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Resistance to chemotherapy, targeted agents, and particularly immunotherapy

remains the principal challenge in the management of gastrointestinal

malignancies. This review aims to comprehensively delineate the molecular and

microenvironmental drivers of resistance, with emphasis on mechanisms impacting

immunotherapy response, and evaluate emerging, mechanism−guided

interventions (including immunotherapeutic combinations) for precision therapy.

We first examine intrinsic mechanisms—including drug−target alterations,

dysregulated drug metabolism and efflux, hyperactivation of DNA damage repair

pathways, and epigenetic remodeling—and extrinsic influences stemming from the

tumor microenvironment and extracellular matrix remodeling. We then highlight

epithelial–mesenchymal transition (EMT) as a critical nexus that integrates stromal

cues with cell−intrinsic survival programs, thereby promoting drug efflux and

immune evasion. Next, we discuss how single−cell and spatial omics, liquid

biopsy, patient−derived organoids, and AI−enabled analytics facilitate

subclone−level mapping of resistance networks and real−time tracking of clonal

evolution. Finally, we review mechanism−based strategies—including KRAS G12C

inhibitors, efflux−pump antagonists, apoptosis reactivators, and epigenetic/

autophagy modulators—and propose an integrated, multimodal regimen

leveraging immunotherapy where appropriate, informed by real-time drug

sensitivity data (e.g., from liquid biopsy), dynamic biomarkers and AI−driven

optimization to overcome resistance and improve patient outcomes.
KEYWORDS

cancer, drug resistance, tumor microenvironment (TME), molecular mechanisms,
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1 Introduction

Gastrointestinal (GI) tumors comprise malignant neoplasms

arising within the digestive system, including gastric carcinoma,

colorectal carcinoma, hepatocellular carcinoma, pancreatic

carcinoma, and gallbladder carcinoma (1). Their high incidence

and mortality rates impose an escalating global public health

burden (2, 3). Despite significant advances in surgical resection,

chemotherapy, molecularly targeted therapies, and immunotherapy,

drug resistance remains the principal obstacle to durable treatment

response (4). Drug resistance—defined as a marked diminution in

tumor sensitivity following therapy, leading to treatment failure and

poorer prognosis—can be classified into primary (pre-existing)

resistance and acquired resistance that emerges during the course

of treatment; these forms often co-exist and interact to drive disease

relapse and progression (5–7). Consequently, delineating resistance

mechanisms in the gastrointestinal tract, particularly those

constraining immunotherapeutic efficacy, is crucial. This study

examines how integrating molecular profiling, immunotherapeutic

data, and functional drug sensitivity assays can inform the design of

enhanced treatment regimens to improve clinical outcomes.

Critically, translating molecular insights into clinical action requires

bridging two key gaps: predicting immunotherapy resistance driven

by dynamic tumor-immune interactions, and quantifying drug

sensitivity at the individual patient level. This review therefore

emphasizes functional drug sensitivity profiling—using ex vivo

models and liquid biopsy—as a linchpin for integrating molecular

mechanisms with immunotherapeutic strategies to design adaptive

treatment regimens.
2 Overview of anti−tumor drug
resistance mechanisms in
gastrointestinal tumors

Acquired resistance develops when primary resistance is a

measure of tumor cell insensitivity inherent to the tumor that

occurs before any form of therapy, which causes suboptimal

responses to initial chemotherapy or targeted therapies. Acquired

resistance develops when once−sensitive cells, under sustained drug

pressure, gain resistance through genetic mutations or adaptive

reprogramming (8, 9). The emergence of resistance is a

multifactorial process involving both cell−intrinsic and

microenvironmental factors. Intrinsic mechanisms comprise drug

target alterations, drug metabolism and efflux dysregulation,

hyperactivation of DNA damage repair pathways, and epigenetic

alterations (9–12). Extrinsic mechanisms are derived from the

tumor microenvironment and extracellular matrix (ECM)

remodeling, which together generate physical and biochemical

barriers to drug delivery efficiency (13, 14). In addition,

epithelial–mesenchymal transition (EMT) and the induction of

cancer stem cell (CSC) features have been established as

underlying determinants of drug resistance. EMT−associated

transcription factors not only promote invasion and migration
Frontiers in Oncology 02
but also confer anti−apoptotic capacity, while CSC populations

inherently tolerate drugs and regenerate the tumor mass after

therapy, acting as reservoirs of resistant cells (15–18). These

interconnected mechanisms synergize to establish the refractory

phenotype of gastrointestinal tumors. Critically, these mechanisms

also orchestrate immune evasion, constituting a major barrier to the

efficacy of cancer immunotherapy, which has emerged as a pivotal

therapeutic modality alongside chemotherapy and targeted agents

(19) (Figure 1).
3 Resistance mechanisms

3.1 Intrinsic factors

3.1.1 Functional drug sensitivity profiling
platforms

Beyond mechanistic insights, patient-derived organoids (PDOs)

serve as ex vivo micro-tumors for high-throughput drug screening.

By exposing PDOs to chemotherapy, targeted agents, and immune

checkpoint inhibitors (e.g., anti-PD-1), researchers quantify tumor-

specific sensitivity and identify synergistic combinations (20). For

instance, gastric cancer PDOs co-cultured with autologous T cells

revealed that TGF-b blockade enhanced pembrolizumab efficacy in

immunologically “cold” tumors (21). This functional approach

complements genomic and immune profiling to prioritize

clinically actionable regimens.

3.1.2 Alterations of drug targets
Structural or expression modification of drug targets

dramatically lowers drug–target affinity, hence, driving drug

resistance. For instance, 5-fluouracil (5-FU) and raltitrexed are

thymidylate synthase (TS) inhibitors that inhibit thymidine

synthesis and DNA replication and repair, yet amplification or

point mutations of the TS gene within gastrointestinal tumor cells

generate TS overexpression or conformational changes which lower

inhibitor affinity and induce drug resistance (22, 23). In a similar

manner, resistance to anti-EGFR monoclonal antibodies

(cetuximab, panitumumab) is largely caused by acquired

mutations of the EGFR extracellular domain (ECD). S492R

substitution abolishes cetuximab binding without impacting upon

panitumumab affinity, with further ECD mutations (R451C,

K467T, S464L, G465R, I491M) being present within clinical

samples and cell−line models of resistance; it is these variants that

modify antibody epitope conformation, allowing for continued

EGFR (24–27). Moreover, mutations or amplifications of

downstream effectors—KRAS, NRAS, BRAF, and PIK3CA—can

activate the MAPK and PI3K−AKT pathways independently of

EGFR, thus mediating both primary and acquired resistance to

EGFR blockade (28, 29).

3.1.3 Increased drug efflux
Overexpression of ATP-binding cassette (ABC) transporters is a

key driver of drug resistance in gastrointestinal tumors.

P-glycoprotein (P-gp; ABCB1), MRP1 (ABCC1), and BCRP
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(ABCG2) uti l ize ATP hydrolysis to act ively extrude

chemotherapeutic agents from the cytosol, markedly reducing

intracellular drug accumulation and promoting resistance (30–34).

Chemotherapy-induced endoplasmic reticulum stress has been

shown to activate the IRE1a–XBP1 axis, leading to upregulation of

ABCB1, ABCC1, and ABCG2 expression (35). In the gastric tumor

microenvironment, inflammatory cues activate NF-kB and HIF-1a,
Frontiers in Oncology 03
which cooperatively bind the MDR1 promoter and drive P-gp

overexpression, thereby conferring resistance to paclitaxel and

doxorubicin. Overexpression of MRP1 is associated with reduced

sensitivity to irinotecan and cisplatin (36, 37). Small molecule

inhibitors of ABC transporters or upstream regulators are therefore

potent ia l opt ions for revers ing drug res is tance and

reestablishing chemosensitivity.
FIGURE 1

The development of therapeutic resistance in gastrointestinal cancers is a multifactorial phenomenon driven by both tumor cell–intrinsic programs
and extrinsic influences from the surrounding microenvironment. Intrinsic mechanisms include alterations in drug targets, dysregulation of drug
metabolism and efflux systems, overactivation of DNA damage repair pathways, and widespread epigenetic reprogramming. In parallel, extrinsic
mechanisms arise from dynamic remodeling of the tumor microenvironment (TME) and extracellular matrix (ECM), which together establish physical
and biochemical barriers that impede effective drug delivery. Moreover, epithelial–mesenchymal transition (EMT) and the acquisition of cancer stem
cell (CSC)-like properties have emerged as central determinants of resistance phenotypes. EMT-associated transcription factors not only drive tumor
cell invasiveness and migratory capacity but also endow cells with enhanced resistance to apoptosis. Simultaneously, CSC populations exhibit innate
tolerance to chemotherapy and possess the ability to repopulate tumors post-treatment, thereby serving as a persistent reservoir of drug-refractory
cells.
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3.1.4 Inhibition of apoptosis
Antineoplastic agents induce tumor cell death primarily via two

canonical apoptotic cascades: the intrinsic, mitochondria-mediated

pathway and the extrinsic, death receptor-mediated pathway. The

intrinsic pathway involves Bax/Bak oligomerization, mitochondrial

outer membrane permeabilization, cytochrome c release, and

sequential activation of caspase-9 and caspase-3. The extrinsic

pathway is initiated when ligands such as FasL or TRAIL bind

their cognate death receptors, triggering caspase-8 and downstream

caspase-3 activation.

Gastrointestinal tumor cells commonly evade both cascades

through multiple mechanisms. First, anti-apoptotic Bcl-2 family

members (Bcl-2, Bcl-xL, Mcl-1) are frequently overexpressed in

gastric and colorectal cancers; by antagonizing Bax/Bak

oligomerization and preserving mitochondrial integrity, they

prevent cytochrome c release and caspase activation, thereby

conferring resistance to 5-fluorouracil and oxaliplatin (38–40).

Second, inhibitors of apoptosis proteins (IAPs), notably XIAP and

Survivin, bind directly to caspase-3, -7, and -9, blocking their

protease activity. Survivin expression is markedly elevated in

gastric and colorectal tumors and correlates with resistance to

cisplatin and irinotecan (41–46). Finally, dysfunction of the p53

pathway—via MDM2 overexpression or TP53 mutation—impairs

transcriptional induction of pro-apoptotic targets such as Bax and

PUMA, substantially reducing tumor cell sensitivity to DNA-

damaging agents (47–54).

3.1.5 Genetic and epigenetic regulation
Genetic and epigenetic mechanisms regulate gene expression

through reversible chemical modifications and non-coding RNAs

without altering the underlying DNA sequence, playing a pivotal

role in the development of drug resistance in gastrointestinal (GI)

tumors. DNA methylation, particularly hypermethylation of gene

promoters, leads to the silencing of tumor suppressor genes and

drug-metabolizing enzymes, both of which contribute to resistance.

For example, promoter hypermethylation of the mismatch repair

gene MLH1 in gastric cancer results in microsatellite instability

(MSI), thereby reducing the efficacy of platinum-based

chemotherapeutics (55, 56).

Histone modifications such as acetylation, methylation, and

phosphorylation exert their action by modifying chromatin

structure to thereby control the expression of resistance-associated

genes (57). In gastric cancer, overexpression of HDAC1/3 contributes

to deacetylation, silencing pro-apoptotic genes such as BIM and

PUMA, which is a key mechanism in taxane resistance (58).

Additionally, noncoding RNAs such as microRNAs (miRNAs), and

long noncoding RNAs (lncRNAs), regulate drug susceptibility by

targeting mRNA or affecting signaling pathways of vital importance

and drug-resistant clone expansion in the case of therapeutic pressure

(59). For example, downregulation of the miR−200 family,

particularly miR-200c, upregulates ZEB1/2 and promotes

epithelial–mesenchymal transition (EMT), a process that enhances

resistance to 5−fluorouracil (5−FU) in colorectal cancer (60–64). The

epigenetic network also plays a critical role in maintaining the self-

renewal and multi−lineage differentiation potential of cancer stem
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cells (CSCs), thereby supporting the persistence and expansion of

drug-resistant clones under therapeutic stress. The network is a

dynamic and adaptive system both promoting resistance and

tumor growth and is thus of particular importance as a target in GI

oncology (61, 65–67).

3.1.6 Autophagy and cellular stress responses
Tumor cells orchestrate multiple modes of cell death regulation

to collectively contribute to therapeutic resistance. Autophagy, a

lysosome-mediated degradation pathway, maintains cellular

homeostasis under nutrient deprivation, hypoxia, or drug-induced

stress. In gastrointestinal (GI) cancers, autophagy acts in concert

with stress responses—such as endoplasmic reticulum (ER) stress

and oxidative stress—to promote survival and resistance under

chemotherapy or targeted therapy pressure (68). The autophagic

degradation of macromolecules generates ATP, which fuels drug

efflux mediated by ATP-binding cassette (ABC) transporters, while

the recycled amino acids and fatty acids fulfill the metabolic

demands of tumor cells under treatment, thereby reinforcing

chemoresistance. Conversely, defective autophagy leads to the

accumulation of p62/SQSTM1, which activates NF-kB signaling

and upregulates pro-survival and pro-inflammatory genes,

exacerbating cisplatin resistance (69–71).

Ferroptosis is an iron-dependent, lipid peroxidation–driven

form of cell death. GI tumor cells commonly resist ferroptosis

inducers (e.g., erastin, RSL3) and certain chemotherapeutics by

upregulating glutathione peroxidase 4 (GPX4), thereby enhancing

antioxidant capacity (72–74). In addition, tumor cells evade

necroptosis, a RIPK1/RIPK3/MLKL-dependent death pathway,

through downregulation of RIPK3 or MLKL expression, or by

exploiting molecular chaperones to suppress pathway activation,

enabling escape from TNFa family cytokines or certain

chemotherapy-induced cell death (75, 76). Pyroptosis, defined as

gasdermin-mediated inflammatory lytic death, is also suppressed by

tumor cells through downregulation of GSDM proteins (e.g.,

GSDMD, GSDME) or inhibition of upstream inflammasome

activation (e.g., NLRP3), conferring resistance to immunotherapy-

or chemotherapy-induced pyroptosis (77, 78).

Stress responses are pervasive during chemotherapy.

Chemotherapy-induced ER stress activates the PERK/eIF2a/ATF4
axis, upregulating core autophagy genes (ATG5, ATG7), thereby

enhancing autophagic flux, alleviating protein-folding stress, and

supporting cell survival. Meanwhile, chemotherapy-induced

reactive oxygen species (ROS) further activate the transcription

factor Nrf2, driving the expression of antioxidants (HO-1, NQO1)

and autophagy-related genes, ultimately increasing tolerance to

oxidative and drug-induced damage.
3.2 Extrinsic factors

3.2.1 Tumor microenvironment and ECM
remodeling

The tumor microenvironment (TME) comprises cancer-

associated fibroblasts (CAFs), immune and endothelial cells, along
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with extracellular matrix (ECM) components, cytokines, and

metabolites; its dynamic network profoundly influences

therapeutic response in gastrointestinal tumors (79–82). CAF-

derived factors such as TGF-b and PDGF activate SMAD, PI3K/

AKT and MAPK signaling, leading to upregulation of anti

−apoptotic proteins (e.g., Bcl-2, Survivin) and enhanced resistance

to 5-fluorouracil and oxaliplatin in colorectal cancer (83–86).

Hypoxia within the TME stabilizes HIF-1a, which drives

expression of ABC transporters (ABCB1, ABCG2), promoting

drug efflux and metabolic reprogramming that confer a survival

advantage under treatment pressure (87–90). Concurrently,

immunosuppressive populations—including regulatory T cells

(Tregs) and tumor−associated macrophages (TAMs)—together

with upregulated immune checkpoint molecules such as PD-L1,

inhibit cytotoxic T-cell activity, thereby contributing significantly to

resistance against both chemotherapy and immunotherapy (91).

Remodeling of the ECM—characterized by deposition of

hyaluronan and laminin—increases interstitial fluid pressure,

impedes drug penetration, and engages integrin/FAK signaling to

promote tumor cell adhesion, survival, and migration, thereby

exacerbating resistance phenotypes (92–94).

3.2.2 Metabolomics analysis
Metabolomics, through the systematic profiling of dynamic

changes in small-molecule metabolites, offers a unique lens for

deciphering the mechanisms underlying drug resistance in

gastrointestinal (GI) cancers. Accumulating evidence indicates

that resistant tumor cells reprogram key metabolic pathways—

including energy metabolism, redox homeostasis, and nucleotide

biosynthesis—or engage metabolite-mediated epigenetic regulation

to evade chemotherapeutic cytotoxicity. For instance, in oxaliplatin-

resistant colorectal cancer cells, the expression of hexokinase 2

(HK2) and lactate dehydrogenase A (LDHA) is markedly

upregulated, thereby enhancing glycolytic flux and reducing

intracellular drug accumulation (95–97). In gemcitabine-resistant

pancreatic cancer models, increased expression of glutamate–

cysteine ligase catalytic subunit (GCLC), the rate-limiting enzyme

in glutathione (GSH) synthesis, promotes the clearance of

chemotherapy-induced reactive oxygen species (ROS) and

preserves redox homeostasis, ultimately protecting tumor cells

(98, 99). Moreover, resistance to 5-fluorouracil (5-FU) in

colorectal cancer has been linked to the overexpression of

thymidylate synthase (TYMS) and increased dUTPase activity,

which together drive competitive inhibition of the drug’s

molecular target (100, 101).
3.3 Epithelial–mesenchymal transition

Epithelial–mesenchymal transition is a cellular reprogramming

process in which epithelial tumor cells lose polarity and cell-cell

adhesion while acquiring mesenchymal characteristics; hallmarks

include downregulation of E-cadherin and upregulation of

Vimentin, accompanied by enhanced migratory and invasive

capacities that confer resistance to anticancer agents (102–106).
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EMT also promotes a cancer stem cell phenotype through

activation of Wnt/b-catenin, Notch, and related pathways, enabling

cells to evade chemotherapy-induced cytotoxicity (14, 107).

Furthermore, EMT transcription factors upregulate ABC

transporter genes such as ABCB1 and ABCC1, increasing drug

efflux; for example, Twist1 binds the ABCB1 promoter in colorectal

cancer, driving irinotecan export and resistance (108, 109). By

modulating the expression of apoptotic regulators, EMT factors

further inhibit drug-induced cell death (110). In addition, EMT

promotes an immunosuppressive TME recruiting regulatory

immune cells and upregulating checkpoint molecules (e.g., PD-L1),

creating a feed-forward loop that sustains resistance to both cytotoxic

agents and immunotherapy (111, 112).
3.4 The role of the gut microbiota

In gastrointestinal (GI) cancers, the gut microbiota profoundly

modulates the metabolism of chemotherapeutic agents, thereby

influencing therapeutic efficacy. For example, bacterial

b-glucuronidase (GUS) can hydrolyze the inactive metabolite SN-

38G into the toxic compound SN-38, leading to severe diarrhea

(113). Fusobacterium nucleatum has been shown to activate the

TLR4/MyD88 signaling pathway, induce reactive oxygen species

(ROS) production, and attenuate DNA damage, thereby promoting

chemoresistance (114). Conversely, certain microbes enhance

responses to immunotherapy: Akkermansia muciniphila increases

CCL5+CD8+ T-cell infiltration, thereby potentiating the efficacy of

PD-1/PD-L1 immune checkpoint blockade and improving clinical

outcomes (115). Moreover, microbial metabolites such as short-

chain fatty acids and tryptophan-derived catabolites exert potent

immunomodulatory effects (116, 117). Collectively, these findings

highlight the gut microbiota as a dynamic and therapeutically

targetable regulator of treatment responses in GI cancers.

Interventions such as fecal microbiota transplantation or

engineered bacteria–based delivery strategies hold promise for

reshaping the immune microenvironment and effectively

reversing tumor drug resistance (118–120).
3.5 Emerging technologies reveal new
mechanisms

The introduction of single-cell sequencing, liquid biopsy with

circulating tumor DNA (ctDNA), patient-derived organoid models,

and artificial intelligence has brought about a multi-dimensional era

for gastrointestinal tumor resistance research (121, 122). In

colorectal cancer, single−cell RNA sequencing (scRNA-seq) has

revealed a pronounced expansion of LGR5+ cancer stem cells

following oxaliplatin treatment, with resistance maintained via

Wnt/b-catenin and Notch signaling. Single-cell DNA sequencing

(scDNA-seq) permits dynamic monitoring of clonal composition

pre- and post-treatment for gastric cancer, with selection for TP53

and APC mutant upon chemotherapeutic challenge—offering a

genetic explanation for acquired drug resistance (123–127).
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Liquid biopsy, analyzing ctDNA, enables non-invasive detection of

resistance-driving alterations (genetic, epigenetic) and dynamic

monitoring of clonal evolution, serving as a crucial tool for real-

time drug sensitivity assessment and early intervention (128).

Detection of KRAS/NRAS mutations in colorectal cancer ctDNA,

often emerging months before radiographic progression, provides

actionable insights into evolving drug sensitivity and resistance,

enabling timely therapeutic adjustments. The combination of

patient-derived organoid (PDO) models with in vitro immune cell

co-culture systems establishes a powerful functional platform for

validating tumor sensitivity to immunotherapy. These systems

faithfully recapitulate key components of the tumor-immune

microenvironment—such as tumor-associated fibroblasts,

dendritic cells, macrophages, and cytotoxic T lymphocytes—and

enable direct testing of how interventions targeting TGF-b, IDO1,
or CSF1R can reverse immune suppression and restore anti−tumor

cytotoxicity. Furthermore, generative or graph-based AI modeling

approaches can simulate evolutionary trajectories of resistant

subclones under immunotherapy pressure, enabling dynamic,

adaptive planning of combination regimens (e.g. ICB + HDAC

inhibitors or ICB + autophagy blockers) tailored to expected

resistance mechanism.

Although such tools offer unmatched resolution for mapping

multi-dimensional mechanisms of resistance, issues with data

standardization, cost, and data complexity arise. Data sharing and

harmonization are needed future initiatives, which must be targeted

toward translating laboratory data into clinical applications

more rapidly.
4 Clinical implications and
mechanism-based therapeutic
strategies

4.1 Mechanism-driven intervention
approaches

Deeper insights into molecular and immunological drivers of

resistance are spurring the development of targeted and

immunotherapeutic interventions, evaluated both preclinically and
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clinically. (Table 1) One promising example is the KRAS G12C

inhibitor sotorasib, which covalently binds the mutant cysteine in a

hidden pocket of KRAS, traps the protein in its inactive GDP-bound

state, and effectively quenches aberrant MAPK signaling in G12C-

mutant colorectal tumors (129). To overcome efflux mediated by

transporters, tariquidar, a drug inhibitor of P-gp, has been combined

with nanoparticle-encapsulated paclitaxel. In gastric cancer models, it

is shown to significantly increase intracellular paclitaxel concentration

and restore sensitivity to taxane therapy (130–132). Concomitant

efforts toward restoration of apoptosis pathways are Smac mimetics,

which neutralize inhibitor-of-apoptosis proteins (IAPs) for

reactivation of caspase-dependent cell death, and Bcl-2 antagonist

venetoclax, which disassembles mitochondrial prosurvival defenses—

both with efficacies shown in preclinical models of reversal of apoptosis

blockade (38, 39, 133). Targeting the tumor stroma, TGF-b receptor

blockade (e.g., galunisertib) dampens CAF activation, reduces collagen

deposition, and softens the ECM. This not only enhances

chemotherapy delivery and efficacy but also alleviates

immunosuppression within the TME, potentially improving

response to immunotherapy (85, 86, 134, 135). Reversing epithelial–

mesenchymal transition (EMT) represents another avenue: the small

−molecule reversine inhibits Twist1 nuclear translocation,

reestablishing 5-fluorouracil sensitivity in colorectal cancer cells by

restoring epithelial characteristics (109, 136, 137). Epigenetic resistance

can be addressed by combining the DNA methyltransferase inhibitor

azacitidine with the HDAC inhibitor panobinostat, which together

reverse MGMT promoter hypermethylation, reactivate pro-apoptotic

gene expression, and augment chemotherapy response in colorectal

models (55, 56, 138). Lastly, simultaneous targeting of autophagy and

endoplasmic reticulum stress—using hydroxychloroquine to block

autophagosome–lysosome fusion and GSK2606414 to inhibit the

PERK/eIF2a axis—has been shown to synergistically overcome

autophagy-dependent resistance phenotypes (67, 110, 111).
4.2 Prospects for personalized precision
therapy

Drug resistance in gastrointestinal tumors reflects a heterogeneous

and adaptive network of molecular and microenvironmental

alterations. Personalized precision medicine aims to “tailor”
TABLE 1 Mechanism-based therapeutic strategies table.

Intervention strategy
Representative
agents

Clinical
stage

Gastrointestinal tumor type References

Targeted inhibition Sotorasib Phase III Colorectal carcinoma (120)

Efflux pump inhibition Tariquidar (ABCB1 inhibitor) Phase II Gastric carcinoma (121)

Apoptosis reactivation Venetoclax Phase I/II Hepatocellular carcinoma (37, 38)

DNA methyltransferase inhibitor + HDAC inhibitor Azacitidine + Panobinostat Phase II Colorectal carcinoma (55, 56)

GPX4 inhibition Sulfasalazine (SASP) Preclinical Gastric carcinoma (70–72)

TGF-b receptor blockade Galunisertib Phase II Pancreatic carcinoma (81, 82, 125)

Fecal microbiota transplantation (FMT) – Phase I
Melanoma (across tumor types;
extrapolatable to GI cancers)

(111–113)
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therapeutic strategies to each patient’s unique resistance landscape.

Integrating single−cell transcriptomics with spatial metabolomics

enables precise mapping of resistant clones and their metabolic

niches—for example, co− localization of KRAS−mutant

subpopulations with cancer−associated fibroblasts in colorectal

cancer suggests focal FAK inhibition, whereas lactate−rich

microdomains in gastric cancer may be targeted via MCT1

blockade. Liquid biopsy (ctDNA, exosomes) provides real-time

monitoring of drug sensitivity and resistance dynamics, enabling

early detection of recurrence and data-driven treatment adaptation

(139).Mechanism-based combinatorial strategies integrating

immunotherapy are emerging: e.g.,triplet therapies combining KRAS

inhibitors, immune checkpoint blockade (ICB), and epigenetic

modulators (like HDAC inhibitors that enhance tumor antigen

presentation) show synergistic efficacy. In recent years, multiple

trials, including the KRYSTAL-1 trial (NCT03785249), have

demonstrated that triplet therapy can effectively reverse acquired

resistance in gastrointestinal tumors (140–143). Dual targeting of

epithelial mesenchymal transition and autophagy (e.g., Twist1

inhibitors plus hydroxychloroquine) can dismantle the survival

networks of cancer stem like cells and re-sensitize tumors to

conventional chemotherapy.AI-driven sensitivity prediction is a key

strategy to overcome drug resistance. For instance, multimodal AI

platforms integrate genomic features (such as IFN-g response genes),
digital pathology images, and ex vivo organoid drug screening data

(144, 145), generating patient-specific immunotherapy sensitivity

scores with predictive accuracy superior to single biomarkers like

PD-L1 IHC. Studies have shown that such AI-based prediction

models exhibit immense potential in oncology (146, 147), providing

powerful tools for personalized treatment decisions. Rigorous clinical

validation of these approaches, with attention to safety, feasibility, and

cost-effectiveness, will be essential. Ultimately, the goal of personalized

precision therapy is not only to surmount therapeutic resistance but

also to preserve patient dignity and hope throughout the

treatment journey.
5 Conclusion and future perspectives

Drug resistance in GI malignancies represents a complex

“survival race,” driven by tumor cell-intrinsic mechanisms

(genetic, epigenetic) and extrinsic factors (microenvironmental

crosstalk, immune evasion) to evade cytotoxic, targeted, and

immunotherapies. These mechanisms operate not in isolation but

as a dynamic, interconnected network, collectively enabling tumor

persistence and progression under therapeutic pressure.

Interdisciplinary technologies (spatial/single-cell omics, liquid

biopsy, organoids, AI) are deciphering this complexity, enabling

more precise mapping of resistance mechanisms (including

immune evasion) and facilitating drug sensitivity profiling for

improved clinical decisions. Nevertheless, there are substantial

issues, including integration of data, standardization, cost, and

translation into everyday practice.

Prospects for future research include high-resolution,

spatiotemporal mapping of resistance niches; deep learning
Frontiers in Oncology 07
platforms predicting adaptive responses and optimizing real-time

treatment regimens; proactive intervention approaches that

preempt and countermand resistance; and rational reengineering

of the tumor microenvironment for dismantling protective niches.

Leveraging these intelligent tools and patient-centric strategies-

particularly those integrating immunotherapy insights and drug

sensitivity analysis-holds promise for transforming drug resistance

into a navigable challenge, leading to sustained remission and

enhanced patient outcomes.
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