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Breast cancer, as the most common cancer in women, is a highly heterogeneous
and complex tumor. One of the important reasons for the poor prognosis and
high mortality of breast cancer patients is drug resistance. More and more
evidence shows that epithelial-to-mesenchymal transition (EMT) is a key driver
of malignant behavior of breast cancer, and also the core promoter of drug
resistance. Multiple EMT-related signaling pathways activate EMT-transcription
factors (EMT-TFs) and interact with each other, ultimately inducing drug
resistance. The role of EMT in promoting invasion and metastasis has been
studied in detail and systematically summarized, but its role in drug resistance of
breast cancer has not been elucidated comprehensively. The purpose of this
review is to clarify the EMT-related regulatory network in breast cancer and the
possible mechanisms of EMT-induced drug resistance. Moreover, we have
discussed the potential therapeutic advantages of reversing EMT and drug
resistance by effectively targeting key elements of the regulatory network, with
particular emphasis on EMT-related signaling pathways and microRNAs. This
review summarizes the drug resistance of breast cancer induced by EMT
systematically, which is of great significance for solving the drug resistance
problem of breast cancer and improving the prognosis of patients.
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1 Introduction

In recent years, breast cancer, surpassing lung cancer, has become the most common
cancer among women and the primary cause of cancer death (1). Breast cancer causes
685,000 deaths annually among cancer patients, far exceeding the data from 2018, which
indicates that the burden of breast cancer incidence and mortality is increasing rapidly
worldwide (2). Breast cancer is highly heterogenous and has various subtypes, thus it is
destined to be a complicated disease to treat, especially triple negative breast cancer
(TNBC) which lacks the expression of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2) (3). According to the guideline,
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effective therapeutic methods currently used in clinic include
chemotherapy, endocrine therapy, targeted therapy, and so on
(4). Although tumors are initially sensitive to the anti-tumor
drugs, they may develop resistance through various pathways
with the continued use of these drugs (5). Widely utilized
chemotherapy agents like doxorubicin and paclitaxel combat
cancer through their cytotoxic actions. Although TNBC is initially
sensitive to chemotherapy than subtypes, most patients gradually
develop drug resistance with continued drug administration (6).
Tamoxifen is a common endocrine therapy, which can control the
progression of ER-positive breast cancer. However, about half of
patients with advanced ER-positive breast cancer and almost all
patients with metastatic disease have no response to first-line
tamoxifen treatment, in addition (7). Trastuzumab, another
commonly used drug, has an effective response rate of only 26%
as a single first-line treatment in patients with HER2-positive
metastatic breast carcinomas (8). Statistical data shows that over
ninety percent of cancer deaths are attributed to drug resistance (9,
10). It has always been a persistent factor restricting the therapeutic
effect of breast cancer patients (11). Therefore, it is of far-reaching
significance to explore the mechanism and treatment strategy of
drug resistance in breast cancer.

Drug resistance is frequently complicated and multifactorial
owing to the dynamic tumor microenvironment (9). Various
intertwined mechanisms interact with each other and signal
pathways interfere, ultimately leading to drug resistance (5, 9, 11).
In recent years, the important role of epithelial-to-mesenchymal
transition (EMT) in drug resistance has gradually been discovered.
EMT is a cellular program that involves the transition of cells from
epithelial phenotype to mesenchymal phenotype, accompanied by
the acquisition of migration ability (12). EMT plays a role in various
physiological and pathological processes, including tumor
malignant progression and drug resistance (13). Although most of
the reports in the past decades have focused on the crucial role of
EMT in breast cancer metastasis, increasing evidence shows that
EMT is an important mechanism leading to an increased likelihood
of drug resistance in breast cancer populations (14). According to
the clinical analysis between the chemotherapy response of breast
cancer patients and the gene expression profiles of tumor samples,
the expression activation of EMT related genes is strongly related to
the occurrence of treatment resistance (15, 16). Moreover,
Inayatullah et al. used MAST test to compare gene expression
profiles and found that chemotherapy resistance in TNBC is related
to the activation of EMT program at the beginning of treatment
(17). Many studies have reported that the activation of EMT in
breast cancer cell lines makes them unresponsive or less sensitive to
the treatment of tamoxifen, paclitaxel and doxorubicin (18-20).
However, the relationship between EMT and the metastasis of
breast cancer has been widely discussed, but the drug resistance
caused by EMT has rarely been systematically and completely
sorted out, specifically for breast cancer. This review aims to fill
this gap and concludes with a discussion on the relationship
between EMT and drug resistance, as well as therapeutic
strategies targeting EMT for breast cancer.
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2 EMT: an overview

EMT is a cellular process that allows polarized epithelial cells
to exhibit a mesenchymal phenotype by undergoing various
biochemical changes, accompanied with the loss of cell-cell
adhesive properties and apical-basal polarity, as well as the
acquisition of mesenchymal characteristics, including upregulation
of vimentin and loss of cell adhesion (21). (Figure 1) During the EMT
process, it can be observed that the use of intermediate filaments
shifts from cytokeratin to vimentin, and cells achieve higher mobility
and invasiveness (12, 22). Cancer cells undergoing EMT can be
identified by detecting changes in the expression of EMT-related
genes or proteins (23, 24). In the past few decades, research related to
EMT markers has been continuously emerging, but the most closely
related to the phenotypic changes of EMT are still the loss of cell-cell
adhesion and its associated protein expression abnormalities (23). E-
cadherin, as a calcium-dependent cell-cell adhesion molecule, is
currently the most convincing marker for assessing EMT status,
which is also used in clinical diagnosis of cancer progression (24). The
downregulation of epithelial marker E-cadherin, accompanied by
simultaneous upregulation of mesenchymal marker N-cadherin, is
established as a hallmark of EMT. Furthermore, the tight junction
components, such as claudins, occludins, zonula occlusions-1(ZO-1),
exhibit downregulation of expression or weakened function
when EMT occurs (23, 25). Apart from loss of cell-cell adhesion,
change in motility and invasiveness is another major hallmark of
EMT. Expression of cytokeratin and vimentin can be used to monitor
the status of EMT in breast cancer (25, 26). Additionally,
mesenchymal-related cytoskeletal markers(vimentin, FSP1, o-
SMA), ECM proteins (fibronectin, type I/III collagen) and matrix
metalloproteinases (MMPs) were also significantly upregulated
during EMT (25).

An important feature of EMT is reversibility. Mesenchymal-
epithelial transition (MET) is the reverse process of EMT, and both
of them contribute to the tumor metastasis (27, 28). Another
notable feature of EMT is that the transition from epithelial to
mesenchymal status in adult tissues is often incomplete, and few
cells can complete the entire EMT process (12, 27). Therefore, most
cancer cells undergoing EMT will remain in the epithelial/
mesenchymal intermediate state, also known as hybrid E/M or
partial EMT phenotype. Due to varying degrees of activation of the
EMT program, a spectrum of partial EMT cells is generated, which
is considered to have higher plasticity than complete mesenchymal
cells (29).

3 EMT-related regulatory networks in
breast cancer

The initiation of EMT programs is co-regulated by multiple
signaling pathways. The cooperation and crosstalk of these
signaling pathways ultimately stimulate the activation of EMT-
transcription factors (EMT-TFs), whose transcription targets are
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FIGURE 1

Changes in cell phenotypes and properties during EMT process. With the occurrence of EMT, intercellular junctions dissolve and cell polarity is lost,
leading to cytoskeleton remodeling. Therefore, the transformation of cell morphology from epithelial to mesenchymal phenotype and changes in
protein expression can be observed. Epithelial markers, including E-cadherin, cytokines, epithelial cell adhesion molecules and tight junction
proteins, gradually decrease in expression levels or become inactive, while mesenchymal markers, such as N-cadherin, mesenchymal related
cytoskeletal markers, ECM proteins and MMPs, are significantly upregulated. The changes in cell structure and phenotype determine the alterations
in properties and functions. The drug sensitivity and response to apoptosis signals of cells decrease with the progression of EMT, while the
characteristics of drug efflux and immune evasion become increasingly prominent. Cells in the partial EMT state have the highest levels of stemness

and tumor initiation ability. Image created using Bio-Render.com software.

aforementioned hallmarks of EMT. (Figure 2) In addition to
signaling pathways, the activation of EMT is also regulated by
epigenetic modifications. In summary, EMT is a multifaceted
program activated by a regulatory network formed by the
combined action of multiple factors.

3.1 EMT-related signaling pathways

EMT is regulated and affected by multiple signaling pathways,
among which the critical pathways that regulate EMT initiation in
breast cancer include transforming growth factor-beta (TGF-p),
Notch, Wnt and Hedgehog (Hh) pathways (30). Growing evidence
suggests that these signaling pathways dominate the activation of
EMT, tumor development, and the occurrence of drug resistance.
We summarize the process of regulating EMT by the four critical
signaling pathways in breast cancer concisely, providing a
theoretical basis for subsequent targeted therapy strategies.

The TGF-3 pathway is one of the earliest discovered and the
most extensively studied signaling cascade in the induction of EMT
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(31). Activated TGF-P ligands phosphorylate downstream mediator
small mothers against decapentaplegics (SMADs) by binding to
TGF-P receptors and form a trimer (32). After entering the nucleus,
the trimer binds to EMT-TFs and initiates transcription (33). It is
reported that the Notch receptor Notch-4 plays a primary role in
EMT signaling in breast cancer cells and could be a potential target
(34). The Noth intracellular domain (NICD) is released through a
cascade of proteolytic cleavage, which forms a complex with RBP-jk
(i.e. CSL) and triggers EMT-TFs (35). The Wnt signaling pathway
has been gradually discovered to play an indispensable role in
regulating EMT, stemness and drug resistance of various cancers,
including breast cancer (36, 37). Wnt binds to Frizzled (Fzd)
receptor on the cell membrane to form Disheveled (Dvl)-Fzd
complexes, and inhibits B-catenin phosphorylation that originally
occurred in the construction complex, allowing it to enter the
nucleus and ultimately activate EMT-TFs (38). Hh binds to its
receptor Patched (PTCH) to activate Smoothened (SMO) that was
originally suppressed during transport and allow the Hh signaling
to be transmitted downstream to glioma (GLI) family, leading to
upregulation of Hh target genes, such as EMT-TFs (39).

frontiersin.org


https://www.biorender.com
https://doi.org/10.3389/fonc.2025.1680751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Luo et al.

10.3389/fonc.2025.1680751

Delta 1/3/4
TGF- < 1 Jagged1/2

=

Membrane >
TGFBR I/

gy

Smagy =

SARA =

2 / Smagy =

-

-

cw—w”;,f’

Nucleus v

TGF-B signaling pathway Notch signaling pathway

5‘ ﬁ‘
@&

L \S

Dishevelled ,—1 K-SB
B-Catenin p

@
Hh Ligands @

LRP Frizzled

Dishevelled

)

Wnt signaling pathway

v

Hh signaling pathway

kl—l‘ o E‘
G

J J)

CDH1,LSD1,

HDACs, DNMT1 \ I
odihoations | [ | MIeToRNA | ——
modifications JCIO

EMT

e

v

FIGURE 2

EMT-related regulatory networks in breast cancer. The TGF-p receptor is a complex composed of two types of transmembrane serine threonine
kinase receptors. The activation of the canonical TGF-f signaling pathway is mediated by SMAD transcription factors. Activated TGF-B ligands bind
to TBRII, inducing the recruitment, phosphorylation, and activation of TBRI, thereby phosphorylating downstream mediators SMAD2 and SMAD3,
which then form the trimer with Smad4. After entering the nucleus, the trimer binds to EMT-TFs and initiates transcription. The Notch signaling
pathway is mediated by four receptors (Notch-1, -2, -3, -4) and five ligands (Delta-like-1, -3, -4 and Jagged-1, -2). The Notch receptor is activated
by interaction with its ligand. The gamma-secretase is responsible for cleaving intracellular C-terminal fragments of the Notch receptor and a
disintegrin and metalloproteases (ADAM) is responsible for cleaving the extracellular part, leading to the release of NICD and formation of the
complex with CSL. Wnt binds to the LRP5/6-Frizzled receptor to form functional receptor complex and induce recruitment and activation of

Disheveled receptor, thereby inhibiting the phosphorylation and ubiquitination of B-catenin by the destruction complex. Dissociative 3-catenin in the
cytoplasm enters the nucleus and initiates transcription of downstream target genes. There are three types of Hh ligands, including Sonic Hedgehog
(SHh), Indian Hedgehog (IHh), and Desert Hedgehog (DHh). Hedgehog protein forms a signal active N-terminal fragment HhN via self cleavage,

which binds to PTCH to activate SMO. The activated SMO binds to the COS2/Sufu/Gali trimer, causing Gli to dissociate from the trimer and become

the active Glil/2-Act, which leads to upregulation of Hh target genes. The synergistic effect of these EMT-related signaling pathways collectively
activates SNAIL, TWIST, ZEB and other EMT-related transcription factors. They regulate downstream transcriptional networks together with
epigenetic factors, further mediating the biological effects of EMT. Image created using Bio-Render.com software.

In addition to the pathways mentioned above, there are other
signals involved with EMT in breast cancer, including Nuclear
factor-kappaB (NF-xB), Phosphatidylinositol 3-Kinase (PI3K)/
AKT, Mitogen-Activated Protein Kinase (MAPK), Hypoxia-
Induced Factor (HIF), Epidermal Growth Factor (EGF) and so
on. These pathways crosstalk and interact with each other,
forming an EMT-related signal network. For example, hypoxia
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activated HIF-lo. promotes EMT by enhancing the Notch
signaling pathway (35, 40). NF-xB signal can enhance the Hh
pathway, which is also influenced by TGF-/Smad, HIF-1a, RAS/
MAPK or PI3K/AKT signaling (41-45). EGF receptors can also
regulate downstream signaling molecules, including [-catenin,
RAS, MAPK, and PI3K/AKT, to regulate EMT associated
events (46).
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3.2 EMT-related transcription factors

The combined effect of signaling pathways leads to the
activation of EMT-TFs. The transition of cancer cells from
epithelial to mesenchymal states is regulated by EMT-TFs,
including SNAIL, TWIST, ZEB, FOX, SOX, PRRX, etc (47).
SNAIL, TWIST, and ZEB family are currently recognized as the
main regulatory factors driving the transcription pathways of EMT,
which can regulate cellular characterization, such as intercellular
adhesion, cell polarity, and motility (48, 49). SNAIL family (SNAIT1,
SNAI2, SNAI3) and basic helix loop helix (BHLH) family (TWIST1,
TWIST2) regulate EMT by downregulating epithelial gene
expression and upregulating mesenchymal gene expression (50,
51). The E-box elements in the E-cadherin (CDH1) promoter play a
critical negative regulatory role in gene transcription (52). ZEB
family of zinc finger (ZEB1, ZEB2) regulate gene sequences by
binding to E-boxes, ultimately activating transcription (53). The
Snail family can also induce EMT via binding to the elements and
inhibiting CDH1 (54, 55). EMT-TFs typically control expression
with each other and collaborate functionally on target genes to
achieve the activation of the EMT program (56). For example,
TWIST and SNAIL are frequently co-expressed in breast cancer,
and the expression of SNAI2 (SLUG) directly depends on
TWIST1 (18).

To date, all established EMT processes involve at least one
member of these EMT-TFs. However, the occurrence of EMT
cannot be inferred solely from the expression of EMT-TFs in
cells, as these transcription factors are also involved in other
cellular processes such as proliferation and apoptosis (12).
Additionally, it should also be noted that the signaling pathways
have more than a unidirectional effect on EMT-TFs. Although
numerous reports have shown that various signaling pathways
activate EMT-TFs to induce the occurrence of EMT, there are
also many studies demonstrating that EMT-TFs can stimulate the
transmission of signaling pathways. For example, Snail and Slug
have been shown to activate TGF-B and MAPK pathways (57, 58).
The positive feedback between signaling pathways and EMT seems
to be a vicious cycle, which may explain why tumor progression is
often so rapid and difficult to cure.

3.3 Epigenetic modifications

The course of EMT is related to epigenetic alterations, which are
achieved by regulating the function of EMT-TFs (59). Epigenetic
modifications, including DNA methylation, histone modifications
and non-coding RNA regulation, have been confirmed to be largely
involved in the EMT process. It is reported that CDH1 promoter
metabolism plays an important role in EMT of various human
tumors, including breast cancer (60, 61). EMT-TFs, such as SNAIL
and ZEB, bind to E-box on CDHI promoter, directly leading to
inhibition of E-cadherin expression (62). In addition, it was
discovered that demethylases play an important role in EMT (63).
The histone demethylase lysine-specific demethylase 1 (LSD1)
interacts with SNAIL and is recruited into the CDHI promoter,
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leading to histone demethylation (64, 65). Exosomal piRNA-17560
enhances the stable expression of ZEB1 by reducing N6-
methyladenosine RNA methylation, thereby inducing EMT and
chemoresistance (66).

The image of non-coding RNA as a key factor that can affect the
EMT process has become increasingly prominent. MicroRNAs
(miRNAs) are a group of non-coding single-stranded small
RNAs. They bind to the 3’-UTR region of downstream target
mRNA through base pairing, which can cause the degradation of
target mRNA or inhibit its translation, thus they are considered as
the main post-transcriptional regulators of gene expression (67, 68).
Research has shown that miRNAs affect the EMT process by
mediating the expression of EMT-TFs. The miR-200 family is
believed to inhibit the expression of ZEB, and interestingly, ZEB
simultaneously suppresses the expression of the miR-200 family
through a double negative feedback loop in breast cancer (69-71).
Similar double negative feedback loops can also be observed
between other miRNAs and EMT-TFs, including miR-203/
SNAIL1, miR-129-5p/SOX4 and miR-30a/SOX4 (72-74).
Mounting evidence has indicated that long non-coding RNAs
(IncRNAs) contribute to malignant behaviors of breast cancer,
including EMT and drug resistance (75). It is reported that LincK
can regulate the expression of ZEB1 and the function of miR-200 in
breast cancer (76). Similarly, IncRNA LINC00460 has been shown
to promote Cancer stem cell (CSC)/EMT-like characteristics and
resistance to doxorubicin by forming a positive feedback loop with
¢-MYC (77). Interestingly, high expression of IncRNA SNHG6 can
promote EMT initiation and tamoxifen resistance in ER-positive
breast cancer by inhibiting miR-101 (78). Another new study have
revealed that IncRNA PTENPI regulates EMT and drug resistance
of breast cancer through isolating miR-21 by constructing a
dynamic Boolean network model (79). In murine or human
breast cancer, there are other examples of IncRNA-miRNA
interactions like this, and some studies have referred to these
pathways as IncRNA/miRNA axis, which can exert the oncogenic
effect and promote drug resistance by regulating EMT process (80).

In conclusion, the elements involved in the EMT process are not
independent, nor are they acting unilaterally. These factors and
signaling pathways interact and entangle with each other,
synergistically regulating EMT. The same factor can affect every
step of the EMT process, and downstream factors can also have a
reverse impact on upstream signals. New evidence suggests that the
presence of TGFB2/Smad-Snaill/EZH2-miRNAs loop in TNBC can
maintain EMT phenotype and induce drug resistance, which is a
good example of the interaction of multiple regulatory factors (81).
There are countless interplays and feedback loops like this between
various elements. Therefore, the EMT-related regulatory network is
a complex and dynamic system that deserves further research.

4 Mechanisms of EMT-induced drug
resistance in breast cancer

Insufficient drug dosage during chemotherapy not only fails to
eradicate cancer cells far from blood vessels, but also accelerates the
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EMT procedure, ultimately inducing drug resistance (82). Luo et al.
identified that the molecular biomarkers of HR+/HER2 metastatic
breast cancer patients resistant to standard treatment were related
to EMT through single-cell RNA sequencing (83). Although there
have been new advances in the study of the significance of EMT in
drug resistance, the molecular mechanism is incomplete due to the
lack of suitable in vivo models and limited human samples for
comprehensive research (84). Next, we will provide a summary of
several widely discussed potential mechanisms underlying EMT-
induced drug resistance in breast cancer (Figure 3).

4.1 Acquisition of CSC-like characteristics

Thanks to the rapid development of research related to CSCs,
researchers have gained a new understanding of the mechanism of
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drug resistance caused by EMT. CSCs are a small subset of
malignant cells that possess self-renewal ability and tumorigenesis
potential (85, 86). There are studies reporting a high degree of
similarity between EMT cells and CSCs (87). EMT cells can also
serve as effective seeds for both primary and metastatic tumors,
making it challenging to distinguish them from CSCs in function
(88). In addition, the signaling pathways related to self-renewal and
maintenance of CSCs highly overlap with the pathways regulating
EMT, such as Wnt, Notch and Hh signaling pathways (89, 90).
Moreover, CSCs isolated from breast tissue express a number of
typical EMT markers (91). Most importantly, there are publications
proving that breast epithelial cells or breast cancer cells can obtain
pluripotent stem cell-like phenotype (CD44™¢", CD24'") through
EMT induction, which further indicates that EMT is closely related
to the production of CSCs (91, 92). EMT-TFs have been identified
as key factors involved in the stemness regulation of CSCs (87).
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Potential mechanisms underlying EMT-induced drug resistance in breast cancer. EMT cells are highly similar in phenotype and function to CSCs, and
EMT process is recognized to promote the production of CSCs. After killing drug sensitive cancer cells, residual cancer cells with EMT/CSC-like
phenotype may trigger tumor recurrence and develop drug resistance. Most cancer cells that undergo EMT will remain in the hybrid E/M state,
which exhibits the most prominent phenotypic heterogeneity and plasticity, enabling better adaptation to the microenvironment and resistance to
drug action. The drug and ATP molecules enter the ABC transporter and bind to corresponding binding sites, forming an outward-open
conformation that causes the drug to flow out of the cell. EMT promotes the expression and activation of ABC transporters, increasing drug efflux
and leading to drug resistance. Cells that receive apoptotic signals activate pro-apoptotic protein and caspase through intrinsic and extrinsic
apoptotic pathways to conduct apoptosis. EMT can upregulate the anti-apoptotic protein Bcl-2 and inhibit pro-apoptotic proteins, thereby resisting
drug-induced apoptosis. The HR pathway is a classic DDR pathway for repairing DNA damage such as double strand breaks. EMT activates the HR
pathway (such as activating the ATM promoter) to reverse the cell damage caused by platinum-based drugs, resulting in the tumor exhibiting a
drug-resistant phenotype. EMT can induce metabolic reprogramming in cancer cells, resulting in marked changes such as increased glycolysis,
increased lipid metabolism, mitochondrial respiratory inhibition and so on, which in turn induce tumor drug resistance. Image created using

Bio-Render.com software.
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EMT-TFs, represented by SNAIL, TWIST and SOX, can induce the
emergence of breast cancer stem cells (BCSCs) exhibiting CSC-like
phenotypes while driving the EMT process (91, 93-95). In
summary, induction of EMT can promote the production of
BCSCs, which can form mammospheres and express EMT
markers. Therefore, the emergence of CSC-like phenotype will be
regarded as evidence and result of the occurrence of EMT process in
this review.

It is generally believed that CSCs are inherently resistant to anti-
tumor drugs and cause the relapse, or they can acquire resistance
under the influence of the tumor microenvironment (96). It has
been found that cells with CSC/EMT-like characteristics in breast
cancer are resistant to neoadjuvant chemotherapy (97). Further
research shows that breast cancer cells with CSC/EMT-like
properties still survive after receiving neoadjuvant chemotherapy
or pharmacological inhibition targeting HER2, which underscore
that these cells encode drug resistance (97, 98). Therefore, cancer
cells treated with anti-tumor drugs may achieve drug resistance by
undergoing EMT to obtain CSC-like features (99). It may be one of
the possible mechanisms by which EMT induces drug resistance.

4.2 Enhanced plasticity of hybrid epithelial/
mesenchymal phenotype

As mentioned above, most cancer cells that undergo EMT will
eventually maintain a hybrid epithelial/mesenchymal (or partial
EMT) phenotype, which is also one of the reasons why EMT tends
to cause drug resistance. After 8 days of TGF-f} induction treatment
of human mammary epithelial cells, single-cell RNA sequencing
analysis was used to identify ten different EMT subgroups, most of
which were in the partial EMT state rather than the complete
epithelial or mesenchymal state (100). More importantly, the
hybrid E/M cells possess higher metastatic and drug-resistant
potential in breast cancer as compared to cells on either end of the
EMT spectrum (15, 101). This is because during the entire process of
epithelial mesenchymal transition along the E-to-M spectrum,
individual cells generate extensive phenotypic heterogeneity, and
cells in the hybrid E/M state exhibit high plasticity, which provide
greater adaptability and resistance for cancer cells (12). Consistently,
through multi-modal translational data-bulk, single-cell, and spatial
transcriptomics, it can be concluded that breast cancer cells can
obtain higher heterogeneity along EMT spectrum, thus limiting the
drug efficacy (102). EMT-driven cell plasticity makes breast cancer
cells resistant to paclitaxel by promoting the formation of primary
cilia (103). In stage IIT breast cancer patients, EMT and the
accompanying epithelial-mesenchymal heterogeneity serve as
prognostic indicators for survival outcomes (104). In summary,
most cancer cells that undergo the EMT process will finally remain
in a highly plastic E/M intermediate state and acquire the ability to
resist the effects of chemotherapy drugs and adapt to this
microenvironment, exhibiting a drug-resistant phenotype in clinical
practice. However, it is worth noting that the latest evidence claims
that higher plasticity may not be directly related to partial EMT state,
which is a direction that needs further exploration in the future (105).
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4.3 Increased drug efflux and reduced drug
intake

Like other types of drug resistance, an important mechanism by
which EMT induces drug resistance is through the regulation of the
ATP binding cassette (ABC) transporter family of proteins, which
increases drug efflux and reduces drug efficacy in cancer cells (106).
Currently, there are up to 16 ABC transporters in the ABC
transporter family related to multidrug resistance (MDR),
including P-glycoprotein (P-gp, also known as ABCB1 or MDRI1),
Multi-drug Resistance associated Protein-1 (MRP-1; also known as
ABCC1) and Breast Cancer Resistance Protein (BCRP) (107). They
actively efflux a series of commonly used anti-tumor drugs,
including mitoxantrone, anthracyclines, vinca alkaloids, taxanes
and other drugs suitable for breast cancer treatment (107). It is
reported that EMT induction upregulates the expression of ABC
transporters and exacerbates drug resistance in breast cancer (108).
It has been proven that EMT-TFs are the regulators in directly
modulating ABC transporters, and promoters of ABC transporter
genes contain the binding sites for EMT-TFs, such as TWIST,
SNAIL and FOXC2 (108). Taken together, EMT-TFs can augment
the activity of ABC transporters in various breast cancer cell lines by
directly binding to their promoters, thereby leading to enhanced
drug efflux, which constitutes a pivotal molecular mechanism of
EMT-induced drug resistance.

4.4 Insensitivity and resistance to apoptosis
mechanisms

In addition to increased drug efflux, avoidance of drug-induced
apoptosis and necrosis is another possible mechanism of EMT-
induced drug resistance (109). Growing evidence suggests that EMT
can induce cell apoptosis resistance by upregulating the anti-
apoptotic protein Bcl-2, downregulating pro-apoptotic proteins
(such as Bad, Bax, Bim, p53, Noxa), activating PI3-K/Akt
pathways, or interfering with cell cycle (110-112). EMT-TFs,
especially SNAIL family, play a master role in increasing
resistance to apoptosis. SNAIL stimulates the PI3-K/Akt pathway
and inhibits pro-apoptotic protein Bad by inhibiting PTEN
transcription, thereby promoting apoptosis resistance (113).
SNAIL has also been reported to interfere with the function of
pro-apoptotic proteins p53 to prevent cell apoptosis and lead to
drug resistance (114). Moreover, SNAIL can inhibit the
transcription of cyclin D2 and block cell cycle progression,
making cells resistant to apoptosis (115). In addition to activating
the PI3K/Akt pathway, TWIST also promotes EMT and upregulates
anti-apoptotic protein Bcl-2 to contribute to apoptosis resistance
(116, 117).

EMT can also protect cells from drug-induced apoptosis by
activating autophagy. The EMT-related signaling pathways,
including TGF-B, RAS, WNT, and NF-kB, not only activate
EMT, but also closely associate with autophagy (118). EMT-
related signaling triggers, such as TGF-B and hypoxia, can
effectively induce autophagy under different environmental
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conditions (119, 120). TGE-B induces autophagosome formation
and upregulates the expression of autophagy-related genes in
MDA-MB-231 cells (121). Although autophagy and apoptosis are
activated by multiple overlapping upstream signals, they mostly
cross-regulate each other in an inhibitory manner. Therefore, EMT-
induced autophagy reduces the tendency of cells to undergo
apoptosis, which manifests as drug resistance in clinical practice
(122). It is reported that autophagy induces resistance of breast cells
to epirubicin and pacitaxel (123-125). In summary, EMT can
combat drug-induced apoptosis of mammary carcinoma cells
through various pathways, leading to drug resistance.

4.5 Activation of DNA damage response
pathways

DNA damage response/repair (DDR) is a mechanism within
cells to resist DNA damage induced by external or internal factors,
which monitors and transmits damage signals and makes
appropriate responses (126, 127). Homologous recombination
(HR) pathway is a classic DDR pathway used to repair
DNA damage like double-strand break (128, 129). Some
chemotherapeutic agents exert anti-tumor effects by damaging the
nuclear or mitochondrial DNA of cancer cells, driving their direct
or indirect death (130). For example, cisplatin is an efficient DNA-
damaging agent with significant anti-cancer effects. However, some
cancer cells can reverse the damage induced by anti-tumor drugs,
including DNA-damaging agents, by enhancing their ability of
DNA damage repair, thus exhibiting a drug-resistant phenotype
(5). The resistance of platinum-based drugs is closely related to
DDR. Nucleotide exit repair and HR pathway are the main DDR
pathways for reversing platinum damage in cancer cells (131, 132).

A pioneering report reveals the connection between EMT and
DDR. ZEBI1 has been identified as a response target for Ataxia-
telangiectasia-mutated (ATM), which is a key protein kinase in HR
signaling (133). Furthermore, phosphorylated ZEB1 can interact
with USP7 deubiquitylating enzyme and promote HR-dependent
DDR pathways. In breast cancer, ZEBI can also activate the ATM
promoter by binding to p300/pCAFj, forming a positive feedback
loop that promotes DNA repair and resists DNA damage caused by
chemotherapy (134). In addition, ubiquitinated TWIST1 can
modulate DDR pathway and upregulate HR gene expression
(135). In summary, EMT-TFs, especially ZEBI, can promote
DDR and increase HR pathway activity. As mentioned earlier,
HR pathway is the main DNA repair mechanism for reversing
platinum damage, which may explain why EMT promotes tumor
resistance to platinum-based drugs.

4.6 Other mechanisms

There is mutual influence between tumor microenvironment
(TME) and EMT. The stromal cells that constitute TME, including
cancer-associated fibroblasts (CAFs), tumor-associated macrophages
(TAMs) and T lymphocytes, interact with neighboring cancer cells by
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secreting cytokines or other means, activating their EMT program
(30). Carcinoma cells undergoing EMT also have an impact on
various cells in TME, thereby affecting tumor progression and drug
resistance (30, 96). EMT cells exert immunosuppressive effects to
regulate immune cells in TME. For example, when MCEF-7 cells
overexpress SNAIL, the function of co-cultured T cells is severely
reduced (136). In addition, the EMT cells secrete or indirectly activate
immunosuppressive factors, such as TGF-f, TNF and CCL5, which
affect the activity of various immune cells in TME (137, 138). Spatial
colorization analysis reveals that at the tumor boundary characterized
by EMT, CAFs and M2-like TAMs interact to promote immune
exclusion and drug resistance (139). A new research has developed a
biomimetic codelivery system that can reverse the EMT and CSC-like
characteristics of TNBC cells to reshape the immunosuppressive
microenvironment, thereby enhancing the sensitivity of TNBC to
paclitaxel (140). Therefore, EMT-induced immune reconstitution
may be a possible mechanism of drug resistance in breast cancer.

Metabolic reprogramming is another potential mechanism of
EMT-induced drug resistance. It is reported that overexpression of
SNAIL can induce aberrant glucose metabolism in cancer cells,
including increased glucose uptake and lactate production, decreased
oxygen consumption by mitochondria, and so on, thus altering TME
and enhancing chemoresistance (141-143). The rate of glycolysis in
EMT cells is significantly increased, resulting in the production of more
ATP to meet the energy requirements for wound repair and resistance
to attacks, which is manifested as refractory breast cancer (144).
Meanwhile, acidification of TME can induce breast cancer cells to
become resistant to mitoxantrone (145). Growing evidence shows that
the reprogramming of lipid metabolism is conducive to the
development of drug resistance in breast cancer (146). Fatty acid
synthase (FASN), as a kind of metabolic oncogene involved in
neoplastic lipogenesis, has been found to induce drug resistance
(147). EMT was also found to be involved in this process. New
evidence indicates that CD36-mediated fatty acid uptake makes
HER2-positive breast cancer cells obtain drug resistance by
regulating the EMT-like phenotype (148). EMT, accompanied by
changes in lipid metabolism, limits the entry of drugs into cells
through the plasma membrane and prevents drug accumulation
(149, 150). In addition, the occurrence of EMT also causes the
upregulation of P-gp, which can remove the lipid peroxidation
products induced by the application of doxorubicin, thus leading to
doxorubicin resistance in breast cancer (151).

EMT-induced drug resistance is usually multifactorial and
complex, resulting from the combined effects of various cells and
molecules. The above only summarizes the relatively important
mechanisms mentioned in recent research, and more influencing
factors and comprehensive mechanisms need to be explored in
the future.

5 Therapeutic strategies by targeting
EMT program

The drug resistance is not only an important focus in the
development of traditional chemotherapy drugs, but also a focal
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point worthy of attention in emerging targeted therapies. Since
EMT has been established as a fundamental mechanism that
endows breast cancer cells with drug resistance and CSC-like
traits, targeting EMT to control drug resistance represents a
promising therapeutic strategy for breast cancer (152). In recent
years, numerous studies have delved into promoting the drug
sensitivity of breast cancer by blocking the EMT process and
reversing the CSC/EMT-like phenotype of tumor cells. Blocking
the occurrence of EMT involves disrupting the regulatory network
associated with EMT, which prevents the initiation of EMT
program. For example, the latest evidence shows that pentagalloyl
glucose can reverse the resistance of breast cancer to doxorubicin by
targeting EMT and the expression of miRNAs (153). Targeting
EMT includes blocking upstream signaling pathways, directly
targeting EMT-TFs, regulating epigenetic modifications (especially
non-coding RNAs), and blocking the possible mechanisms of EMT-
induced drug resistance. (Figure 4) Among them, some agents in
the last strategy directly target key factors in the mechanism of
resistance, such as ABC transporter family and Bcl-2, rather than
overcoming drug resistance by affecting the EMT process, thus they
are not included in the discussion here. Some of these molecules
targeting the EMT process, especially signaling pathways, are
already in the clinical trial phase and have great potential for
application in future clinical treatments (Table 1).

&~

Application of anti-tumor drugs

|. Blocking EMT-related signaling pathways
(TGF-B, Notch, Wnt, Hh, NF-kB, PI3K/AKT...)

Loss of sensitivity to drugs

Il. Targeting EMT-TFs
(Snail, Twist, ZEB, SOX...)

10.3389/fonc.2025.1680751

5.1 Inhibitors of EMT-related signaling
pathways

5.1.1 TGF-B signaling pathway

Insufficient chemotherapy may induce the initiation of EMT
program by activating TGF-B signaling (154). Doxorubicin,
cisplatin, paclitaxel and other anti-tumor drugs have been shown
to induce the expression of TGF-P1 and the occurrence of EMT in
various malignancies (154-156). For example, it has been reported
that MDA-MB-231 cells treated with cisplatin have elevated levels
of TGF-B, making themselves resistant to the cytotoxic effects of
cisplatin (157). Another research shows that application of
epirubicin can activate the TGF-f3 pathway in TNBC cells and
regulates EMT-related markers, ultimately leading to drug
resistance (158). TGF-B induces breast cancer cells to transform
into partial EMT phenotype and exhibit CSC-like characteristics,
which may explain why TGF- can induce drug resistance through
EMT (100). More and more similar studies have focused on the
relationship between TGF-J signaling pathway and drug resistance,
reminding us that the pathway may be a therapeutic target for drug
resistance in breast cancer.

There is a study reporting that neutrophil extracellular traps
activate the TGF-B signaling pathway by inducing SMAD2
phosphorylation in breast cancer, leading to EMT and

Possible
mechanisms

IV. Targeting possible mechanism
of EMT-induced drug resistance

Snail
Twist a f
ZEB (/Uv‘ .
W . el

lll. Targeting epigenetic modifications
(microRNA, DNA modifying agents...)

FIGURE 4

Therapeutic strategies to overcome EMT-induced drug resistance in breast cancer. There are four possible strategies for targeting EMT to overcome
drug resistance in breast cancer: 1) inhibiting the occurrence of EMT by blocking the upstream signaling pathways; 2) blocking transcription of EMT
by targeting EMT-TFs; 3) inhibiting EMT progression by regulating post-transcriptional epigenetic modifications; 4) maintaining sensitivity to drugs by
targeting the possible mechanisms of EMT-induced drug resistance. Image created using Bio-Render.com software.
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TABLE 1 The molecules that have undergone/completed clinical trials
and their NCT numbers of clinical projects. All information is sourced
from ClinicalTrials.gov.

NCT
number

Direct/indirect

targets

LY2157299 (Galunisertib) TGF-PB pathway NCT02672475

NCT01876251

PF-03084014
030840 NCT02299635

NCT00106145
NCT01295632
NCT00645333
NCT00756717

MK-0752

Gamma-secretase,
Notch pathway

NCT01238133

NCT01071564

NCT01151449

NCT01131234

R0O4929097

LY3039478 (Crenigacestat) NCT02784795

LGK974 NCT01351103

OMP-18R5 (Vanicttumab) Wnt pathway NCT01973309

Foxy-5 NCT02020291

GDC-0449 (Vismodegib) NCT02694224

LDE225 Hh pathway

NCT02027376
(Sonidegib)

NCT05853432
NCT04762979
NCT04216472
NCT05038735
NCT02038010
NCT01870505
NCT02379247
NCT01300962
NCT02734615
NCT04208178
NCT01923168
NCT05063786

BYL719

PI3K
(Alpelisib)

NCT01263145
NCT01245205
NCT01344031
NCT01705340

MK2206 AKT

NCT03193853
NCT02988986
NCT02756364
NCT02049957

TAK-228
(INK128, MLNO0128,
Sapanisertib)

TORC1/2

NCT00852332
NCT03072992
NCT01740323

multiple signalin;
Curcumin ple sig i
cascades

NCT00567879
NCT01105312
NCT00788931
NCT00632489

LBH589 (Panobinostat) ZEB

chemotherapy resistance (159). However, TGF-B type I receptor
inhibitor (TPRI), which inhibits SMAD2 phosphorylation, can
block the activation of TGF-f signaling and reduce the expression
of EMT-related genes, thereby improving and reversing the
resistance response caused by chemotherapy (159). Another
research has also reported that chemotherapy drugs lead to drug

Frontiers in Oncology

10.3389/fonc.2025.1680751

resistance through inducing the occurrence of EMT, however, TRRI
kinase inhibitor (TBRI-KI) can reverse the EMT program and
combined treatment with doxorubicin may improve efficacy and
reduce the dosage of doxorubicin (155). Similarly, TPRI-KI
LY2157299 (Galunisertib) can block the conduction of the TGF-f3
pathway and inhibit the development of drug-resistant CSCs and
tumor recurrence induced by paclitaxel (160). TBRI/TBRII inhibitor
LY2109761 can also reverse EMT and enhance chemosensitivity by
inhibiting the TGF-f signaling pathway (161, 162). Curcumin, as a
natural agent, is closely related to the occurrence and development
of cancer (163). Curcumin can suppress doxorubicin-induced EMT
and improve the efficacy of chemotherapy by inhibiting TGE-f3/
Smad and PI3K/AKT signaling cascades (164).

In addition to the aforementioned, there are also many TGF-3
inhibitors that have been provided with compelling ability to block
the TGF-B pathway and reverse EMT, including Ki26894,
LY364947, IN-1130, SM16, SB-431542, YR-290 etc (165-170).
Unfortunately, TGF-B pathway is more considered to be related
to tumor growth and metastasis, so these inhibitors are mostly used
to control breast cancer growth and metastasis, rather than reduce
drug resistance. Thus, whether they can also reverse drug resistance
necessitates more comprehensive and in-depth investigation.

5.1.2 Notch signaling pathway

The importance of the Notch signaling pathway in EMT program
and drug resistance has been recognized, and regulating the Notch
pathway may be a good approach to overcome drug resistance. The
latest report has shown that imatinib, a tyrosine kinase inhibitor, has
been proven to have the ability to reverse EMT by inhibiting the
Notch pathway and significantly reduce the stemness of TNBC cells
and induce apoptosis (171). In the past few decades, many methods
have been developed and reported to regulate cancer drug resistance
by inhibiting the activation of the Notch pathway, including gamma-
secretase inhibitors (GSIs), ADAM inhibitors, monoclonal
antibodies, etc (172). Among them, the development prospect of
GSIs in reversing drug resistance is gratifying. GSIs, as the first
proposed and successfully developed Notch pathway inhibitors, have
shown potential in increasing tumor sensitivity to chemotherapy,
whereas GSIs combined with conventional therapy have been
reported to have better efficacy than using GSIs alone (173). The
mechanism of GSIs reversing drug resistance in breast cancer is
multifactorial. GSIs block the Notch signaling pathway by inhibiting
gamma-secretase, thereby regulating CSCs, EMT, ABC transporters,
and affecting crosstalk between the Notch pathway and other
pathways (172). GSIs have been reported to be able to reverse drug
resistance in breast cancer through the above mechanisms and
achieve better therapeutic effects when combined with conventional
drugs in clinical trials.

Doxorubicin can induce overexpression of MRP-1, an ABC
transporter, in breast cancer cells by activating Notch pathway
(174). DAPT, as a GSI, can reverse this process, reducing
doxorubicin efflux and enhancing doxorubicin-induced apoptosis
program. High expression of Nicastrin and Notch4 in breast cancer
cells can induce the acquisition of EMT phenotype and tamoxifen
resistance. Anti-Nicastrin mAbs and GSI PF03084014 can inhibit
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the expression of EMT-related molecules and partially alleviate
drug resistance (175). Docetaxel induces the initiation of EMT
program and drug resistance of breast cancer cells by activating
Notch pathway, and PF-03084014 combined with docetaxel can
reverse the above process (176). The combination therapy of MK-
0752 and docetaxel can reduce BCSCs in breast tumor transplants
by inhibiting the Notch pathway and enhance the efficacy of
docetaxel (177). In addition, biopsy results of clinical trials
showed a reduction in CSC-like phenotype cells and a decreased
mammosphere after the combined therapy, which can be seen as a
reversal of EMT. A classic GSI, RO4929097, has been proven safe
and effective when used in combination with other conventional
drugs in various clinical and preclinical trials (178, 179). However,
there are limited reports on whether RO4929097 can reverse EMT
and drug resistance by inhibiting the Notch pathway. It is reported
that short-term treatment of breast cancer with tamoxifen or
fulvestrant will increase the activity of BCSCs by upregulating
Noth4 target gene, while R04929097 can inhibit BCSCs and
alleviate drug resistance (180). Another Notch inhibitor,
LY3039478 (Crenigacestat) has been reported to have poor
tolerability and results in disappointing clinical survival rates for
breast cancer patients (181).

5.1.3 Wnt signaling pathway

Wnt signaling pathway plays a role in promoting tamoxifen
acquired drug resistance in breast cancer. Won et al. have reported
that the tamoxifen-resistant MCF-7 cell line possesses
mesenchymal phenotype and significantly increased level of -
catenin (182). After treatment with classical WNT inhibitor ICG-
001 or PB-catenin siRNA, the expression of active [3-catenin was
inhibited, and viability of the drug-resistant cell line was also
reduced (182). Another Wnt inhibitor, IWP-2, has also been
proved to improve the sensitivity of breast cancer cells to
tamoxifen by inhibiting EMT (183). Similarly, pyridine
derivatives reverse the resistance of MCF-7 breast cancer cells to
tamoxifen by inhibiting the activation of Wnt/B-catenin and NF-«xB
pathways (184). It can be inferred that the Wnt signaling pathway
may act as a potential therapeutic regimen for alleviating resistance.

After treating TNBC cell lines with Wnt inhibitor FH535, the
expression of EMT-related markers (E-cadherin) and EMT-TFs
(Snail and Twistl) was significantly downregulated, indicating
partial reversal of the EMT process (185). Activation of Wnt/f3-
catenin pathway will induce trastuzumab resistance in breast cancer
cells with HER2 overexpression, thus, knocking out Wnt3 by siRNA
can result in downregulation of EMT-related expression and
restoration of trastuzumab’s inhibitory effect on cell growth (186).
Porcupine is a key factor regulating the release of Wnt ligands, and
LGK974 is a specific inhibitor of it (187). It is reported that
enhanced activity of the Wnt/B-catenin pathway induces drug
resistance in TBNC cells and enhances the expression of CSC-like
markers, which can be reversed by LGK974 (188, 189).

As a key receptor for Wnt/B-catenin signaling, Frizzled-7
(Fzd7) is abnormally expressed in TNBC, which is associated
with poor prognosis and resistance to chemotherapy (190, 191).
Fzd2 promotes the maintenance of mesenchymal phenotype in
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breast cancer cells, and endows cells with stemness and drug
resistance by combining Wnt5a/b and Wnt3 (192). Knockout of
Fzd2 significantly reduced the expression of ABC transporter
subfamily G isoform 2 (ABCG2) and IC50 of paclitaxel,
indicating that knockout of Fzd2 enhanced the sensitivity of
breast cancer cells to paclitaxel. Bevacizumab, as a first-line
combination drug for various cancers, has limited therapeutic
effect on TNBC, because it simultaneously activates Wnt/pB-
catenin signaling to induce EMT process and stemness of breast
cancer cells (190, 193, 194). A novel humanized antibody, SHH002-
hul, can specifically target Fzd7-positive cells and block the Wnt/[3-
catenin pathway, thereby inhibiting EMT and enhancing the anti-
breast cancer effect of bevacizumab (195). Another Fzd receptor
inhibitor OMP-18R5 (Vanicttumab), which has entered the clinical
trial phase, combined with paclitaxel has more excellent anti-tumor
effect than paclitaxel alone in the treatment of breast cancer (194).

Salinomycin has been proved to be an inhibitor of Wnt/B-
catenin signaling pathway in breast cancer (196). A study first
identified that salinomycin had specific toxicity against BCSCs and
reversed the general resistance of breast cancer to multiple drug
therapies, but the mechanism by which salinomycin inhibited CSCs
was not explained in this research (197). Over a decade later,
another study confirms that the combination of salinomycin and
doxorubicin can reverse the resistance of adriamycin-resistant
breast cancer cells (198). In addition, the genes related to the
Wnt/B-catenin pathway and EMT was found to be
downregulated, which suggested that this combination therapy
can suppress CSCs by inhibiting the Wnt pathway and inverting
the EMT process, ultimately reversing the drug resistance of breast
cancer cells. Salinomycin also can remove markers on the surface of
breast cancer cells by inhibiting Wnt signaling transduction, such as
CD44 and ABCG2, a drug resistance marker (199).

The role of Wnt signaling pathway in breast cancer has been
very clear and inhibitors of Wnt pathways are constantly being
developed and entering clinical trials (199). Endogenous agents and
pharmacological inhibitors targeting various elements of Wnt
pathway have also been widely studied and reported, such as
Foxy-5 (Wnt5a mimetic), DKK3, ZFP57 and so on (200).
However, these Wnt inhibitors are mainly reported to prevent cell
proliferation and tumor metastasis by inhibiting Wnt signaling. It is
unclear whether they can improve the drug sensitivity of breast
cancer by reversing the Wnt/EMT/drug resistance axis, which is
also the direction we can explore and study in the future.

5.1.4 Hh signaling pathway

Overexpression of Hh pathway has been proved to regulate the
proliferation and self-renewal of CSCs in different cancers,
including breast cancer, and can induce chemotherapy resistance
by activating multiple pathways (201). Analysis of embryonic
pathways showed that EMT markers were significantly increased
in TNBC cells resistant to paclitaxel and doxorubicin, accompanied
by activation of the Hh pathway and Notch receptor expression
(202). Moreover, cilengitide is reported to overcome the resistance
of HER2-positive breast cancer to trastuzumab by targeting ITGB3
to inhibit the activity of Hh pathway and the transcription of EMT-
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TFs (203). Therefore, targeting Hh signaling pathway is a potential
therapeutic direction to alleviate chemotherapy resistance and
improve prognosis of breast cancer.

Cyclopamine (11deoxojervine) is the prototype of Hh inhibitor
and is currently widely studied and used as an agent for preclinical
studies (204). It achieves the effect of blocking the Hh signaling by
binding to SMO signaling elements and inactivating them. Nitidine
chloride (NC), a natural bioactive alkaloid, has been proved to have
anti-cancer effect and enhance the inhibitory effect of doxorubicin
on breast cancer (205). NC regulates the expression of EMT-related
markers and reverses EMT by inhibiting Hh pathway, while
reducing the CSC/EMT-like properties of breast cancer cells by
regulating the pathway (206). Moreover, the combination of
cycloamine and NC can enhance the above effect, which indicates
that cycloamine can also enhance the sensitivity of breast cancer to
anti-cancer drugs by inhibiting Hh pathway (206). The consistent
research results show that another non-canonical Hh inhibitor
GANT61 (Glil inhibitor) can effectively increase the expression
of E-cadherin in breast cancer cells and down-regulate CSC/EMT-

10.3389/fonc.2025.1680751

like phenotype, thereby promoting cells apoptosis (207-209).
Moreover, its combination therapy with paclitaxel enhances the
efficacy of chemotherapy drugs for anti-cell growth and anti-CSC
activities (207). Some SMO inhibitors, such as IP1-926, GDC-0449
(Vismodegib) and LDE225 (Sonidegib), have undergone clinical
trials for breast cancer treatment (210-212). TNBC cells treated
with GDC-0449 or LDE225 showed downregulation of both Hh
target genes and genes regulating CSC-like phenotype (212).
Furthermore, the combination of LDE225 and docetaxel can
improve the sensitivity of tumors to chemotherapy, and its safety
and efficacy have been demonstrated (211, 212).

5.1.5 Other signaling pathways

Although there are many signaling pathways proven to be
associated with EMT or drug resistance, the exact description of
signaling pathways that can induce drug resistance through EMT is
limited, and there are relatively few reports on corresponding
inhibitors (Figure 5). Among them, there are comparatively more
discussions on the NF-kB and PI3K/AKT/mTOR signaling pathways.

Inhibitors of EMT-Related Signaling Pathways
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Inhibitors of EMT-related signaling pathways. Various inhibitory molecules block the activation of these pathways and the occurrence of EMT by
targeting key factors in the signaling pathways, thus reversing drug resistance in breast cancer. Image created using Bio-Render.com software.

Frontiers in Oncology

12

frontiersin.org


https://www.biorender.com
https://doi.org/10.3389/fonc.2025.1680751
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Luo et al.

Tannic acid can inhibit the activation of EMT and NF-kB signaling
pathway in MCF-7 cells, thereby suppressing the formation of drug-
resistant BCSCs and the expression of stemness markers (213).
Similarly, the co-delivery system of NF-xB inhibitor PDTC and
doxorubicin can alleviate the multidrug resistance of breast cancer
(214). Garcinol has been reported to inhibit NF-xB/Twistl signaling
activated by paclitaxel and downregulate the expression level of
EMT-TFs, thus significantly improving the efficacy of paclitaxel in
breast cancer in the orthotopic breast cancer model (215). Recently,
an increasing number of PI3K inhibitors have entered the clinical trial
stage and been proven to be effective in combination with other
traditional chemotherapy drugs for advanced breast cancer (216).
Among them, the isoform-specific PI3K inhibitor BYL719 (Alpelisib)
has been shown to overcome eribulin resistance by inhibiting EMT
and stemness of BCSCs (217). In addition to classic PI3K inhibitors,
Cx43t is also proved to inhibit the activation of PI3K/Akt signaling by
reducing Akt phosphorylation, thereby suppressing EMT and
increasing tamoxifen sensitivity (218). Luo et al. reported that 14,
15-EET induces the occurrence of EMT and cisplatin resistance by
activating the FAK/PI3K/AKT pathway, thus the antagonist of 14,
15-EET, 14, 15-EEZE, can reverse EMT and cisplatin resistance in
breast cancer (219). mTOR has been reported to interact with EMT-
related signaling pathways, including PI3K/Akt, Notch, TGF-f3, and
non-coding RNAs to maintain BCSC-like characteristics of cancer
cells and mediate drug resistance (220). The transmembrane protein-
45A (TMEM45A) induces glycolysis and EMT program by activating
AKT/mTOR signaling pathway, therefore the siRNA targeting
TMEM45A can reverse the above pathway and improve the
sensitivity of breast cancer to palbocilib (221). MK2206 (AKT
kinase inhibitor), TAK-228 (formerly INK128 or MLN0128, dual
TORC1/2 inhibitor) and RapaLink-1 (mTOR inhibitor) can alleviate
drug resistance by regulating the stability of CSCs phenotype and
inhibiting cell viability (222). Stevens LE et al. found that pSTAT3
regulates EMT-related genes in inflammatory breast cancer cell lines
resistant to paclitaxel and doxorubicin (223). Meanwhile, the
combination therapy of paclitaxel and JAK2/STAT3 inhibitor,
AZD1480, can prevent the occurrence of the drug-resistant
subpopulation with EMT-like characteristics (223). DUSP4 (MKP-
2) can block the initiation of EMT program by inhibiting the
activation of JNK signaling pathway, and restore the sensitivity of
breast cancer cells to doxorubicin (224).

Due to the crosstalk and interference between signaling pathways,
which affect and interact with each other, a drug or inhibitor may
induce the participation and alteration of multiple factors and
signaling pathways simultaneously. For example, besides
suppressing TGF-B/Smad and PI3K/AKT signaling, curcumin is
also reported to be associated with multiple signaling cascades,
such as Notch, NF-kB and Wnt/B-catenin pathway (163).
Especially in the Wnt pathway, curcumin hampers activation of
Slug and suppresses CSCs by blocking nuclear translocation of -
catenin (225). Similarly, in addition to targeting the Wnt pathway,
salinomycin in combination with budesonide may suppress stemness
of TNBC cells and activate apoptosis by inhibiting AKT/mTOR
pathway and EMT (226). Pentadecanoic acid can inhibit multiple
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survival signaling pathways (MAPK, ERK1/2, mTOR and EGFR) and
EMT, resulting in reversal of tamoxifen resistance (227). Consistently,
BYL-719, as a PI3K inhibitor, can not only block the PI3K/AKT/
mTOR pathway, but also inhibit the Notch, JAK/STAT, and MAPK/
ERK pathways, ultimately inhibiting EMT and overcoming drug
resistance (217). Therefore, the action of a drug or inhibitor may
involve more than one signaling pathway, and overcoming drug
resistance may be the result of the synergy and interaction of
multiple pathways.

5.2 Inhibitors of EMT-TFs

Targeting EMT-TFs is another therapeutic strategy to overcome
drug resistance in breast cancer. It is reported that overexpression of
Snail in MCF-7 cells increases the level of P-gp and shows a tendency to
develop resistance to adriamycin, therefore, Snail is a promising target
(228). SNAII enhancer RNA depletion inhibits the EMT process and
chemoresistance of breast cancer cells (229). MCE-7 cells transfected
with pCDNA3.1-Snail can promote EMT characterization, which leads
to an increased expression of BCRP and drug resistance to
mitoxantrone (230). AMP-activated protein kinase (AMPK) agonists
can enhance the sensitivity of TNBC cells to chemotherapy by
phosphorylating Snaill (231). The interaction between N-terminal
SNAG repressor domain and LSD1 plays an important role in Slug
activating EMT (65, 232), and LSD1 can maintain the CSC-like
phenotype and induce doxorubicin resistance in breast cancer (233).
The application of LSD1 inhibitors, 2-PCPA and GSK-LSD1, can
significantly reduce CSCs, and the combination therapy with
doxorubicin improves the sensitivity of cancer cells (233).

The overexpression of TWIST1 in palbociclib-resistant luminal
breast cancer activates EMT (234). Moreover, the survival time of
mice treated with pSilencer-twist and adriamycin was significantly
prolonged compared to mice treated with adriamycin alone,
suggesting that inhibiting Twist may be a possible method to
enhance chemotherapy efficacy and reverse drug resistance (20).
Similarly, Twistl siRNA can reverse the high expression of EMT
markers induced by adriamycin, and the anti-cancer efficacy in
combination with adriamycin is significantly better than that of
monotherapy (20). The CDK1 inhibitor RO-3306 can significantly
inhibit the CSC/EMT-like phenotype and increase the sensitivity of
TNBC cells to cisplatin and paclitaxel by downregulating the
protein level of TWIST1 (235).

Growing evidence shows that ZEB influences the sensitivity of
cancer cells to chemotherapy by regulating EMT (236). LBH589
(Panobinostat) is reported to mediate the inhibition of EMT by
targeting ZEB expression, and inhibit BCSCs and enhance the
apoptosis of TNBC cells by regulating EMT when combined with
salinomycin (237, 238). Eribulin reverses EMT progression by
disrupting the interaction between ZEBI and SWI/SNF, thereby
preventively increasing the sensitivity of TNBC cells to drugs (239).
PEG10-siRNA has been reported to inhibit EMT and overcome drug
resistance by activating SIAHI, the post-translational degrader of
ZEBI (240).
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TABLE 2 EMT-associated tumor suppresser miRNAs and their targets for

drug resistance in breast cancer.

microRNA Direct/indirect targets Reference
miR-27b ENPP1, ABCG2 (244, 245)
HMGB3
R0 SOX4, TGF-B/Smad (73, 246)
TWF1
miR-34a MCT-1 (247, 248)
Notch/NF-kB, RAS/RAF/MEK/ERK
miR-125b Sema4C (249)
miR-129-5p SOX4, Twistl, Snail (72, 250, 251)
miR-149-5p IL-6, SNAIL (252)
miR-199a-5p PIK3CD (253, 254)
miR-200 family ZEB
(miR-200a/b/c, miR- c-MYB (70, 255-264)
141, miR-429) FN1
miR-205 Notch2, ZEB, (265-267)
HOXD?Y, Snail
miR-340-5p LGR5, Wnt/B-catenin (268)
miR-375 mI:tanfzim (269, 270)
miR-383 Gadd45g (271, 272)
miR-452 Slug (273)
miR-489 Smad3 (274)
miR-622 HIF-1o (275)
miR-644a CTBPI, p53 (276)
miR-671-5p FOXMI1 (277)
miR-708-3p ZEBI1, CDH2, vimentin (278)
miR-873 ZEB1 (279)
miR-4521 FOXM1 (280)
miR-6838-5p WNT3A (281)

Although EMT-TFs usually exert effects by directly affecting
EMT, there is evidence to suggest that EMT-TFs can also induce
drug resistance through other pathways without affecting the EMT
process. It is reported that Snail or Slug induces tamoxifen
resistance in breast cancer by activating EGFR/ERK pathway
independent of EMT, and inhibitors of EGFR/ERK pathway can
restore the sensitivity of cancer cells with high expression of Snail/
Slug to tamoxifen, without reversing the EMT phenotype of these
cells (241). This further confirms what was previously mentioned,
that regulation of EMT-TFs may be one of the necessary conditions
for the occurrence of EMT, but EMT is not the inevitable result of
abnormal expression of EMT-TFs (12). As mentioned above, EMT-
TFs can further activate related signaling pathways through positive
feedback to enhance EMT, so targeting EMT-TFs can also inhibit
activation of signaling pathways. It is reported that after Sox4
expression of breast cancer cells is knocked down by siRNA,
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Wnt/B-catenin signaling is also observed to be synchronously
inhibited through feedback loop, and subsequently, EMT, CSC-
like features and cisplatin resistance are reversed (242).

5.3 MicroRNA

In recent years, many studies have delved into and reported on
the relationship between miRNAs and EMT-induced drug
resistance, and the roles of miRNAs are gradually clarified (243).
Some miRNAs can reverse drug resistance by targeting the signaling
pathways or EMT-TFs mentioned above, while others can exert
their effects through other key molecules related to EMT. Herein,
we only introduce the tumor suppressor miRNAs that are
prominent in breast cancer and the critical processes to function.
Other miRNAs are listed in Table 2.

The miR-200 family, as one of the most widely studied EMT-
related miRNA, consists of five members, namely miR-200a, miR-
200b, miR-200c, miR-141, and miR-429 (282, 283). MiR-200 family
members directly target ZEB to exert inhibitory effects and reverse
EMT processes by upregulating E-cadherin expression (70, 255-
258). For TNBC cells in the mesenchymal state, tamoxifen can
promote upregulation of miR-200c through demethylating its
promoter, thereby reversing EMT and increasing sensitivity to
traditional chemotherapeutic agents (259). MiR-200c restored the
sensitivity of HER2-positive breast cancer to trastuzumab by
targeting ZNF217/TGF-B/ZEB1 axis and suppressing CSC-like
phenotype (260, 261). MiR-200b/c regulates E-cadherin by
targeting ZEB, thereby inhibiting EMT and increasing sensitivity
of breast cancer cells to doxorubicin (262). The overexpression of
miR-200b/c has also been found to downregulate c-MYB, thereby
reversing EMT-induced tamoxifen resistance in ER-positive breast
cancer (263). In addition, miR-200b can also reverse EMT-induced
chemoresistance by targeting FN1 (264).

The miR-30 family is regarded as an important group of
microRNAs that negatively regulates the malignant behaviors of
tumors. It has been demonstrated that the downregulation of miR-
30a facilitates EMT process and metastasis by modulating EMT-
TFs (284-288). Moreover, miR-30a inhibit the initiation of EMT
program and drug-resistant CSC-like phenotype by forming a
double negative feedback loop with SOX4 (73). MiR-622 can
exert the inhibitory effect of miR-30a on EMT and drug
resistance by increasing its expression (275). Another family
member, miR-30c, has also been reported to directly target TWF1
to reverse EMT, thereby restoring sensitivity of cells to
chemotherapy (246).

The miR-34 family, especially miR-34a, is one of most
intensively studied miRNAs in breast cancer (289). The
combination therapy of miR-34 and traditional anti-cancer agents
can inhibit drug resistance in various types of cancer (290). MiR-
34a is reported to be able to target EMT-TFs to inhibit the EMT
process (291). In TNBC, miR-34a targets MCT-1 to control M2
macrophages polarization, thereby reprogramming EMT and
inhibiting stemness closely associated with drug resistance (247).
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Furthermore, the combination treatment of miR-34a and
doxorubicin can significantly downregulate the expression of
Snail by inhibiting the Notch/NF-kB and RAS/RAF/MEK/ERK
pathways, thereby preventing doxorubicin-resistant breast cancer
progression (248).

Although miR-129 may play a dual role in the development of
tumors, more evidence tends to suggest that it acts as a tumor
suppressor to prevent the malignant progression of breast cancer. In
MCEF-7 cells treated with adriamycin, the enhanced miR-129-5p
expression significantly downregulates the expression of
mesenchymal markers (vimentin and N-cadherin), indicating
inhibition of EMT (72). By negatively regulating the expression of
SOX4, miR-129-5p significantly reduces the IC50 of several drugs,
including adriamycin, which proves that breast cancer cells are
more sensitive to drugs. In addition, miR-129-5p negatively
regulates Twistl and Snail, therefore reverse the EMT process and
eliminate epirubicin resistance (250, 251).

The role of miR-205 in different types of cancer is controversial,
with dual effects of inhibition or carcinogenesis. According to
existing reports, miR-205 typically exhibits tumor suppression
and chemosensitivity enhancement in breast cancer, even though
the specific effects are variant in different subtypes (292). MiR-205-
5p has been proved to enhance the sensitivity of breast cancer to
chemotherapeutic agents, including doxorubicin and docetaxel
(293, 294). MiR-205 can negatively regulate the phenotype and
activity of drug-resistant BCSCs by inhibiting related elements of
EMT (265, 295). There are many known targets of miR-205 in
breast cancer, including transcription factors ZEB1, ZEB2 and SIP1,
which are responsible for regulating EMT (69, 267, 292). The
upstream regulators of miR-205, polycomb protein MEL-18 and
ligand Jagged1 also suppress the initiation of EMT via this pathway
(267). Moreover, miR-205-5p can inhibit chemoresistance of TNBC
by regulating Snail (266). The miR-205 and miR-200 family have
similar functions and share several target genes, such as ZEB1 and
SIP1, which may suggest that they may share more commonalities
(69, 296). The combination therapy of miRNA-200/205 has been
increasingly reported for regulating EMT and overcoming drug
resistance (297).

The inhibitory function of some microRNAs on EMT and their
anti-tumor metastasis effects have been widely reported, but
whether they can overcome drug resistance by suppressing EMT
has not been clearly revealed, which will be an orientation worthy of
further research (298). It is worth noting that the role of microRNA
in breast cancer may not be unidirectional promotion or inhibition,
but often dual action. MiR-125b has been proved to reverse EMT
and prevent drug resistance in many cancers, including breast
cancer and lung cancer (299, 300). However, other studies
reported the opposite results simultaneously that high levels of
miR-125b are more likely to induce drug resistance and lead to poor
prognosis in breast cancer patients (301, 302). The miRNAs listed
above with anti-tumor effects in breast cancer may simultaneously
promote malignant progression in other tumors or subtypes, which
further reflects that the tumor environment is a complex and
multifactorial system. Thus, the therapeutic strategy targeting
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miRNA still requires further exploration and investigation for
future clinical application.

5.4 Limitations of molecules targeting EMT

Although some EMT inhibitors have entered clinical trials and
been proven to improve the efficacy of conventional therapies, the
safety in the long-term use of them is currently unclear (303).
Connolly EC et al. first reported that long-term use of LY2109761
may induce an increase in the levels of EMT-related markers, such as
E-cadherin, and would lead to acquired resistance to LY2109761
(304). Subsequently, there is increasing evidence that although
blocking TGF-f signaling may provide clinical benefits, treatment
with TGF-B inhibitors alone may lead to serious adverse reaction
(156). In addition, the toxicity of EMT inhibitors remains a potential
risk. For example, small molecule TGF-f inhibitors have shown
severe cardiac toxicity in preclinical animal models (305, 306).
miRNA is another promising research field for overcoming drug
resistance. miRNAs may play opposite roles in different cancers, and
even their functions may vary in different subtypes of the same
cancer. This guides us to make more precise distinctions about the
roles of miRNAs in tumors. In the past 20 years, the number of
identified miRNAs and their targets has been increasing at an
incredible rate. However, there are still many questions that need
to be answered before miRNA therapy can be widely applied in
clinical practice. How to prevent microRNA degradation in vivo and
how to efficiently targeted delivery are still unresolved issues (307).
Epigenetic modifications are closely related to EMT, stemness and
drug resistance, which has aroused the interest of researchers in this
field and has been widely discussed. In addition to miRNAs, the
corresponding epi-drugs, such as DNA modifying agents, inhibitors
of histone acetyltransferase (or deacetylase or methyltransferase or
demethyltransferase), are also gradually emerging, trying to be
applied in the treatment of breast cancer (308).

6 Conclusion

EMT is a complex and dynamic biological program that
typically occurs during embryonic development and tumor
progression. It is essentially a major reprogramming involving
gene expression, which can affect the macroscopic malignant
development of tumors by regulating the fate and behavior of
cells. EMT has been reported to induce invasion and metastasis
of breast cancer, and its impact on drug resistance is also becoming
clearer. Increasingly direct evidence shows that EMT-related
markers are closely related to the resistance to therapy in breast
cancer (309, 310). The present review summarizes the current
knowledge regarding EMT-induced drug resistance in breast
cancer. The EMT-related regulatory network constitutes a
complex system, with TGF-f, Notch, Wnt, and Hh pathways
being the most explored and clearly defined pathways in breast
cancer. These signaling pathways crosstalk and interact with each
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other, collectively activating EMT-TFs, which target the hallmarks
of EMT and initiate the EMT program. Currently, the SNAIL,
TWIST, and ZEB families are widely acknowledged as the primary
transcription factors driving EMT. Epigenetic modifications also
play a role in the EMT process by influencing the function of EMT-
TFs, with particular attention being paid to non-coding RNAs.
None of the elements within the EMT-related regulatory network
functions in isolation. They can synergize or antagonize with other
elements, forming positive or negative feedback loops. The
molecular mechanism underlying EMT-induced drug resistance
in breast cancer is still unclear, yet several possible mechanisms
have been extensively proposed. Among them, the close
relationship and high phenotypic similarity between EMT cells
and drug-resistant CSCs have garnered the most attention.
Furthermore, the hybrid epithelial/mesenchymal state of EMT
cells endows them with a high degree of plasticity, which makes
them more prone to drug resistance. Additionally, increased drug
efflux, resistance to apoptosis and activation of DDR pathways
induced by EMT contribute to the decreasing responsiveness of
breast cancer cells to anti-tumor drugs. The elucidation of the
regulatory network related to EMT and the potential mechanisms of
EMT-induced drug resistance may contribute to the design of better
targeted therapies combined with conventional treatments.
Reversing the EMT process by modifying TGF-, Wnt, Notch,
Hh or other signaling pathways is expected to overcome drug
resistance in breast cancer. Numerous inhibitors of these
signaling pathways have advanced to preclinical or clinical trial
phase and have been proven to partially alleviate drug resistance by
reversing EMT. Directly targeting EMT-TFs can also make breast
cancer cells more susceptible to anti-tumor drugs. Furthermore, as
the interplay between miRNAs and EMT becomes increasingly
well-understood, it is also a promising direction of research to
leverage tumor suppressor miRNAs to regulate EMT and restore
the sensitivity of breast cancer to anti-cancer drugs.

In recent years, with the development of technologies such as
tumor genomics, transcriptomics and proteomics, the association of
EMT and tumor drug resistance have attracted great interest. In the
future, interdisciplinary approaches should be adopted to EMT
research to further confirm its correlation with drug resistance and
clarify the dominant mechanisms. For instance, database-based
bioinformatics analysis can be used to develop personalized and
customized treatments to overcome tumor drug resistance.
Although the mechanisms and influencing factors of drug
resistance are becoming increasingly complex, new targets are
emerging to offer new hope to cancer patients worldwide.
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