? frontiers ‘ Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Zhiwen Luo,
Fudan University, China

REVIEWED BY
Yong Zhang,
Zhengzhou University, China

*CORRESPONDENCE

Jiaan Lu
Lujiaan130130@163.com

Xiaolin Zhong
xiaolinzhong@swmu.edu.cn

"These authors have contributed equally to
this work

RECEIVED 29 July 2025
ACCEPTED 14 October 2025
PUBLISHED 28 October 2025

CITATION

Xu H, Lu J, Wu J, Zhang K, Zhou X, Gao Z,
Feng J, Zhuang Z and Zhong X (2025)
Integrated molecular and microenvironmental
drivers of drug resistance in gastrointestinal
cancers: mechanisms, immunotherapy
challenges, and precision strategies.

Front. Oncol. 15:1675745.

doi: 10.3389/fonc.2025.1675745

COPYRIGHT

© 2025 Xu, Lu, Wu, Zhang, Zhou, Gao, Feng,
Zhuang and Zhong. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology

TYPE Mini Review
PUBLISHED 28 October 2025
D0110.3389/fonc.2025.1675745

Integrated molecular and
microenvironmental drivers
of drug resistance in
gastrointestinal cancers:
mechanisms, immunotherapy
challenges, and precision
strategies

Heng Xu®, Jiaan Lu™!, Jiangying Wu', Kangling Zhang",
Xuancheng Zhou®, Zigi Gao*, Jingqi Feng®, Ziye Zhuang?
and Xiaolin Zhong*

!Clinical Medical College, Southwest Medical University, Luzhou, China, 2First Clinical Medical

College, Guangdong Medical University, Zhanjiang, Guangdong, China, *Department of
Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China

Resistance to chemotherapy, targeted agents, and particularly immunotherapy
remains the principal challenge in the management of gastrointestinal
malignancies. This review aims to comprehensively delineate the molecular and
microenvironmental drivers of resistance, with emphasis on mechanisms impacting
immunotherapy response, and evaluate emerging, mechanism-guided
interventions (including immunotherapeutic combinations) for precision therapy.
We first examine intrinsic mechanisms—including drug—target alterations,
dysregulated drug metabolism and efflux, hyperactivation of DNA damage repair
pathways, and epigenetic remodeling—and extrinsic influences stemming from the
tumor microenvironment and extracellular matrix remodeling. We then highlight
epithelial-mesenchymal transition (EMT) as a critical nexus that integrates stromal
cues with cell-intrinsic survival programs, thereby promoting drug efflux and
immune evasion. Next, we discuss how single—cell and spatial omics, liquid
biopsy, patient—derived organoids, and Al-enabled analytics facilitate
subclone-level mapping of resistance networks and real-time tracking of clonal
evolution. Finally, we review mechanism—based strategies—including KRAS G12C
inhibitors, efflux—pump antagonists, apoptosis reactivators, and epigenetic/
autophagy modulators—and propose an integrated, multimodal regimen
leveraging immunotherapy where appropriate, informed by real-time drug
sensitivity data (e.g., from liquid biopsy), dynamic biomarkers and Al-driven
optimization to overcome resistance and improve patient outcomes.
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1 Introduction

Gastrointestinal (GI) tumors comprise malignant neoplasms
arising within the digestive system, including gastric carcinoma,
colorectal carcinoma, hepatocellular carcinoma, pancreatic
carcinoma, and gallbladder carcinoma (1). Their high incidence
and mortality rates impose an escalating global public health
burden (2, 3). Despite significant advances in surgical resection,
chemotherapy, molecularly targeted therapies, and immunotherapy,
drug resistance remains the principal obstacle to durable treatment
response (4). Drug resistance—defined as a marked diminution in
tumor sensitivity following therapy, leading to treatment failure and
poorer prognosis—can be classified into primary (pre-existing)
resistance and acquired resistance that emerges during the course
of treatment; these forms often co-exist and interact to drive disease
relapse and progression (5-7). Consequently, delineating resistance
mechanisms in the gastrointestinal tract, particularly those
constraining immunotherapeutic efficacy, is crucial. This study
examines how integrating molecular profiling, immunotherapeutic
data, and functional drug sensitivity assays can inform the design of
enhanced treatment regimens to improve clinical outcomes.
Critically, translating molecular insights into clinical action requires
bridging two key gaps: predicting immunotherapy resistance driven
by dynamic tumor-immune interactions, and quantifying drug
sensitivity at the individual patient level. This review therefore
emphasizes functional drug sensitivity profiling—using ex vivo
models and liquid biopsy—as a linchpin for integrating molecular
mechanisms with immunotherapeutic strategies to design adaptive
treatment regimens.

2 Overview of anti—tumor drug
resistance mechanisms in
gastrointestinal tumors

Acquired resistance develops when primary resistance is a
measure of tumor cell insensitivity inherent to the tumor that
occurs before any form of therapy, which causes suboptimal
responses to initial chemotherapy or targeted therapies. Acquired
resistance develops when once—sensitive cells, under sustained drug
pressure, gain resistance through genetic mutations or adaptive
reprogramming (8, 9). The emergence of resistance is a
multifactorial process involving both cell-intrinsic and
microenvironmental factors. Intrinsic mechanisms comprise drug
target alterations, drug metabolism and efflux dysregulation,
hyperactivation of DNA damage repair pathways, and epigenetic
alterations (9-12). Extrinsic mechanisms are derived from the
tumor microenvironment and extracellular matrix (ECM)
remodeling, which together generate physical and biochemical
barriers to drug delivery efficiency (13, 14). In addition,
epithelial-mesenchymal transition (EMT) and the induction of
cancer stem cell (CSC) features have been established as
underlying determinants of drug resistance. EMT-associated
transcription factors not only promote invasion and migration
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but also confer anti—apoptotic capacity, while CSC populations
inherently tolerate drugs and regenerate the tumor mass after
therapy, acting as reservoirs of resistant cells (15-18). These
interconnected mechanisms synergize to establish the refractory
phenotype of gastrointestinal tumors. Critically, these mechanisms
also orchestrate immune evasion, constituting a major barrier to the
efficacy of cancer immunotherapy, which has emerged as a pivotal
therapeutic modality alongside chemotherapy and targeted agents
(19) (Figure 1).

3 Resistance mechanisms
3.1 Intrinsic factors

3.1.1 Functional drug sensitivity profiling
platforms

Beyond mechanistic insights, patient-derived organoids (PDOs)
serve as ex vivo micro-tumors for high-throughput drug screening.
By exposing PDOs to chemotherapy, targeted agents, and immune
checkpoint inhibitors (e.g., anti-PD-1), researchers quantify tumor-
specific sensitivity and identify synergistic combinations (20). For
instance, gastric cancer PDOs co-cultured with autologous T cells
revealed that TGF-J blockade enhanced pembrolizumab efficacy in
immunologically “cold” tumors (21). This functional approach
complements genomic and immune profiling to prioritize

clinically actionable regimens.

3.1.2 Alterations of drug targets

Structural or expression modification of drug targets
dramatically lowers drug-target affinity, hence, driving drug
resistance. For instance, 5-fluouracil (5-FU) and raltitrexed are
thymidylate synthase (TS) inhibitors that inhibit thymidine
synthesis and DNA replication and repair, yet amplification or
point mutations of the TS gene within gastrointestinal tumor cells
generate TS overexpression or conformational changes which lower
inhibitor affinity and induce drug resistance (22, 23). In a similar
manner, resistance to anti-EGFR monoclonal antibodies
(cetuximab, panitumumab) is largely caused by acquired
mutations of the EGFR extracellular domain (ECD). S492R
substitution abolishes cetuximab binding without impacting upon
panitumumab affinity, with further ECD mutations (R451C,
K467T, S464L, G465R, 1491M) being present within clinical
samples and cell-line models of resistance; it is these variants that
modify antibody epitope conformation, allowing for continued
EGFR (24-27). Moreover, mutations or amplifications of
downstream effectors—KRAS, NRAS, BRAF, and PIK3CA—can
activate the MAPK and PI3K-AKT pathways independently of
EGFR, thus mediating both primary and acquired resistance to
EGFR blockade (28, 29).

3.1.3 Increased drug efflux

Overexpression of ATP-binding cassette (ABC) transporters is a
key driver of drug resistance in gastrointestinal tumors.
P-glycoprotein (P-gp; ABCB1), MRP1 (ABCC1), and BCRP
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The development of therapeutic resistance in gastrointestinal cancers is a multifactorial phenomenon driven by both tumor cell-intrinsic programs
and extrinsic influences from the surrounding microenvironment. Intrinsic mechanisms include alterations in drug targets, dysregulation of drug
metabolism and efflux systems, overactivation of DNA damage repair pathways, and widespread epigenetic reprogramming. In parallel, extrinsic
mechanisms arise from dynamic remodeling of the tumor microenvironment (TME) and extracellular matrix (ECM), which together establish physical
and biochemical barriers that impede effective drug delivery. Moreover, epithelial-mesenchymal transition (EMT) and the acquisition of cancer stem
cell (CSC)-like properties have emerged as central determinants of resistance phenotypes. EMT-associated transcription factors not only drive tumor
cell invasiveness and migratory capacity but also endow cells with enhanced resistance to apoptosis. Simultaneously, CSC populations exhibit innate

cells.

(ABCG2) utilize ATP hydrolysis to actively extrude
chemotherapeutic agents from the cytosol, markedly reducing
intracellular drug accumulation and promoting resistance (30-34).
Chemotherapy-induced endoplasmic reticulum stress has been
shown to activate the IRE10.-XBP1 axis, leading to upregulation of
ABCBI, ABCC1, and ABCG2 expression (35). In the gastric tumor

microenvironment, inflammatory cues activate NF-xB and HIF-1a,
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tolerance to chemotherapy and possess the ability to repopulate tumors post-treatment, thereby serving as a persistent reservoir of drug-refractory

which cooperatively bind the MDR1 promoter and drive P-gp
overexpression, thereby conferring resistance to paclitaxel and
doxorubicin. Overexpression of MRP1 is associated with reduced
sensitivity to irinotecan and cisplatin (36, 37). Small molecule
inhibitors of ABC transporters or upstream regulators are therefore

potential options for reversing drug resistance and
reestablishing chemosensitivity.
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3.1.4 Inhibition of apoptosis

Antineoplastic agents induce tumor cell death primarily via two
canonical apoptotic cascades: the intrinsic, mitochondria-mediated
pathway and the extrinsic, death receptor-mediated pathway. The
intrinsic pathway involves Bax/Bak oligomerization, mitochondrial
outer membrane permeabilization, cytochrome c release, and
sequential activation of caspase-9 and caspase-3. The extrinsic
pathway is initiated when ligands such as FasL or TRAIL bind
their cognate death receptors, triggering caspase-8 and downstream
caspase-3 activation.

Gastrointestinal tumor cells commonly evade both cascades
through multiple mechanisms. First, anti-apoptotic Bcl-2 family
members (Bcl-2, Bcl-xL, Mcl-1) are frequently overexpressed in
gastric and colorectal cancers; by antagonizing Bax/Bak
oligomerization and preserving mitochondrial integrity, they
prevent cytochrome c release and caspase activation, thereby
conferring resistance to 5-fluorouracil and oxaliplatin (38-40).
Second, inhibitors of apoptosis proteins (IAPs), notably XIAP and
Survivin, bind directly to caspase-3, -7, and -9, blocking their
protease activity. Survivin expression is markedly elevated in
gastric and colorectal tumors and correlates with resistance to
cisplatin and irinotecan (41-46). Finally, dysfunction of the p53
pathway—via MDM2 overexpression or TP53 mutation—impairs
transcriptional induction of pro-apoptotic targets such as Bax and
PUMA, substantially reducing tumor cell sensitivity to DNA-
damaging agents (47-54).

3.1.5 Genetic and epigenetic regulation

Genetic and epigenetic mechanisms regulate gene expression
through reversible chemical modifications and non-coding RNAs
without altering the underlying DNA sequence, playing a pivotal
role in the development of drug resistance in gastrointestinal (GI)
tumors. DNA methylation, particularly hypermethylation of gene
promoters, leads to the silencing of tumor suppressor genes and
drug-metabolizing enzymes, both of which contribute to resistance.
For example, promoter hypermethylation of the mismatch repair
gene MLHI1 in gastric cancer results in microsatellite instability
(MSI), thereby reducing the efficacy of platinum-based
chemotherapeutics (55, 56).

Histone modifications such as acetylation, methylation, and
phosphorylation exert their action by modifying chromatin
structure to thereby control the expression of resistance-associated
genes (57). In gastric cancer, overexpression of HDAC1/3 contributes
to deacetylation, silencing pro-apoptotic genes such as BIM and
PUMA, which is a key mechanism in taxane resistance (58).
Additionally, noncoding RNAs such as microRNAs (miRNAs), and
long noncoding RNAs (IncRNAs), regulate drug susceptibility by
targeting mRNA or affecting signaling pathways of vital importance
and drug-resistant clone expansion in the case of therapeutic pressure
(59). For example, downregulation of the miR-200 family,
particularly miR-200c, upregulates ZEB1/2 and promotes
epithelial-mesenchymal transition (EMT), a process that enhances
resistance to 5—fluorouracil (5-FU) in colorectal cancer (60-64). The
epigenetic network also plays a critical role in maintaining the self-
renewal and multi-lineage differentiation potential of cancer stem
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cells (CSCs), thereby supporting the persistence and expansion of
drug-resistant clones under therapeutic stress. The network is a
dynamic and adaptive system both promoting resistance and
tumor growth and is thus of particular importance as a target in GI
oncology (61, 65-67).

3.1.6 Autophagy and cellular stress responses

Tumor cells orchestrate multiple modes of cell death regulation
to collectively contribute to therapeutic resistance. Autophagy, a
lysosome-mediated degradation pathway, maintains cellular
homeostasis under nutrient deprivation, hypoxia, or drug-induced
stress. In gastrointestinal (GI) cancers, autophagy acts in concert
with stress responses—such as endoplasmic reticulum (ER) stress
and oxidative stress—to promote survival and resistance under
chemotherapy or targeted therapy pressure (68). The autophagic
degradation of macromolecules generates ATP, which fuels drug
efflux mediated by ATP-binding cassette (ABC) transporters, while
the recycled amino acids and fatty acids fulfill the metabolic
demands of tumor cells under treatment, thereby reinforcing
chemoresistance. Conversely, defective autophagy leads to the
accumulation of p62/SQSTM1, which activates NF-xB signaling
and upregulates pro-survival and pro-inflammatory genes,
exacerbating cisplatin resistance (69-71).

Ferroptosis is an iron-dependent, lipid peroxidation-driven
form of cell death. GI tumor cells commonly resist ferroptosis
inducers (e.g., erastin, RSL3) and certain chemotherapeutics by
upregulating glutathione peroxidase 4 (GPX4), thereby enhancing
antioxidant capacity (72-74). In addition, tumor cells evade
necroptosis, a RIPK1/RIPK3/MLKL-dependent death pathway,
through downregulation of RIPK3 or MLKL expression, or by
exploiting molecular chaperones to suppress pathway activation,
enabling escape from TNFo family cytokines or certain
chemotherapy-induced cell death (75, 76). Pyroptosis, defined as
gasdermin-mediated inflammatory lytic death, is also suppressed by
tumor cells through downregulation of GSDM proteins (e.g.,
GSDMD, GSDME) or inhibition of upstream inflammasome
activation (e.g., NLRP3), conferring resistance to immunotherapy-
or chemotherapy-induced pyroptosis (77, 78).

Stress responses are pervasive during chemotherapy.
Chemotherapy-induced ER stress activates the PERK/elF20/ATF4
axis, upregulating core autophagy genes (ATG5, ATG7), thereby
enhancing autophagic flux, alleviating protein-folding stress, and
supporting cell survival. Meanwhile, chemotherapy-induced
reactive oxygen species (ROS) further activate the transcription
factor Nrf2, driving the expression of antioxidants (HO-1, NQO1)
and autophagy-related genes, ultimately increasing tolerance to
oxidative and drug-induced damage.

3.2 Extrinsic factors
3.2.1 Tumor microenvironment and ECM
remodeling

The tumor microenvironment (TME) comprises cancer-
associated fibroblasts (CAFs), immune and endothelial cells, along
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with extracellular matrix (ECM) components, cytokines, and
metabolites; its dynamic network profoundly influences
therapeutic response in gastrointestinal tumors (79-82). CAF-
derived factors such as TGF-f3 and PDGF activate SMAD, PI3K/
AKT and MAPK signaling, leading to upregulation of anti
—apoptotic proteins (e.g., Bcl-2, Survivin) and enhanced resistance
to 5-fluorouracil and oxaliplatin in colorectal cancer (83-86).
Hypoxia within the TME stabilizes HIF-la, which drives
expression of ABC transporters (ABCB1, ABCG2), promoting
drug efflux and metabolic reprogramming that confer a survival
advantage under treatment pressure (87-90). Concurrently,
immunosuppressive populations—including regulatory T cells
(Tregs) and tumor—associated macrophages (TAMs)—together
with upregulated immune checkpoint molecules such as PD-LI,
inhibit cytotoxic T-cell activity, thereby contributing significantly to
resistance against both chemotherapy and immunotherapy (91).
Remodeling of the ECM—characterized by deposition of
hyaluronan and laminin—increases interstitial fluid pressure,
impedes drug penetration, and engages integrin/FAK signaling to
promote tumor cell adhesion, survival, and migration, thereby
exacerbating resistance phenotypes (92-94).

3.2.2 Metabolomics analysis

Metabolomics, through the systematic profiling of dynamic
changes in small-molecule metabolites, offers a unique lens for
deciphering the mechanisms underlying drug resistance in
gastrointestinal (GI) cancers. Accumulating evidence indicates
that resistant tumor cells reprogram key metabolic pathways—
including energy metabolism, redox homeostasis, and nucleotide
biosynthesis—or engage metabolite-mediated epigenetic regulation
to evade chemotherapeutic cytotoxicity. For instance, in oxaliplatin-
resistant colorectal cancer cells, the expression of hexokinase 2
(HK2) and lactate dehydrogenase A (LDHA) is markedly
upregulated, thereby enhancing glycolytic flux and reducing
intracellular drug accumulation (95-97). In gemcitabine-resistant
pancreatic cancer models, increased expression of glutamate-
cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme
in glutathione (GSH) synthesis, promotes the clearance of
chemotherapy-induced reactive oxygen species (ROS) and
preserves redox homeostasis, ultimately protecting tumor cells
(98, 99). Moreover, resistance to 5-fluorouracil (5-FU) in
colorectal cancer has been linked to the overexpression of
thymidylate synthase (TYMS) and increased dUTPase activity,
which together drive competitive inhibition of the drug’s
molecular target (100, 101).

3.3 Epithelial-mesenchymal transition

Epithelial-mesenchymal transition is a cellular reprogramming
process in which epithelial tumor cells lose polarity and cell-cell
adhesion while acquiring mesenchymal characteristics; hallmarks
include downregulation of E-cadherin and upregulation of
Vimentin, accompanied by enhanced migratory and invasive
capacities that confer resistance to anticancer agents (102-106).
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EMT also promotes a cancer stem cell phenotype through
activation of Wnt/B-catenin, Notch, and related pathways, enabling
cells to evade chemotherapy-induced cytotoxicity (14, 107).
Furthermore, EMT transcription factors upregulate ABC
transporter genes such as ABCB1 and ABCCI, increasing drug
efflux; for example, Twistl binds the ABCB1 promoter in colorectal
cancer, driving irinotecan export and resistance (108, 109). By
modulating the expression of apoptotic regulators, EMT factors
further inhibit drug-induced cell death (110). In addition, EMT
promotes an immunosuppressive TME recruiting regulatory
immune cells and upregulating checkpoint molecules (e.g., PD-L1),
creating a feed-forward loop that sustains resistance to both cytotoxic
agents and immunotherapy (111, 112).

3.4 The role of the gut microbiota

In gastrointestinal (GI) cancers, the gut microbiota profoundly
modulates the metabolism of chemotherapeutic agents, thereby
influencing therapeutic efficacy. For example, bacterial
B-glucuronidase (GUS) can hydrolyze the inactive metabolite SN-
38G into the toxic compound SN-38, leading to severe diarrhea
(113). Fusobacterium nucleatum has been shown to activate the
TLR4/MyD88 signaling pathway, induce reactive oxygen species
(ROS) production, and attenuate DNA damage, thereby promoting
chemoresistance (114). Conversely, certain microbes enhance
responses to immunotherapy: Akkermansia muciniphila increases
CCL5"CD8" T-cell infiltration, thereby potentiating the efficacy of
PD-1/PD-L1 immune checkpoint blockade and improving clinical
outcomes (115). Moreover, microbial metabolites such as short-
chain fatty acids and tryptophan-derived catabolites exert potent
immunomodulatory effects (116, 117). Collectively, these findings
highlight the gut microbiota as a dynamic and therapeutically
targetable regulator of treatment responses in GI cancers.
Interventions such as fecal microbiota transplantation or
engineered bacteria-based delivery strategies hold promise for
reshaping the immune microenvironment and effectively
reversing tumor drug resistance (118-120).

3.5 Emerging technologies reveal new
mechanisms

The introduction of single-cell sequencing, liquid biopsy with
circulating tumor DNA (ctDNA), patient-derived organoid models,
and artificial intelligence has brought about a multi-dimensional era
for gastrointestinal tumor resistance research (121, 122). In
colorectal cancer, single—cell RNA sequencing (scRNA-seq) has
revealed a pronounced expansion of LGR5" cancer stem cells
following oxaliplatin treatment, with resistance maintained via
Wnt/B-catenin and Notch signaling. Single-cell DNA sequencing
(scDNA-seq) permits dynamic monitoring of clonal composition
pre- and post-treatment for gastric cancer, with selection for TP53
and APC mutant upon chemotherapeutic challenge—offering a
genetic explanation for acquired drug resistance (123-127).
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TABLE 1 Mechanism-based therapeutic strategies table.

Representative

Intervention strategy agents

10.3389/fonc.2025.1675745

Clinical

References
stage

Gastrointestinal tumor type

Targeted inhibition Sotorasib

Efflux pump inhibition

Apoptosis reactivation Venetoclax

DNA methyltransferase inhibitor + HDAC inhibitor =~ Azacitidine + Panobinostat

GPX4 inhibition Sulfasalazine (SASP)

TGF-P receptor blockade Galunisertib

Fecal microbiota transplantation (FMT) -

Liquid biopsy, analyzing ctDNA, enables non-invasive detection of
resistance-driving alterations (genetic, epigenetic) and dynamic
monitoring of clonal evolution, serving as a crucial tool for real-
time drug sensitivity assessment and early intervention (128).
Detection of KRAS/NRAS mutations in colorectal cancer ctDNA,
often emerging months before radiographic progression, provides
actionable insights into evolving drug sensitivity and resistance,
enabling timely therapeutic adjustments. The combination of
patient-derived organoid (PDO) models with in vitro immune cell
co-culture systems establishes a powerful functional platform for
validating tumor sensitivity to immunotherapy. These systems
faithfully recapitulate key components of the tumor-immune
microenvironment—such as tumor-associated fibroblasts,
dendritic cells, macrophages, and cytotoxic T lymphocytes—and
enable direct testing of how interventions targeting TGF-f3, IDO1,
or CSFIR can reverse immune suppression and restore anti—tumor
cytotoxicity. Furthermore, generative or graph-based Al modeling
approaches can simulate evolutionary trajectories of resistant
subclones under immunotherapy pressure, enabling dynamic,
adaptive planning of combination regimens (e.g. ICB + HDAC
inhibitors or ICB + autophagy blockers) tailored to expected
resistance mechanism.

Although such tools offer unmatched resolution for mapping
multi-dimensional mechanisms of resistance, issues with data
standardization, cost, and data complexity arise. Data sharing and
harmonization are needed future initiatives, which must be targeted
toward translating laboratory data into clinical applications
more rapidly.

4 Clinical implications and
mechanism-based therapeutic
strategies

4.1 Mechanism-driven intervention
approaches

Deeper insights into molecular and immunological drivers of

resistance are spurring the development of targeted and
immunotherapeutic interventions, evaluated both preclinically and
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Tariquidar (ABCBI1 inhibitor)

Phase IIT Colorectal carcinoma (120)

Phase II Gastric carcinoma (121)

Phase /11 Hepatocellular carcinoma (37, 38)
Phase II Colorectal carcinoma (55, 56)
Preclinical Gastric carcinoma (70-72)
Phase 11 Pancreatic carcinoma (81, 82, 125)
Phase I Melanoma (across tumor types; (111-113)

extrapolatable to GI cancers)

clinically. (Table 1) One promising example is the KRAS G12C
inhibitor sotorasib, which covalently binds the mutant cysteine in a
hidden pocket of KRAS, traps the protein in its inactive GDP-bound
state, and effectively quenches aberrant MAPK signaling in G12C-
mutant colorectal tumors (129). To overcome efflux mediated by
transporters, tariquidar, a drug inhibitor of P-gp, has been combined
with nanoparticle-encapsulated paclitaxel. In gastric cancer models, it
is shown to significantly increase intracellular paclitaxel concentration
and restore sensitivity to taxane therapy (130-132). Concomitant
efforts toward restoration of apoptosis pathways are Smac mimetics,
which neutralize inhibitor-of-apoptosis proteins (IAPs) for
reactivation of caspase-dependent cell death, and Bcl-2 antagonist
venetoclax, which disassembles mitochondrial prosurvival defenses—
both with efficacies shown in preclinical models of reversal of apoptosis
blockade (38, 39, 133). Targeting the tumor stroma, TGF-f receptor
blockade (e.g., galunisertib) dampens CAF activation, reduces collagen
deposition, and softens the ECM. This not only enhances
chemotherapy delivery and efficacy but also alleviates
immunosuppression within the TME, potentially improving
response to immunotherapy (85, 86, 134, 135). Reversing epithelial-
mesenchymal transition (EMT) represents another avenue: the small
—molecule reversine inhibits Twistl nuclear translocation,
reestablishing 5-fluorouracil sensitivity in colorectal cancer cells by
restoring epithelial characteristics (109, 136, 137). Epigenetic resistance
can be addressed by combining the DNA methyltransferase inhibitor
azacitidine with the HDAC inhibitor panobinostat, which together
reverse MGMT promoter hypermethylation, reactivate pro-apoptotic
gene expression, and augment chemotherapy response in colorectal
models (55, 56, 138). Lastly, simultaneous targeting of autophagy and
endoplasmic reticulum stress—using hydroxychloroquine to block
autophagosome-lysosome fusion and GSK2606414 to inhibit the
PERK/elF20. axis—has been shown to synergistically overcome
autophagy-dependent resistance phenotypes (67, 110, 111).

4.2 Prospects for personalized precision
therapy

Drug resistance in gastrointestinal tumors reflects a heterogeneous
and adaptive network of molecular and microenvironmental
alterations. Personalized precision medicine aims to “tailor”
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therapeutic strategies to each patient’s unique resistance landscape.
Integrating single—cell transcriptomics with spatial metabolomics
enables precise mapping of resistant clones and their metabolic
niches—for example, co-localization of KRAS-mutant
subpopulations with cancer—associated fibroblasts in colorectal
cancer suggests focal FAK inhibition, whereas lactate—rich
microdomains in gastric cancer may be targeted via MCT1
blockade. Liquid biopsy (ctDNA, exosomes) provides real-time
monitoring of drug sensitivity and resistance dynamics, enabling
early detection of recurrence and data-driven treatment adaptation
(139).Mechanism-based combinatorial strategies integrating
immunotherapy are emerging: e.g.triplet therapies combining KRAS
inhibitors, immune checkpoint blockade (ICB), and epigenetic
modulators (like HDAC inhibitors that enhance tumor antigen
presentation) show synergistic efficacy. In recent years, multiple
trials, including the KRYSTAL-1 trial (NCT03785249), have
demonstrated that triplet therapy can effectively reverse acquired
resistance in gastrointestinal tumors (140-143). Dual targeting of
epithelial mesenchymal transition and autophagy (e.g., Twistl
inhibitors plus hydroxychloroquine) can dismantle the survival
networks of cancer stem like cells and re-sensitize tumors to
conventional chemotherapy.Al-driven sensitivity prediction is a key
strategy to overcome drug resistance. For instance, multimodal AI
platforms integrate genomic features (such as IFN-y response genes),
digital pathology images, and ex vivo organoid drug screening data
(144, 145), generating patient-specific immunotherapy sensitivity
scores with predictive accuracy superior to single biomarkers like
PD-L1 IHC. Studies have shown that such Al-based prediction
models exhibit immense potential in oncology (146, 147), providing
powerful tools for personalized treatment decisions. Rigorous clinical
validation of these approaches, with attention to safety, feasibility, and
cost-effectiveness, will be essential. Ultimately, the goal of personalized
precision therapy is not only to surmount therapeutic resistance but
also to preserve patient dignity and hope throughout the
treatment journey.

5 Conclusion and future perspectives

Drug resistance in GI malignancies represents a complex
“survival race,” driven by tumor cell-intrinsic mechanisms
(genetic, epigenetic) and extrinsic factors (microenvironmental
crosstalk, immune evasion) to evade cytotoxic, targeted, and
immunotherapies. These mechanisms operate not in isolation but
as a dynamic, interconnected network, collectively enabling tumor
persistence and progression under therapeutic pressure.

Interdisciplinary technologies (spatial/single-cell omics, liquid
biopsy, organoids, Al) are deciphering this complexity, enabling
more precise mapping of resistance mechanisms (including
immune evasion) and facilitating drug sensitivity profiling for
improved clinical decisions. Nevertheless, there are substantial
issues, including integration of data, standardization, cost, and
translation into everyday practice.

Prospects for future research include high-resolution,
spatiotemporal mapping of resistance niches; deep learning
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platforms predicting adaptive responses and optimizing real-time
treatment regimens; proactive intervention approaches that
preempt and countermand resistance; and rational reengineering
of the tumor microenvironment for dismantling protective niches.
Leveraging these intelligent tools and patient-centric strategies-
particularly those integrating immunotherapy insights and drug
sensitivity analysis-holds promise for transforming drug resistance
into a navigable challenge, leading to sustained remission and
enhanced patient outcomes.
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