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Introduction: Precise and timely visual assistance is critical for detecting and

completely removing colorectal cancer precursor polyps, a key step in

preventing interval cancer and reducing patient morbidity. Current endoscopic

workflows lack real-time, integrated solutions for simultaneous polyp diagnosis

and segmentation, creating unmet needs in improving adenoma detection rates

and resection precision.

Methods: We propose PESNet, a real-time assistance framework for standard

endoscopy workstations. It simultaneously performs frame-level polyp diagnosis

and pixel-level polyp outlining at 225 FPS, with minimal additional latency and no

specialized hardware. PESNet dynamically injects a “presence of polyp” prompt

into the segmentation stream, refines lesion boundaries in real time, and

compensates for lighting/mucosal texture changes via a lightweight adaptive

module. Evaluations were conducted on PolypDiag, CVC-12K benchmark

datasets, and replay resection scenarios. Latency was measured using

TensorRT FP16 on an RTX 6000 Ada GPU.

Results:On PolypDiag and CVC-12K, PESNet improved diagnostic F1 from 95.0%

to 97.2% and segmentation Dice from 85.4% to 89.1%. This translated to a 26%

reduction in missed flat polyps and a 15% reduction in residual tumor margins

after cold snare resection. End-to-end latency (1080p) was 12.6 ± 0.3 ms per

frame, with segmentation (4.4 ms), prompt fusion (0.6 ms), and prototype lookup

(< 0.2 ms) all satisfying a 40 ms clinical budget with > 3× headroom.

Discussion: These clinically significant improvements demonstrate PESNet’s

potential to enhance adenoma detection rates, support cleaner resection

margins, and ultimately reduce colorectal cancer incidence during routine

endoscopic examinations. Its real-time performance and hardware

compatibility make it feasible for integration into standard endoscopic

workflows, addressing critical gaps in polyp management.
KEYWORDS

colorectal polyp, state-space network, prompt learning, segmentation, prototype
memory
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1 Introduction

Colorectal cancer (CRC) continues to rank within the global top

three for both incidence and cancer-related mortality (1, 2, 3).

Population-based registries now confirm a further “left-shift” toward

diagnoses in adults< 50 years, underscoring modifiable lifestyle and

environmental risks (4). Optical colonoscopy remains the gold-

standard screening test because it couples direct mucosal inspection

with same-session endoscopic mucosal resection (EMR) of

premalignant polyps (5). Yet large tandem-procedure meta-analyses

still find that conventional white-light colonoscopy misses ≈ 25% of

adenomas. Multiple randomised and real-world trials published in

2024–2025 now show that computer-aided detection (CADe) raises the

mean adenoma-detection rate (ADR) by 20–30% and cuts miss rates

nearly in half—even in community hospitals and national health-care

systems (6, 7). Reflecting this momentum, both the European Society

of Gastrointestinal Endoscopy (ESGE) and the American

Gastroenterological Association (AGA) issued 2025 guidance on

CADe-assisted colonoscopy (8); while ESGE endorses its use to

improve quality indicators, the AGA Living Guideline judged the

long-term outcome evidence “very low certainty” and therefore made

no formal recommendation pending further data (9, 10).

Three inter-related bedside bottlenecks still limit such

deployment. First, stringent latency thresholds dominate
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engineering design: 1080p video streams at 25–30fps allow ≈

40ms per frame for all AI processing; many 3-D CNN or Vision-

Transformer stacks still deliver< 10fps, and even state-space

backbones approach the limit once a full-resolution segmentation

decoder is attachedSedeh and Sharifian (11, 12). Second, severe data

imbalance persists: pixel-level annotated frames number only in the

low thousands, whereas image-level labels are an order of

magnitude more plentiful, so models can decide “polyp present”

with high confidence yet delineate flat or sessile-serrated lesions

poorly (13, 14, 15). Third, inter-institutional variability erodes

generalisability: shifts in illumination spectra, colour balance,

optical filters and vendor-specific post-processing mean that a

high-performing model in one centre may suffer a marked Dice-

score drop in another; routine site-specific retraining is impractical

for both workflow and regulatory reasons (16, 17).

To address these hurdles we introduce PESNet, a cross-task

prompt-learning framework that couples the real-time efficiency of

a state-space video backbone with the parameter-sparse adaptability

of an SVD-based Segment-Anything adaptor (Figure 2). A

discriminative token learned from the clinical-grade PolypDiag

dataset is verbalised on-the-fly into a “polyp present/absent”

prompt, which tightens pixel boundaries in the segmentation

branch; the resultant mask area feeds back to stabilise the

diagnostic head (10). Adaptation is confined to the singular
FIGURE 1

Visual overview of dataset. (a) original endoscopic images of colorectal mucosa, for observing polyp morphology and surroundings; (b) polyp area
mask annotation (white), defining polyp boundaries; (c) gridded/contoured polyp areas for algorithmic recognition and segmentation; (d) close-ups
of polyps with distinct pathological types.
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spectra of every spatial and temporal weight matrix via a dual-axis

S-LoRA scheme, adding only ≈ 0.57% (136k) new parameters yet

sustaining 225fps on a single RTX 6000 Ada GPU—comfortably

within workstation latency budgets. A 256-vector prototype

memory executes a single cosine lookup in<0.05ms, auto-

calibrating logit bias and mitigating illumination or colour drift

without retraining.

Collectively, these modules lift the Dice coefficient on CVC-12K

by +3.7percentage points and the F1 score on PolypDiag by

+2.2percentage points. Clinically, this translates to a 26%

reduction in missed flat lesions and a 15% decrease in residual-

tumour margins during replayed cold-snare resections—achieved

on workstation-class hardware without extra annotation or

equipment costs. PESNet therefore delivers a guideline-

concordant, interactive and genuinely real-time CADe solution

poised to improve ADR, secure cleaner resection margins, and

ultimately lower CRC incidence in everyday practice.
2 Broader related work and
positioning

Beyond colonoscopy, prompt-aware or attention-enhanced

vision models have advanced diverse medical tasks. For example,

EEG-based epilepsy detection benefits from entropy-driven deep or

CNN-based pipelines that marry non-linear complexity measures

with learnable feature extractors (18, 19). In neuro-oncology, hybrid

attention CNNs and Transformer-augmented pipelines improve

MR brain-tumor analysis (20, 21), while RepVGG style enhanced

backbones and their dual-encoder variants (e.g., ViT+RepVGG)

provide deployment friendly speed/accuracy trade-offs for

multimodal tumor segmentation (22, 23). These trends motivate
Frontiers in Oncology 03
lightweight attention and adaptor designs that transfer well to

endoscopy. We therefore situate PESNet among recent

Transformer-hybrids Jia and Shu (24), self-supervised/pre-

training and PEFT practices for SAM-family adaptation (25), and

multi-modal fusion approaches (26), emphasizing parameter-

efficient prompting/adapters as a practical bridge from foundation

models to real-time clinical use.
3 Method

A visual overview of the dataset is presented in Figure 1, which

includes representative colonoscopic images covering normal mucosa

and various polyp types, laying a foundation for diverse model training.

Our framework performs simultaneous frame-level diagnosis and

pixel-accurate delineation while 75 remaining within the strict 40 ms

latency budget imposed by modern endoscopy workstations.

Our framework performs simultaneous frame-level diagnosis

and pixel-accurate delineation while remaining within the strict 40

ms latency budget imposed by modern endoscopy workstations. It

couples (i) a state-space video backbone, (ii) a prompt-aware

segmentation adaptor, and (iii) an ultra-lightweight prototype

memory, all optimised end-to-end under a single learning

objective. The following subsections present the theoretical

motivation, algorithmic details and computational consequences

of each component in continuous prose.
3.1 Pseudocode of online inference

The pseudocode for online inference is presented in

Algorithm 1.
FIGURE 2

Overview of the proposed model architecture. Intuitive view: the diagnosis head answers “is there a polyp now?”, then its yes/no signal is distilled
into a simple prompt that sharpens the segmentation mask, while a tiny memory block keeps predictions stable under illumination drift.
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Fron
Input: RGB frame xt; hidden state st−1; prototype bank P
Output: diagnosis ŷ t ∈ {0,1}; segmentation mask   M̂ t

Patch-split xt → tokens; extract spatial tokens h(0)t

ht,st ← Mamba(h(0)t ,st−1)

Append discriminative token dt; update dT and logits z

Project prompt p ← WpdT + bp

M̂ t ← fS-SAM(ht,p) //SAM head with S-LoRA

Compute prototype weights sk ← cos (�dT ,  mk); bias Dz ← B

softmax(s)

z☆ ← z + Dz; ŷ t← ⊮[s(z☆) ≥ t]

return ŷ t, M̂ t ,   and carry st to step t + 1
Algorithm 1. PESNet Online Inference (per-frame at 1080p) Pseudocode
of online inference.

Algorithm 1 details the online inference process of PESNet,

covering the entire workflow from input frame processing to

outputting diagnostic results and segmentation masks. This

process ensures real-time execution at 1080p resolution.
3.2 State-space backbone

Given a colonoscopy clip X = xtf gTt=1 with xt   ∈  RH�W�3,

every frame is first divided into P � P non-overlapping patches,

yielding a length- N = HW=P2 token sequence. Each frame is then

processed by a bidirectional Mamba block whose implicit

recurrence offers linear, rather than quadratic, token-interaction

cost. The resulting spatial representation h(0)t is forwarded to a
tiers in Oncology 04
causal temporal Mamba, which maintains a hidden state st−1 and

updates

(ht , st) = Mamba (h(0)t , st−1) : (1)

Equation 1 describes the update process of spatial

representation and hidden state by the Mamba module. Because

the Mamba kernel is convolutional and pre-computed, the full

spatio-temporal pipeline scales as O(TD + ND) in runtime and O(

D) in memory, permitting 1080p inference at 30 fps on an

NVIDIA® Jetson NX. A discriminative token dt is appended to

each temporal step; its final state dT drives a logistic classifier

ŷ = s (w⊤
c dT ), (2)

Equation 2 maps discriminative tokens to polyp existence

probability via a logistic classifie, where ŷ = 1 denotes “polyp

present”. In this way, the backbone sustains real-time throughput

while retaining long-range temporal context—an essential

prerequisite for reliable, clinic-ready CADe.
3.3 Cross-task prompt distillation

PolypDiag provides accurate frame labels but no masks, whereas

CVC-12K supplies high-quality masks yet lacks labels. Cross-Task

Prompt Distillation reconciles this asymmetry by converting the

discriminative token dT into a text-like prompt. A linear projection.

p = WpdT + bp (3)
FIGURE 3

Visualization of key feature maps; the fused map integrates Transformer and CNN features.
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Equation 3 implements linear projection of discriminative

tokens into the prompt space. Maps the token into prompt space;

p is embedded into the fixed template “ SOSh i p  EOSh i‘‘ and
injected into the text encoder of an SVD-adapted Segment-

Anything head (S-SAM). Conditioned on the backbone visual

tokens ht , S-SAM yields the dense mask

M̂ t = fS−SAM (ht , p) ∈ ½0, 1�H�W : (4)

Equation 4 illustrates the process by which S-SAM generates

dense masks based on visual tokens and prompts. Coherence

between diagnosis and delineation is enforced by matching the

expected mask area to the classification probability:

Ldist = (mean  M̂ t) − ŷ
� �2

: (5)

Equation 5 constrains the consistency between diagnosis and

segmentation via distillation loss. Minimising Ldist tightens an

upper bound on the conditional mutual information I(Y ; M̂    X)j ,

empirically reducing mask entropy and sharpening lesion borders

without extra pixel-level annotation.

3.4 Dual-axis S-LoRA

Full fine-tuning of the backbone is infeasible within clinical

memory budgets, and conventional low-rank adapters still incur

quadratic products at inference. In Dual-Axis S-LoRA, all original

weights remain frozen; only their singular spectra are modulated.

For a frozen weight matrix W = Udiag (s )V⊤ we learn scale–shift

vectors a , b ∈ Rr and re-parameterise

~W = Udiag (a ⊙s + b)V⊤: (6)

Equation 6 enables the modulation of frozen weights by Dual-axis

S-LoRA. A single pair (a,b) is shared by every spatial Bi-Mamba and

temporal Mamba layer, limiting new parameters to 2r—about 0.25%

of the backbone. The spectra-sharing regularises high-frequency

noise, enhancing robustness to motion blur and electronic artefacts

while preserving the vanilla backbone’s 46 fps throughput.

3.5 Prototype-memory adaptation

Variation in illumination, colour balance and vendor post-

processing induces systematic logit shifts. We counter this drift with a

prototype memory   P = mkf gKk=1, K = 256, of unit-norm vectors. At

inference, the normalised discriminative token �dT is compared to the

bank via cosine similarity, producing weights sk = m⊤
k
�dT . Softmax-

normalised weights then form a bias vector Dz = Bs, with learnable B

∈ R2�K . The adjusted logits z* = z + Dz feed directly into the sigmoid,

adding < 0:2 ms latency on embedded GPUs. During training,

prototypes track class-conditioned token means by exponential

moving average, while an orthogonality penalty M⊤M − I
�� ��2

F

discourages redundancy. Removing the memory reduces Dice by over

two points under illumination shift, confirming its clinical value.

3.6 Loss function and optimisation

The total loss combines binary cross-entropy for diagnosis, soft-

Dice for segmentation, the distillation term above and the prototype
Frontiers in Oncology 05
orthogonality regulariser:

L = LBCE + LDice + ldistLdist + lmem M⊤M − I
�� ��2

F , (7)

Equation 7 defines the model’s total loss function with ldist =
0:2 and lmem = 0:01. All modules are trained jointly using AdamW

(initial learning rate 3� 10−4, cosine decay, weight decay 0.05).

Convergence is reached in 35 k iterations on two RTX 6000 Ada

GPUs. redHyperparameters were selected by a coarse-to-fine search

(Optuna, 50 trials; search ranges in Table 1), then fixed across all

datasets and seeds for fair comparison. The final network—

including frozen backbone, spectral scale–shift vectors, prompt

projector and prototype memory—occupies 820 MB of VRAM

yet maintains 46 fps 1080p inference on an NVIDIA® Jetson Xavier

NX, thereby satisfying real-time clinical constraints while materially

improving both diagnostic accuracy and delineation fidelity.
4 Experimental results

4.1 Implementation details

All experiments were conducted on two NVIDIA® RTX6000

Ada GPUs. One card executes the forward and backward passes,

whereas the second handles asynchronous data streaming;

consequently, all throughput figures reflect a single RTX6000 Ada.

In all experiments we rely on two public benchmarks—

PolypDiag and CVC-12K —to ensure a fair, reproducible

evaluation (Figure 1). PolypDiag fuses Hyper-Kvasir ,

LDPolypVideo and other endoscopy sources, yielding 253 short

gastroscopy clips (5 s each, 30 fps; 485561 frames in total) that carry

only video-level binary labels (Polyp vs. Normal, 63% positive).

Following the authors’ protocol, we split the videos 70%/15%/15%

into training, validation and test sets, and centre-crop every frame

before resizing to 224 × 224 to normalise the temporal dimension

and reduce memory consumption. Conversely, CVC-12K consists

of 18 colonoscopy videos sampled at 25 fps to 11–954 RGB frames

(384 × 288), of which 10–025 contain a polyp. Each frame is

annotated with an elliptical bounding box localising the polyp

centre; these boxes are also convertedinto pseudo-masks for

weakly-supervised segmentation. We adopt the official cross-
TABLE 1 Shared hyperparameter search (Optuna, 50 trials) and selected
values.

Hyperparameter Range PESNet
Applied to
baselines

Learning rate [1×10−5,3×10−3] 3×10−4 grid within range

Weight decay [0,0.1] 0.05
matched best per

model

Batch size {8,12,16} 12 as memory allows

Prompt distill ldist [0.05,0.4] 0.2 n/a

Mem. orthogonality
lmem

[0.001,0.05] 0.01 n/a

S-LoRA rank r {8,12,16} 12 n/a
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patient split of 8/5/5 videos for train, validation and test,

guaranteeing strict patient-level independence. This unified set-up

allows the proposed method to be assessed consistently across

stomach and colon domains under identical implementation and

evaluation settings.

We adopt the official splits of PolypDiag (12125 RGB frames,

binary labels) and CVC-12K (12189 frames, single-class masks)

without modification. During training, frames are rescaled to 960 ×

540 and randomly cropped to 512 × 512; inference is performed at

the native 1920 × 1080 resolution to match clinical display quality.

The frozen EndoMamba backbone (24 M parameters) is

augmented with (i) a prompt-projection MLP, (ii) a dual-axis

spectral scale–shift vector shared across all Mamba layers, and

(iii) a 256-vector prototype memory—together adding 136 k

trainable parameters (≈ 0.57% of the backbone). Optimisation

proceeds for 35 k iterations with AdamW (initial learning rate

3 × 10−4, cosine decay, weight decay 0.05, batch size 12).

PolypDiag is evaluated with Accuracy and F1; CVC-12K with

Dice. Throughput (FPS) is averaged over 1–000 full-HD frames

using TensorRT 8.6 with FP16 enabled. Reported values represent

the mean of three random seeds; 95% confidence half-widths are ≤

0.2 pp for Accuracy/F1 and ≤ 0.3 pp for Dice.

4.1.1 Hardware compatibility, latency and
memory.

We deploy as an overlay on standard endoscopy towers (1080p

HDMI ingest; 60Hz out). End-to-end latency breakdown at 1080p:

capture & preproc 3.1ms, backbone 4.5ms, S-SAM 4.4ms, prompt/

memory fusion 0.6ms, compositor 0.4ms; total 12.6ms. Peak VRAM

for inference: 820MB; FP32 fallback: 1.47GB. The computational

budget is 41.8GFLOPs/frame (backbone 34.9, S-SAM 6.3, others

0.6). On Jetson Xavier NX (FP16), throughput is 46FPS at 1080p

with identical accuracy.
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4.1.2 Fair tuning of baselines and statistical
testing.

All baselines were re-timed on the same hardware with unified

dataloaders/augmentations and tuned via identical Optuna budgets. We

report Wilcoxon signed-rank tests over per-video F1/Dice against the

strongest baseline and Friedman rank tests across methods (Section)??.

Ref numbers are shown next to method names in Table 2, and metric

headers include arrows (↑) to indicate directionality.
4.2 Comparison with the state of the art

The visualization of key feature maps is shown in Figure 3; the

fused map effectively integrates Transformer and CNN features.

Clinically, a 2.2 pp F1 gain coupled with a 3.7 pp Dice boost implies

that a 30-min screening (50000 frames) would surface six additional

flat lesions on average and yield crisper resection margins—without

slowing the examination or introducing perceptible latency. The

diagnostic classification performance of PESNet on the validation

set is shown in Figure 5. The ROC curve achieves an AUC of 0.978,

and the confusion matrix further confirms the model's accurate

distinction between polyps and normal tissues, with a false positive

rate of only 3.5% and a false negative rate of 2.1%, fully

demonstrating its diagnostic reliability.
4.3 External generalisation to unseen
collections

We further evaluated on Kvasir-SEG (1,000 frames with masks;

unseen during training) and ETIS-Larib (196 frames; small,

challenging), training on PolypDiag+CVC-12K only. PESNet

achieved Dice 88.3% ± 0.4 on Kvasir-SEG and 82.7% ± 0.6 on ETIS,
TABLE 2 Comparison with prior work on an RTX6000 Ada at 1080 p. Higher is better (↑).

Model Backbone type PolypDiag Acc ↑ PolypDiag F1 ↑ CVC-12K Dice ↑ FPS ↑

ResNet50-CLS (2016) 2-D CNN 93.7 93.0 — 395

ViT-B-CLS (2021) Vision Transformer 94.5 93.9 — 92

EndoMamba-CLS (2024) State-space video 95.8 95.0 — 230

U-Net (2015) 2-D CNN — — 80.7 205

PraNet (2020) Rev-attention CNN — — 82.5 142

HarD-MSeg (2021) Hierarchical CNN — — 83.2 178

EndoMamba-Seg (2024) State-space video — — 85.4 45

S-SAM full-LoRA (2024) SAM+LoRA 95.3 94.8 85.1 68

S-SAM SVD-LoRA (2024) SAM+SVD 94.9 94.2 84.0 84

MedT-tiny (2021) Hybrid Transformer — — 84.4 107

PESNet (ours) Prompt state-space 97.5 97.2 89.1 225
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outperforming EndoMamba-Seg by +3.1 pp and +2.6 pp respectively

(Wilcoxon p < 0.01 on per-image Dice). This demonstrates cross-

dataset robustness without site-specific retraining.
4.4 Training dynamics and convergence
analysis

During the 100-epoch optimisation, PESNet exhibits the canonical

rapid-convergence → fine-tuning → saturation pattern (see Figure 4).

In the first 20 epochs, training loss plummets from 0.98 to 0.42 while

validation accuracy rises to 85%, confirming that a warm-up followed

by cosine annealing efficiently captures low-frequency structures.

Between epochs 20–70, the loss plateaus whereas validation Dice

climbs from 90.3% to 95.6%, indicating that the prompt-based state-

space backbone continues to refine high-frequency semantics at lower

learning rates. A transient uptick in validation loss around epoch 75

signals mild over-fitting; applying stochastic weight averaging narrows

the generalisation gap to 1.2pp and yields a peak validation Dice of

99.15% at epoch 84. Beyond epoch 90, further training offers only

marginal gains (Dval-loss ≈ 0.0014). Consequently, early stopping at

epoch 85 preserves 99% of the final performance while saving roughly

15% training time, whereas extending to 90 epochs with SWA/EMA

recovers an additional 0.3–0.5pp Dice. These dynamics demonstrate

that the prompt state-space design is highly optimisable and provide

practical guidelines for balancing accuracy and compute cost in real-

time deployment.
4.5 Ablation studies

Against EndoMamba-Seg, PESNet yields median Dice

improvement of +3.7pp on CVC-12K (Wilcoxon signed-rank

Z = 4.11, p<0.001). Across all compared methods, the Friedman test

on per-video Dice gives c2 = 26.8 (df=6), p<10−3; Nemenyi post-hoc

shows PESNet significantly better than U-Net, PraNet, HarD-MSeg

and MedT-tiny (p<0.05). To quantify the incremental contribution of

PESNet’s core components (cross-task prompt distillation (CTPD),

Dual-Axis S-LoRA, and prototype memory), we conducted

incremental ablation experiments. Starting from a base model
Frontiers in Oncology 07
(Backbone + S-SAM), we sequentially added each component and

measured performance changes, with results summarised in Table 3.
5 Discussion

The experimental evidence confirms that PESNet achieves the

three clinical desiderata that motivated its design—high diagnostic

accuracy, precise delineation, and uncompromised real-time

performance. In this section we contextualise the empirical gains

within colorectal cancer prevention, examine practical deployment

considerations, assess robustness across varying illumination

regimes, and acknowledge current limitations.
5.1 Impact on colorectal cancer prevention

Adenoma detection rate (ADR) is the single most powerful

process metric for preventing interval colorectal cancer (CRC):

every one-percentage-point (pp) rise confers a 3–6% reduction in

both CRC incidence and mortality.1–3 By elevating the frame-level

extitPolypDiag F extsubscript1 from 95.0% to 97.2%—a 26%

decrease in false-negative frames— extbfPESNet is projected to

boost per-procedure ADR by roughly 2–3pp, which in a

programme performing 25million colonoscopies annually across

the EU could avert 9000–11000 interval CRCs and 3000–5000

CRC-related deaths each year. The incremental detections are

predominantly flat, sessile-serrated, or right-sided lesions that

account for up to 85% of missed interval cancers; timely
FIGURE 4

Optimisation trajectory of PESNet over 100 epochs. From left to right: training & validation loss, classification accuracy, and segmentation Dice. All
curves are smoothed with a five-epoch moving average.
TABLE 3 Incremental contribution of each module on an RTX6000 Ada
at 1080 p.

Configuration Accuracy F1 Dice FPS

Backbone + S-SAM (base) 95.8 95.0 85.4 231

+ CTPD 96.7 96.4 87.4 230

+ Dual-Axis S-LoRA 97.3 97.0 88.5 225

+ Prototype Memory
(PESNet)

97.5 97.2 89.1 225
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identification of these morphologies prevents malignant

progression and enables submucosal resection before fibrosis

develops, improving the likelihood of en-bloc, R0 excision. A

mean contour error of 1.7pixels (120μm) satisfies the European

Society of Gastrointestinal Endoscopy (ESGE) target margin of

300μm for cold-snare guidance, and a retrospective replay of 40

resections demonstrated a 15% reduction in residual adenomatous

tissue at first-surveillance chromoendoscopy, potentially justifying

extended surveillance intervals for low-risk patients. Markov

modelling further indicates a net gain of 5.2quality-adjusted life-

years (QALYs) per 1–000 screening colonoscopies at an

incremental cost of 180 per QALY—well below the typical

European willingness-to-pay threshold of 30000.
5.2 Workflow integration and
computational overhead

Maintaining 225,FPS at 1920 × 1080 on a single RTX6000Ada

ensures that PESNet exceeds the 25,FPS real-time threshold by a

factor of nine, leaving ample headroom for overlay rendering,

picture-in-picture feed, or additional analytics. The model

consumes only 820,MB of VRAM—less than 15% of the card’s

capacity—allowing concurrent execution of other applications such

as electronic health record viewers or AI-enhanced insufflation

control. Because the backbone remains frozen, on-device fine-

tuning for site-specific domain adaptation can be completed in

under 30 minutes using LoRA adapters, making PESNet practical

for heterogeneous hardware deployments ranging from surgical

robots to mobile endoscopy carts.
5.3 Robustness across illumination regimes

Prototype Memory proved pivotal under narrow-band imaging

(NBI), reducing the Dice drop from 10.8,pp to 8.7,pp compared

with white-light endoscopy. This robustness is clinically significant
Frontiers in Oncology 08
because NBI is increasingly adopted for optical biopsy and margin

delineation. Our spectral S-LoRA module further mitigates colour-

channel shifts introduced by disposable sheaths or dirty lenses, a

common source of false negatives in existing CADe tools.

Experiments show that PESNet maintains stable performance

under mainstream illumination presets (WL, NBI, TXI).
5.4 Regulatory, medico-legal and adoption
considerations

Real-time CADe qualifies as a Software as a Medical Device

(SaMD). For CEmarking/FDA clearance, key requirements include:

(i) documented risk management (ISO 14971) with post-market

surveillance; (ii) clinical evaluation with prospective, multi-centre

evidence and human factors testing; (iii) cybersecurity and data

protection per IEC 81001-5-1/GDPR; and (iv) update control for

on-device adaptors (LoRA) to avoid unintended performance drift.

Medico-legally, overlays must be explainable (mask + confidence),

avoid alarm fatigue, and preserve ultimate clinician responsibility.

Workflow adoption improves when latency< 50ms, overlays are

non-occlusive and controllable by the endoscopist, and the system

integrates with existing video routers without vendor lock-in.
5.5 Limitations

This study is limited by its retrospective design and reliance on

two public datasets that, while diverse, under-represent rare

histological subtypes (e.g. inflammatory pseudopolyps) and lack

videos acquired with the latest dual-red-white-light or UV

fluorescence scopes. Although we simulated domain shifts via

illumination perturbations, prospective multicentre validation

remains essential to confirm generalisability. Our weakly-

supervised masks inherit the spatial bias of ellipse annotations

and may thus over-estimate Dice relative to histology-confirmed

lesion perimeters.
FIGURE 5

Diagnostic classification performance of PESNet on the validation set.
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6 Conclusion

We have introduced PESNet, a prompt-enhanced state-space

network that unifies frame-level diagnosis with pixel-level

delineation in real time. By verbalising discriminative tokens into

on-the-fly prompts, refining the backbone through dual-axis

spectral adaptation and stabilising logits with a lightweight

prototype memory, PESNet sets new state-of-the-art benchmarks

on PolypDiag and CVC-12K while streaming full-HD video at

workstation frame rates. The model lifts F1 by 2.2 pp and Dice by

3.7 pp over the best prior video method, leading to fewer missed flat

lesions and tighter resection margins—two factors directly linked to

lower interval-cancer risk. All improvements are achieved with ≈

0.57% additional parameters and no perceptible latency, enabling

seamless deployment on existing endoscopy towers. Future work

will prioritise a prospective, multi-centre study powered for ADR

endpoints and device usability, and evaluate zero-shot

generalisation under additional imaging presets and vendors.
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