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Redox phenotype confers T cell-
exclusion microenvironment and
resistance to immunotherapy

by suppressing STING/MDA5
expression and interferon
signaling in lung cancers
harboring KEAP1/STK11
mutations

Ashish Shrestha™, Yangchan Li*, Lixia Huang®, Shaoli Li*,
Yanbin Zhou™, Jincui Gu™ and Ziying Lin™'

‘Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen
University, Guangzhou, China, ?Department of Radiation, The First Affiliated Hospital of Sun Yat-sen
University, Guangzhou, China

Background: KEAP1 and STK11 are frequently mutated in NSCLC, and are
associated with compromised response to immunotherapy, the underlying
mechanism of which is not fully understood.

Methods: To assess the impact of KEAP1/STK11 mutations on immune profiles,
we analyzed RNA-seq data from the TCGA lung cancer cohort and the
GSE72094 cohort. Differential expression, pathway enrichment, and correlation
analyses were performed to elucidate the underlying mechanisms. Key findings
were further validated using a single-cell RNA-seq dataset. Additionally, the
prognostic significance of these mutations in immunotherapy was evaluated
using immune checkpoint inhibitor (ICI) cohorts from our medical center and
published studies.

Results: We observed the simultaneous upregulation of pathways involved in
oxidoreductase activity and down-regulation of interferon signaling pathways by
mutation of KEAP1 or STK11, and developed a redox signature driven by KEAP1/
STK11 mutations. Redox score exhibited negative correlation with expression of
STING/MDAS5, which function as sensors of dsDNA/dsRNA and activate
downstream interferon signaling. Redox score and STING/MDA5 expression
manifested the exact opposite impact on the infiltrating level of most immune
cells. Analysis of single cell RNA sequencing dataset indicated that redox
phenotype specifically impacted expressional level of STING/MDAS5 in cancer
cells but other cell types within tumor immune microenvironment. Prognostic
significance of redox signature was validated in immunotherapy cohorts of lung
cancer and melanoma, which all indicated a significant worse outcome
associated with higher redox score.

Conclusions: Collectively, we associated the redox status mediated by loss-
function mutations of KEAPI or STK11 to immune evasion and immunotherapeutic
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resistance by suppressing STING/MDA5 expression and interferon signaling of
cancer cells. Our findings link redox homeostasis to STING/MDAS5 expression and
tumor immunogenicity, raising the possibility that targeting this axis could represent
a future strategy to enhance ICl efficacy.

redox phenotype, KEAP1/STK11 mutations, immune microenvironment, STING, MDAS5

Introduction

Non-small cell lung cancer (NSCLC), which constitutes the
majority of lung cancer cases, continues to pose a significant
challenge in oncology due to its aggressive nature and limited
treatment options (1). The advent of immunotherapy has
revolutionized cancer treatment, offering new hope for patients
with advanced NSCLC (2-5). However, the response to immune
checkpoint inhibitors varies widely, and understanding the
underlying mechanisms of resistance is essential for improving
therapeutic outcomes.

One approach to address immunotherapy resistance is to define
tumor-intrinsic genetic mutations that modulate the tumor immune
microenvironment (TIME) and therapy response. Among the myriad
of genetic alterations that drive lung carcinogenesis, mutations in the
genes like KEAPI (Kelch-like ECH-associated protein 1) and STK11
(serine/threonine kinase 11) have emerged as significant players in
influencing immune surveillance and therapeutic response to immune
check-point inhibitors (ICIs) (6, 7). KEAPI is mutated in
approximately 20% of lung adenocarcinomas and squamous cell
carcinomas, as identified by cancer genome sequencing studies (8). It
is the third most frequently mutated gene in NSCLC, encodes a protein
crucial for the ubiquitination and proteasomal degradation of Nuclear
factor erythroid 2-related factor 2 (NRF2), and works as a critical
component during the anti-oxidant response (9-11). Its role extends
beyond cellular homeostasis, as alterations in KEAPI function have
been implicated in modulating immunogenicity and restricting the
efficacy of immunotherapeutic interventions (7, 12, 13). STK11, also
known as LKBI (Liver kinase B1), whose loss-function mutation occurs
in approximately 10% of NSCLC, is a tumor suppressor gene that plays
a critical role in cellular processes such as metabolic reprogramming,
cell polarity, and proliferation (14-17). In recent studies, STKI1 loss
has also been associated with reduced immune-infiltration and poor
response to immunotherapy (18, 19). However, the mechanism by
which KEAPI or STK1I mutations impeding tumor immunogenicity
and immunotherapeutic response remains elusive.

The crosstalk between KEAPI and STKII in the context of
metabolic reprogramming and therapeutic resistance has been
reported previously (20). For instance, loss of LKBI upregulates
the KEAP1-NRF2 pathway, driving glutamine dependence and
resistance to radiotherapy and ferroptosis (21, 22). Whether
metabolic alteration is also the common mechanism shared by
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KEAPI and STKII in immune remodeling is yet to be evaluated.
Specifically, mutations in KEAPI and STK11 are both known to be
involved in modulating cellular redox homeostasis. A growing body
of evidence suggests that the redox phenotype of tumors,
characterized by alterations in oxidative stress response pathways,
can significantly influence the immunological landscape (23-25). In
particular, tumors with a high redox phenotype have been
associated with a T cell-exclusion microenvironment, which is
generally less responsive to immunotherapeutic interventions
(26). Whether alteration of redox homeostasis is the key player of
immune suppression among tumors with mutant KEAPI or STK11
and how it interacts with TIME is yet to be explored.

This article aims to dissect the complex relationship between
KEAPI1/STK11 mutations, the redox homeostasis, and immune
remodeling in NSCLC. Our results showed that tumors with mutant
KEAPI/STK11 exhibited upregulation of oxidoreductase activity and
repression of interferon signaling. KEAP1/STK11 mutations or redox
phenotype are associated with downregulation of genes involved in
dsDNA/dsRNA sensing like STING and MDAS5, which leads to
repression of downstream interferon signaling and immune
exclusion. Redox signature was predictive of immunotherapeutic
outcomes in NSCLC and other cancer type.

Methods
Patients’ cohort

Discovery cohorts

To explore the correlation between KEAPI/STK1I mutations and
outcomes of immunotherapy in NSCLC, we retrospectively assembled
a cohort of 185 consecutive patients in our medical center who had
received immunotherapy treatment and undergone molecular profiling
between March 2010 and April 2023 (as detailed in Supplementary
Table 1). Clinical data including therapeutic regiment, line of
treatment, progression free survival (PFS), overall survival (OS),
response to immunotherapy as accessed by Response Evaluation
Criteria in Solid Tumors (RECIST) standard, mutation status of
KEAPI and STKII were retrieved from medical records.
Additionally, we incorporated an independent cohort from the
Memorial Sloan Kettering Cancer Center and MD Anderson Cancer
Center (MSKCC/MDACC cohort) (27), comprising patients with
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advanced NSCLC who had undergone Programmed Death- (Ligand) 1
(PD-(L)1) checkpoint blockade and comprehensive genomic profiling
of their tumors (n=179). Clinical data, including treatment regimen,
therapeutic outcomes, OS, PES, and the mutation status of KEAPI and
STKI11, were sourced from the cBioportal database (https://
www.cbioportal.org/).

In order to assess the influence of KEAPI/STKI1 mutations on
immune profiles, we included NSCLC patients (n=1144) with
available whole-exome sequencing data and genomic mutational
profiles from The Cancer Genome Atlas (TCGA). Clinical
information, RNA sequencing data and mutational status of
KEAPI/STK11 were retrieved from the cBioportal database, which
can be accessed through the following link: https://
www.cbioportal.org/study/summary?id=nsclc_tcga_broad_2016.
Additionally, we acquired another dataset, GSE72094, comprising
441 lung adenocarcinoma tumors that had been profiled using
microarray-based gene expression assays and included information
on STKII1 mutations. This dataset was sourced from the Gene
Expression Omnibus (GEO) under the accession number
GSE72094. A comprehensive summary of the details for TCGA
cohort and GSE72094 cohort were shown in Supplementary
Tables 2 and 3 respectively.

Single-cell RNA sequencing cohort

A published dataset (28) of single-cell RNA sequencing
(scRNA-seq), which included treatment-naive samples from 42
patients diagnosed with advanced NSCLC, was repurposed in our
study as scRNA-seq cohort. Raw data of RNA sequencing, which
involved 88794 single cells, was obtained from the GEO database
under the accession number GSE148071. Processed data of scRNA-
seq were presented in Supplementary Table 4.

Immunotherapy cohorts

In order to confirm the predictive significance of the redox
signature for immunotherapy outcomes, we methodically gathered
pre-treatment transcriptomic data and clinical information from two
immune checkpoint inhibitor (ICI) cohorts: the Ravi lung cancer
cohort (29), the Gide melanoma cohort (30). All patients within
these cohorts were treated with anti-PD-1 therapy, specifically
nivolumab or pembrolizumab. For the Ravi lung cancer cohort, we
exclusively included cases where ICIs were administered as a first-line
treatment. We collected clinical data such as PFS, OS, and the clinical
response to immunotherapy, which was evaluated using the RECIST
standards. A comprehensive summary of the details for all ICI cohorts
is presented in Supplementary Tables 5 and 6.

Assessment of immune infiltration based
on RNA-seq data

Infiltrating levels of 20 leukocyte subtypes were quantified based
on the expression profiles of their corresponding leukocyte
signatures, which were derived from previously published
research (31). The enrichment scores for each leukocyte signature
were determined using the single-sample gene set enrichment

Frontiers in Oncology

10.3389/fonc.2025.1676797

analysis (ssGSEA) method, as implemented by the R-packages
(GSEABase and GSVA) (32). The gene signatures for the 20
leukocyte subtypes are detailed in the Supplementary Table 7.

Differential expression analysis and
pathway analysis

Genes that were differentially expressed between two
comparator groups—mutant KEAPI versus wild-type KEAPI, and
mutant STKII versus wild-type STKII—were identified using
differential expression analysis facilitated by the DESeq2 package
(version 1.26.0) within the R software environment (version 3.6.3).
Genes were classified as differentially expressed (DEGs) if they
exhibited a log2(fold change) greater than 1 and a P-value less than
0.05. The gene lists of DEGs that were consistently up-regulated in
tumors with mutant KEAPI and STK11 across all datasets (TCGA-
luad, TCGA-lusc, GSE72094) were subjected to Gene Ontology
(GO) analysis. This analysis was conducted using the ‘msigdbr’
package (version 7.5.1) and the clusterProfiler package (version
4.12.6) within the R software environment (version 4.4.1).
Conversely, DEGs that were down-regulated in both mutant
KEAPI and STKII tumors were analyzed using Reactome
pathway analysis, which was implemented with the ReactomePA
R package (version 1.48.0).

Development of redox signature and
scoring pipeline

Differential expression analysis was performed to identify genes
upregulated by mutant KEAPI in the TCGA-LUAD and TCGA-LUSC
cohorts, as well as those upregulated by mutant STK11 in the TCGA-
LUAD and GSE72094 cohorts. From these analyses, we identified 148
overlapping genes common to all four upregulated gene sets. These
genes were subsequently subjected to GO pathway enrichment
analysis, which revealed that the top 8 enriched pathways were
associated with oxidoreductase activity and antioxidant functions.
Further refinement of the 148-gene pool identified 26 genes
(Supplementary Table 7) implicated in these 8 pathways, which we
designated as the redox signature. To quantify the enrichment of this
redox signature in individual tumors, we applied the single-sample
Gene Set Enrichment Analysis (ssGSEA) algorithm. This method ranks
genes based on expression and calculates a normalized enrichment
score (NES) for each sample, eliminating the need for batch
adjustment. The ssGSEA analysis was performed using the
normalized gene expression matrix and an unweighted redox gene
list as input, implemented via the R packages GSEABase and GSVA
(see Supplementary Material for R code).

Single-cell sequencing analysis

Pre-processed RNA sequencing data of single cells derived from
42 treatment naive NSCLC tumors were obtained from the public
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available dataset GSE148071. The Seurat package (version 4.4.1)
was employed to create the object, filtering out cells of poor quality
based on the following criteria: lower than 200 or higher than 5000
expressed genes, and cells with >20% mitochondrial content.
Expression matrices were normalized by function NormalizeData
and ScaleData. The top 2000 variable genes, identified by the
FindVariableFeatures function, were used for principal
components analysis. The first 30 principal components and
resolution 0.6 were used with FindClusters function to generate
30 cell clusters, which was assigned to 8 major cell types based on
the expression pattern of the following canonical markers:
Endothelial cells (PECAMI1, FLT1, VWF), cancer cells (EPCAM,
KRT19, SOX2, EGFR), Alveolar cells (CLDN18, AQP4, SETPC),
Fibroblasts (COL1A1, COL1A2, DCN), T cells (CD2, CD3D,
TRAC, NKG7), B cells (CD79A, IGHG3, IGHA2), Myeloid cells
(CD68, CD14, LYZ), Neutrophils (CSF3R, FCGR3B). All these
cluster markers were decided based on reference to previous
publication (28, 33) and CellMarker dataset (http://bio-
bigdata.hrbmu.edu.cn/CellMarker/). Bulk expression profiles of
each tumor were inferred based on the average expression profiles
of all the cells derived from the same tumor. AverageExpression
function was used to generated averaged expression profiles of each
cellular subset.

Statistical analysis

Statistical analyses were performed using R v4.4.1 (https://
www.r-project.org) or SPSS software (v26). Comparison of
enrichment scores or gene expression level between two groups
was analyzed by two-sided Wilcoxon tests. Spearman correlation
analysis was applied to evaluate correlation between two continuous
parameters. Distribution of categorical data between two groups
were analyzed using the chi-square test. Kaplan-Meier curve was
used to estimate median OS and PES, with statistical difference
between two groups accessed by log-rank test. Univariate and
multivariate Cox regression analyses were performed to assess the
prognostic significance of multiple variables. Similarly, univariate
and multivariate logistic regression analyses were conducted to
evaluate the influence of different variables on the clinical response
to immune checkpoint inhibitors (ICIs). A two-sided p-value of less
than 0.05 was considered statistically significant. The study design
and key statistical analyses were summarized in a flow diagram, as
illustrated in Figure 1.

Results

KEAP1/STK11 mutations diminishes
immunotherapy efficacy in NSCLC

Mutations in KEAPI and STK11 had been frequently reported to
diminish immunotherapy efficacy (6, 7). An in-house cohort
comprising 185 patients of advanced NSCLC treated with PD-1/
PD-L1 immunotherapy alone or in combination with chemotherapy
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was deployed to verify the prognostic impact of mutant KEAPI/
STK11. In line with previous studies (6, 7), we found that patients
harboring mutant KEAPI or STK11 had significant inferior PFS as
compared to those with wild-type KEAP1/STK11 (Figures 2a, c). The
proportion of patients achieving complete response (CR) or partial
response (PR) was markedly lower in patients with mutant KEAP1/
STK11 as compared to those with wild-type variants (Figures 2b, d).
Although not statistically significant in our cohort, patients with
KEAPI/STK1I mutations tended to have reduced OS (Figures 2a, c).
Analysis of an additional immunotherapy cohort, the MSK lung
cancer cohort, corroborated our findings, demonstrating that
mutations in KEAPI or STKII were linked to unfavorable
outcomes, as evidenced by significantly poorer OS (Figure 2e). It is
noteworthy that KEAPI and STK11 did not affect survival in NSCLC
patients who underwent surgical treatment (Supplementary
Figures la, b), suggesting that their prognostic significance is
specific to the context of immunotherapy.

NSCLC with mutant KEAP1 or STK11
exhibited immunosuppressive
microenvironment in a similar pattern

We subsequently investigated the influence of KEAPI1/STKI1
mutations on established biomarkers of immunotherapeutic
response, such as PD-L1 expression and tumor mutation burden
(TMB). In our analysis of the TCGA lung cancer dataset, where
protein expression levels were accessible, we found no significant
differences in PD-L1 expression levels between tumors harboring
wild-type and mutant KEAPI/STKII, both in adenocarcinoma
(TCGA-LUAD) and squamous cell carcinoma (TCGA-LUSC)
(Figure 3a). Furthermore, TMB was not affected by STKII
mutations; and in fact, it was even elevated in tumors with mutant
KEAPI according to our analysis of the MSK lung cancer dataset
(Figure 3b). These observations suggest that the poor response to
immunotherapy in patients with mutant KEAP1/STK11 is not due to
reduced PD-L1 expression or TMB levels, but rather may be
attributed to alterations in the immune microenvironment.

To access the impact of KEAPI/STKI1 mutations on immune
landscape of lung cancer, we utilized two bulk RNA-seq datasets:
TCGA-lung cancer and GSE72094, for our analysis. The infiltration
levels of 20 different leukocyte populations were deduced from the
enrichment scores of their respective gene signatures (as detailed in
Supplementary Table 7). Figure 3c illustrates that lung tumors with
mutations in KEAPI or STKII displayed an immunosuppressive
phenotype, characterized by a significant reduction in the
infiltration of a broad spectrum of leukocytes. These included
central memory CD4 T cells, central memory CD8 T cells,
effector memory CD8 T cells, type 2 T helper cells, immature B
cells, natural killer T cells, activated dendritic cells, plasmacytoid
dendritic cells, macrophages, and myeloid-derived suppressor cells
(MDSCs). Due to the limited number of tumors with detecs. Table
TKI1I mutations (only three), the analysis of STKII status in the
TCGA-LUSC cohort was not conducted. Similarly, the assessment
of KEAP] status in the GSE72094 cohort was not possible due to the
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FIGURE 1
Flow diagram demonstrating the outlook of the study.

absence of pertinent data. It’s intriguing to notice that the impact of
mutant KEAPI and STKII on the infiltration levels of various
leukocytes was similar, which indicated KEAPI and STKIImight
employ analogous mechanisms in immune regulation.

KEAP1/STK11 mutations confer redox
phenotype and suppression of IFN
signaling in lung cancer

To investigate the shared biological processes influenced by KEAPI
and STK11 mutations, we focused on the 151 differentially expressed
genes that were consistently up-regulated by these mutations across all
cohorts. These genes were subjected to Gene Ontology (GO) pathway
analysis. Figure 3a displays the top 10 GO biological pathways (GOBP)
and top 10 GO molecular functions (GOMF) that were concurrently
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up-regulated by mutant KEAPI and STKI1. Notably, the majority of
the up-regulated pathways were associated with oxidoreductase
activity, suggesting that a redox phenotype is the predominant
feature in tumors with mutant KEAPI or STKI11. Among the 148
overlapping up-regulated genes, 25 were identified as being involved in
redox activity and were selected to form a redox signature for further
investigation (Figure 4a). Spearman correlation analysis revealed that
all 26 genes within the redox signature were significantly and negatively
correlated with the infiltration levels of most leukocytes, particularly
those that were markedly reduced in tumors with mutant KEAPI or
STK11I (Supplementary Figure 2a). This correlation suggests that the
redox phenotype may be a critical factor driving immune evasion in
tumors harboring KEAPI or STK1I mutations.

We calculated the enrichment score of the redox signature for
each tumor using the ssGSEA method. As depicted in
Supplementary Figure 2b, the redox score did not demonstrate
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FIGURE 2

Association between mutation status of KEAP1/STK11 and therapeutic outcomes to immunotherapy. (a, c). Kaplan—Meier survival curves of
progression-free survival (PFS) and overall survival (OS) between patients with wild-type and mutant KEAPI (a), as well as between patients with wild-
type and mutant STK11 (c) in our own immunotherapy cohort; (b, d) Bar charts showing the distribution of patients with complete response (CR),
partial response (PR), stable disease (SD) or progression disease (PD) between patients with wild-type and mutant KEAPI (a), as well as between
patients with wild-type and mutant STK11 (c) in our own immunotherapy cohort; (e) Kaplan—Meier survival curves of OS by mutational status of
KEAP1 or STK11 among NSCLC patients from MSK immunotherapy cohort.

prognostic relevance among NSCLC patients who underwent  various clinicopathological characteristics, including histology,
surgical treatment. Specifically, there was no observed difference  gender, smoking history, and TNM stage. The redox score was
in OS or PFS between patients with high and low redox scores  significantly elevated in tumors originating from squamous cell
within the TCGA cohorts (TCGA-LUAD and TCGA-LUSC). We  carcinoma as compared to adenocarcinoma, and also in tumors
proceeded to assess the correlation between the redox score and  from male patients as compared to female patients (Supplementary
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FIGURE 3

Immunologic consequences of KEAP1/STK11 mutations. (a) Boxplots showing PD-L1 protein expression level in NSCLC with mutant or wild-type
KEAP1/STK11. Analysis was performed in two cohorts (TCGA-luad, TCGA-lusc). (b) Boxplots showing TMB level of KEAP1/STK11 mutant or wild-type
tumors from MSK immunotherapy cohort. (c) Boxplots showing infiltrating abundance of 20 immune cells among tumors with mutant or wild-type
KEAP1/STK11. Analysis was performed in three cohorts (TCGA-luad, TCGA-lusc, GSE72094). (a, c) As for TCGA-luad cohort, tumors were categorized
into four groups based on mutational status of KEAP1 and STK11. Analysis only involved mutational status of KEAP1 or STK11 in TCGA-lusc cohort and
GSE72094 cohort respectively, owing to insufficiency or unavailability of relevant data. (a—c) Data are presented as median with quartiles. Wilcoxon
tests was used to determined significance in difference between two groups. Kruskal -Wallis was performed for multiple comparison. *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001.

Figure 2¢). However, neither smoking history nor TNM staging had
a significant influence on the redox status of NSCLC tumors
(Supplementary Figure 2c).

To elucidate the mechanism through which the redox phenotype
facilitates immune evasion in NSCLC with mutations in KEAPI or
STK11, we conducted a further analysis to identify pathways enriched in
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genes that are down-regulated by these mutations. We identified a total
of 574 down-regulated genes that were common across all cohorts.
These genes were then subjected to Reactome pathway enrichment
analysis. Notably, three of the top 10 enriched pathways were associated
with the activation of interferon signaling, including the pathways for
interferon o/f signaling and interferon v signaling (Figure 4b).
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FIGURE 4

Pathway analysis reveals enrichment of redox pathways and down-regulation of IFN signaling in NSCLC with KEAP1/STK11 mutations. (a) Gene
signature enrichment analysis (GSEA) was performed for the overlapped up-regulated genes based on Gene Ontology (GO) categories. Diagram on
the top showing the generation of overlapped genes up-regulated by KEAP1 and STK11 among different cohorts. A total 150 overlapped genes
identified, among which 26 genes were identified to be involved in redox biological process. Bar plot showing the top 10 most significantly enriched
pathways for the GO-biological pathway category and GO-molecular function category respectively. (b) Gene signature enrichment analysis (GSEA)
was performed for the overlapped down-regulated based on Reactome categories. Diagram on the right showing the generation of overlapped
genes down-regulated by KEAP1 and STK11 among different cohorts, with a total 574 overlapped genes identified. Bar plot showing the top 10 most
significantly enriched pathways.

DNA damage (36), we first evaluated signaling of DNA repair in
tumors with KEAPI/STK11 mutations. Of note, biological pathways of
DNA repair or double-strand break repair were unaltered by mutations
in either KEAPI or STKI1I (Supplementary Figure 3). We then

Redox phenotype mediates immune
exclusion by repressing STING/MDA5
expression and interferon signaling

Cell-autonomous interferon responses are typically regulated by
pathways involving in sensing double-stranded DNA (dsDNA),
double-stranded RNA (dsRNA), or single-stranded RNA (ssRNA)
(Figure 5a) (34, 35). As redox imbalance had been associated with

Frontiers in Oncology

proceeded to examine the differential expression of genes along the
signaling axes of dsDNA/dsRNA/ssRNA sensing in tumors with wild-
type versus mutant KEAPI/STKII. Figure 5b and Supplementary
Figures 4a-c reveal that mRNA expression levels of STING
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(Stimulator of Interferon Genes), MDA5 (Melanoma Differentiation-
Associated protein 5) and RIG-I (Retinoic acid-inducible gene I) are
significantly downregulated in tumors with mutant KEAPI or STK11
across all cohorts. We also noted a reduction in CGAS (Cyclic
guanosine monophosphate-adenosine monophosphate synthase)
expression due to KEAPI/STKI11 mutations in the TCGA-LUSC and
GSE72094 cohorts, but not in the TCGA-LUAD cohort. Similarly,
IFI16 (Interferon Gamma Inducible Protein 16) expression was
downregulated by KEAPI/STKI11 mutations in the TCGA-LUAD
and GSE72094 cohorts, yet this effect was not observed in the
TCGA-LUSC cohort.

We next determined the correlation between the redox
phenotype and IFN signaling, as well as genes involved in
dsDNA/dsRNA/ssRNA sensing. As illustrated in Figure 5c, the
redox score was found to be negatively correlated with the
enrichment scores of all interferon signaling pathways. Notably,
the expression levels of genes involved in dsDNA/dsRNA/ssRNA
sensing, specifically STING, MDA5 and RIG-I, were negatively
correlated with the redox score across all datasets (Figures 5c-d).
CGAS and IFI16 also showed a negative correlation with the redox
score, but this was only observed in certain cohorts (Figure 5c).

We then assessed the correlation between genes involved in dsDNA/
dsRNA/ssRNA sensing and the immune profiles of NSCLC tumors
using Spearman correlation analysis. As shown in Supplementary
Figure 5d, mRNA expression of dsDNA sensors (STING, CGAS) or
dsRNA/ssRNA sensors (MDA5, RIG-I) were significantly and positively
correlated with the infiltrating abundance of the majority of immune
cellsacross all cohorts. The positive correlation between IFI16 expression
and immune infiltration was observed exclusively in the
adenocarcinoma cohorts (GSE72094 and TCGA-LUAD)
(Supplementary Figure 5d). Collectively, these findings suggest that
KEAPI/STK11 mutations are associated with the downregulation of
genes involved in dsSDNA/RNA sensing, particularly STING and MDAS5,
which may be a key driver of immune evasion.

Given that STING and MDA5 are the downstream components in
dsDNA/dsRNA sensing and trigger the activation of IFN signaling,
their suppression could be a pivotal mechanism by which the redox
phenotype drives immune evasion in lung cancer. Specifically, we
observed an inverse relationship between KEAPI/STKII mutations
and changes in redox scores and STING/MDA5 expression levels
across all cohorts (Figure 5b). Correlation analysis further indicated
that the redox score and STING/MDAS5 expression had opposite effects
on the infiltration levels of nearly all immune cells across all cohorts
(Figure 5e). It is noteworthy that the immune cells that were
significantly reduced in tumors with KEAPI/STKI11 mutations were
also the ones that showed significant positive and negative correlations
with STING/MDAS5 expression and redox scores, respectively
(Figure 5e). Collectively, our findings suggested that the redox
phenotype, driven by KEAPI/STKI1I mutations, promotes immune
evasion by downregulating genes involved in dsDNA/dsRNA sensing
especially STING and MDAS5, and thus suppresses the downstream
interferon signaling pathway.
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scRNA-seq analysis reveals redox
phenotype specifically impacts STING/
MDAS5 expression of cancer cells

To identify the predominant cellular subtypes contributing to the
redox status, we utilized single-cell RNA sequencing (scRNA-seq) data
from 42 NSCLC tumors for further analysis. Cell clusters were
classified into T cells, B cells, myeloid cells, neutrophils, fibroblasts,
endothelial cells, alveolar cells, and cancer cells based on the expression
of canonical marker genes (Supplementary Figures 5a-b). Notably,
most redox-associated genes were found to be highly expressed across
various cell types (Supplementary Figure 4c), although a slightly higher
redox score was observed in cancer cells compared to other cell types
(Supplementary Figure 5d).

We then assessed the impact of the redox phenotype on the
immune composition within the TIME. As depicted in Figure 6a,
the percentage of various immune cells decreased with an increase
in the redox score of bulk tumors. To determine redox status of
which cellular subtype plays a major role in shaping the
immunosuppressive microenvironment, we calculated the redox
score for five major cell types (cancer cells, myeloid cells, T cells,
fibroblasts, and B cells) based on the averaged expression profiles
for each tumor. Figure 5b shows that the redox scores of both
myeloid cells and T cells were significantly negatively correlated
with the T cell percentage. The redox scores of cancer cells,
fibroblasts, and B cells also exhibited a negative, albeit not
statistically significant correlation with the T cell percentage.

We further explored the changes in expressional level of genes
involved in dsDNA/dsRNA/ssRNA sensing and the enrichment of
downstream interferon signaling pathway across different cell types
in response to the redox status of various cell types. It is intriguing
to observe that STING/MDAS5 expression in cancer cells showed a
negative correlation with the redox scores of nearly all major
cellular subtypes, including cancer cells, myeloid cells, T cells,
fibroblasts, and B cells (Figures 6b-c). MDA5 expression in T
cells were also negatively correlated with redox score of myeloid
cells, T cells and fibroblast. However, the STING/MDAS5 expression
of other cell types exhibited no significant correlation with redox
score of any cell types (Figure 6¢). As for other genes involved in
dsDNA/dsRNA/ssRNA sensing like CGAS, RIG-I, MAVS, DDX41,
and IF116, whose expression in either cancer cells or other cell types,
were not significantly impacted by redox status of any cell types
(Supplementary Figure 5e). Additionally, interferon o/p signaling
and interferon 7 signaling in cancer cells were negatively influenced
by the redox status of nearly all cellular subtypes (Figure 6c).
Interferon signaling in T cells also negatively correlated with the
redox scores of T cells and myeloid cells (Figure 6¢). Nevertheless,
no significant correlation was observed between interferon signaling
and redox scores in most other cell types (Figure 6¢). Collectively,
these findings suggest that the redox phenotype mediates immune
exclusion primarily by suppressing STING/MDAS5 expression and
interferon signaling in cancer cells.
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FIGURE 5

Redox scoring negatively correlated with STING/MDA5 expression, IFN signaling and immune infiltration in NSCLC. (a) Schematic of dsDNA,
dsRNA, ssRNA sensing pathways that induce IFN signaling. (b) Boxplots showing STING/MDA5 mRNA expression and redox score among tumors
with mutant or wild-type KEAP1/STK11 in three cohorts (TCGA-luad, TCGA-lusc, GSE72094). As for TCGA-luad cohort, tumors were categorized
into four groups based on mutational status of KEAP1 and STK11. Analysis only involved mutational status of KEAP1 or STK11 in TCGA-lusc cohort
and GSE72094 cohort respectively, owing to insufficiency or unavailability of relevant data. Data are presented as median with quartiles, and
Wilcoxon tests was used to determined significance in difference between wild-type group and other groups. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. (c) Correlation matrix depicting correlation of redox score with IFN signaling and genes involved in dsDNA/dsRNA/ssRNA sensing in
three datasets (TCGA-luad, TCGA-lusc and GSE72094). (d) Scatter plot showing the correlation between redox score and mRNA expression of
STING/MDAS in three datasets (TCGA-luad, TCGA-lusc and GSE72094). Correlation coefficients (r value) and P value of Spearman Correlation were
shown. (e) Correlation matrix depicting correlation of redox score and mRNA expression of STING with infiltrating level of 20 immune cells in three
datasets (TCGA-luad, TCGA-lusc and GSE72094). (c, e) Spearman Correlation analysis was performed, with blue ellipse obliquely upward
representing positive correlation, and red ellipse obliquely downward representing negative correlation. The flatness of ellipse and the depth of the
color represent the magnitude of the correlation (r value). Ellipse was presented only for those with significant correlation (P value < 0.05).
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FIGURE 6

scRNA analysis reveals redox phenotype down-regulates STING/MDA5 expression in cancer cells and facilitates immune exclusion. (a) Barplots
showing bulk redox score and proportion of different cellular components in each tumor. Tumors were arranged according to bulk redox score in
ascending order. (b) Scatter plot showing the correlation of T cell percentage or STING/MDA5 mRNA expression in cancer cells with redox score of
different cellular components. Correlation coefficients (r value) and P value of Spearman Correlation were shown. (c) Correlation matrix showing
correlation of redox score with STING/MDA5 mRNA expression or IFN signaling (Interferon o/f signaling and Interferon y signaling) across different
cell types. Spearman Correlation analysis was performed, with blue ellipse obliquely upward representing positive correlation, and red ellipse
obliquely downward representing negative correlation. The flatness of ellipse and the depth of the color represent the magnitude of the correlation
(r value). The cross mark represents the failure of the significance test (P value > 0.05).
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Redox signature predicts response to
immunotherapy

To ascertain the prognostic relevance of redox signatures in the
context of immunotherapy, we assessed the relationship between
redox scores and the efficacy of PD-1/PD-L1 checkpoint inhibitors
in two distinct patient cohorts: the Ravi lung cancer cohort, the
Gide melanoma cohort. In the Ravi lung cancer cohort, we enrolled
48 patients with advanced NSCLC who were treated with PD-L1
blockade as their first-line therapy. As depicted in Figure 7a,
patients with lower redox scores exhibited significantly extended
PFS and OS compared to those with higher redox scores.
Specifically, the median PFS was 529.4 days for the low redox
group versus 221.8 days for the high redox group (p = 0.037), and
the median OS was 843.7 days for the low redox group versus 491.2
days for the high redox group (p = 0.025). Cox regression analysis,
adjusting for PD-L1 expression (protein level), smoking status,
gender, age, histology (adenocarcinoma vs. squamous), and co-
mutations (KRAS, TP53, KEAP1, STK11), further confirmed redox

10.3389/fonc.2025.1676797

status as the only significant predictor of reduced OS (HR 3.60 [1.54
-8.41], P = 0.00306) and PFS (HR 3.12 [1.09-8.94], P = 0.0337) in
univariate analysis but not multivariate analysis (Supplementary
Tables 8.1, 8.2). In terms of response rates, 55% of patients with low
redox scores achieved a complete response (CR) or partial response
(PR), contrasted with 37% in the high redox group (Figure 7b).
However, logistic regression analysis indicated that none of the
above-mentioned variables, including redox status, were significant
predictors of clinical response (Supplementary Table 8.3).

To evaluate the broader applicability of redox signatures in
predicting responses to immunotherapy, we examined the Gide
melanoma cohort. The Gide melanoma cohort comprised 41
melanoma patients who underwent anti-PD-1 treatment.
Similarly, we observed a marked improvement in PFS and OS for
patients with lower redox scores: the median PFS was 967 days for
the low redox group versus 402 days for the high redox group (p =
0.04), and the median OS was 1278 days for the low redox group
versus 616 days for the high redox group (p = 0.038) (Figure 7c).
Cox regression analysis was limited to redox level, PD-L1
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Impact of redox phenotypes on response to ICls in multiple cancers. (a, c). Kaplan—Meier survival curves of PFS and OS between high redox group
and low redox group in Ravi lung cancer cohort (a) and Gide melanoma cohort (c). (b, d) 100-percent bar plots showing the distribution of patients
with complete response (CR), partial response (PR) stable disease (SD) or progression disease (PD) between high redox group and low redox group
in Ravi lung cancer cohort (b) and Gide melanoma cohort (d). Tumors were categorized into high and low redox group with medium redox score as

cut-off value for both cohorts.
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expression (mRNA level), smoking status, gender, and age, as data
on other parameters were unavailable. As shown in Supplementary
Table 9, both high redox level (HR for PFS 3.60 [1.54 -8.41], P =
0.00306; HR for OS 2.68 [1.08-6.63], P = 0.0328) and low PD-L1
expression (HR for PFS 0.14 [0.06 -0.33], P < 0.001; HR for OS 0.16
[0.06-0.46], P < 0.001) were significant independent predictor of
reduced OS and PFS. Additionally, patients with lower redox scores
demonstrated a higher objective response rate (ORR), with 84%
achieving CR/PR in the low redox group, compared to 32% in the
high redox group (Figure 7d). Multivariate logistic regression
analysis also confirmed redox level (OR 0.16 [0.02-0.8], P = 0.04)
and low PD-L1 expression (OR 15.79 [3.10-130.96], P = 0.0027) as
independent predictor of clinical response to immunotherapy
(Supplementary Table 9.3).

Discussion

With this study, we demonstrated that NSCLC with KEAPI or
STKII mutation manifested enhanced redox phenotype and
diminished immune infiltration. Redox status is associated with
inhibition of interferon signaling, which could be attributed to
downregulation of genes involved in dsDNA/dsRNA sensing like
STING and MDA5 in cancer cells. Redox score and STING/MDAS5
expression exhibited the exact opposite correlation with infiltrating
level of different immune cells. Our study suggested that KEAPI and
STK11 shared common mechanism in immune regulation, which is
associated with enhancement of redox phenotype and the
subsequent inhibition of STING/MDAS5 expression and the
downstream interferon signaling in cancer cells. We also
developed a redox signature which may be helpful in predicting
outcomes to ICI treatment in NSCLC and other cancers.

Repression of type I interferon signaling in tumors harboring
KEAPI or STK11 mutations has been reported in previous studies
(37, 38), yet the underlying mechanism is not well characterized.
Cell-autonomous type I interferon responses are typically regulated
by dsDNA/dsRNA sensing pathways, whose activation can be
driven by overproduction of dsSDNA or dsRNA, or overexpression
of genes along these signaling axes (34, 35). Previous study reported
that KEAPI mutation resulted in upregulation of BRCA1I, which is
an important DNA damage repair gene, and thus reduced
production of dsDNA (39). Yet our finding suggested neither
KEAPI nor STKI1 interfered with DNA repairing in NSCLC.
Instead, several genes involved in dsDNA/dsRNA sensing like
STING and MDAS5 were significantly downregulated by mutation
of KEAPI or STK11. STING as an intracellular dSDNA sensor that
activates the innate immune response (40), was observed among
tumors with mutant KEAPI or STK11 in recent studies (37, 39, 41).
STING activation can lead to the production of type I interferons
and other pro-inflammatory cytokines, which are crucial for the
immune system’s recognition and elimination of cancer cells (42).
MDAS5 is a crucial cytosolic RNA sensor that plays a pivotal role in
the innate immune response by detecting viral infections and
activating antiviral defenses (43, 44). Beyond its antiviral
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functions, emerging research underscores MDAS5’s significance in
cancer immunity, with its suppression being linked to immune
evasion (45). Our study suggested that MDAS5 expression was also
significantly suppressed by mutation in KEAPI or STKII. The
mechanism by which STING/MDAS5 expression is altered by mutant
KEAPI or STKI1I and their interaction with metabolic
reprogramming remains unclear.

Redox homeostasis, as defined by the balance between reactive
oxygen species (ROS) and antioxidants, has been intricately linked
to the regulation of immune system. However, most of the previous
studies centered on the direct impact of oxidative changes on
biological functions of immune cells (46-51), but neglect their
impact on the immunogenicity of tumor cells. Our study reveals a
specific association between the that redox status and feature of
immune evasion by specifically inhibiting STING/MDAS,
characterized by the suppression of intrinsic STING/MDA5
expression and the interferon response specifically within tumor
cells, a phenomenon not observed in other cell types of the TIME.
Particularly, scRNA analysis showed that redox status of immune
cells like macrophage, T cells etc. also correlated with reduced
STING/MDAS5 expression in tumor cells and a suppressive TIME.
These findings suggested that antioxidants derived from different
cell types all contributed to the development of redox phenotype,
which concurrently suppressed tumor immunogenicity by
inhibiting STING/MDA5 expression and interferon signaling of
tumor cells. We recognize that the observed suppression of
STING/MDAS5 due to redox alterations is primarily based on
transcriptome data analysis, and further validation through in
vitro experiments is required in the future.

The underlying mechanism by which redox phenotype
suppressed STING/MDAS5 expression is yet to be explored in
further studies. Previous studies have suggested a link between
KEAPI1-NRF2 pathway and STING suppression (52, 53). NRF2 is
the master transcription factor that control the expression of a
battery of genes involved in antioxidant response and detoxification
processes (54). KEAPI negatively regulates NRF2 by directly
binding and leading to its proteasomal degradation (55, 56). Loss-
of -function mutations in KEAPI lead to constitute activation of
NRF2 signaling (57). NRF2 has been reported as a negative
regulator of STING (52, 53, 58), although the underlying
mechanism remains a puzzle.

The most compelling clinical implication of our study lies in the
potential for improved patient stratification and innovative trial
design. The association between our redox signature and poor
outcomes in the KEAPI/STKI1 double-mutant subgroup
highlights a patient population in urgent need of better
therapeutic options. These patients may be prioritized for more
aggressive monitoring and considered for alternative treatment
strategies beyond first-line immunotherapy. Looking forward, our
findings advocate for the design of biomarker-driven clinical trials
that specifically enroll patients with this high-risk molecular profile.
Such trials could evaluate novel combinations, such as
immunotherapy with (e.g., targeted redox-balancing agents or
STING agonists), using our signature or the mutational status as
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an enrichment biomarker. This approach is essential to breaking the
cycle of poor outcomes in this refractory population.

Conclusions

In summary, our study elucidated the mechanism by which
redox phenotype mediated immune evasion in NSCLC harboring
STKI11 or KEAPI mutation. We first established a connection
between redox phenotype and repression of pathways involved in
dsDNA/dsRNA sensing, and clarify their association in suppressing
immune infiltration. We findings also suggested that redox status
predominantly suppressed STING/MDAS5 expression in tumor cells
but not among other cell types within TIME. Our self-developed
redox signature also may serve as a predictive biomarker for
ICI responsiveness.
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