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Introduction: Precise and timely visual assistance is critical for detecting and
completely removing colorectal cancer precursor polyps, a key step in
preventing interval cancer and reducing patient morbidity. Current endoscopic
workflows lack real-time, integrated solutions for simultaneous polyp diagnosis
and segmentation, creating unmet needs in improving adenoma detection rates
and resection precision.

Methods: We propose PESNet, a real-time assistance framework for standard
endoscopy workstations. It simultaneously performs frame-level polyp diagnosis
and pixel-level polyp outlining at 225 FPS, with minimal additional latency and no
specialized hardware. PESNet dynamically injects a “presence of polyp” prompt
into the segmentation stream, refines lesion boundaries in real time, and
compensates for lighting/mucosal texture changes via a lightweight adaptive
module. Evaluations were conducted on PolypDiag, CVC-12K benchmark
datasets, and replay resection scenarios. Latency was measured using
TensorRT FP16 on an RTX 6000 Ada GPU.

Results: On PolypDiag and CVC-12K, PESNet improved diagnostic F1 from 95.0%
to 97.2% and segmentation Dice from 85.4% to 89.1%. This translated to a 26%
reduction in missed flat polyps and a 15% reduction in residual tumor margins
after cold snare resection. End-to-end latency (1080p) was 12.6 + 0.3 ms per
frame, with segmentation (4.4 ms), prompt fusion (0.6 ms), and prototype lookup
(< 0.2 ms) all satisfying a 40 ms clinical budget with > 3x headroom.
Discussion: These clinically significant improvements demonstrate PESNet's
potential to enhance adenoma detection rates, support cleaner resection
margins, and ultimately reduce colorectal cancer incidence during routine
endoscopic examinations. Its real-time performance and hardware
compatibility make it feasible for integration into standard endoscopic
workflows, addressing critical gaps in polyp management.
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1 Introduction

Colorectal cancer (CRC) continues to rank within the global top
three for both incidence and cancer-related mortality (1, 2, 3).
Population-based registries now confirm a further “left-shift” toward
diagnoses in adults< 50 years, underscoring modifiable lifestyle and
environmental risks (4). Optical colonoscopy remains the gold-
standard screening test because it couples direct mucosal inspection
with same-session endoscopic mucosal resection (EMR) of
premalignant polyps (5). Yet large tandem-procedure meta-analyses
still find that conventional white-light colonoscopy misses = 25% of
adenomas. Multiple randomised and real-world trials published in
2024-2025 now show that computer-aided detection (CADe) raises the
mean adenoma-detection rate (ADR) by 20-30% and cuts miss rates
nearly in half—even in community hospitals and national health-care
systems (6, 7). Reflecting this momentum, both the European Society
of Gastrointestinal Endoscopy (ESGE) and the American
Gastroenterological Association (AGA) issued 2025 guidance on
CADe-assisted colonoscopy (8); while ESGE endorses its use to
improve quality indicators, the AGA Living Guideline judged the
long-term outcome evidence “very low certainty” and therefore made
no formal recommendation pending further data (9, 10).

Three inter-related bedside bottlenecks still limit such
deployment. First, stringent latency thresholds dominate
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engineering design: 1080p video streams at 25-30fps allow
40ms per frame for all Al processing; many 3-D CNN or Vision-
Transformer stacks still deliver< 10fps, and even state-space
backbones approach the limit once a full-resolution segmentation
decoder is attachedSedeh and Sharifian (11, 12). Second, severe data
imbalance persists: pixel-level annotated frames number only in the
low thousands, whereas image-level labels are an order of
magnitude more plentiful, so models can decide “polyp present”
with high confidence yet delineate flat or sessile-serrated lesions
poorly (13, 14, 15). Third, inter-institutional variability erodes
generalisability: shifts in illumination spectra, colour balance,
optical filters and vendor-specific post-processing mean that a
high-performing model in one centre may suffer a marked Dice-
score drop in another; routine site-specific retraining is impractical
for both workflow and regulatory reasons (16, 17).

To address these hurdles we introduce PESNet, a cross-task
prompt-learning framework that couples the real-time efficiency of
a state-space video backbone with the parameter-sparse adaptability
of an SVD-based Segment-Anything adaptor (Figure 2). A
discriminative token learned from the clinical-grade PolypDiag
dataset is verbalised on-the-fly into a “polyp present/absent”
prompt, which tightens pixel boundaries in the segmentation
branch; the resultant mask area feeds back to stabilise the
diagnostic head (10). Adaptation is confined to the singular

baseline reference annotation layer

algorithmic layer

pathological layer

FIGURE 1

Visual overview of dataset. (a) original endoscopic images of colorectal mucosa, for observing polyp morphology and surroundings; (b) polyp area
mask annotation (white), defining polyp boundaries; (c) gridded/contoured polyp areas for algorithmic recognition and segmentation; (d) close-ups

of polyps with distinct pathological types.
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Overview of the proposed model architecture. Intuitive view: the diagnosis head answers “is there a polyp now?”, then its yes/no signal is distilled
into a simple prompt that sharpens the segmentation mask, while a tiny memory block keeps predictions stable under illumination drift

spectra of every spatial and temporal weight matrix via a dual-axis
S-LoRA scheme, adding only = 0.57% (136k) new parameters yet
sustaining 225fps on a single RTX 6000 Ada GPU—comfortably
within workstation latency budgets. A 256-vector prototype
memory executes a single cosine lookup in<0.05ms, auto-
calibrating logit bias and mitigating illumination or colour drift
without retraining.

Collectively, these modules lift the Dice coefficient on CVC-12K
by +3.7percentage points and the F; score on PolypDiag by
+2.2percentage points. Clinically, this translates to a 26%
reduction in missed flat lesions and a 15% decrease in residual-
tumour margins during replayed cold-snare resections—achieved
on workstation-class hardware without extra annotation or
equipment costs. PESNet therefore delivers a guideline-
concordant, interactive and genuinely real-time CADe solution
poised to improve ADR, secure cleaner resection margins, and
ultimately lower CRC incidence in everyday practice.

2 Broader related work and
positioning

Beyond colonoscopy, prompt-aware or attention-enhanced
vision models have advanced diverse medical tasks. For example,
EEG-based epilepsy detection benefits from entropy-driven deep or
CNN-based pipelines that marry non-linear complexity measures
with learnable feature extractors (18, 19). In neuro-oncology, hybrid
attention CNNs and Transformer-augmented pipelines improve
MR brain-tumor analysis (20, 21), while RepVGG style enhanced
backbones and their dual-encoder variants (e.g., ViT+RepVGG)
provide deployment friendly speed/accuracy trade-offs for
multimodal tumor segmentation (22, 23). These trends motivate
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lightweight attention and adaptor designs that transfer well to
endoscopy. We therefore situate PESNet among recent
Transformer-hybrids Jia and Shu (24), self-supervised/pre-
training and PEFT practices for SAM-family adaptation (25), and
multi-modal fusion approaches (26), emphasizing parameter-
efficient prompting/adapters as a practical bridge from foundation

models to real-time clinical use.

3 Method

A visual overview of the dataset is presented in Figure 1, which
includes representative colonoscopic images covering normal mucosa
and various polyp types, laying a foundation for diverse model training.
Our framework performs simultaneous frame-level diagnosis and
pixel-accurate delineation while 75 remaining within the strict 40 ms
latency budget imposed by modern endoscopy workstations.

Our framework performs simultaneous frame-level diagnosis
and pixel-accurate delineation while remaining within the strict 40
ms latency budget imposed by modern endoscopy workstations. It
couples (i) a state-space video backbone, (ii) a prompt-aware
segmentation adaptor, and (iii) an ultra-lightweight prototype
memory, all optimised end-to-end under a single learning
objective. The following subsections present the theoretical
motivation, algorithmic details and computational consequences
of each component in continuous prose.

3.1 Pseudocode of online inference

The pseudocode for online inference is presented in
Algorithm 1.

frontiersin.org
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Visualization of key feature maps; the fused map integrates Transformer and CNN features

Input: RGB frame x.; hidden state s;_1; prototype bank P
Output: diagnosis y, € {0,1}; segmentation mask M.
Patch-split x. — tokens; extract spatial tokens h{

h¢, s¢ — Mamba(h{, s, ;)

Append discriminative token d:; update dr and logits z
Project prompt p «— W,dr + b,

M, — fssau(he, p) //SAM head with S-LoRA
Compute prototype weights s, « cos (dy, my); bias Az «— B
softmax(s)

25— z2+AZ; Vo Klo(27) 2 1]

returny M., andcarrys; tostept+1

Algorithm 1. PESNet Online Inference (per-frame at 1080p) Pseudocode
of online inference.

Algorithm 1 details the online inference process of PESNet,
covering the entire workflow from input frame processing to
outputting diagnostic results and segmentation masks. This
process ensures real-time execution at 1080p resolution.

3.2 State-space backbone

Given a colonoscopy clip X = {x,}L, with x, € RF*W*3,
every frame is first divided into P x P non-overlapping patches,
yielding a length- N = HW /P? token sequence. Each frame is then
processed by a bidirectional Mamba block whose implicit
recurrence offers linear, rather than quadratic, token-interaction
cost. The resulting spatial representation h§°) is forwarded to a
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causal temporal Mamba, which maintains a hidden state s,_; and
updates

(h,,s,) = Mamba (h\",s,_,). (1)

Equation 1 describes the update process of spatial
representation and hidden state by the Mamba module. Because
the Mamba kernel is convolutional and pre-computed, the full
spatio-temporal pipeline scales as O(TD + ND) in runtime and O(
D) in memory, permitting 1080p inference at 30 fps on an
NVIDIA® Jetson NX. A discriminative token d, is appended to
each temporal step; its final state d; drives a logistic classifier

j =o(w!dy), @)

Equation 2 maps discriminative tokens to polyp existence
probability via a logistic classifie, where y =1 denotes “polyp
present”. In this way, the backbone sustains real-time throughput
while retaining long-range temporal context—an essential
prerequisite for reliable, clinic-ready CADe.

3.3 Cross-task prompt distillation

PolypDiag provides accurate frame labels but no masks, whereas
CVC-12K supplies high-quality masks yet lacks labels. Cross-Task
Prompt Distillation reconciles this asymmetry by converting the
discriminative token dr into a text-like prompt. A linear projection.

p=W,d;+b, (3)
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Equation 3 implements linear projection of discriminative
tokens into the prompt space. Maps the token into prompt space;
p is embedded into the fixed template “ (SOS) p (EOS)“ and
injected into the text encoder of an SVD-adapted Segment-
Anything head (S-SAM). Conditioned on the backbone visual
tokens h;, S-SAM yields the dense mask

M; = fs_sam (hi,p) € 0,177 (4)

Equation 4 illustrates the process by which S-SAM generates
dense masks based on visual tokens and prompts. Coherence
between diagnosis and delineation is enforced by matching the
expected mask area to the classification probability:

Ly = (mean (M) - 7). (5)

Equation 5 constrains the consistency between diagnosis and
segmentation via distillation loss. Minimising Ly tightens an
upper bound on the conditional mutual information I(Y; M | X),
empirically reducing mask entropy and sharpening lesion borders
without extra pixel-level annotation.

3.4 Dual-axis S-LoRA

Full fine-tuning of the backbone is infeasible within clinical
memory budgets, and conventional low-rank adapters still incur
quadratic products at inference. In Dual-Axis S-LoRA, all original
weights remain frozen; only their singular spectra are modulated.
For a frozen weight matrix W = Udiag (o)V" we learn scale-shift
vectors o, B € R” and re-parameterise

W = Udiag (@ 6 + B)V". (6)

Equation 6 enables the modulation of frozen weights by Dual-axis
S-LoRA. A single pair (¢, f) is shared by every spatial Bi-Mamba and
temporal Mamba layer, limiting new parameters to 2r—about 0.25%
of the backbone. The spectra-sharing regularises high-frequency
noise, enhancing robustness to motion blur and electronic artefacts
while preserving the vanilla backbone’s 46 fps throughput.

3.5 Prototype-memory adaptation

Variation in illumination, colour balance and vendor post-
processing induces systematic logit shifts. We counter this drift with a
prototype memory P = {my}5 |, K = 256, of unit-norm vectors. At
inference, the normalised discriminative token dy is compared to the
bank via cosine similarity, producing weights s; = m]d;. Softmax-
normalised weights then form a bias vector Az = Bs, with learnable B
€ R**K_ The adjusted logits z* = z + Az feed directly into the sigmoid,
adding < 0.2 ms latency on embedded GPUs. During training,
prototypes track class-conditioned token means by exponential
moving average, while an orthogonality penalty ||[M™M - IH?
discourages redundancy. Removing the memory reduces Dice by over
two points under illumination shift, confirming its clinical value.

3.6 Loss function and optimisation

The total loss combines binary cross-entropy for diagnosis, soft-
Dice for segmentation, the distillation term above and the prototype
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orthogonality regulariser:

2
L= [’BCE + ‘CDice + /ldist‘cdist + A’memHMTM - I| P (7)

Equation 7 defines the model’s total loss function with Ag =
0.2 and Ay, = 0.01. All modules are trained jointly using AdamW
(initial learning rate 3 x 107, cosine decay, weight decay 0.05).
Convergence is reached in 35 k iterations on two RTX 6000 Ada
GPUs. redHyperparameters were selected by a coarse-to-fine search
(Optuna, 50 trials; search ranges in Table 1), then fixed across all
datasets and seeds for fair comparison. The final network—
including frozen backbone, spectral scale-shift vectors, prompt
projector and prototype memory—occupies 820 MB of VRAM
yet maintains 46 fps 1080p inference on an NVIDIA® Jetson Xavier
NX, thereby satisfying real-time clinical constraints while materially
improving both diagnostic accuracy and delineation fidelity.

4 Experimental results
4.1 Implementation details

All experiments were conducted on two NVIDIA® RTX6000
Ada GPUs. One card executes the forward and backward passes,
whereas the second handles asynchronous data streaming;
consequently, all throughput figures reflect a single RTX6000 Ada.

In all experiments we rely on two public benchmarks—
PolypDiag and CVC-12K —to ensure a fair, reproducible
evaluation (Figure 1). PolypDiag fuses Hyper-Kvasir,
LDPolypVideo and other endoscopy sources, yielding 253 short
gastroscopy clips (5 s each, 30 fps; 485561 frames in total) that carry
only video-level binary labels (Polyp vs. Normal, 63% positive).
Following the authors’ protocol, we split the videos 70%/15%/15%
into training, validation and test sets, and centre-crop every frame
before resizing to 224 x 224 to normalise the temporal dimension
and reduce memory consumption. Conversely, CVC-12K consists
of 18 colonoscopy videos sampled at 25 fps to 11-954 RGB frames
(384 x 288), of which 10-025 contain a polyp. Each frame is
annotated with an elliptical bounding box localising the polyp
centre; these boxes are also convertedinto pseudo-masks for
weakly-supervised segmentation. We adopt the official cross-

TABLE 1 Shared hyperparameter search (Optuna, 50 trials) and selected
values.

Applied to

Hyperparameter Range PESNet .

yperp 9 baselines

Learning rate [1x107°,3x107°] 3x107* grid within range
matched best per

Weigh! ,0.1 .

eight decay [0,0.1] 0.05 model

Batch size {8,12,16} 12 as memory allows

Prompt distill Agis [0.05,0.4] 0.2 n/a

Mem. orthogonality 0.001,0.05] 0.0 n/a

Ammem

S-LoRA rank r {8,12,16} 12 n/a
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patient split of 8/5/5 videos for train, validation and test,
guaranteeing strict patient-level independence. This unified set-up
allows the proposed method to be assessed consistently across
stomach and colon domains under identical implementation and
evaluation settings.

We adopt the official splits of PolypDiag (12125 RGB frames,
binary labels) and CVC-12K (12189 frames, single-class masks)
without modification. During training, frames are rescaled to 960 x
540 and randomly cropped to 512 x 512; inference is performed at
the native 1920 x 1080 resolution to match clinical display quality.

The frozen EndoMamba backbone (24 M parameters) is
augmented with (i) a prompt-projection MLP, (ii) a dual-axis
spectral scale-shift vector shared across all Mamba layers, and
(iii) a 256-vector prototype memory—together adding 136 k
trainable parameters (= 0.57% of the backbone). Optimisation
proceeds for 35 k iterations with AdamW (initial learning rate
3 x 107, cosine decay, weight decay 0.05, batch size 12).

PolypDiag is evaluated with Accuracy and F,; CVC-12K with
Dice. Throughput (FPS) is averaged over 1-000 full-HD frames
using TensorRT 8.6 with FP16 enabled. Reported values represent
the mean of three random seeds; 95% confidence half-widths are <
0.2 pp for Accuracy/F; and < 0.3 pp for Dice.

4.1.1 Hardware compatibility, latency and
memory.

We deploy as an overlay on standard endoscopy towers (1080p
HDMI ingest; 60Hz out). End-to-end latency breakdown at 1080p:
capture & preproc 3.1ms, backbone 4.5ms, S-SAM 4.4ms, prompt/
memory fusion 0.6ms, compositor 0.4ms; total 12.6ms. Peak VRAM
for inference: 820MB; FP32 fallback: 1.47GB. The computational
budget is 41.8GFLOPs/frame (backbone 34.9, S-SAM 6.3, others
0.6). On Jetson Xavier NX (FP16), throughput is 46FPS at 1080p
with identical accuracy.

10.3389/fonc.2025.1679826

4.1.2 Fair tuning of baselines and statistical
testing.

All baselines were re-timed on the same hardware with unified
dataloaders/augmentations and tuned via identical Optuna budgets. We
report Wilcoxon signed-rank tests over per-video F;/Dice against the
strongest baseline and Friedman rank tests across methods (Section)??.
Ref numbers are shown next to method names in Table 2, and metric
headers include arrows (1) to indicate directionality.

4.2 Comparison with the state of the art

The visualization of key feature maps is shown in Figure 3; the
fused map eftectively integrates Transformer and CNN features.
Clinically, a 2.2 pp F; gain coupled with a 3.7 pp Dice boost implies
that a 30-min screening (50000 frames) would surface six additional
flat lesions on average and yield crisper resection margins—without
slowing the examination or introducing perceptible latency. The
diagnostic classification performance of PESNet on the validation
set is shown in Figure 5. The ROC curve achieves an AUC of 0.978,
and the confusion matrix further confirms the model's accurate
distinction between polyps and normal tissues, with a false positive
rate of only 3.5% and a false negative rate of 2.1%, fully
demonstrating its diagnostic reliability.

4.3 External generalisation to unseen
collections

We further evaluated on Kvasir-SEG (1,000 frames with masks;
unseen during training) and ETIS-Larib (196 frames; small,
challenging), training on PolypDiag+CVC-12K only. PESNet
achieved Dice 88.3% + 0.4 on Kvasir-SEG and 82.7% + 0.6 on ETIS,

TABLE 2 Comparison with prior work on an RTX6000 Ada at 1080 p. Higher is better (1).

1

Backbone type PolypDiag Acc
ResNet50-CLS (2016) 2-D CNN 93.7
ViT-B-CLS (2021) Vision Transformer 94.5
EndoMamba-CLS (2024) State-space video 95.8
U-Net (2015) 2-D CNN —
PraNet (2020) Rev-attention CNN —
HarD-MSeg (2021) Hierarchical CNN —
EndoMamba-Seg (2024) State-space video —
S-SAM full-LoRA (2024) SAM+LoRA 953
S-SAM SVD-LoRA (2024) SAM+SVD 94.9
MedT-tiny (2021) Hybrid Transformer —
PESNet (ours) Prompt state-space 97.5
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PolypDiag F; 1t CVC-12K Dicet | FPS 1
93.0 — 395
93.9 — 92
95.0 — 230
— 80.7 205
— 825 142
— 832 178
— 85.4 45
94.8 85.1 68
94.2 84.0 84
— 84.4 107
972 89.1 225
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outperforming EndoMamba-Seg by +3.1 pp and +2.6 pp respectively
(Wilcoxon p < 0.01 on per-image Dice). This demonstrates cross-
dataset robustness without site-specific retraining.

4.4 Training dynamics and convergence
analysis

During the 100-epoch optimisation, PESNet exhibits the canonical
rapid-convergence — fine-tuning — saturation pattern (see Figure 4).
In the first 20 epochs, training loss plummets from 0.98 to 0.42 while
validation accuracy rises to 85%, confirming that a warm-up followed
by cosine annealing efficiently captures low-frequency structures.
Between epochs 20-70, the loss plateaus whereas validation Dice
climbs from 90.3% to 95.6%, indicating that the prompt-based state-
space backbone continues to refine high-frequency semantics at lower
learning rates. A transient uptick in validation loss around epoch 75
signals mild over-fitting; applying stochastic weight averaging narrows
the generalisation gap to 1.2pp and yields a peak validation Dice of
99.15% at epoch 84. Beyond epoch 90, further training offers only
marginal gains (Aval-loss =~ 0.0014). Consequently, early stopping at
epoch 85 preserves 99% of the final performance while saving roughly
15% training time, whereas extending to 90 epochs with SWA/EMA
recovers an additional 0.3-0.5pp Dice. These dynamics demonstrate
that the prompt state-space design is highly optimisable and provide
practical guidelines for balancing accuracy and compute cost in real-
time deployment.

4.5 Ablation studies

Against EndoMamba-Seg, PESNet yields median Dice
improvement of +3.7pp on CVC-12K (Wilcoxon signed-rank
Z = 4.11, p<0.001). Across all compared methods, the Friedman test
on per-video Dice gives y* = 26.8 (df=6), p<107>; Nemenyi post-hoc
shows PESNet significantly better than U-Net, PraNet, HarD-MSeg
and MedT-tiny (p<0.05). To quantify the incremental contribution of
PESNet’s core components (cross-task prompt distillation (CTPD),
Dual-Axis S-LoRA, and prototype memory), we conducted

incremental ablation experiments. Starting from a base model

Training Loss

Classification Accuracy

10.3389/fonc.2025.1679826

TABLE 3 Incremental contribution of each module on an RTX6000 Ada
at 1080 p.

Configuration Accuracy F; Dice FPS

Backbone + S-SAM (base) 95.8 95.0 85.4 231

+ CTPD 96.7 96.4 87.4 230

+ Dual-Axis S-LoRA 97.3 97.0 88.5 225
Prototype M

* Frototype Memory 975 972 | 891 225

(PESNet)

(Backbone + S-SAM), we sequentially added each component and
measured performance changes, with results summarised in Table 3.

5 Discussion

The experimental evidence confirms that PESNet achieves the
three clinical desiderata that motivated its design—high diagnostic
accuracy, precise delineation, and uncompromised real-time
performance. In this section we contextualise the empirical gains
within colorectal cancer prevention, examine practical deployment
considerations, assess robustness across varying illumination
regimes, and acknowledge current limitations.

5.1 Impact on colorectal cancer prevention

Adenoma detection rate (ADR) is the single most powerful
process metric for preventing interval colorectal cancer (CRC):
every one-percentage-point (pp) rise confers a 3-6% reduction in
both CRC incidence and mortality.1-3 By elevating the frame-level
extitPolypDiag F extsubscriptl from 95.0% to 97.2%—a 26%
decrease in false-negative frames— extbfPESNet is projected to
boost per-procedure ADR by roughly 2-3pp, which in a
programme performing 25million colonoscopies annually across
the EU could avert 9000-11000 interval CRCs and 3000-5000
CRC-related deaths each year. The incremental detections are
predominantly flat, sessile-serrated, or right-sided lesions that
account for up to 85% of missed interval cancers; timely

Segmentation Dice
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FIGURE 4

Optimisation trajectory of PESNet over 100 epochs. From left to right: training & validation loss, classification accuracy, and segmentation Dice. All
curves are smoothed with a five-epoch moving average.
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FIGURE 5
Diagnostic classification performance of PESNet on the validation set.

identification of these morphologies prevents malignant
progression and enables submucosal resection before fibrosis
develops, improving the likelihood of en-bloc, RO excision. A
mean contour error of 1.7pixels (120um) satisfies the European
Society of Gastrointestinal Endoscopy (ESGE) target margin of
300um for cold-snare guidance, and a retrospective replay of 40
resections demonstrated a 15% reduction in residual adenomatous
tissue at first-surveillance chromoendoscopy, potentially justifying
extended surveillance intervals for low-risk patients. Markov
modelling further indicates a net gain of 5.2quality-adjusted life-
years (QALYs) per 1-000 screening colonoscopies at an
incremental cost of 180 per QALY—well below the typical
European willingness-to-pay threshold of 30000.

5.2 Workflow integration and
computational overhead

Maintaining 225,FPS at 1920 x 1080 on a single RTX6000Ada
ensures that PESNet exceeds the 25,FPS real-time threshold by a
factor of nine, leaving ample headroom for overlay rendering,
picture-in-picture feed, or additional analytics. The model
consumes only 820,MB of VRAM—less than 15% of the card’s
capacity—allowing concurrent execution of other applications such
as electronic health record viewers or Al-enhanced insuftlation
control. Because the backbone remains frozen, on-device fine-
tuning for site-specific domain adaptation can be completed in
under 30 minutes using LoRA adapters, making PESNet practical
for heterogeneous hardware deployments ranging from surgical
robots to mobile endoscopy carts.

5.3 Robustness across illumination regimes
Prototype Memory proved pivotal under narrow-band imaging

(NBI), reducing the Dice drop from 10.8,pp to 8.7,pp compared
with white-light endoscopy. This robustness is clinically significant
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because NBI is increasingly adopted for optical biopsy and margin
delineation. Our spectral S-LoRA module further mitigates colour-
channel shifts introduced by disposable sheaths or dirty lenses, a
common source of false negatives in existing CADe tools.
Experiments show that PESNet maintains stable performance
under mainstream illumination presets (WL, NBI, TXI).

5.4 Regulatory, medico-legal and adoption
considerations

Real-time CADe qualifies as a Software as a Medical Device
(SaMD). For CE marking/FDA clearance, key requirements include:
(i) documented risk management (ISO 14971) with post-market
surveillance; (ii) clinical evaluation with prospective, multi-centre
evidence and human factors testing; (iii) cybersecurity and data
protection per IEC 81001-5-1/GDPR; and (iv) update control for
on-device adaptors (LoRA) to avoid unintended performance drift.
Medico-legally, overlays must be explainable (mask + confidence),
avoid alarm fatigue, and preserve ultimate clinician responsibility.
Workflow adoption improves when latency< 50ms, overlays are
non-occlusive and controllable by the endoscopist, and the system
integrates with existing video routers without vendor lock-in.

5.5 Limitations

This study is limited by its retrospective design and reliance on
two public datasets that, while diverse, under-represent rare
histological subtypes (e.g. inflammatory pseudopolyps) and lack
videos acquired with the latest dual-red-white-light or UV
fluorescence scopes. Although we simulated domain shifts via
illumination perturbations, prospective multicentre validation
remains essential to confirm generalisability. Our weakly-
supervised masks inherit the spatial bias of ellipse annotations
and may thus over-estimate Dice relative to histology-confirmed
lesion perimeters.
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6 Conclusion

We have introduced PESNet, a prompt-enhanced state-space
network that unifies frame-level diagnosis with pixel-level
delineation in real time. By verbalising discriminative tokens into
on-the-fly prompts, refining the backbone through dual-axis
spectral adaptation and stabilising logits with a lightweight
prototype memory, PESNet sets new state-of-the-art benchmarks
on PolypDiag and CVC-12K while streaming full-HD video at
workstation frame rates. The model lifts F; by 2.2 pp and Dice by
3.7 pp over the best prior video method, leading to fewer missed flat
lesions and tighter resection margins—two factors directly linked to
lower interval-cancer risk. All improvements are achieved with =
0.57% additional parameters and no perceptible latency, enabling
seamless deployment on existing endoscopy towers. Future work
will prioritise a prospective, multi-centre study powered for ADR
endpoints and device usability, and evaluate zero-shot
generalisation under additional imaging presets and vendors.
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