits). Instruments

with strong associations (p < 1×10−5) to these traits were excluded

and analyses repeated. In addition, we screened instrument sets in

IEU OpenGWAS to identify broad pleiotropic signals across

common traits and removed discordant instruments in sensitivity

analyses. Where instruments were shared across correlated

metabolites/classes, we implemented multivariable MR (MVMR-

IVW; complemented by MR-PRESSO for outlier correction) to

estimate direct effects conditional on correlated exposures. Selection

of covariate metabolites in MVMR was guided by biological

pathway proximity and phenotypic correlations (32, 33). MVMR

models were restricted to instruments available across all included
Frontiers in Oncology 04
exposures and outcomes in each dataset to preserve

sample comparability.
2.8 Cell functional experiments

2.8.1 Cell culture and reagents
We employed two human hepatocellular carcinoma (HCC) cell

lines: Huh7 and MHCC 97H. All cell lines were obtained from the

American Type Culture Collection (ATCC) and the Shanghai

Institute of Cell Biology, with confirmation of authenticity using

the International Cell Line Authentication Committee’s database

(version 8.0) to exclude misidentified lines. Cells were maintained at

37°C with 5% CO2. Huh7 were cultured in high glucose DMEM

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin–streptomycin; 97H were cultured in RPMI 1640 with

10% FBS and 1% penicillin–streptomycin unless otherwise stated.

No cholangiocarcinoma cell line was included in this study (34–36).

2.8.2 Metabolite treatments and dosing rationale
4-Hydroxyhippurate (4HHA) and 3-hydroxyisobutyrate

(3HIB) (purity ≥98%; supplier/catalog) were freshly prepared in

sterile culture medium and filtered (0.22 mm).Doses (10, 50, 100

mM) for 4HHA and 3HIB were chosen to bracket reported human

circulating levels from upper physiologic to pathophysiologic

ranges, with 100 mM for 4HHA explicitly treated as a supra-

physiologic sensitivity point. Pilot titrations confirmed the

absence of nonspecific cytotoxicity at the chosen ranges (trypan

blue exclusion and morphology). Treatments were applied for 24–

72 has indicated.

2.8.3 CCK-8 proliferation assay
Cells were seeded in 96-well plates (1×10³ cells/well). After 12

hours , treatments with varying concentrat ions of 4-

hydroxyhippurate and 3-hydroxyisobutyrate were initiated.

Vehicle controls received identical culture medium without added

metabolites; no DMSO or other organic solvents were used.

Positive/assay controls were included as appropriate. At

designated time points, 10 mL of CCK-8 solution was added per

well, followed by 2-hour incubation. Absorbance at 450 nm (OD450)

was measured to quantify viability (37).

2.8.4 5-Ethynyl-2’-deoxyuridine proliferation
assay

Cell proliferation was assessed using the EdU Apollo567 In

Vitro Kit (Ribobio, China) according to the manufacturer’s

protocol. Briefly, cells were seeded in 6-well plates at a density of

2×105 cells/well. After 12 hours of culture, cells were treated with

the specified compounds for 48 hours. Subsequently, cells were

incubated with EdU working solution for 2 hours, fixed with 4%

paraformaldehyde, permeabilized, and washed. Nuclei were

counterstained with 1×Apollo solution and 1×Hoechst 33342.

Vehicle controls received the same treatment as above.

Fluorescent microscopy images were acquired and analyzed to

quantify proliferating cells (38).
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2.8.5 Replication and statistical analysis
Each experiment was repeated in at least three independent

biological replicates (separate passages/thawed vials), with technical

triplicates per condition. Data are presented as mean ± SD unless

specified. Two-sided tests were used. For paired, non-normally

distributed data we applied the two-sided Wilcoxon signed-rank

test; significance thresholds and formats follow the manuscript-

wide convention (exact p to three decimals when ≥ 0.001; p <

0.001 otherwise).
3 Result

3.1 Primary analysis

We first identified 34,843 genome-wide significant SNPs across

1,091 metabolites and 309 ratios. Each filtered instrumental variable

contained 12–93 SNPs (4-methyl-2-oxopentanoate levels/3-

hydroxylaurate levels represented by 12 SNPs; 2-X15523 showing

the largest genetic proxy with 93 SNPs). After LD clumping

(r2<0.001, 10,000 kb), harmonization and removal of palindromic

SNPs, Steiger filtering, and outlier exclusion by MR-PRESSO/Radial

MR, 61 metabolites retained ≥1 valid instrument and proceeded to

IVW (or Wald ratio for single-instrument exposures). Detailed data

for instrumental variables are presented in Supplementary Table S1.

Prior to MR analysis, radial MR was used to identify and

remove outliers. Initially, we identified 34,843 SNPs associated

with circulating plasma metabolites at genome-wide significance

(p < 5×10−8). IVW analysis preliminarily identified 61 metabolites

potentially causally associated with hepatobiliary tumors, including

42 known metabolites, 7 unknown metabolites, and 12 metabolite

ratios (Figure 2).

As shown in Figure 2, the 42 known metabolites were

categorized by chemical properties into: carbohydrate metabolites,

lipid metabolites, amino acids and derivatives, nucleotides and

derivatives, organic acids and derivatives, aromatic compounds,

vitamins and derivatives, hormones and derivatives, and

secondary metabolites.

Following complementary analyses and sensitivity tests, 10

metabolites meeting stringent selection criteria were identified as

candidates (Table 1), including:
Fron
Glycerol 3-phosphate (OR 0.52 95% CI: 0.37-0.73, p < 0.001);

Octadecenedioylcarnitine (C18:1-DC) (OR 0.71, 95% CI: 0.51-

0.99, p = 0.044);

Dimethylarginine (sdma + adma) (OR 1.69, 95% CI: 1.05-2.72,

p = 0.032);

3-hydroxyisobutyrate (OR 0.51, 95% CI: 0.30-0.85, p = 0.011);

Malate (OR 1.30, 95% CI: 1.02-1.65, p = 0.031);

4-hydroxyhippurate (OR 1.75, 95% CI: 1.07-2.88, p = 0.027);

6-bromotryptophan (OR 0.73, 95% CI: 0.53-1.00, p = 0.048);
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5alpha-androstan-3alpha,17alpha-diol monosulfate (OR 1.37,

95% CI: 1.10-1.71, p = 0.005);

X-21467 levels (OR 0.71, 95% CI: 0.56-0.90, p = 0.005);

X-23782 levels (OR 1.69, 95% CI: 1.01-2.82, p = 0.046);
with consistent directions and magnitudes observed across

IVW, MR-Egger, and weighted median (WM) estimates

(Figure 3). Both Cochran’s Q test (p > 0.05) and MR-Egger

intercept test (p > 0.05) provided strong evidence against

heterogeneity and pleiotropy (Supplementary Table S4). Leave-

one-out (LOO) analysis further confirmed that no single SNP

disproportionately influenced the MR estimates (Supplementary

Figure S1). Supplementary Figure S2 presents forest plots of

Mendelian randomization effect estimates, displaying both IVW

and MR-Egger results for traits with significant IVW associations.

These 10 blood metabolites were thus considered robust candidates

for subsequent analyses.
3.2 Replication, meta-analysis and MVMR

To enhance the robustness of our findings, we replicated the

MR analysis using an independent GWAS dataset for hepatobiliary

tumors. As anticipated, similar trends were observed in this

validation cohort. Meta-analysis of both datasets conclusively

identified three blood metabolites significantly influencing

hepatobiliary malignancies (Figure 4).

Specifically, elevated levels of dimethylarginine (SDMA +

ADMA) (OR 1.37, 95% CI: 1.07-1.75, p = 0.01) and 4-

hydroxyhippurate (OR 1.51, 95% CI: 1.23-1.86, p < 0.01) were

associated with increased tumor risk, while 3-hydroxyisobutyrate

(OR 0.49, 95% CI: 0.31-0.75, p < 0.01) demonstrated protective

effects. The remaining candidate metabolites showed non-

significant associations in the combined meta-analysis (Figure 4).

MVMR analyses adjusting for metabolite interdependencies -

employing both IVW and MR-PRESSO approaches (Figure 5) -

confirmed that genetically predicted 4-hydroxyhippurate and 3-

hydroxyisobutyrate exert direct, independent effects on

hepatobiliary malignancy risk, unaffected by other metabolic

factors. Supplementary Table S4 details heterogeneity indices and

pleiotropy tests arising from the MVMR models, demonstrating

acceptable heterogeneity and no significant pleiotropy.
3.3 Cell functional experiments

In vitro experiments demonstrated that 4-hydroxyhippurate

(4HHA) promoted hepatocellular carcinoma cell proliferation,

while 3-hydroxyisobutyrate (3HIB) exerted inhibitory effects

(Figure 6). Specifically, the CCK-8 assays showed that 3HIB

reduced cell viability across all tested concentrations in Huh7
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Metabolites id.exposure id.outcome Study Case oncases OR or_lci95 or_uci95 P

1 372016 0.520 0.369 0.731 <0.001

10459 0.871 0.586 1.885 0.744

1 372016 0.712 0.511 0.990 0.044

10459 0.894 0.605 1.184 0.475

1 372016 1.688 1.046 2.724 0.032

10459 1.269 0.953 1.699 0.018

1 372016 0.507 0.300 0.855 0.011

10459 0.444 0.160 0.788 0.008

1 372016 1.300 1.024 1.652 0.031

10459 1.016 0.977 1.056 0.942

1 372016 1.754 1.068 2.880 0.027

10459 1.466 1.107 1.750 0.028

1 372016 0.726 0.528 0.997 0.048

10459 0.999 0.755 1.242 0.203

1 372016 1.373 1.103 1.709 0.005

10459 1.058 0.735 1.382 0.724
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UK
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(Figure 6A) and MHCC-97H cells (p =0.0313), whereas 10 μM

4HHA increased viability in both lines (Figure 6B).

Consistent with these findings, the EdU incorporation assay

(Figure 6C) indicated that 50 μM 3HIB suppressed hepatoma cell

proliferation, while 10 μM 4HHA enhanced proliferative capacity;

similarly, the colony formation assay (Figure 6D) revealed fewer

colonies following treatment with 50 μM 3HIB and increased

colony numbers with 10 μM 4HHA.
4 Discussion

Based on a comprehensive metabolome-wide Mendelian

randomization analysis, this study employed a two-sample

Mendelian randomization (TSMR) approach to systematically

evaluate potential causal relationships between 1,400 serum

metabolites and the risk of hepatobiliary and cholangiocellular

malignancies (22). The results identified 10 blood metabolites

potentially influencing the occurrence of hepatobiliary and

cholangiocellular malignancies, which were further validated in

an independent dataset (22, 27, 30). A meta-analysis confirmed

that three of these blood metabolites exhibited significant effects on

hepatobiliary and cholangiocellular malignancies. Given the

biological heterogeneity across hepatobiliary malignancies, our

results pertain to liver and intrahepatic bile duct cancers rather

than the entire hepatobiliary spectrum. For the positive findings in

TSMR analysis, multivariable Mendelian randomization (MVMR)

was performed to adjust for potential confounding factors, revealing

that 4-hydroxyhippurate and 3-hydroxyisobutyrate could directly

affect hepatobiliary malignancies independently of other

metabolites (39–42). Finally, cellular experiments were conducted

to validate their biological functions.

This study design not only enhances the accuracy of causal

inference but also provides direct experimental evidence for the

mechanistic involvement of metabolites in the pathogenesis of

hepatobiliary and cholangiocellular malignancies. The findings

establish a foundation for a deeper understanding of the

metabolic regulatory networks underlying these malignancies. The

application of multivariable Mendelian randomization (MVMR)

analysis effectively addresses the limitations of conventional

univariable approaches in failing to consider metabolic pathway

complexity (33).

As a gut microbiota–derived polyphenol metabolite, 4-

hydroxyhippurate (4HHA) showed an independent positive

association with hepatobiliary/cholangiocellular malignancies after

adjusting for related metabolites (OR 1.75, 95% CI: 1.07–2.88, p =

0.027) (43). 3-Hydroxyisobutyrate (3-HIB), a valine-catabolism

intermediate, showed a strengthened protective association after

adjusting for BCAAs and related acylcarnitines (OR 0.51, 95% CI:

0.30–0.85, p = 0.011) (44). These findings reinforce colorectal-

cancer literature that independent metabolite effects require

correction for pathway collinearity, underscoring multivariable

modeling in metabolic-network analyses (45).

4HHA is a hydroxylated hippurate formed via microbial

polyphenol metabolism plus hepatic conjugation, engaging the
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gut–liver–kidney axis and serving as a urinary biomarker (46). In

high-fat-diet models, dysbiosis–LPS–TLR4/NF-kB activation

promotes steatosis and inflammation, creating an HCC-

permissive milieu; while no direct 4HHA–CCA/HCC link is

reported, gut–liver–immune mechanisms (e.g., biliary epithelial
Frontiers in Oncology 08
inflammation, angiogenesis) are plausible and testable (12). 3-HIB

arises mainly from valine (possibly thymine) catabolism across

liver, muscle, and kidney; inborn errors can cause accumulation

(e.g., 3-hydroxyisobutyric aciduria) (44). HIBADH is upregulated

during hepatocyte injury and may affect mitochondrial energy
FIGURE 2

MR estimates (based on IVW) of the effect of blood metabolites on HCC and CCA.
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metabolism (e.g., ATP production) (42, 47). Direct evidence in

biliary/hepatic tumors is lacking, but modulation via the gut

microbiota–immune microenvironment axis is a reasonable

hypothesis, analogous to bile-acid–mediated effects (48, 49).

In evaluating the validity of the Mendelian randomization (MR)

analysis results, we primarily focused on pleiotropy, particularly

horizontal pleiotropy—where genetic variants influence

hepatobiliary malignancies through pathways other than serum

metabolites. In this study, we first used PhenoScanner to identify

and remove single-nucleotide polymorphisms (SNPs) potentially

associated with alternative pleiotropic pathways. Second, we

employed MR-Egger regression, the weighted median method,

and MR-PRESSO to address pleiotropy (21, 50). Although the

estimates generated by these methods showed slight variations,

their conclusions were consistent, with none indicating significant
Frontiers in Oncology 09
pleiotropy, demonstrating the robustness of our findings across

different approaches.

Additionally, while the multivariable Mendelian randomization

(MVMR) analysis adjusted for several known confounding factors,

there may still exist unrecognized or unmeasured confounders that

simultaneously influence both the exposure and outcome,

potentially introducing bias into the causal estimates (32, 33, 51).

However, no evidence of horizontal pleiotropy was detected in this

study, suggesting that the observed causal associations are not

significantly affected by confounding factors.

This study possesses several notable strengths. The primary

advantage lies in its Mendelian randomization (MR) design, which

substantially mitigates the influence of confounding factors and

reverse causation. Secondly, we employed multivariable Mendelian

randomization (MVMR) analysis to adjust for residual
FIGURE 3

Metabolite scatter plots with a forward direction. Vertical axis: The effect value of SNP on HCC and CAA; Horizontal axis: The affect value of SNP on
different metabolites; Colored lines represent the results of MR analysis based on four methods.
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confounding, thereby enhancing the reliability of causal inferences

between serum metabolites and hepatobiliary malignancy risk.

Furthermore, we conducted functional cellular validation

experiments on the identified metabolites to reinforce the

robustness of the causal relationships. Additionally, the utilization

of multiple independent datasets in this study effectively reduced

potential biases arising from population stratification.
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This study has several limitations. The metabolite ratios we

analyzed were precomputed by the source mGWAS (not defined by

us); while some may proxy pathway balance, many are statistical

constructs with limited mechanistic interpretability due to shared

determinants or scaling. We therefore emphasize ratio signals

consistent with component metabolites, known biochemistry, or

independent evidence, and de-emphasize those showing
FIGURE 4

TSMR analysis and meta-analysis of the relationship between blood metabolites and HCC and CCA. The reported values were calculated by the IVW
method. TSMR, two-sample Mendelian randomization.
FIGURE 5

Multivariate MR analysis of the direct effect of 3-hydroxyisobutyrate, 4-hydroxyhippurate, and Dimethylarginine on hepatobiliary malignancies.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1680865
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tuo et al. 10.3389/fonc.2025.1680865
inconsistency or pleiotropy. To minimize sample overlap bias, we

selected GWAS data from different sources and populations, but

potential overlap may persist due to large, concentrated sample sizes.

However, in TSMR analysis, strongly associated SNPs (all F-

statistics≥10) were selected, suggesting minimal bias from sample

overlap (51). First, a lenient threshold (p<5×10-6) was used to

include more SNPs, which improved statistical power but may

increase pleiotropy risk, so we conducted stringent sensitivity

analyses and controlled for pleiotropic pathways, with all SNPs’ F-

statistics≥10 ensuring strong instrument-exposure associations.

Second, stratified analyses by age, sex, or tumor stage were

impossible due to GWAS data limitations, pointing to future

research directions (26, 52, 53). Methodologically, MR relies on

GWAS-identified genetic variants, and underpowered GWAS may

cause bias; moreover, MR assumes no gene-environment interactions,

so if environmental factors modulate genetic effects on exposures/

outcomes, true causality may be misestimated. Furthermore, we

acknowledge that the inclusion of “X-” (unknown) metabolite

features, while minimizing annotation bias, limits mechanistic

interpretability and translational relevance in the absence of chemical

identification, and thus these findings should be viewed as hypothesis-

generating pending targeted annotation and validation. Thus, our study

mainly provides genetic-level evidence and suggests more prospective

studies. Experimentally, only the cell proliferation effects of two

metabolites were tested without mechanistic studies or
Frontiers in Oncology 11
microenvironment simulation, lacking animal validation; single-

concentration cell experiments require dose-response tests to

determine effect thresholds; MR captures static genetic associations

without considering dynamic influences like diet/circadian rhythm on

4HHA/3HIB levels.

In subsequent studies, we will focus on addressing the current

limitations by conducting cellular experiments to investigate

specific regulatory sites and signaling pathways, dynamically

monitoring metabolomic changes during carcinogenesis, and

jointly validating their potential value for early cancer screening.
5 Conclusion

In summary, this study has innovatively identified and

validated two key metabolites associated with hepatobiliary

tumors through methodological advancements. These findings

not only provide novel insights into the etiological research of

hepatobiliary tumors but also establish a foundation for

developing metabolism-based early diagnostic biomarkers and

therapeutic targets. The results highlight the pivotal role of

metabolites in the prevention and treatment of hepatobiliary

tumors, underscoring that translating these fundamental

discoveries into clinical applications will represent a crucial

direction for future research.
FIGURE 6

Functional cellular assays validated the tumor-suppressive effect of 3HIB and the tumor-promoting effect of 4HHA. (A, B). 3HIB inhibited
hepatocellular carcinoma cell proliferation at all tested concentrations, whereas 10 µM 4HHA enhanced proliferation. (C, D). Both EdU and colony
formation assays demonstrated that 50 mM 3HIB suppressed proliferation, while 10 µM 4HHA promoted it.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1680865
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tuo et al. 10.3389/fonc.2025.1680865
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The study was approved by the Ethics Committee of Sichuan

Provincial People’s Hospital (approval no. 2023-549 and was

conducted by the 1964 Helsinki Declaration and its later

amendments or comparable ethical standards. Informed consent

for participation was not required for this study by national

legislation and institutional requirements. Our research adhered

strictly to relevant guidelines/regulations. Ethical approval was not

required for the studies on animals in accordance with the local

legislation and institutional requirements because only

commercially available established cell lines were used.
Author contributions

LT: Conceptualization, Methodology, Investigation, Funding

acquisition Data curation, Writing – original draft, Writing –

review & editing. LY: Data curation, Investigation, Validation,

Writing – review & editing. YL: Resources, Data curation,

Investigation, Writing – review & editing. SW: Resources,

Supervision, Writing – review & editing. XY: Validation, Project

administration, Writing – review & editing. XA: Conceptualization,

Supervision, Project administration, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the Youth Science Fund Project of the National Natural Science

Foundation of China (No. 82400685).
Frontiers in Oncology 12
Acknowledgments

The authors thank FinnGen study and UK Biobank

collaborators for providing the data for our research and all the

participants and researchers for their participation in this

MR study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1680865/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: A Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

2. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and
perspectives. Gut. (2014) 63:844–55. doi: 10.1136/gutjnl-2013-306627

3. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al.
Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev
Gastroenterol Hepatol. (2020) 17:557–88. doi: 10.1038/s41575-020-0310-z

4. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of
prevalence, incidence, and outcomes. Hepatology. (2016) 64:73. doi: 10.1002/hep.28431
5. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al.
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