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Background: Hepatobiliary malignancies—including hepatocellular carcinoma
and cholangiocarcinoma—are major causes of cancer-related mortality
worldwide, yet their regulatory pathways remain incompletely defined.
Methods: We employed a two-sample Mendelian randomization (MR) approach
to systematically investigate causal relationships between 1,400 serum
metabolites and hepatobiliary cancer risk. Through stringent quality control (all
SNPs with F-statistics > 10) and sensitivity analyses (MR-Egger regression,
weighted median method, and MR-PRESSO), we identified 10
candidate metabolites.

Results: Meta-analysis confirmed three metabolites with robust associations:
risk-increasing dimethylarginine (SDMA+ADMA) and 4-hydroxyhippurate, and
protective 3-hydroxyisobutyrate. Multivariable MR validated the independent
effects of 4-hydroxyhippurate and 3-hydroxyisobutyrate. In vitro functional
experiments demonstrated that 4-hydroxyhippurate promoted, whereas 3-
hydroxyisobutyrate inhibited, hepatocellular carcinoma cell proliferation.
Conclusion: These findings advance understanding of metabolic dysregulation
in hepatobiliary malignancies and nominate candidate diagnostic biomarkers and
therapeutic targets, providing translationally relevant hypotheses for
precision medicine.
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1 Introduction

Hepatobiliary malignancies—including hepatocellular
carcinoma (HCC) and cholangiocarcinoma (CCA)—account for a
rising share of global cancer mortality, with marked geographic
variation driven by viral hepatitis, metabolic dysfunction-
associated steatotic liver disease, alcohol, aflatoxin exposure, and
primary sclerosing cholangitis (1-3). Despite advances in
surveillance and therapy, late-stage presentation and molecular
heterogeneity continue to limit outcomes (4, 5).

Metabolic reprogramming is a hallmark of hepatobiliary
tumorigenesis (6, 7). Perturbations have been reported across
amino-acid metabolism (e.g., branched-chain and aromatic amino
acids), one-carbon/arginine-NO pathways (including asymmetric
and symmetric dimethylarginine), short-chain and hydroxy-
carboxylic acids (e.g., 3-hydroxyisobutyrate from valine
catabolism), bile acid and lipid remodeling, and host-microbiome
co-metabolites such as hippurate derivatives (e.g., 4-
hydroxyhippurate) (8-10). Several case—control and prospective
metabolomics studies suggest associations of these metabolites
with HCC/CCA risk or progression, yet effect directions and
specificity vary across platforms, biospecimens, and populations
(11-13).

Observational associations between circulating metabolites and
cancer risk are prone to confounding (e.g., lifestyle, liver function,
inflammation) and reverse causation due to subclinical disease (14).
Mendelian randomization (MR) leverages germline variants as
instruments to strengthen causal inference under three
assumptions (relevance, independence, exclusion restriction) and
has been increasingly applied to metabolic traits. Recent mGWAS
provide strong instruments for hundreds of metabolites, enabling
two-sample MR while minimizing sample overlap and enhancing
generalizability (15, 16).

To address uncertainties from observational metabolomics, we
aimed to systematically evaluate the potential causal effects of 1,400
circulating metabolites and ratios on the risk of hepatobiliary
cancers using a two-sample MR framework. Specifically, we
prespecified a discovery-replication design across independent
outcome GWAS (FinnGen; UK Biobank via Neale lab/IEU),
applied stringent instrument selection, harmonization, and
robustness analyses (IVW, MR-Egger, weighted median/mode,
MR-PRESSO, MR-RAPS), and conducted multivariable MR to
account for correlated metabolites (17-20). We also integrated
targeted in vitro experiments to explore biological plausibility for
priority metabolites.

2 Methods and materials

2.1 Study design

Mendelian randomization (MR) inference relies on three core
assumptions: (i) relevance (genetic instruments are strongly
associated with the exposure), (ii) independence (instruments are
independent of confounders), and (iii) exclusion restriction
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(instruments affect the outcome only via the exposure). We
conducted a two-sample MR within a discovery-replication
framework (21). The discovery stage used metabolite GWAS
(exposures) from the Canadian Longitudinal Study of Aging
(CLSA) and outcome GWAS for hepatobiliary malignancies from
FinnGen. The replication stage used independent outcome GWAS
from the UK Biobank (Neale lab releases) accessed via the IEU
OpenGWAS platform, ensuring non-overlapping samples and
matched European ancestry; results were combined by meta-
analysis. The prespecified workflow comprised: (i) exposure
definition and instrument selection, (ii) outcome data
ascertainment, (iii) harmonization and instrument diagnostics,
(iv) primary and robustness MR estimations, and (v) replication
and meta-analysis. A schematic overview is provided in Figure 1.
Exposure and outcome GWAS primarily include participants of
European ancestry; we minimized potential bias from sample
overlap by using independent consortia and confirming non-
overlap via data source documentation. We acknowledge that the
European-ancestry focus may limit generalizability to other
populations and highlight this limitation in the Discussion.
Reporting followed STROBE-MR guidelines.

2.2 Exposure definition and instrument
selection

Exposure definition: Circulating metabolite levels (and ratios)
were quantified in the CLSA mGWAS by Richards et al. among
8,299 unrelated participants, covering 1,091 metabolites and 309
ratios across amino acids, carbohydrates, cofactors/vitamins,
energy-related metabolites, lipids, nucleotides, peptides, and
xenobiotics (22). Metabolites with “X-” prefixes denote chemically
unidentified features. The GWAS data for plasma metabolites were
sourced from the GWAS Catalog (GCST90199621-
GCST90201020) (23, 24).

Instrument selection: We selected SNPs associated with each
metabolite at genome-wide significance (p < 5x10-8); for sparse
traits, a relaxed threshold (p < 1x10—6) was allowed conditional on
instrument strength (F > 10). We applied LD clumping using a
European LD reference with r2 < 0.001 within a 10,000 kb window
to ensure instrument independence, and excluded palindromic
SNPs with intermediate allele frequencies. Effect alleles were
harmonized across exposure and outcome datasets (25-27).

Instrument strength and directionality: We computed per-
exposure F-statistics and applied Steiger filtering to remove
variants explaining more variance in the outcome than in the
exposure. Summary instrument metrics are provided in

Supplementary Table SI.

2.3 Outcome data

Discovery outcomes: We obtained GWAS summary statistics
for hepatobiliary malignancies from FinnGen (release R4;
phenotype code C3_LIVER_INTRAHEPATIC_BILE_DUCTY),
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FIGURE 1

Overview of the design and methods used in this Mendelian randomization study. MR analysis was used to explore the causal relationships, including
the following three assumptions: 1. Instrument validity assumption: the genetic variant used as an instrument for the exposure of interest is strongly
associated with the exposure but not directly associated with any confounding factors that might influence the outcome. 2. Independence assumption:
the genetic variant is independent of any other factors that might influence the outcome, except through its effect on the exposure. 3. Exclusion
restriction assumption: the genetic variant affects the outcome only through its effect on the exposure, and not through any other pathways.

including 1,046 cases and 10,459 controls. The FinnGen phenotype
corresponds to “malignant neoplasm of liver and intrahepatic bile
ducts,” primarily based on ICD-10 C22 (malignant neoplasm of
liver and intrahepatic bile ducts; including hepatocellular carcinoma
and intrahepatic cholangiocarcinoma) and mapped ICD-9 codes.
Extrahepatic cholangiocarcinoma (ICD-10 C24.0) and gallbladder
cancer (ICD-10 C23) are excluded, as are benign neoplasms.
Case/control status and coding followed the FinnGen
phenotype documentation.

Replication outcomes: We used the UK Biobank GWAS
released by the Neale lab and accessible via the IEU OpenGWAS
platform (MRC Integrative Epidemiology Unit, University of
Bristol). Specifically, dataset ieu-b-4915 (UK Biobank; 350 cases,
372,016 controls; 7,687,713 SNPs) was analyzed. Summary of
GWAS datasets used for outcomes and replication are listed in
Supplementary Table S2.

The Neale lab UK Biobank GWAS used imputed genotypes
from HRC plus UK10K & 1000 Genomes reference panels (GWAS
round 2; as released in March 2018; see http://www.nealelab.is/uk-
biobank). The corresponding phenotype reflects “malignant
neoplasm of liver and intrahepatic bile ducts” derived from ICD-
coded hospital records and cancer registries; benign neoplasms and
extrahepatic cholangiocarcinoma are not included. To ensure
comparability, all outcome effect sizes were harmonized to the
log-odds scale prior to MR and meta-analysis. Data sources and
accession IDs for all exposure-outcome pairs are listed in
Supplementary Table S3.

Ethics: Ethical approvals were granted by the original studies
(FinnGen Scientific Committee; UK Biobank Ethics Committee for
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Neale lab analyses). Our MR used de-identified, publicly available
summary statistics.

2.4 Instrumental variable selection

The study flowchart is presented in Figure 1. Circulating plasma
metabolites served as exposures and hepatobiliary malignancies as
outcomes. For descriptive purposes, metabolites were summarized
by chemical classes (e.g., carbohydrates, lipids, amino acids,
nucleotides, organic acids, vitamins, hormones, xenobiotics).
Instrument selection followed the criteria detailed in Section 2.2
(p-thresholds, LD clumping at r2 < 0.001 within 10,000 kb, MAF >
0.01, allele harmonization, and Steiger filtering). Pleiotropy
screening used MR-PRESSO (global and outlier tests) iteratively
to identify outliers, complemented by MR-Egger intercept tests.
Outliers were removed until the MR-PRESSO global test was non-
significant (p > 0.05); the resulting instrument sets were carried
forward; to avoid over-correction, we capped removal at a single
outlier-deletion step per analysis and retained unfiltered IVW as
primary when the global test remained significant, noting that main
findings were directionally consistent with and without
this filtering.

2.5 Statistical analysis

Primary MR estimation used inverse-variance weighted (IVW)
models under a random-effects framework when >2 instruments
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were available; for single-instrument exposures, we used the Wald
ratio. Robustness estimators included MR-Egger, weighted median,
and weighted mode; for sparse or potentially weak-instrument
settings, we additionally report MR-RAPS where applicable.
Heterogeneity and influence diagnostics included Cochran’s Q,
leave-one-out analyses, and Radial MR for outlier detection; when
feasible, we performed platform-stratified sensitivity analyses (28,
29). All analyses were conducted in R using TwoSampleMR,
MRPRESSO, and RadialMR; meta-analysis employed random-
effects models implemented in Review Manager 5.4. Decision
criteria for putative causal metabolites were: (1) IVW p < 0.05
with consistent effect directions across robust estimators, (2) no
evidence of directional pleiotropy (MR-Egger intercept p = 0.05)
and acceptable heterogeneity, (3) stability in leave-one-out and after
removing Radial MR/MR-PRESSO outliers, and (4) retained
instrument strength (mean F > 10) (28, 30). For binary outcomes,
SNP-outcome associations were on the log-odds scale; MR effect
estimates are reported as odds ratios per SD increase in metabolite
levels, with corresponding 95% confidence intervals.

2.6 Replication and meta-analysis

Replication was conducted using the UK Biobank outcome
GWAS (Neale lab; IEU OpenGWAS dataset ieu-b-4915), ensuring
independence from FinnGen and matched European ancestry. We
repeated the harmonization and MR pipeline in the replication
dataset. We then combined discovery (FinnGen) and replication
(UK Biobank) MR estimates using random-effects inverse-
variance-weighted meta-analysis of Wald-type effect estimates on
the log-odds scale; between-dataset heterogeneity was assessed via
Cochran’s Q and I (31). When between-dataset heterogeneity
was substantial (I> > 50% or Q p < 0.10), we prioritized
random-effects results and examined sources of heterogeneity in
sensitivity analyses.

2.7 Confounding analysis and multivariable
MR analysis

To further mitigate confounding via horizontal pleiotropy, we
queried PhenoScanner V2 for associations of instruments with
hepatobiliary cancer risk factors (alcohol intake, type 2 diabetes,
viral hepatitis, medication use, autoimmune traits). Instruments
with strong associations (p < 1x10-5) to these traits were excluded
and analyses repeated. In addition, we screened instrument sets in
IEU OpenGWAS to identify broad pleiotropic signals across
common traits and removed discordant instruments in sensitivity
analyses. Where instruments were shared across correlated
metabolites/classes, we implemented multivariable MR (MVMR-
IVW; complemented by MR-PRESSO for outlier correction) to
estimate direct effects conditional on correlated exposures. Selection
of covariate metabolites in MVMR was guided by biological
pathway proximity and phenotypic correlations (32, 33). MVMR
models were restricted to instruments available across all included
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exposures and outcomes in each dataset to preserve
sample comparability.

2.8 Cell functional experiments

2.8.1 Cell culture and reagents

We employed two human hepatocellular carcinoma (HCC) cell
lines: Huh7 and MHCC 97H. All cell lines were obtained from the
American Type Culture Collection (ATCC) and the Shanghai
Institute of Cell Biology, with confirmation of authenticity using
the International Cell Line Authentication Committee’s database
(version 8.0) to exclude misidentified lines. Cells were maintained at
37°C with 5% CO2. Huh7 were cultured in high glucose DMEM
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin; 97H were cultured in RPMI 1640 with
10% FBS and 1% penicillin-streptomycin unless otherwise stated.
No cholangiocarcinoma cell line was included in this study (34-36).

2.8.2 Metabolite treatments and dosing rationale

4-Hydroxyhippurate (4HHA) and 3-hydroxyisobutyrate
(3HIB) (purity >98%; supplier/catalog) were freshly prepared in
sterile culture medium and filtered (0.22 pm).Doses (10, 50, 100
uM) for 4HHA and 3HIB were chosen to bracket reported human
circulating levels from upper physiologic to pathophysiologic
ranges, with 100 uM for 4HHA explicitly treated as a supra-
physiologic sensitivity point. Pilot titrations confirmed the
absence of nonspecific cytotoxicity at the chosen ranges (trypan
blue exclusion and morphology). Treatments were applied for 24-
72 has indicated.

2.8.3 CCK-8 proliferation assay

Cells were seeded in 96-well plates (1x10° cells/well). After 12
hours, treatments with varying concentrations of 4-
hydroxyhippurate and 3-hydroxyisobutyrate were initiated.
Vehicle controls received identical culture medium without added
metabolites; no DMSO or other organic solvents were used.
Positive/assay controls were included as appropriate. At
designated time points, 10 uL of CCK-8 solution was added per
well, followed by 2-hour incubation. Absorbance at 450 nm (OD,s5)
was measured to quantify viability (37).

2.8.4 5-Ethynyl-2'-deoxyuridine proliferation
assay

Cell proliferation was assessed using the EAU Apollo567 In
Vitro Kit (Ribobio, China) according to the manufacturer’s
protocol. Briefly, cells were seeded in 6-well plates at a density of
2x10° cells/well. After 12 hours of culture, cells were treated with
the specified compounds for 48 hours. Subsequently, cells were
incubated with EAU working solution for 2 hours, fixed with 4%
paraformaldehyde, permeabilized, and washed. Nuclei were
counterstained with 1xApollo solution and 1xHoechst 33342.
Vehicle controls received the same treatment as above.
Fluorescent microscopy images were acquired and analyzed to
quantify proliferating cells (38).

frontiersin.org


https://doi.org/10.3389/fonc.2025.1680865
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Tuo et al.

2.8.5 Replication and statistical analysis

Each experiment was repeated in at least three independent
biological replicates (separate passages/thawed vials), with technical
triplicates per condition. Data are presented as mean + SD unless
specified. Two-sided tests were used. For paired, non-normally
distributed data we applied the two-sided Wilcoxon signed-rank
test; significance thresholds and formats follow the manuscript-
wide convention (exact p to three decimals when > 0.001; p <
0.001 otherwise).

3 Result
3.1 Primary analysis

We first identified 34,843 genome-wide significant SNPs across
1,091 metabolites and 309 ratios. Each filtered instrumental variable
contained 12-93 SNPs (4-methyl-2-oxopentanoate levels/3-
hydroxylaurate levels represented by 12 SNPs; 2-X15523 showing
the largest genetic proxy with 93 SNPs). After LD clumping
(r2<0.001, 10,000 kb), harmonization and removal of palindromic
SNPs, Steiger filtering, and outlier exclusion by MR-PRESSO/Radial
MR, 61 metabolites retained >1 valid instrument and proceeded to
IVW (or Wald ratio for single-instrument exposures). Detailed data
for instrumental variables are presented in Supplementary Table S1.

Prior to MR analysis, radial MR was used to identify and
remove outliers. Initially, we identified 34,843 SNPs associated
with circulating plasma metabolites at genome-wide significance
(p < 5x10-8). IVW analysis preliminarily identified 61 metabolites
potentially causally associated with hepatobiliary tumors, including
42 known metabolites, 7 unknown metabolites, and 12 metabolite
ratios (Figure 2).

As shown in Figure 2, the 42 known metabolites were
categorized by chemical properties into: carbohydrate metabolites,
lipid metabolites, amino acids and derivatives, nucleotides and
derivatives, organic acids and derivatives, aromatic compounds,
vitamins and derivatives, hormones and derivatives, and
secondary metabolites.

Following complementary analyses and sensitivity tests, 10
metabolites meeting stringent selection criteria were identified as
candidates (Table 1), including:

Glycerol 3-phosphate (OR 0.52 95% CI: 0.37-0.73, p < 0.001);

Octadecenedioylcarnitine (C18:1-DC) (OR 0.71, 95% CI: 0.51-
0.99, p = 0.044);

Dimethylarginine (sdma + adma) (OR 1.69, 95% CI: 1.05-2.72,
p = 0.032);

3-hydroxyisobutyrate (OR 0.51, 95% CI: 0.30-0.85, p = 0.011);

Malate (OR 1.30, 95% CI: 1.02-1.65, p = 0.031);

4-hydroxyhippurate (OR 1.75, 95% CI: 1.07-2.88, p = 0.027);

6-bromotryptophan (OR 0.73, 95% CI: 0.53-1.00, p = 0.048);
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5alpha-androstan-3alpha,17alpha-diol monosulfate (OR 1.37,
95% CI: 1.10-1.71, p = 0.005);

X-21467 levels (OR 0.71, 95% CI: 0.56-0.90, p = 0.005);
X-23782 levels (OR 1.69, 95% CI: 1.01-2.82, p = 0.046);

with consistent directions and magnitudes observed across
IVW, MR-Egger, and weighted median (WM) estimates
(Figure 3). Both Cochran’s Q test (p > 0.05) and MR-Egger
intercept test (p > 0.05) provided strong evidence against
heterogeneity and pleiotropy (Supplementary Table S4). Leave-
one-out (LOO) analysis further confirmed that no single SNP
disproportionately influenced the MR estimates (Supplementary
Figure S1). Supplementary Figure S2 presents forest plots of
Mendelian randomization effect estimates, displaying both IVW
and MR-Egger results for traits with significant IVW associations.
These 10 blood metabolites were thus considered robust candidates
for subsequent analyses.

3.2 Replication, meta-analysis and MVMR

To enhance the robustness of our findings, we replicated the
MR analysis using an independent GWAS dataset for hepatobiliary
tumors. As anticipated, similar trends were observed in this
validation cohort. Meta-analysis of both datasets conclusively
identified three blood metabolites significantly influencing
hepatobiliary malignancies (Figure 4).

Specifically, elevated levels of dimethylarginine (SDMA +
ADMA) (OR 1.37, 95% CI: 1.07-1.75, p = 0.01) and 4-
hydroxyhippurate (OR 1.51, 95% CI: 1.23-1.86, p < 0.01) were
associated with increased tumor risk, while 3-hydroxyisobutyrate
(OR 0.49, 95% CI: 0.31-0.75, p < 0.01) demonstrated protective
effects. The remaining candidate metabolites showed non-
significant associations in the combined meta-analysis (Figure 4).

MVMR analyses adjusting for metabolite interdependencies -
employing both IVW and MR-PRESSO approaches (Figure 5) -
confirmed that genetically predicted 4-hydroxyhippurate and 3-
hydroxyisobutyrate exert direct, independent effects on
hepatobiliary malignancy risk, unaffected by other metabolic
factors. Supplementary Table S4 details heterogeneity indices and
pleiotropy tests arising from the MVMR models, demonstrating
acceptable heterogeneity and no significant pleiotropy.

3.3 Cell functional experiments

In vitro experiments demonstrated that 4-hydroxyhippurate
(4HHA) promoted hepatocellular carcinoma cell proliferation,
while 3-hydroxyisobutyrate (3HIB) exerted inhibitory effects
(Figure 6). Specifically, the CCK-8 assays showed that 3HIB
reduced cell viability across all tested concentrations in Huh7
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TABLE 1 10 metabolites meeting stringent selection criteria were identified as candidates.

Metabolites id.exposure id.outcome Noncases OR or_lci95 or_uci95
Glycerol 3-phosphate level GesTootovgas | mneb- FinnGen 1046 372016 0.520 0.369 0.731 <0.001
ycerol S-phosphate fevels C3_LIVER_INTRAHEPATIC_BILE_DUCTS ¢ : : : :
. UK
feu-b-4915 : 350 10459 0.871 0.586 1.885 0.744
Biobank
Octadecenedioylcarnitine (C18:1-DC) level GesTool90970  1nneb- FinnG 1046 372016 0.712 0.511 0.990 0.044
cladecened lOy carnitine N evels C37LIVER*INTRAHEPATIC*BILE*DUCTS mnGen . . B .|
. UK
feu-b-4915 : 350 10459 0.894 0.605 1.184 0.475
Biobank
Dimethylarginine (sdma + adma) level GCsTool90s32  nn-b- FinnG 1046 372016 1.688 1.046 2724 0.032
imethylarginine lsdma + adma) levels C3_LIVER_INTRAHEPATIC_BILE_DUCTS fntsen : : : :
. UK
feu-b-4915 : 350 10459 1.269 0.953 1.699 0.018
Biobank
3-hydroxyisobutyrate levels GesToo200308  1nneb- FinnGen 1046 372016 0.507 0.300 0.855 0.011
ydroxylsobutyrate fev C3_LIVER_INTRAHEPATIC_BILE_DUCTS ! ' : : -
. UK
feu-b-4915 : 350 10459 0.444 0.160 0.788 0.008
Biobank
Malate level GesTooz0030s | 1nncb- FinnGen 1046 372016 1300 1.024 1.652 0.031
ate fevels C3_LIVER_INTRAHEPATIC_BILE_DUCTS © : : : :
. UK
feu-b-4915 : 350 10459 1.016 0.977 1.056 0.942
Biobank
4-hydroxyhippurate level GesTool9o7es | nneb- FinnG 1046 372016 1.754 1.068 2.880 0.027
ydroxyhippurate fevels C3_LIVER_INTRAHEPATIC_BILE_DUCTS nten : | : :
. UK
feu-b-4915 : 350 10459 1.466 1.107 1.750 0.028
Biobank
6-bromotryptophan level: GesToo200201  nneb- FinnG 1046 372016 0.726 0.528 0.997 0.048
-bromotryptophan feves C3_LIVER_INTRAHEPATIC_BILE_DUCTS fnben : : : :
. UK
feu-b-4915 : 350 10459 0.999 0.755 1242 0.203
Biobank
5alpha-androstan-3alpha,17alpha-diol monosulfate finn-b-
GCSTI0199850 FinnG 1046 372016 1373 1.103 1.709 0.005
levels C3_LIVER_INTRAHEPATIC_BILE_DUCTS fnnten
, UK
feu-b-4915 : 350 10459 1.058 0.735 1.382 0.724
Biobank
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TABLE 1 Continued
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(Figure 6A) and MHCC-97H cells (p =0.0313), whereas 10 pM
4HHA increased viability in both lines (Figure 6B).

Consistent with these findings, the EdU incorporation assay
(Figure 6C) indicated that 50 uM 3HIB suppressed hepatoma cell
proliferation, while 10 uM 4HHA enhanced proliferative capacity;
similarly, the colony formation assay (Figure 6D) revealed fewer
colonies following treatment with 50 uM 3HIB and increased
colony numbers with 10 uM 4HHA.

4 Discussion

Based on a comprehensive metabolome-wide Mendelian
randomization analysis, this study employed a two-sample
Mendelian randomization (TSMR) approach to systematically
evaluate potential causal relationships between 1,400 serum
metabolites and the risk of hepatobiliary and cholangiocellular
malignancies (22). The results identified 10 blood metabolites
potentially influencing the occurrence of hepatobiliary and
cholangiocellular malignancies, which were further validated in
an independent dataset (22, 27, 30). A meta-analysis confirmed
that three of these blood metabolites exhibited significant effects on
hepatobiliary and cholangiocellular malignancies. Given the
biological heterogeneity across hepatobiliary malignancies, our
results pertain to liver and intrahepatic bile duct cancers rather
than the entire hepatobiliary spectrum. For the positive findings in
TSMR analysis, multivariable Mendelian randomization (MVMR)
was performed to adjust for potential confounding factors, revealing
that 4-hydroxyhippurate and 3-hydroxyisobutyrate could directly
affect hepatobiliary malignancies independently of other
metabolites (39-42). Finally, cellular experiments were conducted
to validate their biological functions.

This study design not only enhances the accuracy of causal
inference but also provides direct experimental evidence for the
mechanistic involvement of metabolites in the pathogenesis of
hepatobiliary and cholangiocellular malignancies. The findings
establish a foundation for a deeper understanding of the
metabolic regulatory networks underlying these malignancies. The
application of multivariable Mendelian randomization (MVMR)
analysis effectively addresses the limitations of conventional
univariable approaches in failing to consider metabolic pathway
complexity (33).

As a gut microbiota-derived polyphenol metabolite, 4-
hydroxyhippurate (4HHA) showed an independent positive
association with hepatobiliary/cholangiocellular malignancies after
adjusting for related metabolites (OR 1.75, 95% CI: 1.07-2.88, p =
0.027) (43). 3-Hydroxyisobutyrate (3-HIB), a valine-catabolism
intermediate, showed a strengthened protective association after
adjusting for BCAAs and related acylcarnitines (OR 0.51, 95% CI:
0.30-0.85, p = 0.011) (44). These findings reinforce colorectal-
cancer literature that independent metabolite effects require
correction for pathway collinearity, underscoring multivariable
modeling in metabolic-network analyses (45).

4HHA is a hydroxylated hippurate formed via microbial
polyphenol metabolism plus hepatic conjugation, engaging the
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gut-liver-kidney axis and serving as a urinary biomarker (46). In
high-fat-diet models, dysbiosis-LPS-TLR4/NF-xB activation
promotes steatosis and inflammation, creating an HCC-
permissive milieu; while no direct 4HHA-CCA/HCC link is
reported, gut-liver-immune mechanisms (e.g., biliary epithelial
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inflammation, angiogenesis) are plausible and testable (12). 3-HIB

arises mainly from valine (possibly thymine) catabolism across

liver, muscle, and kidney; inborn errors can cause accumulation

(e.g., 3-hydroxyisobutyric aciduria) (44). HIBADH is upregulated

during hepatocyte injury and may affect mitochondrial energy
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FIGURE 3

Metabolite scatter plots with a forward direction. Vertical axis: The effect value of SNP on HCC and CAA; Horizontal axis: The affect value of SNP on
different metabolites; Colored lines represent the results of MR analysis based on four methods.

metabolism (e.g., ATP production) (42, 47). Direct evidence in
biliary/hepatic tumors is lacking, but modulation via the gut
microbiota-immune microenvironment axis is a reasonable
hypothesis, analogous to bile-acid-mediated effects (48, 49).

In evaluating the validity of the Mendelian randomization (MR)
analysis results, we primarily focused on pleiotropy, particularly
horizontal pleiotropy—where genetic variants influence
hepatobiliary malignancies through pathways other than serum
metabolites. In this study, we first used PhenoScanner to identify
and remove single-nucleotide polymorphisms (SNPs) potentially
associated with alternative pleiotropic pathways. Second, we
employed MR-Egger regression, the weighted median method,
and MR-PRESSO to address pleiotropy (21, 50). Although the
estimates generated by these methods showed slight variations,
their conclusions were consistent, with none indicating significant

Frontiers in Oncology

pleiotropy, demonstrating the robustness of our findings across
different approaches.

Additionally, while the multivariable Mendelian randomization
(MVMR) analysis adjusted for several known confounding factors,
there may still exist unrecognized or unmeasured confounders that
simultaneously influence both the exposure and outcome,
potentially introducing bias into the causal estimates (32, 33, 51).
However, no evidence of horizontal pleiotropy was detected in this
study, suggesting that the observed causal associations are not
significantly affected by confounding factors.

This study possesses several notable strengths. The primary
advantage lies in its Mendelian randomization (MR) design, which
substantially mitigates the influence of confounding factors and
reverse causation. Secondly, we employed multivariable Mendelian
randomization (MVMR) analysis to adjust for residual
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FIGURE 4

TSMR analysis and meta-analysis of the relationship between blood metabolites and HCC and CCA. The reported values were calculated by the IVW
method. TSMR, two-sample Mendelian randomization.
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Multivariate MR analysis of the direct effect of 3-hydroxyisobutyrate, 4-hydroxyhippurate, and Dimethylarginine on hepatobiliary malignancies.

confounding, thereby enhancing the reliability of causal inferences
between serum metabolites and hepatobiliary malignancy risk.
Furthermore, we conducted functional cellular validation
experiments on the identified metabolites to reinforce the
robustness of the causal relationships. Additionally, the utilization
of multiple independent datasets in this study effectively reduced
potential biases arising from population stratification.
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This study has several limitations. The metabolite ratios we
analyzed were precomputed by the source mGWAS (not defined by
us); while some may proxy pathway balance, many are statistical
constructs with limited mechanistic interpretability due to shared
determinants or scaling. We therefore emphasize ratio signals
consistent with component metabolites, known biochemistry, or
independent evidence, and de-emphasize those showing

frontiersin.org


https://doi.org/10.3389/fonc.2025.1680865
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Tuo et al.
1.5 Mock
-# 3HIB-10um
4 3HIB-50um
1.0 -¥- 3HIB-100um
«©
e
Q
(8]
sl /?‘Aél;
;;/:
0.0 T T T 1
0 4 8
Days
MCHH-97H
FIGURE 6

10.3389/fonc.2025.1680865

B Mock
1.57 = 4HHA-10um
4+ 4HHA-50um
1.04 -¥- 4HHA-100um
«©
X
o
o
0.5
0.0 T T T 1
0 2 4 6 8
Days
Mock e j
w “
4HHA

MCHH-97H

Functional cellular assays validated the tumor-suppressive effect of 3HIB and the tumor-promoting effect of 4HHA. (A, B). 3HIB inhibited
hepatocellular carcinoma cell proliferation at all tested concentrations, whereas 10 uM 4HHA enhanced proliferation. (C, D). Both EdU and colony
formation assays demonstrated that 50 uM 3HIB suppressed proliferation, while 10 pM 4HHA promoted it.

inconsistency or pleiotropy. To minimize sample overlap bias, we
selected GWAS data from different sources and populations, but
potential overlap may persist due to large, concentrated sample sizes.
However, in TSMR analysis, strongly associated SNPs (all F-
statistics>10) were selected, suggesting minimal bias from sample
overlap (51). First, a lenient threshold (p<5x10°) was used to
include more SNPs, which improved statistical power but may
increase pleiotropy risk, so we conducted stringent sensitivity
analyses and controlled for pleiotropic pathways, with all SNPs™ F-
statistics=10 ensuring strong instrument-exposure associations.
Second, stratified analyses by age, sex, or tumor stage were
impossible due to GWAS data limitations, pointing to future
research directions (26, 52, 53). Methodologically, MR relies on
GWAS-identified genetic variants, and underpowered GWAS may
cause bias; moreover, MR assumes no gene-environment interactions,
so if environmental factors modulate genetic effects on exposures/
outcomes, true causality may be misestimated. Furthermore, we
acknowledge that the inclusion of “X-” (unknown) metabolite
features, while minimizing annotation bias, limits mechanistic
interpretability and translational relevance in the absence of chemical
identification, and thus these findings should be viewed as hypothesis-
generating pending targeted annotation and validation. Thus, our study
mainly provides genetic-level evidence and suggests more prospective
studies. Experimentally, only the cell proliferation effects of two
metabolites were tested without mechanistic studies or
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microenvironment simulation, lacking animal validation; single-
concentration cell experiments require dose-response tests to
determine effect thresholds; MR captures static genetic associations
without considering dynamic influences like diet/circadian rhythm on
4HHA/3HIB levels.

In subsequent studies, we will focus on addressing the current
limitations by conducting cellular experiments to investigate
specific regulatory sites and signaling pathways, dynamically
monitoring metabolomic changes during carcinogenesis, and

jointly validating their potential value for early cancer screening.

5 Conclusion

In summary, this study has innovatively identified and
validated two key metabolites associated with hepatobiliary
tumors through methodological advancements. These findings
not only provide novel insights into the etiological research of
hepatobiliary tumors but also establish a foundation for
developing metabolism-based early diagnostic biomarkers and
therapeutic targets. The results highlight the pivotal role of
metabolites in the prevention and treatment of hepatobiliary
tumors, underscoring that translating these fundamental
discoveries into clinical applications will represent a crucial
direction for future research.
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