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Breast cancer, as the most common cancer in women, is a highly heterogeneous

and complex tumor. One of the important reasons for the poor prognosis and

high mortality of breast cancer patients is drug resistance. More and more

evidence shows that epithelial-to-mesenchymal transition (EMT) is a key driver

of malignant behavior of breast cancer, and also the core promoter of drug

resistance. Multiple EMT-related signaling pathways activate EMT-transcription

factors (EMT-TFs) and interact with each other, ultimately inducing drug

resistance. The role of EMT in promoting invasion and metastasis has been

studied in detail and systematically summarized, but its role in drug resistance of

breast cancer has not been elucidated comprehensively. The purpose of this

review is to clarify the EMT-related regulatory network in breast cancer and the

possible mechanisms of EMT-induced drug resistance. Moreover, we have

discussed the potential therapeutic advantages of reversing EMT and drug

resistance by effectively targeting key elements of the regulatory network, with

particular emphasis on EMT-related signaling pathways and microRNAs. This

review summarizes the drug resistance of breast cancer induced by EMT

systematically, which is of great significance for solving the drug resistance

problem of breast cancer and improving the prognosis of patients.
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1 Introduction

In recent years, breast cancer, surpassing lung cancer, has become the most common

cancer among women and the primary cause of cancer death (1). Breast cancer causes

685,000 deaths annually among cancer patients, far exceeding the data from 2018, which

indicates that the burden of breast cancer incidence and mortality is increasing rapidly

worldwide (2). Breast cancer is highly heterogenous and has various subtypes, thus it is

destined to be a complicated disease to treat, especially triple negative breast cancer

(TNBC) which lacks the expression of estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor 2 (HER2) (3). According to the guideline,
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effective therapeutic methods currently used in clinic include

chemotherapy, endocrine therapy, targeted therapy, and so on

(4). Although tumors are initially sensitive to the anti-tumor

drugs, they may develop resistance through various pathways

with the continued use of these drugs (5). Widely utilized

chemotherapy agents like doxorubicin and paclitaxel combat

cancer through their cytotoxic actions. Although TNBC is initially

sensitive to chemotherapy than subtypes, most patients gradually

develop drug resistance with continued drug administration (6).

Tamoxifen is a common endocrine therapy, which can control the

progression of ER-positive breast cancer. However, about half of

patients with advanced ER-positive breast cancer and almost all

patients with metastatic disease have no response to first-line

tamoxifen treatment, in addition (7). Trastuzumab, another

commonly used drug, has an effective response rate of only 26%

as a single first-line treatment in patients with HER2-positive

metastatic breast carcinomas (8). Statistical data shows that over

ninety percent of cancer deaths are attributed to drug resistance (9,

10). It has always been a persistent factor restricting the therapeutic

effect of breast cancer patients (11). Therefore, it is of far-reaching

significance to explore the mechanism and treatment strategy of

drug resistance in breast cancer.

Drug resistance is frequently complicated and multifactorial

owing to the dynamic tumor microenvironment (9). Various

intertwined mechanisms interact with each other and signal

pathways interfere, ultimately leading to drug resistance (5, 9, 11).

In recent years, the important role of epithelial-to-mesenchymal

transition (EMT) in drug resistance has gradually been discovered.

EMT is a cellular program that involves the transition of cells from

epithelial phenotype to mesenchymal phenotype, accompanied by

the acquisition of migration ability (12). EMT plays a role in various

physiological and pathological processes, including tumor

malignant progression and drug resistance (13). Although most of

the reports in the past decades have focused on the crucial role of

EMT in breast cancer metastasis, increasing evidence shows that

EMT is an important mechanism leading to an increased likelihood

of drug resistance in breast cancer populations (14). According to

the clinical analysis between the chemotherapy response of breast

cancer patients and the gene expression profiles of tumor samples,

the expression activation of EMT related genes is strongly related to

the occurrence of treatment resistance (15, 16). Moreover,

Inayatullah et al. used MAST test to compare gene expression

profiles and found that chemotherapy resistance in TNBC is related

to the activation of EMT program at the beginning of treatment

(17). Many studies have reported that the activation of EMT in

breast cancer cell lines makes them unresponsive or less sensitive to

the treatment of tamoxifen, paclitaxel and doxorubicin (18–20).

However, the relationship between EMT and the metastasis of

breast cancer has been widely discussed, but the drug resistance

caused by EMT has rarely been systematically and completely

sorted out, specifically for breast cancer. This review aims to fill

this gap and concludes with a discussion on the relationship

between EMT and drug resistance, as well as therapeutic

strategies targeting EMT for breast cancer.
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2 EMT: an overview

EMT is a cellular process that allows polarized epithelial cells

to exhibit a mesenchymal phenotype by undergoing various

biochemical changes, accompanied with the loss of cell-cell

adhesive properties and apical–basal polarity, as well as the

acquisition of mesenchymal characteristics, including upregulation

of vimentin and loss of cell adhesion (21). (Figure 1) During the EMT

process, it can be observed that the use of intermediate filaments

shifts from cytokeratin to vimentin, and cells achieve higher mobility

and invasiveness (12, 22). Cancer cells undergoing EMT can be

identified by detecting changes in the expression of EMT-related

genes or proteins (23, 24). In the past few decades, research related to

EMT markers has been continuously emerging, but the most closely

related to the phenotypic changes of EMT are still the loss of cell-cell

adhesion and its associated protein expression abnormalities (23). E-

cadherin, as a calcium-dependent cell-cell adhesion molecule, is

currently the most convincing marker for assessing EMT status,

which is also used in clinical diagnosis of cancer progression (24). The

downregulation of epithelial marker E-cadherin, accompanied by

simultaneous upregulation of mesenchymal marker N-cadherin, is

established as a hallmark of EMT. Furthermore, the tight junction

components, such as claudins, occludins, zonula occlusions‐1(ZO-1),

exhibit downregulation of expression or weakened function

when EMT occurs (23, 25). Apart from loss of cell-cell adhesion,

change in motility and invasiveness is another major hallmark of

EMT. Expression of cytokeratin and vimentin can be used to monitor

the status of EMT in breast cancer (25, 26). Additionally,

mesenchymal-related cytoskeletal markers(vimentin, FSP1, a-
SMA), ECM proteins (fibronectin, type I/III collagen) and matrix

metalloproteinases (MMPs) were also significantly upregulated

during EMT (25).

An important feature of EMT is reversibility. Mesenchymal–

epithelial transition (MET) is the reverse process of EMT, and both

of them contribute to the tumor metastasis (27, 28). Another

notable feature of EMT is that the transition from epithelial to

mesenchymal status in adult tissues is often incomplete, and few

cells can complete the entire EMT process (12, 27). Therefore, most

cancer cells undergoing EMT will remain in the epithelial/

mesenchymal intermediate state, also known as hybrid E/M or

partial EMT phenotype. Due to varying degrees of activation of the

EMT program, a spectrum of partial EMT cells is generated, which

is considered to have higher plasticity than complete mesenchymal

cells (29).
3 EMT-related regulatory networks in
breast cancer

The initiation of EMT programs is co-regulated by multiple

signaling pathways. The cooperation and crosstalk of these

signaling pathways ultimately stimulate the activation of EMT-

transcription factors (EMT-TFs), whose transcription targets are
frontiersin.org

https://doi.org/10.3389/fonc.2025.1680751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2025.1680751
aforementioned hallmarks of EMT. (Figure 2) In addition to

signaling pathways, the activation of EMT is also regulated by

epigenetic modifications. In summary, EMT is a multifaceted

program activated by a regulatory network formed by the

combined action of multiple factors.
3.1 EMT-related signaling pathways

EMT is regulated and affected by multiple signaling pathways,

among which the critical pathways that regulate EMT initiation in

breast cancer include transforming growth factor-beta (TGF-b),
Notch, Wnt and Hedgehog (Hh) pathways (30). Growing evidence

suggests that these signaling pathways dominate the activation of

EMT, tumor development, and the occurrence of drug resistance.

We summarize the process of regulating EMT by the four critical

signaling pathways in breast cancer concisely, providing a

theoretical basis for subsequent targeted therapy strategies.

The TGF-b pathway is one of the earliest discovered and the

most extensively studied signaling cascade in the induction of EMT
Frontiers in Oncology 03
(31). Activated TGF-b ligands phosphorylate downstream mediator

small mothers against decapentaplegics (SMADs) by binding to

TGF-b receptors and form a trimer (32). After entering the nucleus,

the trimer binds to EMT-TFs and initiates transcription (33). It is

reported that the Notch receptor Notch-4 plays a primary role in

EMT signaling in breast cancer cells and could be a potential target

(34). The Noth intracellular domain (NICD) is released through a

cascade of proteolytic cleavage, which forms a complex with RBP-jk

(i.e. CSL) and triggers EMT-TFs (35). The Wnt signaling pathway

has been gradually discovered to play an indispensable role in

regulating EMT, stemness and drug resistance of various cancers,

including breast cancer (36, 37). Wnt binds to Frizzled (Fzd)

receptor on the cell membrane to form Disheveled (Dvl)-Fzd

complexes, and inhibits b-catenin phosphorylation that originally

occurred in the construction complex, allowing it to enter the

nucleus and ultimately activate EMT-TFs (38). Hh binds to its

receptor Patched (PTCH) to activate Smoothened (SMO) that was

originally suppressed during transport and allow the Hh signaling

to be transmitted downstream to glioma (GLI) family, leading to

upregulation of Hh target genes, such as EMT-TFs (39).
FIGURE 1

Changes in cell phenotypes and properties during EMT process. With the occurrence of EMT, intercellular junctions dissolve and cell polarity is lost,
leading to cytoskeleton remodeling. Therefore, the transformation of cell morphology from epithelial to mesenchymal phenotype and changes in
protein expression can be observed. Epithelial markers, including E-cadherin, cytokines, epithelial cell adhesion molecules and tight junction
proteins, gradually decrease in expression levels or become inactive, while mesenchymal markers, such as N-cadherin, mesenchymal related
cytoskeletal markers, ECM proteins and MMPs, are significantly upregulated. The changes in cell structure and phenotype determine the alterations
in properties and functions. The drug sensitivity and response to apoptosis signals of cells decrease with the progression of EMT, while the
characteristics of drug efflux and immune evasion become increasingly prominent. Cells in the partial EMT state have the highest levels of stemness
and tumor initiation ability. Image created using Bio-Render.com software.
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In addition to the pathways mentioned above, there are other

signals involved with EMT in breast cancer, including Nuclear

factor-kappaB (NF-kB), Phosphatidylinositol 3-Kinase (PI3K)/

AKT, Mitogen-Activated Protein Kinase (MAPK), Hypoxia‐

Induced Factor (HIF), Epidermal Growth Factor (EGF) and so

on. These pathways crosstalk and interact with each other,

forming an EMT-related signal network. For example, hypoxia
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activated HIF-1a promotes EMT by enhancing the Notch

signaling pathway (35, 40). NF-kB signal can enhance the Hh

pathway, which is also influenced by TGF-b/Smad, HIF‐1a, RAS/
MAPK or PI3K/AKT signaling (41–45). EGF receptors can also

regulate downstream signaling molecules, including b-catenin,
RAS, MAPK, and PI3K/AKT, to regulate EMT associated

events (46).
FIGURE 2

EMT-related regulatory networks in breast cancer. The TGF-b receptor is a complex composed of two types of transmembrane serine threonine
kinase receptors. The activation of the canonical TGF-b signaling pathway is mediated by SMAD transcription factors. Activated TGF-b ligands bind
to TbRII, inducing the recruitment, phosphorylation, and activation of TbRI, thereby phosphorylating downstream mediators SMAD2 and SMAD3,
which then form the trimer with Smad4. After entering the nucleus, the trimer binds to EMT-TFs and initiates transcription. The Notch signaling
pathway is mediated by four receptors (Notch-1, -2, -3, -4) and five ligands (Delta-like-1, -3, -4 and Jagged-1, -2). The Notch receptor is activated
by interaction with its ligand. The gamma-secretase is responsible for cleaving intracellular C-terminal fragments of the Notch receptor and a
disintegrin and metalloproteases (ADAM) is responsible for cleaving the extracellular part, leading to the release of NICD and formation of the
complex with CSL. Wnt binds to the LRP5/6-Frizzled receptor to form functional receptor complex and induce recruitment and activation of
Disheveled receptor, thereby inhibiting the phosphorylation and ubiquitination of b-catenin by the destruction complex. Dissociative b-catenin in the
cytoplasm enters the nucleus and initiates transcription of downstream target genes. There are three types of Hh ligands, including Sonic Hedgehog
(SHh), Indian Hedgehog (IHh), and Desert Hedgehog (DHh). Hedgehog protein forms a signal active N-terminal fragment HhN via self cleavage,
which binds to PTCH to activate SMO. The activated SMO binds to the COS2/Sufu/Gali trimer, causing Gli to dissociate from the trimer and become
the active Gli1/2-Act, which leads to upregulation of Hh target genes. The synergistic effect of these EMT-related signaling pathways collectively
activates SNAIL, TWIST, ZEB and other EMT-related transcription factors. They regulate downstream transcriptional networks together with
epigenetic factors, further mediating the biological effects of EMT. Image created using Bio-Render.com software.
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3.2 EMT-related transcription factors

The combined effect of signaling pathways leads to the

activation of EMT-TFs. The transition of cancer cells from

epithelial to mesenchymal states is regulated by EMT-TFs,

including SNAIL, TWIST, ZEB, FOX, SOX, PRRX, etc (47).

SNAIL, TWIST, and ZEB family are currently recognized as the

main regulatory factors driving the transcription pathways of EMT,

which can regulate cellular characterization, such as intercellular

adhesion, cell polarity, and motility (48, 49). SNAIL family (SNAI1,

SNAI2, SNAI3) and basic helix loop helix (BHLH) family (TWIST1,

TWIST2) regulate EMT by downregulating epithelial gene

expression and upregulating mesenchymal gene expression (50,

51). The E-box elements in the E-cadherin (CDH1) promoter play a

critical negative regulatory role in gene transcription (52). ZEB

family of zinc finger (ZEB1, ZEB2) regulate gene sequences by

binding to E-boxes, ultimately activating transcription (53). The

Snail family can also induce EMT via binding to the elements and

inhibiting CDH1 (54, 55). EMT-TFs typically control expression

with each other and collaborate functionally on target genes to

achieve the activation of the EMT program (56). For example,

TWIST and SNAIL are frequently co-expressed in breast cancer,

and the expression of SNAI2 (SLUG) directly depends on

TWIST1 (18).

To date, all established EMT processes involve at least one

member of these EMT-TFs. However, the occurrence of EMT

cannot be inferred solely from the expression of EMT-TFs in

cells, as these transcription factors are also involved in other

cellular processes such as proliferation and apoptosis (12).

Additionally, it should also be noted that the signaling pathways

have more than a unidirectional effect on EMT-TFs. Although

numerous reports have shown that various signaling pathways

activate EMT-TFs to induce the occurrence of EMT, there are

also many studies demonstrating that EMT-TFs can stimulate the

transmission of signaling pathways. For example, Snail and Slug

have been shown to activate TGF-b and MAPK pathways (57, 58).

The positive feedback between signaling pathways and EMT seems

to be a vicious cycle, which may explain why tumor progression is

often so rapid and difficult to cure.
3.3 Epigenetic modifications

The course of EMT is related to epigenetic alterations, which are

achieved by regulating the function of EMT-TFs (59). Epigenetic

modifications, including DNA methylation, histone modifications

and non-coding RNA regulation, have been confirmed to be largely

involved in the EMT process. It is reported that CDH1 promoter

metabolism plays an important role in EMT of various human

tumors, including breast cancer (60, 61). EMT-TFs, such as SNAIL

and ZEB, bind to E-box on CDH1 promoter, directly leading to

inhibition of E-cadherin expression (62). In addition, it was

discovered that demethylases play an important role in EMT (63).

The histone demethylase lysine-specific demethylase 1 (LSD1)

interacts with SNAIL and is recruited into the CDH1 promoter,
Frontiers in Oncology 05
leading to histone demethylation (64, 65). Exosomal piRNA-17560

enhances the stable expression of ZEB1 by reducing N6-

methyladenosine RNA methylation, thereby inducing EMT and

chemoresistance (66).

The image of non-coding RNA as a key factor that can affect the

EMT process has become increasingly prominent. MicroRNAs

(miRNAs) are a group of non‐coding single‐stranded small

RNAs. They bind to the 3’-UTR region of downstream target

mRNA through base pairing, which can cause the degradation of

target mRNA or inhibit its translation, thus they are considered as

the main post-transcriptional regulators of gene expression (67, 68).

Research has shown that miRNAs affect the EMT process by

mediating the expression of EMT-TFs. The miR-200 family is

believed to inhibit the expression of ZEB, and interestingly, ZEB

simultaneously suppresses the expression of the miR-200 family

through a double negative feedback loop in breast cancer (69–71).

Similar double negative feedback loops can also be observed

between other miRNAs and EMT-TFs, including miR-203/

SNAIL1, miR-129-5p/SOX4 and miR-30a/SOX4 (72–74).

Mounting evidence has indicated that long non-coding RNAs

(lncRNAs) contribute to malignant behaviors of breast cancer,

including EMT and drug resistance (75). It is reported that LincK

can regulate the expression of ZEB1 and the function of miR-200 in

breast cancer (76). Similarly, lncRNA LINC00460 has been shown

to promote Cancer stem cell (CSC)/EMT-like characteristics and

resistance to doxorubicin by forming a positive feedback loop with

c-MYC (77). Interestingly, high expression of lncRNA SNHG6 can

promote EMT initiation and tamoxifen resistance in ER-positive

breast cancer by inhibiting miR-101 (78). Another new study have

revealed that lncRNA PTENP1 regulates EMT and drug resistance

of breast cancer through isolating miR-21 by constructing a

dynamic Boolean network model (79). In murine or human

breast cancer, there are other examples of lncRNA-miRNA

interactions like this, and some studies have referred to these

pathways as lncRNA/miRNA axis, which can exert the oncogenic

effect and promote drug resistance by regulating EMT process (80).

In conclusion, the elements involved in the EMT process are not

independent, nor are they acting unilaterally. These factors and

signaling pathways interact and entangle with each other,

synergistically regulating EMT. The same factor can affect every

step of the EMT process, and downstream factors can also have a

reverse impact on upstream signals. New evidence suggests that the

presence of TGFb2/Smad‐Snail1/EZH2‐miRNAs loop in TNBC can

maintain EMT phenotype and induce drug resistance, which is a

good example of the interaction of multiple regulatory factors (81).

There are countless interplays and feedback loops like this between

various elements. Therefore, the EMT-related regulatory network is

a complex and dynamic system that deserves further research.
4 Mechanisms of EMT-induced drug
resistance in breast cancer

Insufficient drug dosage during chemotherapy not only fails to

eradicate cancer cells far from blood vessels, but also accelerates the
frontiersin.org
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EMT procedure, ultimately inducing drug resistance (82). Luo et al.

identified that the molecular biomarkers of HR+/HER2 metastatic

breast cancer patients resistant to standard treatment were related

to EMT through single-cell RNA sequencing (83). Although there

have been new advances in the study of the significance of EMT in

drug resistance, the molecular mechanism is incomplete due to the

lack of suitable in vivo models and limited human samples for

comprehensive research (84). Next, we will provide a summary of

several widely discussed potential mechanisms underlying EMT-

induced drug resistance in breast cancer (Figure 3).
4.1 Acquisition of CSC-like characteristics

Thanks to the rapid development of research related to CSCs,

researchers have gained a new understanding of the mechanism of
Frontiers in Oncology 06
drug resistance caused by EMT. CSCs are a small subset of

malignant cells that possess self-renewal ability and tumorigenesis

potential (85, 86). There are studies reporting a high degree of

similarity between EMT cells and CSCs (87). EMT cells can also

serve as effective seeds for both primary and metastatic tumors,

making it challenging to distinguish them from CSCs in function

(88). In addition, the signaling pathways related to self-renewal and

maintenance of CSCs highly overlap with the pathways regulating

EMT, such as Wnt, Notch and Hh signaling pathways (89, 90).

Moreover, CSCs isolated from breast tissue express a number of

typical EMT markers (91). Most importantly, there are publications

proving that breast epithelial cells or breast cancer cells can obtain

pluripotent stem cell-like phenotype (CD44high, CD24low) through

EMT induction, which further indicates that EMT is closely related

to the production of CSCs (91, 92). EMT-TFs have been identified

as key factors involved in the stemness regulation of CSCs (87).
FIGURE 3

Potential mechanisms underlying EMT-induced drug resistance in breast cancer. EMT cells are highly similar in phenotype and function to CSCs, and
EMT process is recognized to promote the production of CSCs. After killing drug sensitive cancer cells, residual cancer cells with EMT/CSC-like
phenotype may trigger tumor recurrence and develop drug resistance. Most cancer cells that undergo EMT will remain in the hybrid E/M state,
which exhibits the most prominent phenotypic heterogeneity and plasticity, enabling better adaptation to the microenvironment and resistance to
drug action. The drug and ATP molecules enter the ABC transporter and bind to corresponding binding sites, forming an outward-open
conformation that causes the drug to flow out of the cell. EMT promotes the expression and activation of ABC transporters, increasing drug efflux
and leading to drug resistance. Cells that receive apoptotic signals activate pro-apoptotic protein and caspase through intrinsic and extrinsic
apoptotic pathways to conduct apoptosis. EMT can upregulate the anti-apoptotic protein Bcl-2 and inhibit pro-apoptotic proteins, thereby resisting
drug-induced apoptosis. The HR pathway is a classic DDR pathway for repairing DNA damage such as double strand breaks. EMT activates the HR
pathway (such as activating the ATM promoter) to reverse the cell damage caused by platinum-based drugs, resulting in the tumor exhibiting a
drug-resistant phenotype. EMT can induce metabolic reprogramming in cancer cells, resulting in marked changes such as increased glycolysis,
increased lipid metabolism, mitochondrial respiratory inhibition and so on, which in turn induce tumor drug resistance. Image created using
Bio-Render.com software.
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EMT-TFs, represented by SNAIL, TWIST and SOX, can induce the

emergence of breast cancer stem cells (BCSCs) exhibiting CSC-like

phenotypes while driving the EMT process (91, 93–95). In

summary, induction of EMT can promote the production of

BCSCs, which can form mammospheres and express EMT

markers. Therefore, the emergence of CSC-like phenotype will be

regarded as evidence and result of the occurrence of EMT process in

this review.

It is generally believed that CSCs are inherently resistant to anti-

tumor drugs and cause the relapse, or they can acquire resistance

under the influence of the tumor microenvironment (96). It has

been found that cells with CSC/EMT-like characteristics in breast

cancer are resistant to neoadjuvant chemotherapy (97). Further

research shows that breast cancer cells with CSC/EMT-like

properties still survive after receiving neoadjuvant chemotherapy

or pharmacological inhibition targeting HER2, which underscore

that these cells encode drug resistance (97, 98). Therefore, cancer

cells treated with anti-tumor drugs may achieve drug resistance by

undergoing EMT to obtain CSC-like features (99). It may be one of

the possible mechanisms by which EMT induces drug resistance.
4.2 Enhanced plasticity of hybrid epithelial/
mesenchymal phenotype

As mentioned above, most cancer cells that undergo EMT will

eventually maintain a hybrid epithelial/mesenchymal (or partial

EMT) phenotype, which is also one of the reasons why EMT tends

to cause drug resistance. After 8 days of TGF-b induction treatment

of human mammary epithelial cells, single-cell RNA sequencing

analysis was used to identify ten different EMT subgroups, most of

which were in the partial EMT state rather than the complete

epithelial or mesenchymal state (100). More importantly, the

hybrid E/M cells possess higher metastatic and drug-resistant

potential in breast cancer as compared to cells on either end of the

EMT spectrum (15, 101). This is because during the entire process of

epithelial mesenchymal transition along the E-to-M spectrum,

individual cells generate extensive phenotypic heterogeneity, and

cells in the hybrid E/M state exhibit high plasticity, which provide

greater adaptability and resistance for cancer cells (12). Consistently,

through multi-modal translational data-bulk, single-cell, and spatial

transcriptomics, it can be concluded that breast cancer cells can

obtain higher heterogeneity along EMT spectrum, thus limiting the

drug efficacy (102). EMT-driven cell plasticity makes breast cancer

cells resistant to paclitaxel by promoting the formation of primary

cilia (103). In stage III breast cancer patients, EMT and the

accompanying epithelial-mesenchymal heterogeneity serve as

prognostic indicators for survival outcomes (104). In summary,

most cancer cells that undergo the EMT process will finally remain

in a highly plastic E/M intermediate state and acquire the ability to

resist the effects of chemotherapy drugs and adapt to this

microenvironment, exhibiting a drug-resistant phenotype in clinical

practice. However, it is worth noting that the latest evidence claims

that higher plasticity may not be directly related to partial EMT state,

which is a direction that needs further exploration in the future (105).
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4.3 Increased drug efflux and reduced drug
intake

Like other types of drug resistance, an important mechanism by

which EMT induces drug resistance is through the regulation of the

ATP binding cassette (ABC) transporter family of proteins, which

increases drug efflux and reduces drug efficacy in cancer cells (106).

Currently, there are up to 16 ABC transporters in the ABC

transporter family related to multidrug resistance (MDR),

including P-glycoprotein (P-gp, also known as ABCB1 or MDR1),

Multi-drug Resistance associated Protein-1 (MRP-1; also known as

ABCC1) and Breast Cancer Resistance Protein (BCRP) (107). They

actively efflux a series of commonly used anti-tumor drugs,

including mitoxantrone, anthracyclines, vinca alkaloids, taxanes

and other drugs suitable for breast cancer treatment (107). It is

reported that EMT induction upregulates the expression of ABC

transporters and exacerbates drug resistance in breast cancer (108).

It has been proven that EMT-TFs are the regulators in directly

modulating ABC transporters, and promoters of ABC transporter

genes contain the binding sites for EMT-TFs, such as TWIST,

SNAIL and FOXC2 (108). Taken together, EMT-TFs can augment

the activity of ABC transporters in various breast cancer cell lines by

directly binding to their promoters, thereby leading to enhanced

drug efflux, which constitutes a pivotal molecular mechanism of

EMT-induced drug resistance.
4.4 Insensitivity and resistance to apoptosis
mechanisms

In addition to increased drug efflux, avoidance of drug-induced

apoptosis and necrosis is another possible mechanism of EMT-

induced drug resistance (109). Growing evidence suggests that EMT

can induce cell apoptosis resistance by upregulating the anti-

apoptotic protein Bcl-2, downregulating pro-apoptotic proteins

(such as Bad, Bax, Bim, p53, Noxa), activating PI3-K/Akt

pathways, or interfering with cell cycle (110–112). EMT-TFs,

especially SNAIL family, play a master role in increasing

resistance to apoptosis. SNAIL stimulates the PI3-K/Akt pathway

and inhibits pro-apoptotic protein Bad by inhibiting PTEN

transcription, thereby promoting apoptosis resistance (113).

SNAIL has also been reported to interfere with the function of

pro-apoptotic proteins p53 to prevent cell apoptosis and lead to

drug resistance (114). Moreover, SNAIL can inhibit the

transcription of cyclin D2 and block cell cycle progression,

making cells resistant to apoptosis (115). In addition to activating

the PI3K/Akt pathway, TWIST also promotes EMT and upregulates

anti-apoptotic protein Bcl-2 to contribute to apoptosis resistance

(116, 117).

EMT can also protect cells from drug-induced apoptosis by

activating autophagy. The EMT-related signaling pathways,

including TGF-b, RAS, WNT, and NF-kB, not only activate

EMT, but also closely associate with autophagy (118). EMT-

related signaling triggers, such as TGF-b and hypoxia, can

effectively induce autophagy under different environmental
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conditions (119, 120). TGF-b induces autophagosome formation

and upregulates the expression of autophagy-related genes in

MDA-MB-231 cells (121). Although autophagy and apoptosis are

activated by multiple overlapping upstream signals, they mostly

cross-regulate each other in an inhibitory manner. Therefore, EMT-

induced autophagy reduces the tendency of cells to undergo

apoptosis, which manifests as drug resistance in clinical practice

(122). It is reported that autophagy induces resistance of breast cells

to epirubicin and pacitaxel (123–125). In summary, EMT can

combat drug-induced apoptosis of mammary carcinoma cells

through various pathways, leading to drug resistance.
4.5 Activation of DNA damage response
pathways

DNA damage response/repair (DDR) is a mechanism within

cells to resist DNA damage induced by external or internal factors,

which monitors and transmits damage signals and makes

appropriate responses (126, 127). Homologous recombination

(HR) pathway is a classic DDR pathway used to repair

DNA damage like double-strand break (128, 129). Some

chemotherapeutic agents exert anti-tumor effects by damaging the

nuclear or mitochondrial DNA of cancer cells, driving their direct

or indirect death (130). For example, cisplatin is an efficient DNA-

damaging agent with significant anti-cancer effects. However, some

cancer cells can reverse the damage induced by anti-tumor drugs,

including DNA-damaging agents, by enhancing their ability of

DNA damage repair, thus exhibiting a drug-resistant phenotype

(5). The resistance of platinum-based drugs is closely related to

DDR. Nucleotide exit repair and HR pathway are the main DDR

pathways for reversing platinum damage in cancer cells (131, 132).

A pioneering report reveals the connection between EMT and

DDR. ZEB1 has been identified as a response target for Ataxia‐

telangiectasia‐mutated (ATM), which is a key protein kinase in HR

signaling (133). Furthermore, phosphorylated ZEB1 can interact

with USP7 deubiquitylating enzyme and promote HR-dependent

DDR pathways. In breast cancer, ZEB1 can also activate the ATM

promoter by binding to p300/pCAFj, forming a positive feedback

loop that promotes DNA repair and resists DNA damage caused by

chemotherapy (134). In addition, ubiquitinated TWIST1 can

modulate DDR pathway and upregulate HR gene expression

(135). In summary, EMT-TFs, especially ZEB1, can promote

DDR and increase HR pathway activity. As mentioned earlier,

HR pathway is the main DNA repair mechanism for reversing

platinum damage, which may explain why EMT promotes tumor

resistance to platinum-based drugs.
4.6 Other mechanisms

There is mutual influence between tumor microenvironment

(TME) and EMT. The stromal cells that constitute TME, including

cancer-associated fibroblasts (CAFs), tumor-associated macrophages

(TAMs) and T lymphocytes, interact with neighboring cancer cells by
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secreting cytokines or other means, activating their EMT program

(30). Carcinoma cells undergoing EMT also have an impact on

various cells in TME, thereby affecting tumor progression and drug

resistance (30, 96). EMT cells exert immunosuppressive effects to

regulate immune cells in TME. For example, when MCF-7 cells

overexpress SNAIL, the function of co-cultured T cells is severely

reduced (136). In addition, the EMT cells secrete or indirectly activate

immunosuppressive factors, such as TGF-b, TNF and CCL5, which

affect the activity of various immune cells in TME (137, 138). Spatial

colorization analysis reveals that at the tumor boundary characterized

by EMT, CAFs and M2-like TAMs interact to promote immune

exclusion and drug resistance (139). A new research has developed a

biomimetic codelivery system that can reverse the EMT and CSC-like

characteristics of TNBC cells to reshape the immunosuppressive

microenvironment, thereby enhancing the sensitivity of TNBC to

paclitaxel (140). Therefore, EMT-induced immune reconstitution

may be a possible mechanism of drug resistance in breast cancer.

Metabolic reprogramming is another potential mechanism of

EMT-induced drug resistance. It is reported that overexpression of

SNAIL can induce aberrant glucose metabolism in cancer cells,

including increased glucose uptake and lactate production, decreased

oxygen consumption by mitochondria, and so on, thus altering TME

and enhancing chemoresistance (141–143). The rate of glycolysis in

EMT cells is significantly increased, resulting in the production of more

ATP to meet the energy requirements for wound repair and resistance

to attacks, which is manifested as refractory breast cancer (144).

Meanwhile, acidification of TME can induce breast cancer cells to

become resistant to mitoxantrone (145). Growing evidence shows that

the reprogramming of lipid metabolism is conducive to the

development of drug resistance in breast cancer (146). Fatty acid

synthase (FASN), as a kind of metabolic oncogene involved in

neoplastic lipogenesis, has been found to induce drug resistance

(147). EMT was also found to be involved in this process. New

evidence indicates that CD36-mediated fatty acid uptake makes

HER2-positive breast cancer cells obtain drug resistance by

regulating the EMT-like phenotype (148). EMT, accompanied by

changes in lipid metabolism, limits the entry of drugs into cells

through the plasma membrane and prevents drug accumulation

(149, 150). In addition, the occurrence of EMT also causes the

upregulation of P-gp, which can remove the lipid peroxidation

products induced by the application of doxorubicin, thus leading to

doxorubicin resistance in breast cancer (151).

EMT-induced drug resistance is usually multifactorial and

complex, resulting from the combined effects of various cells and

molecules. The above only summarizes the relatively important

mechanisms mentioned in recent research, and more influencing

factors and comprehensive mechanisms need to be explored in

the future.
5 Therapeutic strategies by targeting
EMT program

The drug resistance is not only an important focus in the

development of traditional chemotherapy drugs, but also a focal
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point worthy of attention in emerging targeted therapies. Since

EMT has been established as a fundamental mechanism that

endows breast cancer cells with drug resistance and CSC-like

traits, targeting EMT to control drug resistance represents a

promising therapeutic strategy for breast cancer (152). In recent

years, numerous studies have delved into promoting the drug

sensitivity of breast cancer by blocking the EMT process and

reversing the CSC/EMT-like phenotype of tumor cells. Blocking

the occurrence of EMT involves disrupting the regulatory network

associated with EMT, which prevents the initiation of EMT

program. For example, the latest evidence shows that pentagalloyl

glucose can reverse the resistance of breast cancer to doxorubicin by

targeting EMT and the expression of miRNAs (153). Targeting

EMT includes blocking upstream signaling pathways, directly

targeting EMT-TFs, regulating epigenetic modifications (especially

non-coding RNAs), and blocking the possible mechanisms of EMT-

induced drug resistance. (Figure 4) Among them, some agents in

the last strategy directly target key factors in the mechanism of

resistance, such as ABC transporter family and Bcl-2, rather than

overcoming drug resistance by affecting the EMT process, thus they

are not included in the discussion here. Some of these molecules

targeting the EMT process, especially signaling pathways, are

already in the clinical trial phase and have great potential for

application in future clinical treatments (Table 1).
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5.1 Inhibitors of EMT-related signaling
pathways

5.1.1 TGF-b signaling pathway
Insufficient chemotherapy may induce the initiation of EMT

program by activating TGF-b signaling (154). Doxorubicin,

cisplatin, paclitaxel and other anti-tumor drugs have been shown

to induce the expression of TGF-b1 and the occurrence of EMT in

various malignancies (154–156). For example, it has been reported

that MDA-MB-231 cells treated with cisplatin have elevated levels

of TGF-b, making themselves resistant to the cytotoxic effects of

cisplatin (157). Another research shows that application of

epirubicin can activate the TGF-b pathway in TNBC cells and

regulates EMT-related markers, ultimately leading to drug

resistance (158). TGF-b induces breast cancer cells to transform

into partial EMT phenotype and exhibit CSC-like characteristics,

which may explain why TGF-b can induce drug resistance through

EMT (100). More and more similar studies have focused on the

relationship between TGF-b signaling pathway and drug resistance,

reminding us that the pathway may be a therapeutic target for drug

resistance in breast cancer.

There is a study reporting that neutrophil extracellular traps

activate the TGF-b signaling pathway by inducing SMAD2

phosphorylation in breast cancer, leading to EMT and
FIGURE 4

Therapeutic strategies to overcome EMT-induced drug resistance in breast cancer. There are four possible strategies for targeting EMT to overcome
drug resistance in breast cancer: 1) inhibiting the occurrence of EMT by blocking the upstream signaling pathways; 2) blocking transcription of EMT
by targeting EMT-TFs; 3) inhibiting EMT progression by regulating post-transcriptional epigenetic modifications; 4) maintaining sensitivity to drugs by
targeting the possible mechanisms of EMT-induced drug resistance. Image created using Bio-Render.com software.
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chemotherapy resistance (159). However, TGF-b type I receptor

inhibitor (TbRI), which inhibits SMAD2 phosphorylation, can

block the activation of TGF-b signaling and reduce the expression

of EMT-related genes, thereby improving and reversing the

resistance response caused by chemotherapy (159). Another

research has also reported that chemotherapy drugs lead to drug
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resistance through inducing the occurrence of EMT, however, TbRI
kinase inhibitor (TbRI-KI) can reverse the EMT program and

combined treatment with doxorubicin may improve efficacy and

reduce the dosage of doxorubicin (155). Similarly, TbRI-KI
LY2157299 (Galunisertib) can block the conduction of the TGF-b
pathway and inhibit the development of drug-resistant CSCs and

tumor recurrence induced by paclitaxel (160). TbRI/TbRII inhibitor
LY2109761 can also reverse EMT and enhance chemosensitivity by

inhibiting the TGF-b signaling pathway (161, 162). Curcumin, as a

natural agent, is closely related to the occurrence and development

of cancer (163). Curcumin can suppress doxorubicin-induced EMT

and improve the efficacy of chemotherapy by inhibiting TGF-b/
Smad and PI3K/AKT signaling cascades (164).

In addition to the aforementioned, there are also many TGF-b
inhibitors that have been provided with compelling ability to block

the TGF-b pathway and reverse EMT, including Ki26894,

LY364947, IN-1130, SM16, SB-431542, YR-290 etc (165–170).

Unfortunately, TGF-b pathway is more considered to be related

to tumor growth and metastasis, so these inhibitors are mostly used

to control breast cancer growth and metastasis, rather than reduce

drug resistance. Thus, whether they can also reverse drug resistance

necessitates more comprehensive and in-depth investigation.

5.1.2 Notch signaling pathway
The importance of the Notch signaling pathway in EMT program

and drug resistance has been recognized, and regulating the Notch

pathway may be a good approach to overcome drug resistance. The

latest report has shown that imatinib, a tyrosine kinase inhibitor, has

been proven to have the ability to reverse EMT by inhibiting the

Notch pathway and significantly reduce the stemness of TNBC cells

and induce apoptosis (171). In the past few decades, many methods

have been developed and reported to regulate cancer drug resistance

by inhibiting the activation of the Notch pathway, including gamma-

secretase inhibitors (GSIs), ADAM inhibitors, monoclonal

antibodies, etc (172). Among them, the development prospect of

GSIs in reversing drug resistance is gratifying. GSIs, as the first

proposed and successfully developed Notch pathway inhibitors, have

shown potential in increasing tumor sensitivity to chemotherapy,

whereas GSIs combined with conventional therapy have been

reported to have better efficacy than using GSIs alone (173). The

mechanism of GSIs reversing drug resistance in breast cancer is

multifactorial. GSIs block the Notch signaling pathway by inhibiting

gamma-secretase, thereby regulating CSCs, EMT, ABC transporters,

and affecting crosstalk between the Notch pathway and other

pathways (172). GSIs have been reported to be able to reverse drug

resistance in breast cancer through the above mechanisms and

achieve better therapeutic effects when combined with conventional

drugs in clinical trials.

Doxorubicin can induce overexpression of MRP-1, an ABC

transporter, in breast cancer cells by activating Notch pathway

(174). DAPT, as a GSI, can reverse this process, reducing

doxorubicin efflux and enhancing doxorubicin-induced apoptosis

program. High expression of Nicastrin and Notch4 in breast cancer

cells can induce the acquisition of EMT phenotype and tamoxifen

resistance. Anti-Nicastrin mAbs and GSI PF03084014 can inhibit
TABLE 1 The molecules that have undergone/completed clinical trials
and their NCT numbers of clinical projects. All information is sourced
from ClinicalTrials.gov.

Name
Direct/indirect

targets
NCT

number

LY2157299 (Galunisertib) TGF-b pathway NCT02672475

PF-03084014

Gamma-secretase,
Notch pathway

NCT01876251
NCT02299635

MK-0752

NCT00106145
NCT01295632
NCT00645333
NCT00756717

RO4929097

NCT01238133
NCT01071564
NCT01151449
NCT01131234

LY3039478 (Crenigacestat) NCT02784795

LGK974

Wnt pathway

NCT01351103

OMP-18R5 (Vanicttumab) NCT01973309

Foxy-5 NCT02020291

GDC-0449 (Vismodegib)

Hh pathway

NCT02694224

LDE225
(Sonidegib)

NCT02027376

BYL719
(Alpelisib)

PI3K

NCT05853432
NCT04762979
NCT04216472
NCT05038735
NCT02038010
NCT01870505
NCT02379247
NCT01300962
NCT02734615
NCT04208178
NCT01923168
NCT05063786

MK2206 AKT

NCT01263145
NCT01245205
NCT01344031
NCT01705340

TAK-228
(INK128, MLN0128,

Sapanisertib)
TORC1/2

NCT03193853
NCT02988986
NCT02756364
NCT02049957

Curcumin
multiple signaling

cascades

NCT00852332
NCT03072992
NCT01740323

LBH589 (Panobinostat) ZEB

NCT00567879
NCT01105312
NCT00788931
NCT00632489
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the expression of EMT-related molecules and partially alleviate

drug resistance (175). Docetaxel induces the initiation of EMT

program and drug resistance of breast cancer cells by activating

Notch pathway, and PF-03084014 combined with docetaxel can

reverse the above process (176). The combination therapy of MK-

0752 and docetaxel can reduce BCSCs in breast tumor transplants

by inhibiting the Notch pathway and enhance the efficacy of

docetaxel (177). In addition, biopsy results of clinical trials

showed a reduction in CSC-like phenotype cells and a decreased

mammosphere after the combined therapy, which can be seen as a

reversal of EMT. A classic GSI, RO4929097, has been proven safe

and effective when used in combination with other conventional

drugs in various clinical and preclinical trials (178, 179). However,

there are limited reports on whether RO4929097 can reverse EMT

and drug resistance by inhibiting the Notch pathway. It is reported

that short-term treatment of breast cancer with tamoxifen or

fulvestrant will increase the activity of BCSCs by upregulating

Noth4 target gene, while RO4929097 can inhibit BCSCs and

alleviate drug resistance (180). Another Notch inhibitor,

LY3039478 (Crenigacestat) has been reported to have poor

tolerability and results in disappointing clinical survival rates for

breast cancer patients (181).

5.1.3 Wnt signaling pathway
Wnt signaling pathway plays a role in promoting tamoxifen

acquired drug resistance in breast cancer. Won et al. have reported

that the tamoxifen-resistant MCF-7 cell line possesses

mesenchymal phenotype and significantly increased level of b-
catenin (182). After treatment with classical WNT inhibitor ICG-

001 or b-catenin siRNA, the expression of active b-catenin was

inhibited, and viability of the drug-resistant cell line was also

reduced (182). Another Wnt inhibitor, IWP-2, has also been

proved to improve the sensitivity of breast cancer cells to

tamoxifen by inhibiting EMT (183). Similarly, pyridine

derivatives reverse the resistance of MCF-7 breast cancer cells to

tamoxifen by inhibiting the activation of Wnt/b-catenin and NF-kB
pathways (184). It can be inferred that the Wnt signaling pathway

may act as a potential therapeutic regimen for alleviating resistance.

After treating TNBC cell lines with Wnt inhibitor FH535, the

expression of EMT-related markers (E-cadherin) and EMT-TFs

(Snail and Twist1) was significantly downregulated, indicating

partial reversal of the EMT process (185). Activation of Wnt/b-
catenin pathway will induce trastuzumab resistance in breast cancer

cells with HER2 overexpression, thus, knocking out Wnt3 by siRNA

can result in downregulation of EMT-related expression and

restoration of trastuzumab’s inhibitory effect on cell growth (186).

Porcupine is a key factor regulating the release of Wnt ligands, and

LGK974 is a specific inhibitor of it (187). It is reported that

enhanced activity of the Wnt/b-catenin pathway induces drug

resistance in TBNC cells and enhances the expression of CSC-like

markers, which can be reversed by LGK974 (188, 189).

As a key receptor for Wnt/b-catenin signaling, Frizzled-7

(Fzd7) is abnormally expressed in TNBC, which is associated

with poor prognosis and resistance to chemotherapy (190, 191).

Fzd2 promotes the maintenance of mesenchymal phenotype in
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breast cancer cells, and endows cells with stemness and drug

resistance by combining Wnt5a/b and Wnt3 (192). Knockout of

Fzd2 significantly reduced the expression of ABC transporter

subfamily G isoform 2 (ABCG2) and IC50 of paclitaxel,

indicating that knockout of Fzd2 enhanced the sensitivity of

breast cancer cells to paclitaxel. Bevacizumab, as a first-line

combination drug for various cancers, has limited therapeutic

effect on TNBC, because it simultaneously activates Wnt/b-
catenin signaling to induce EMT process and stemness of breast

cancer cells (190, 193, 194). A novel humanized antibody, SHH002-

hu1, can specifically target Fzd7-positive cells and block the Wnt/b-
catenin pathway, thereby inhibiting EMT and enhancing the anti-

breast cancer effect of bevacizumab (195). Another Fzd receptor

inhibitor OMP-18R5 (Vanicttumab), which has entered the clinical

trial phase, combined with paclitaxel has more excellent anti-tumor

effect than paclitaxel alone in the treatment of breast cancer (194).

Salinomycin has been proved to be an inhibitor of Wnt/b-
catenin signaling pathway in breast cancer (196). A study first

identified that salinomycin had specific toxicity against BCSCs and

reversed the general resistance of breast cancer to multiple drug

therapies, but the mechanism by which salinomycin inhibited CSCs

was not explained in this research (197). Over a decade later,

another study confirms that the combination of salinomycin and

doxorubicin can reverse the resistance of adriamycin-resistant

breast cancer cells (198). In addition, the genes related to the

Wnt/b -ca ten in pathway and EMT was found to be

downregulated, which suggested that this combination therapy

can suppress CSCs by inhibiting the Wnt pathway and inverting

the EMT process, ultimately reversing the drug resistance of breast

cancer cells. Salinomycin also can remove markers on the surface of

breast cancer cells by inhibiting Wnt signaling transduction, such as

CD44 and ABCG2, a drug resistance marker (199).

The role of Wnt signaling pathway in breast cancer has been

very clear and inhibitors of Wnt pathways are constantly being

developed and entering clinical trials (199). Endogenous agents and

pharmacological inhibitors targeting various elements of Wnt

pathway have also been widely studied and reported, such as

Foxy-5 (Wnt5a mimetic), DKK3, ZFP57 and so on (200).

However, these Wnt inhibitors are mainly reported to prevent cell

proliferation and tumor metastasis by inhibiting Wnt signaling. It is

unclear whether they can improve the drug sensitivity of breast

cancer by reversing the Wnt/EMT/drug resistance axis, which is

also the direction we can explore and study in the future.

5.1.4 Hh signaling pathway
Overexpression of Hh pathway has been proved to regulate the

proliferation and self-renewal of CSCs in different cancers,

including breast cancer, and can induce chemotherapy resistance

by activating multiple pathways (201). Analysis of embryonic

pathways showed that EMT markers were significantly increased

in TNBC cells resistant to paclitaxel and doxorubicin, accompanied

by activation of the Hh pathway and Notch receptor expression

(202). Moreover, cilengitide is reported to overcome the resistance

of HER2-positive breast cancer to trastuzumab by targeting ITGb3
to inhibit the activity of Hh pathway and the transcription of EMT-
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TFs (203). Therefore, targeting Hh signaling pathway is a potential

therapeutic direction to alleviate chemotherapy resistance and

improve prognosis of breast cancer.

Cyclopamine (11deoxojervine) is the prototype of Hh inhibitor

and is currently widely studied and used as an agent for preclinical

studies (204). It achieves the effect of blocking the Hh signaling by

binding to SMO signaling elements and inactivating them. Nitidine

chloride (NC), a natural bioactive alkaloid, has been proved to have

anti-cancer effect and enhance the inhibitory effect of doxorubicin

on breast cancer (205). NC regulates the expression of EMT-related

markers and reverses EMT by inhibiting Hh pathway, while

reducing the CSC/EMT-like properties of breast cancer cells by

regulating the pathway (206). Moreover, the combination of

cycloamine and NC can enhance the above effect, which indicates

that cycloamine can also enhance the sensitivity of breast cancer to

anti-cancer drugs by inhibiting Hh pathway (206). The consistent

research results show that another non-canonical Hh inhibitor

GANT61 (Gli1 inhibitor) can effectively increase the expression

of E-cadherin in breast cancer cells and down-regulate CSC/EMT-
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like phenotype, thereby promoting cells apoptosis (207–209).

Moreover, its combination therapy with paclitaxel enhances the

efficacy of chemotherapy drugs for anti-cell growth and anti-CSC

activities (207). Some SMO inhibitors, such as IPI-926, GDC-0449

(Vismodegib) and LDE225 (Sonidegib), have undergone clinical

trials for breast cancer treatment (210–212). TNBC cells treated

with GDC-0449 or LDE225 showed downregulation of both Hh

target genes and genes regulating CSC-like phenotype (212).

Furthermore, the combination of LDE225 and docetaxel can

improve the sensitivity of tumors to chemotherapy, and its safety

and efficacy have been demonstrated (211, 212).

5.1.5 Other signaling pathways
Although there are many signaling pathways proven to be

associated with EMT or drug resistance, the exact description of

signaling pathways that can induce drug resistance through EMT is

limited, and there are relatively few reports on corresponding

inhibitors (Figure 5). Among them, there are comparatively more

discussions on the NF-kB and PI3K/AKT/mTOR signaling pathways.
FIGURE 5

Inhibitors of EMT-related signaling pathways. Various inhibitory molecules block the activation of these pathways and the occurrence of EMT by
targeting key factors in the signaling pathways, thus reversing drug resistance in breast cancer. Image created using Bio-Render.com software.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fonc.2025.1680751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2025.1680751
Tannic acid can inhibit the activation of EMT and NF-kB signaling

pathway in MCF-7 cells, thereby suppressing the formation of drug-

resistant BCSCs and the expression of stemness markers (213).

Similarly, the co-delivery system of NF-kB inhibitor PDTC and

doxorubicin can alleviate the multidrug resistance of breast cancer

(214). Garcinol has been reported to inhibit NF-kB/Twist1 signaling
activated by paclitaxel and downregulate the expression level of

EMT-TFs, thus significantly improving the efficacy of paclitaxel in

breast cancer in the orthotopic breast cancer model (215). Recently,

an increasing number of PI3K inhibitors have entered the clinical trial

stage and been proven to be effective in combination with other

traditional chemotherapy drugs for advanced breast cancer (216).

Among them, the isoform-specific PI3K inhibitor BYL719 (Alpelisib)

has been shown to overcome eribulin resistance by inhibiting EMT

and stemness of BCSCs (217). In addition to classic PI3K inhibitors,

Cx43t is also proved to inhibit the activation of PI3K/Akt signaling by

reducing Akt phosphorylation, thereby suppressing EMT and

increasing tamoxifen sensitivity (218). Luo et al. reported that 14,

15-EET induces the occurrence of EMT and cisplatin resistance by

activating the FAK/PI3K/AKT pathway, thus the antagonist of 14,

15-EET, 14, 15-EEZE, can reverse EMT and cisplatin resistance in

breast cancer (219). mTOR has been reported to interact with EMT-

related signaling pathways, including PI3K/Akt, Notch, TGF-b, and
non-coding RNAs to maintain BCSC-like characteristics of cancer

cells and mediate drug resistance (220). The transmembrane protein-

45A (TMEM45A) induces glycolysis and EMT program by activating

AKT/mTOR signaling pathway, therefore the siRNA targeting

TMEM45A can reverse the above pathway and improve the

sensitivity of breast cancer to palbocilib (221). MK2206 (AKT

kinase inhibitor), TAK-228 (formerly INK128 or MLN0128, dual

TORC1/2 inhibitor) and RapaLink-1 (mTOR inhibitor) can alleviate

drug resistance by regulating the stability of CSCs phenotype and

inhibiting cell viability (222). Stevens LE et al. found that pSTAT3

regulates EMT-related genes in inflammatory breast cancer cell lines

resistant to paclitaxel and doxorubicin (223). Meanwhile, the

combination therapy of paclitaxel and JAK2/STAT3 inhibitor,

AZD1480, can prevent the occurrence of the drug-resistant

subpopulation with EMT-like characteristics (223). DUSP4 (MKP-

2) can block the initiation of EMT program by inhibiting the

activation of JNK signaling pathway, and restore the sensitivity of

breast cancer cells to doxorubicin (224).

Due to the crosstalk and interference between signaling pathways,

which affect and interact with each other, a drug or inhibitor may

induce the participation and alteration of multiple factors and

signaling pathways simultaneously. For example, besides

suppressing TGF-b/Smad and PI3K/AKT signaling, curcumin is

also reported to be associated with multiple signaling cascades,

such as Notch, NF-kB and Wnt/b-catenin pathway (163).

Especially in the Wnt pathway, curcumin hampers activation of

Slug and suppresses CSCs by blocking nuclear translocation of b-
catenin (225). Similarly, in addition to targeting the Wnt pathway,

salinomycin in combination with budesonide may suppress stemness

of TNBC cells and activate apoptosis by inhibiting AKT/mTOR

pathway and EMT (226). Pentadecanoic acid can inhibit multiple
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survival signaling pathways (MAPK, ERK1/2, mTOR and EGFR) and

EMT, resulting in reversal of tamoxifen resistance (227). Consistently,

BYL-719, as a PI3K inhibitor, can not only block the PI3K/AKT/

mTOR pathway, but also inhibit the Notch, JAK/STAT, and MAPK/

ERK pathways, ultimately inhibiting EMT and overcoming drug

resistance (217). Therefore, the action of a drug or inhibitor may

involve more than one signaling pathway, and overcoming drug

resistance may be the result of the synergy and interaction of

multiple pathways.
5.2 Inhibitors of EMT-TFs

Targeting EMT-TFs is another therapeutic strategy to overcome

drug resistance in breast cancer. It is reported that overexpression of

Snail inMCF-7 cells increases the level of P-gp and shows a tendency to

develop resistance to adriamycin, therefore, Snail is a promising target

(228). SNAI1 enhancer RNA depletion inhibits the EMT process and

chemoresistance of breast cancer cells (229). MCF-7 cells transfected

with pCDNA3.1-Snail can promote EMT characterization, which leads

to an increased expression of BCRP and drug resistance to

mitoxantrone (230). AMP-activated protein kinase (AMPK) agonists

can enhance the sensitivity of TNBC cells to chemotherapy by

phosphorylating Snail1 (231). The interaction between N-terminal

SNAG repressor domain and LSD1 plays an important role in Slug

activating EMT (65, 232), and LSD1 can maintain the CSC-like

phenotype and induce doxorubicin resistance in breast cancer (233).

The application of LSD1 inhibitors, 2-PCPA and GSK-LSD1, can

significantly reduce CSCs, and the combination therapy with

doxorubicin improves the sensitivity of cancer cells (233).

The overexpression of TWIST1 in palbociclib-resistant luminal

breast cancer activates EMT (234). Moreover, the survival time of

mice treated with pSilencer-twist and adriamycin was significantly

prolonged compared to mice treated with adriamycin alone,

suggesting that inhibiting Twist may be a possible method to

enhance chemotherapy efficacy and reverse drug resistance (20).

Similarly, Twist1 siRNA can reverse the high expression of EMT

markers induced by adriamycin, and the anti-cancer efficacy in

combination with adriamycin is significantly better than that of

monotherapy (20). The CDK1 inhibitor RO-3306 can significantly

inhibit the CSC/EMT-like phenotype and increase the sensitivity of

TNBC cells to cisplatin and paclitaxel by downregulating the

protein level of TWIST1 (235).

Growing evidence shows that ZEB influences the sensitivity of

cancer cells to chemotherapy by regulating EMT (236). LBH589

(Panobinostat) is reported to mediate the inhibition of EMT by

targeting ZEB expression, and inhibit BCSCs and enhance the

apoptosis of TNBC cells by regulating EMT when combined with

salinomycin (237, 238). Eribulin reverses EMT progression by

disrupting the interaction between ZEB1 and SWI/SNF, thereby

preventively increasing the sensitivity of TNBC cells to drugs (239).

PEG10-siRNA has been reported to inhibit EMT and overcome drug

resistance by activating SIAH1, the post-translational degrader of

ZEB1 (240).
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Although EMT-TFs usually exert effects by directly affecting

EMT, there is evidence to suggest that EMT-TFs can also induce

drug resistance through other pathways without affecting the EMT

process. It is reported that Snail or Slug induces tamoxifen

resistance in breast cancer by activating EGFR/ERK pathway

independent of EMT, and inhibitors of EGFR/ERK pathway can

restore the sensitivity of cancer cells with high expression of Snail/

Slug to tamoxifen, without reversing the EMT phenotype of these

cells (241). This further confirms what was previously mentioned,

that regulation of EMT-TFs may be one of the necessary conditions

for the occurrence of EMT, but EMT is not the inevitable result of

abnormal expression of EMT-TFs (12). As mentioned above, EMT-

TFs can further activate related signaling pathways through positive

feedback to enhance EMT, so targeting EMT-TFs can also inhibit

activation of signaling pathways. It is reported that after Sox4

expression of breast cancer cells is knocked down by siRNA,
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Wnt/b-catenin signaling is also observed to be synchronously

inhibited through feedback loop, and subsequently, EMT, CSC-

like features and cisplatin resistance are reversed (242).
5.3 MicroRNA

In recent years, many studies have delved into and reported on

the relationship between miRNAs and EMT-induced drug

resistance, and the roles of miRNAs are gradually clarified (243).

Some miRNAs can reverse drug resistance by targeting the signaling

pathways or EMT-TFs mentioned above, while others can exert

their effects through other key molecules related to EMT. Herein,

we only introduce the tumor suppressor miRNAs that are

prominent in breast cancer and the critical processes to function.

Other miRNAs are listed in Table 2.

The miR-200 family, as one of the most widely studied EMT-

related miRNA, consists of five members, namely miR-200a, miR-

200b, miR-200c, miR-141, and miR-429 (282, 283). MiR-200 family

members directly target ZEB to exert inhibitory effects and reverse

EMT processes by upregulating E-cadherin expression (70, 255–

258). For TNBC cells in the mesenchymal state, tamoxifen can

promote upregulation of miR-200c through demethylating its

promoter, thereby reversing EMT and increasing sensitivity to

traditional chemotherapeutic agents (259). MiR-200c restored the

sensitivity of HER2-positive breast cancer to trastuzumab by

targeting ZNF217/TGF-b/ZEB1 axis and suppressing CSC-like

phenotype (260, 261). MiR-200b/c regulates E-cadherin by

targeting ZEB, thereby inhibiting EMT and increasing sensitivity

of breast cancer cells to doxorubicin (262). The overexpression of

miR-200b/c has also been found to downregulate c-MYB, thereby

reversing EMT-induced tamoxifen resistance in ER-positive breast

cancer (263). In addition, miR-200b can also reverse EMT-induced

chemoresistance by targeting FN1 (264).

The miR-30 family is regarded as an important group of

microRNAs that negatively regulates the malignant behaviors of

tumors. It has been demonstrated that the downregulation of miR-

30a facilitates EMT process and metastasis by modulating EMT-

TFs (284–288). Moreover, miR-30a inhibit the initiation of EMT

program and drug-resistant CSC-like phenotype by forming a

double negative feedback loop with SOX4 (73). MiR-622 can

exert the inhibitory effect of miR-30a on EMT and drug

resistance by increasing its expression (275). Another family

member, miR-30c, has also been reported to directly target TWF1

to reverse EMT, thereby restoring sensitivity of cells to

chemotherapy (246).

The miR-34 family, especially miR-34a, is one of most

intensively studied miRNAs in breast cancer (289). The

combination therapy of miR-34 and traditional anti-cancer agents

can inhibit drug resistance in various types of cancer (290). MiR-

34a is reported to be able to target EMT-TFs to inhibit the EMT

process (291). In TNBC, miR-34a targets MCT-1 to control M2

macrophages polarization, thereby reprogramming EMT and

inhibiting stemness closely associated with drug resistance (247).
TABLE 2 EMT‐associated tumor suppresser miRNAs and their targets for
drug resistance in breast cancer.

microRNA Direct/indirect targets Reference

miR-27b
ENPP1, ABCG2

HMGB3
(244, 245)

miR-30
SOX4, TGF-b/Smad

TWF1
(73, 246)

miR-34a
MCT-1

Notch/NF-kB, RAS/RAF/MEK/ERK
(247, 248)

miR-125b Sema4C (249)

miR-129-5p SOX4, Twist1, Snail (72, 250, 251)

miR-149-5p IL-6, SNAIL (252)

miR‐199a‐5p PIK3CD (253, 254)

miR‐200 family
(miR-200a/b/c, miR-

141, miR-429)

ZEB
c-MYB
FN1

(70, 255–264)

miR-205
Notch2, ZEB
HOXD9, Snail

(265–267)

miR-340-5p LGR5, Wnt/b-catenin (268)

miR-375
HOXB3

metadherin
(269, 270)

miR-383 Gadd45g (271, 272)

miR-452 Slug (273)

miR-489 Smad3 (274)

miR-622 HIF-1a (275)

miR-644a CTBP1, p53 (276)

miR-671-5p FOXM1 (277)

miR-708-3p ZEB1, CDH2, vimentin (278)

miR-873 ZEB1 (279)

miR-4521 FOXM1 (280)

miR‐6838‐5p WNT3A (281)
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Furthermore, the combination treatment of miR-34a and

doxorubicin can significantly downregulate the expression of

Snail by inhibiting the Notch/NF-kB and RAS/RAF/MEK/ERK

pathways, thereby preventing doxorubicin-resistant breast cancer

progression (248).

Although miR-129 may play a dual role in the development of

tumors, more evidence tends to suggest that it acts as a tumor

suppressor to prevent the malignant progression of breast cancer. In

MCF-7 cells treated with adriamycin, the enhanced miR-129-5p

expression significantly downregulates the expression of

mesenchymal markers (vimentin and N-cadherin), indicating

inhibition of EMT (72). By negatively regulating the expression of

SOX4, miR-129-5p significantly reduces the IC50 of several drugs,

including adriamycin, which proves that breast cancer cells are

more sensitive to drugs. In addition, miR-129-5p negatively

regulates Twist1 and Snail, therefore reverse the EMT process and

eliminate epirubicin resistance (250, 251).

The role of miR-205 in different types of cancer is controversial,

with dual effects of inhibition or carcinogenesis. According to

existing reports, miR-205 typically exhibits tumor suppression

and chemosensitivity enhancement in breast cancer, even though

the specific effects are variant in different subtypes (292). MiR-205-

5p has been proved to enhance the sensitivity of breast cancer to

chemotherapeutic agents, including doxorubicin and docetaxel

(293, 294). MiR-205 can negatively regulate the phenotype and

activity of drug-resistant BCSCs by inhibiting related elements of

EMT (265, 295). There are many known targets of miR-205 in

breast cancer, including transcription factors ZEB1, ZEB2 and SIP1,

which are responsible for regulating EMT (69, 267, 292). The

upstream regulators of miR-205, polycomb protein MEL-18 and

ligand Jagged1 also suppress the initiation of EMT via this pathway

(267). Moreover, miR-205-5p can inhibit chemoresistance of TNBC

by regulating Snail (266). The miR-205 and miR-200 family have

similar functions and share several target genes, such as ZEB1 and

SIP1, which may suggest that they may share more commonalities

(69, 296). The combination therapy of miRNA-200/205 has been

increasingly reported for regulating EMT and overcoming drug

resistance (297).

The inhibitory function of some microRNAs on EMT and their

anti-tumor metastasis effects have been widely reported, but

whether they can overcome drug resistance by suppressing EMT

has not been clearly revealed, which will be an orientation worthy of

further research (298). It is worth noting that the role of microRNA

in breast cancer may not be unidirectional promotion or inhibition,

but often dual action. MiR-125b has been proved to reverse EMT

and prevent drug resistance in many cancers, including breast

cancer and lung cancer (299, 300). However, other studies

reported the opposite results simultaneously that high levels of

miR-125b are more likely to induce drug resistance and lead to poor

prognosis in breast cancer patients (301, 302). The miRNAs listed

above with anti-tumor effects in breast cancer may simultaneously

promote malignant progression in other tumors or subtypes, which

further reflects that the tumor environment is a complex and

multifactorial system. Thus, the therapeutic strategy targeting
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miRNA still requires further exploration and investigation for

future clinical application.
5.4 Limitations of molecules targeting EMT

Although some EMT inhibitors have entered clinical trials and

been proven to improve the efficacy of conventional therapies, the

safety in the long-term use of them is currently unclear (303).

Connolly EC et al. first reported that long-term use of LY2109761

may induce an increase in the levels of EMT-related markers, such as

E-cadherin, and would lead to acquired resistance to LY2109761

(304). Subsequently, there is increasing evidence that although

blocking TGF-b signaling may provide clinical benefits, treatment

with TGF-b inhibitors alone may lead to serious adverse reaction

(156). In addition, the toxicity of EMT inhibitors remains a potential

risk. For example, small molecule TGF-b inhibitors have shown

severe cardiac toxicity in preclinical animal models (305, 306).

miRNA is another promising research field for overcoming drug

resistance. miRNAs may play opposite roles in different cancers, and

even their functions may vary in different subtypes of the same

cancer. This guides us to make more precise distinctions about the

roles of miRNAs in tumors. In the past 20 years, the number of

identified miRNAs and their targets has been increasing at an

incredible rate. However, there are still many questions that need

to be answered before miRNA therapy can be widely applied in

clinical practice. How to prevent microRNA degradation in vivo and

how to efficiently targeted delivery are still unresolved issues (307).

Epigenetic modifications are closely related to EMT, stemness and

drug resistance, which has aroused the interest of researchers in this

field and has been widely discussed. In addition to miRNAs, the

corresponding epi-drugs, such as DNA modifying agents, inhibitors

of histone acetyltransferase (or deacetylase or methyltransferase or

demethyltransferase), are also gradually emerging, trying to be

applied in the treatment of breast cancer (308).
6 Conclusion

EMT is a complex and dynamic biological program that

typically occurs during embryonic development and tumor

progression. It is essentially a major reprogramming involving

gene expression, which can affect the macroscopic malignant

development of tumors by regulating the fate and behavior of

cells. EMT has been reported to induce invasion and metastasis

of breast cancer, and its impact on drug resistance is also becoming

clearer. Increasingly direct evidence shows that EMT-related

markers are closely related to the resistance to therapy in breast

cancer (309, 310). The present review summarizes the current

knowledge regarding EMT-induced drug resistance in breast

cancer. The EMT-related regulatory network constitutes a

complex system, with TGF-b, Notch, Wnt, and Hh pathways

being the most explored and clearly defined pathways in breast

cancer. These signaling pathways crosstalk and interact with each
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other, collectively activating EMT-TFs, which target the hallmarks

of EMT and initiate the EMT program. Currently, the SNAIL,

TWIST, and ZEB families are widely acknowledged as the primary

transcription factors driving EMT. Epigenetic modifications also

play a role in the EMT process by influencing the function of EMT-

TFs, with particular attention being paid to non-coding RNAs.

None of the elements within the EMT-related regulatory network

functions in isolation. They can synergize or antagonize with other

elements, forming positive or negative feedback loops. The

molecular mechanism underlying EMT-induced drug resistance

in breast cancer is still unclear, yet several possible mechanisms

have been extensively proposed. Among them, the close

relationship and high phenotypic similarity between EMT cells

and drug-resistant CSCs have garnered the most attention.

Furthermore, the hybrid epithelial/mesenchymal state of EMT

cells endows them with a high degree of plasticity, which makes

them more prone to drug resistance. Additionally, increased drug

efflux, resistance to apoptosis and activation of DDR pathways

induced by EMT contribute to the decreasing responsiveness of

breast cancer cells to anti-tumor drugs. The elucidation of the

regulatory network related to EMT and the potential mechanisms of

EMT-induced drug resistance may contribute to the design of better

targeted therapies combined with conventional treatments.

Reversing the EMT process by modifying TGF-b, Wnt, Notch,

Hh or other signaling pathways is expected to overcome drug

resistance in breast cancer. Numerous inhibitors of these

signaling pathways have advanced to preclinical or clinical trial

phase and have been proven to partially alleviate drug resistance by

reversing EMT. Directly targeting EMT-TFs can also make breast

cancer cells more susceptible to anti-tumor drugs. Furthermore, as

the interplay between miRNAs and EMT becomes increasingly

well-understood, it is also a promising direction of research to

leverage tumor suppressor miRNAs to regulate EMT and restore

the sensitivity of breast cancer to anti-cancer drugs.

In recent years, with the development of technologies such as

tumor genomics, transcriptomics and proteomics, the association of

EMT and tumor drug resistance have attracted great interest. In the

future, interdisciplinary approaches should be adopted to EMT

research to further confirm its correlation with drug resistance and

clarify the dominant mechanisms. For instance, database-based

bioinformatics analysis can be used to develop personalized and

customized treatments to overcome tumor drug resistance.

Although the mechanisms and influencing factors of drug

resistance are becoming increasingly complex, new targets are

emerging to offer new hope to cancer patients worldwide.
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