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Introduction: Breast tumors, predominantly benign, are a global health concern

affecting women. Vacuum-assisted biopsysystems (VABB) guided by ultrasound

are widely used forminimally invasive resection, but their reliance on surgeon

experience and positioning challenges hinder adoption in primary healthcare

settings. Existing AI solutions often focus on static ultrasound image analysis,

failing to meet real-time surgical demands.

Methods: This study presents a real-time positioning system for breast tumor

rotational resection based on an optimized YOLOv11n architecture to enhance

surgical navigation accuracy. Ultrasound video data from 167 patients (116 for

training, 33 for validation, and 18 for testing) were collected to train the model.

The model’s architecture was optimized across three major components:

backbone, neck, and detection head. Key innovations include integrating

MobileNetV4 Inverted Residual Block and MobileNetV4 Universal Inverted

Bottleneck Block to reduce model parameters and computational load while

improving inference efficiency.

Results: Compared with the baseline YOLOv11n, the optimized YOLOv11n+

model achieves a 17.1% reduction in parameters and a 27.0% reduction in FLOPS,

increasing mAP50 for cutter slot and tumor detection by 2.1%. Two clinical

positioning algorithms (Surgical Method 1 and Surgical Method 2) were

developed to accommodate diverse surgical workflows. The system comprises

a deep neural network for target recognition and a real-time visualization

module, enabling millisecond-level tracking, precise annotation, and intelligent

prompts for optimal resection timing.

Conclusion: These research findings provide technical support for minimally

invasive breast tumor resection, holding the promise of reducing reliance on

surgical experience and thereby facilitating the application of this technique in

primary healthcare institutions.
KEYWORDS

breast tumor, deep learning, real-time positioning, minimally invasive rotational
resection, ultrasound guidance
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1 Introduction

Breast tumors are among the most prevalent diseases in women

worldwide, with a substantial proportion being benign (1, 2). The

ultrasound-guided Vacuum-Assisted Biopsy System (VABB) has

become the standard minimally invasive treatment for benign

breast tumors, owing to its advantages of reduced trauma, rapid

recovery, and precise localization (3). Since its introduction in 1994,

VABB technology has undergone continuous improvements and is

now also a vital tool in early breast cancer diagnosis (4, 5). However,

its clinical effectiveness largely depends on surgeons’ expertise in

real-time ultrasound image interpretation and precise instrument

manipulation. This dependency limits the widespread

implementation of VABB in primary healthcare settings.

Recent advancements in artificial intelligence (AI) have mainly

concentrated on analyzing static ultrasound images (5–10) for the

classification (7, 8, 11–14) and segmentation (15–19) of breast

tumors. Notably, Li Y et al. (6) developed an intelligent scoring

system that integrates tumor oxygen metabolism features using

multimodal AI algorithms for assessing malignancy. Similarly, Vigil

et al. (12) proposed a dual-modality deep learning model that

combines ultrasound images with radiomic features to improve

the classification of benign and malignant tumors. However, these

methods do not fully meet the real-time accuracy needs required for

minimally invasive rotational resection of breast tumors (4).

To overcome these limitations, this study presents an optimized

YOLOv11 deep learning model for real-time localization of the

biopsy slot and tumor during surgery. The model incorporates

MobileNetV4 Inverted Residual Block (MIRB) and MobileNetV4

Universal Inverted Bottleneck Block (MUIB) in the Backbone

networks, reducing parameters and FLOPS by 17.1% and 27.0%,

respectively, compared to the baseline YOLOv11n, while improving

mAP50 by 3.0%. Two surgical algorithms were designed to

accommodate different clinical practices. The integrated system

provides real-time tracking and visualization of the cutter slot and

tumor, offering intelligent prompts for optimal resection timing.

These results demonstrate the potential of the proposed

approach to enhance surgical precision and reduce reliance on

surgeon experience, thereby facilitating the adoption of minimally

invasive breast tumor rotational resection in primary

healthcare institutions.
2 Materials and methods

2.1 Materials

In this study, the ultrasound video data of 167 patients who

underwent vacuum-assisted minimally invasive rotational resection

of breast tumors at Liaoning Provincial People’s Hospital from May

2023 to July 2024 were collected. Statistics on patient characteristics
Abbreviations: MIRB, MobileNetV4 Inverted Residual Block; MUIB,

MobileNetV4 Universal Inverted Bottleneck Block; MCC, Matthews

Correlation Coefficient; ERR, Error Rate.
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such as age distribution, tumor size range, and histopathological

types are shown in Table 1. The ultrasound imaging systems used

were the GE Logiq P3 and SonoScape E1 Exp. The vacuum-assisted

tumor rotational resection system was EnCor® (Model: DR-

ENCOR) produced by Bard in the United States, and the

diameter of the rotational resection probe was 7G (Model: ECP017).
2.2 Data processing

To acquire effective training data, this study first performed

screening and extraction of surgical video clips. Guided by

professional surgeons, the original ultrasound surgical videos were

systematically sorted and clipped. The extraction scope covered the

complete operational process from the moment the rotational

resection knife penetrated the breast tissue surface to the

activation of the cutter slot for tumor resection. The video data

during this period accurately captured the surgical positioning

process, preserving not only the dynamic trajectory changes of

the cutter slot and tumor location but also critical operational

details such as the operator’s adjustment of instrument angle and

depth. This fully meets the experimental requirements for real-time

positioning of the cutter slot and tumor, as well as determination of

the optimal resection site.

The study then proceeds to the key frame extraction phase. To

balance data integrity with computational efficiency, a uniform

sampling strategy is employed, extracting one frame every 10

seconds. This approach systematically captures essential surgical

dynamics, such as the trajectory of the cutter slot and the

morphological changes of the tumor. Additionally, it minimizes

data redundancy that can occur with higher frequency sampling,

which significantly lowers the computational costs associated with

data storage and model training. This results in a time-efficient and

representative image dataset for the accurate positioning of the

cutter slot and the tumor in subsequent steps.

The image annotation process begins with a dual-review

mechanism to ensure the accuracy of the annotated data. First,

specialized doctors with over five years of clinical experience

identify the locations of tumors and the cutter slot in each

keyframe image, utilizing their professional medical knowledge.

Next, experts with more than twenty years of clinical experience

review and confirm the annotations. This hierarchical review

process effectively reduces annotation errors, providing high-

precision and reliable labeled data for training deep learning

models and establishing a solid foundation for subsequent work.

At the same time, data augmentation techniques (20–26) such

as color enhancement, mosaic enhancement, horizontal flipping,

and scaling are comprehensively employed to simulate diverse

surgical environments and changes in the quality of ultrasound

images (Table 2), effectively improving the robustness and detection

accuracy of the model in complex clinical scenarios.

The study utilized a multicenter dataset consisting of 11,610

images from 167 cases. These cases were divided into training (116

cases), validation (33 cases), and test sets (18 cases) using a 7:2:1

ratio. This division strategy encompasses a diverse array of tumor
frontiersin.org
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morphologies, locations, and surgical scenarios, allowing for a

comprehensive assessment of the model’s robustness and

reliability in practical applications. Ultimately, this approach

significantly enhances the model’s generalization ability.
2.3 Optimize network architecture

Building upon the high-quality annotated dataset constructed

in the preliminary stage, this study focuses on the requirements

for real-time localization of cutter slot and tumors in the context of
Frontiers in Oncology 03
breast rotational resection. It systematically compares and analyzes

different versions of the YOLO network architecture (27, 28). By

comprehensively applying technical means such as model lightweight

and optimized training methods, an efficient and precise real-time

localization method is proposed. To clearly present the research

context and technical roadmAP, the complete experimental design

process has been sorted out and depicted in Figure 1, covering core

aspects such as data processing, model construction, optimization

strategies, and performance evaluation.

The clinical practice of breast rotational resection requires two

critical factors for real-time ultrasound image processing: high

inference speed and precise recognition accuracy. The traditional

YOLOv11 model (29) has a complex network structure that

consumes substantial computational resources and exhibits high

inference latency, rendering it unsuitable for rapid ultrasound

image analysis during surgeries on edge computing devices.

To address these challenges, this study focuses on optimizing

the YOLOv11 architecture. A key improvement involves

incorporating MIRB and MUIB into the Backbone of YOLOv11.

This modification significantly enhances the model’s performance

across three dimensions: the Backbone, Neck, and Head. While

markedly reducing the number of model parameters, it effectively

maintains detection accuracy, achieving a balance between low

latency and high precision. This optimization provides a reliable

technical solution for real-time intraoperative localization.

In the Backbone of the model, ConvBN serves as the primary

unit for feature extraction, providing a stable foundation for this

process. To address the computational limitations of traditional

architectures and enhance model efficiency, we introduce the MIRB

and MUIB (30–33). The MIRB, which is based on depthwise

separable convolution, is designed specifically for low-level feature

extraction. Its design incorporates small channel numbers and

shorter stride lengths, ensuring effective feature extraction while

significantly lowering computational costs. On the other hand, the

MUIB combines depthwise and expanded convolutions, focusing

on mid-to-high-level feature extraction. By optimizing the

computational workflow, these blocks effectively reduce model

parameters while preserving detection accuracy, thereby

improving overall computational efficiency.

A channel-increasing strategy with values of 40-80-128-480–

512 is adopted to capture multi-scale image features from small to

large. Meanwhile, 3×3 and 5×5 convolutional kernels are flexibly

employed to fully leverage their advantages in local feature

extraction. Additionally, an initial downsampling operation with a

stride of 2 is performed to rapidly compress the feature mAP size,

alleviating computational pressure for subsequent processing.

The Neck network enhances the model’s capability to detect

targets of varying scales by integrating low-resolution and high-

resolution features through a multi-level upsampling and feature

fusion mechanism. To further boost inference efficiency, the

lightweight C3K2 module is incorporated, which employs a local

information pruning strategy to eliminate redundant computations.

This approach accelerates the inference process while preserving

detection accuracy, striking a favorable balance between detection

speed and precision.
TABLE 2 Data augmentation parameters.

Augmentation Key
Range/
Prob

Random crop fraction crop_fraction 1

Rotation (°) degrees 0

Random erasing prob. erasing 0.4

Horizontal flip prob. fliplr 0.5

HSV Hue gain hsv_h 0.015

HSV Saturation gain hsv_s 0.7

HSV Value gain hsv_v 0.4

Mosaic prob. mosaic 0.5

Scaling (gain) scale 0.2
TABLE 1 Patient demographics.

Characteristic Dataset

Age (years) 44 (34.5-50) a

<40 67

40-49 56

49> 44

Tumor (mm) 10 (8-15) a

<10 69

10—19 76

>19 22

Operation time (min) 10 (6-18) a

BI-RADS

3 66(39.52%)

4a 101 (60.48%)

Histopathological types

Malignant 2

Inflammatory 15

Fibroadenosis 33

Fibroadenoma 117
a Median (interquartile range).
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In summary, by integrating the ConvBN, MIRB module, MUIB

module, SPPF module, C3K2 module, and cross-stage partial

connection technology (34–37) (Figure 2), the optimized

YOLOv11n and YOLOv11s architectures are designated as

YOLOv11n+ and YOLOv11s+, respectively. As shown in the

model parameter comparison in Table 3, each module exhibits

clear functional specialization and efficient collaboration,

demonstrating exceptional performance in small-target

detection tasks.
2.4 Determination of cutter activation

This study addresses the core needs of breast rotational

resection by developing an intelligent algorithm for accurately

prompting the cutter slot of the rotational resection device to
Frontiers in Oncology 04
reach the specified position. Given the substantial variability in

clinicians’ manipulation techniques when operating the rotational

resection device and ultrasound probe, two differentiated

implementation schemes (Procedure I and Procedure II) are

designed to accommodate diverse surgical operation habits.

When the user selects Procedure I, the rotational resection

cutter should be positioned beneath the target tumor to ensure both

the tumor and cutter slot are within the ultrasound field of view. In

this mode, the ultrasound probe must remain stable above the

corresponding skin area to maintain image stability and avoid

significant movement. Once activated, the algorithm monitors the

real-time spatial relationship between the cutter slot and tumor. The

cutter slot is considered correctly positioned for activation when

both appear in the image, with the slot horizontally located to the

left of the tumor and vertically overlapping with it. Using the

following parameters: Cutter slot: top-left coordinates (x1, y1),
FIGURE 1

Methodological workflow.
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length L1, height H1; tumor: top-left coordinates (x2, y2), length L2,

height H2. The specific positioning logic is categorized into three

scenarios based on geometric dimensions:

a. Cutter slot larger than tumor (L1 - L2 > 20 pixels):

• Horizontal condition: x1 - L1 × 0.2 < x2

• Vertical condition: y2 - H2 × 1.1 < y1

Rationale: Ensures the slot horizontally covers the tumor’s left

side and vertically overlaps with it at activation.
Frontiers in Oncology 05
b. Cutter slot smaller than tumor (L2 - L1 > 20 pixels):

• Horizontal condition: x2 - L2 × 0.2 < x1

• Vertical condition: y2 - H2 × 1.1 < y1

Rationale: Reverse coordinate comparison ensures the tumor

falls within the cutter’s horizontal range.

c. Similar sizes (|L1 - L2| < 20 pixels):

• Temporarily extend the tumor’s length by 20% (L2’ = L2 × 1.2)

while keeping (x2, y2) unchanged.

• Apply scenario (b) rules to standardize calculations and

ensure compatibility across size variations.

This adaptive approach enables precise positioning guidance

tailored to diverse anatomical structures and equipment specifications.

In Procedure II, the user positions the rotational resection cutter

laterally to the tumor. This positioning requires the ultrasound

probe to switch back and forth between the cutter and the skin over

the tumor, resulting in the two appearing alternately in the

ultrasound’s field of view.

The system begins by analyzing multi-frame images to

accurately document the spatial position of the cutter slot while

continuously tracking the real-time position of the tumor. Using the

same spatial positioning algorithm as in Procedure I, the system

dynamically calculates the coordinates and size relationships

between the cutter slot and the tumor.
TABLE 3 Comparison of original parameters and improved parameters.

Module
Original

parameters
Improved parameters

MIRB None
Output channels 80, 128; Kernel sizes 3×3,
5×5; Expansion ratios 2, 4, 6; Strides 1, 2

MUIB None
Output channels 80, 160; Kernel sizes 3×3,

5×5; Expansion ratios 4, 6

SPPF
Output channels
1024; Kernel size

5×5

Output channels 80, 160; Kernel sizes 3×3,
5×5; Expansion ratios 4, 6

C3K2
Output channels
256, 512; No
pruning

Output channels 256, 512; Pruning enabled
(True)
FIGURE 2

YOLOv11n+ architecture.
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When the cumulative number of frames detecting positional

overlap between the cutter and the tumor reaches 500, the system

activates a prompt mechanism to notify the user that the cutter is in

the optimal resection position. This provides a reliable basis for

making decisions regarding subsequent surgical operations.
3 Results

3.1 Model training results

The experiments were conducted on an NVIDIA RTX 4090

GPU using the PyTorch 2.6.0 framework, with multiple strategies

employed to ensure training effectiveness. A training schedule of

333 epochs was combined with an early stopping mechanism

(terminating training if validation set performance did not

improve for 55 consecutive epochs) to prevent overfitting (38,

39). The performance of various optimizers was compared in the

experiment (Table 4). The Stochastic Gradient Descent (SGD)

optimizer with momentum was selected, and its initial learning

rate was set to 0.01 to ensure stable model convergence (40). The

batch size was set to 64 to balance computational efficiency and

training stability.

The training curves demonstrate effective model convergence

within 35 epochs, with the detection losses (box_loss, cls_loss,

dfl_loss) of both training and validation sets steadily decreasing,

indicating robust learning without overfitting. The precision and

recall on the training set showed continuous performance

improvements, confirming the model’s optimized capabilities in

both localization and classification tasks. Figure 3 illustrates the

relevant results over 35 training epochs.

The experiments systematically compared different YOLO

architectures with our improved versions to quantitatively

evaluate the impact of each proposed enhancement. Through

controlled variable experiments, this study assessed key

performance metrics, with results presented in Table 5. The

proposed approach of integrating MIRB and MUIB into

YOLOv11n+ achieves the best real-time detection performance

for cutter slot and tumors.

The YOLOv11n+ model has a parameter count of 2,140,390, the

smallest among all models, indicating its highly compact design,

which helps reduce storage requirements and improve deployment

flexibility. Secondly, the model’s FLOPS is 4.6G, far lower than

other models, meaning it requires fewer computational resources

for image processing, thereby reducing energy consumption and

hardware costs. In terms of inference speed, the YOLOv11n+ model

also performs excellently. Its CPU inference time is only 12.2 ms,

and GPU inference time is 0.7 ms—both metrics are the lowest

among all models. This demonstrates that the YOLOv11n+ model

can provide faster response speeds in practical applications, which

is particularly critical for real-time processing scenarios.
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3.2 Detection of cutter slot and tumor

Building upon the optimized network model described

above, the experiments systematically compared the precision,

recall, and mAP50 values of different YOLOv architectures for

cutter slot, tumors, and their combined detection, as shown

in Table 6.

As seen in Table 4, YOLOv11n demonstrates superior

performance in tumor recognition compared to the proposed

YOLOv11n+ model. However, when it comes to recognizing

cutter slot and overall recognition performance, the optimized

YOLOv11n+ model presented in this paper shows improved

results. Based on the model training parameters and performance

evaluation metrics outlined in Table 3, the YOLOv11n+ model not

only significantly reduces the number of parameters for real-time

inference but also enhances the recognition performance for both

cutter slot and tumors.

To ensure a scientifically robust and reliable evaluation of model

performance, this experiment employed a three-fold cross-validation

strategy. Initially, all eligible cases were stratified such that each

individual patient constituted a distinct unit for data partitioning.

This approach was specifically designed to prevent data leakage by
TABLE 4 Comparative analysis of optimizer.

Architecture Adam AdamW NAdam SGD

Precision (tumor) 0.861 0.912 0.854 0.862

Recall (tumor) 0.78 0.743 0.761 0.725

mAP50 (tumor) 0.868 0.823 0.855 0.827

Specificity (tumor) 0.845 0.831 0.815 0.834

MCC (tumor) 0.622 0.531 0.568 0.55

ERR (tumor) 0.191 0.231 0.217 0.23

Precision (cutter slot) 0.738 0.809 0.792 0.850

Recall (cutter slot) 0.575 0.722 0.784 0.746

mAP50 (cutter slot) 0.651 0.756 0.608 0.799

Specificity (cutter slot) 0.876 0.759 0.786 0.799

MCC (cutter slot) 0.480 0.474 0.571 0.534

ERR (cutter slot) 0.238 0.263 0.215 0.233

Precision (all) 0.799 0.861 0.823 0.856

Recall (all) 0.677 0.732 0.772 0.736

mAP50 (all) 0.760 0.789 0.732 0.813

Specificity (all) 0.861 0.795 0.800 0.817

MCC (all) 0.551 0.510 0.571 0.542

ERR (all) 0.222 0.245 0.215 0.232
front
*p < 0.05.
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ensuring that samples originating from the same patient were not

distributed across different folds. The quantitative evaluation

outcomes are detailed in Table 7. Figure 4 shows the normalized

confusion matrix, while Figures 5, 6 present the Precision-Recall (P-R)

curve and ROC curve, both demonstrating that the proposed

YOLOv11n+ network architecture exhibits excellent real-time

recognition performance.

From the Precision-Recall Curve in Figure 5, the recognition

performance for the cutter slot, tumor, and their combined detection

can be observed. When the recall rate for the cutter slot reaches

approximately 0.75, the precision is around 0.85. In contrast, when the

recall rate for the tumor reaches approximately 0.72, the precision

remains at around 0.86, indicating that the model exhibits high

precision and robustness in tumor recognition. Overall, the average

performance of the combined detection still demonstrates that the

optimized network model proposed in this paper has excellent

recognition capabilities (41, 42).
3.3 Cutter slot activation command

The intelligent positioning system proposed in this paper

comprises two core components: a deep neural network target

recognition module and a real-time visualization module. The target
Frontiers in Oncology 07
recognition module is built based on the optimized YOLOv11n+

architecture, with structural improvements significantly enhancing

recognition accuracy and computational efficiency, laying the

foundation for intraoperative real-time guidance.

The real-time visualization module creates an interface using

OpenCV 4.9.0 for processing real-time ultrasound video streams

frame by frame. Each frame is analyzed quickly using the Intel

OpenVINO 2025.0.0 toolkit, which adds visually distinct

annotations. Based on the cutter slot activation determination

method described earlier, a command stating, “The operation can

begin now,” is issued, as illustrated in Figure 7.

The use of this system during surgery allows physicians to

quickly and accurately determine the spatial relationship between

the rotating cutter and the tumor, thereby reducing the overall

procedure time. However, the positioning system does not directly

decrease the incidence of surgical complications. The software can

be easily installed on any standard computer and does not require

high-end hardware. Its straightforward installation and user-

friendly interface further ensure that clinicians can readily

incorporate the system into their workflow.
4 Discussion

In the field of minimally invasive breast tumor treatment, the

development of precise positioning technology is pivotal for

enhancing surgical outcomes and patient prognosis. Addressing

this critical need, this study innovatively introduces YOLOv11n+,

an ultrasound-based positioning system tailored for minimally

invasive breast tumor resection. Built upon the deeply optimized

YOLOv11n+ model, the system enables real-time and accurate

localization of both the cutter slot and tumors during surgery,

offering surgeons intuitive and reliable surgical navigation support.

Compared to traditional YOLO architectures, the optimized

YOLOv11n+ model achieves significant breakthroughs across

multiple key performance metrics. In terms of detection accuracy,
FIGURE 3

Training and validation loss (box_loss, cls_loss, dfl_loss) across 43 epochs and performance curves (precision, recall, mAP50, mAP50-95).
TABLE 5 Performance metrics comparison.

Architecture
Total

params
FLOPS

CPU
latency

GPU
latency

YOLOv8s 11126358 28.4G 34.2ms 1.2ms

YOLOv11s 9413574 21.3G 32.6ms 1.2ms

YOLOv11n 2582542 6.3G 12.6ms 0.7ms

YOLOv11s+(Ours) 7477470 13.9G 28.5ms 1.1ms

YOLOv11n+(Ours) 2140390 4.6G 12.2ms 0.7ms
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the model delivers real-time recognition precision of 0.850 for

cutter slot and 0.862 for tumors, with corresponding recall rates

of 0.746 and 0725. The mAP50 metrics reach 0.799 for cutter slot

and 0.827 for tumors. These results fully demonstrate the

YOLOv11n+ model’s capability for precise target recognition and

localization in complex ultrasound imaging environments.

The improvement in model efficiency is a significant highlight of

YOLOv11n+. Through in-depth architectural optimizations, the study

introduced innovative elements, MIRB and MUIB, into the Backbone

components. Compared to YOLOv11n, this strategic modification

reduced the parameter count from 2,582,542 to 2,140,390 and

decreased the FLOPS from 6.3G to 4.6G. In terms of inference
Frontiers in Oncology 08
speed, CPU processing time was shortened from 12.6 ms to 12.2 ms,

while GPU inference achieved an impressive 0.7 ms—all while

maintaining high real-time detection accuracy. This computational

efficiency allows the YOLOv11n+ system to seamlessly manage real-

time ultrasound video streams, providing robust technical support for

immediate feedback during surgical procedures.

To comprehensively evaluate the performance of the proposed

YOLOv11n+ and YOLOv11s+ models, we compared them with

several state-of-the-art methods for breast lesion detection across

diverse imaging modalities. As summarized in Table 8, FS-YOLOv9

achieved an mAP of 0.713 on MRI, indicating limited performance

in this modality (14). YOLOv4, meanwhile, exhibited relatively low
TABLE 6 Comparative analysis of model performance.

Architecture YOLOv8s YOLOv11s YOLOv11n
YOLOv11s
+(Ours)

YOLOv11n
+(Ours)

Precision
(tumor)

0.827 0.820 0.830 0.815 0.862

Recall
(tumor)

0.759 0.758 0.760 0.759 0.725

mAP50
(tumor)

0.821 0.823 0.835 0.835 0.827

Specificity
(tumor)

0.821 0.806 0.826 0.815 0.834

MCC
(tumor)

0.579 0.562 0.585 0.574 0.55

ERR
(tumor)

0.212 0.220 0.209 0.214 0.23

Precision
(cutter slot)

0.801 0.809 0.783 0.798 0.850

Recall
(cutter slot)

0.686 0.722 0.709 0.666 0.746

mAP50
(cutter slot)

0.735 0.756 0.742 0.724 0.799

Specificity
(cutter slot)

0.845 0.789 0.736 0.765 0.799

MCC
(cutter slot)

0.540 0.508 0.441 0.425 0.534

ERR
(cutter slot)

0.231 0.248 0.279 0.293 0.233

Precision
(all)

0.811 0.814 0.807 0.807 0.856

Recall
(all)

0.722 0.740 0.734 0.713 0.736

mAP50
(all)

0.778 0.789 0.789 0.779 0.813

Specificity
(all)

0.833 0.798 0.781 0.790 0.817

MCC
(all)

0.559 0.535 0.513 0.500 0.542

ERR
(all)

0.221 0.234 0.244 0.253 0.232
*p < 0.05.
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TABLE 7 Three-fold results of YOLOv11n+.

Fold 1 2 3 Avg

Precision (tumor) 0.803 0.911 0.873 0.862

Recall (tumor) 0.759 0.692 0.726 0.725

mAP50 (tumor) 0.833 0.821 0.829 0.827

Specificity (tumor) 0.741 0.906 0.853 0.834

MCC (tumor) 0.496 0.594 0.572 0.55

ERR (tumor) 0.248 0.218 0.221 0.23

Precision (cutter slot) 0.892 0.819 0.839 0.850

Recall (cutter slot) 0.776 0.722 0.741 0.746

mAP50 (cutter slot) 0.842 0.756 0.799 0.799

Specificity (cutter slot) 0.857 0.757 0.783 0.799

MCC (cutter slot) 0.62 0.469 0.514 0.534

ERR (cutter slot) 0.192 0.264 0.242 0.233

Precision (all) 0.847 0.865 0.856 0.856

Recall (all) 0.768 0.707 0.733 0.736

mAP50 (all) 0.838 0.789 0.814 0.813

Specificity (all) 0.799 0.831 0.818 0.817

MCC (all) 0.558 0.532 0.542 0.542

ERR (all) 0.22 0.241 0.231 0.232
F
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FIGURE 4

Normalized confusion matrix.
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recall rates on digital mammography, highlighting suboptimal

adaptability to dense breast tissues (43). Meng et al. proposed the

DGANet model, which outperformed YOLOX and Faster R-CNN

on a clinical dataset of 765 patients but suffered from relatively low

precision (13). In contrast, our YOLOv11n+ models achieved mAP

scores of 0.813 while maintaining a lightweight architecture and

high inference efficiency, making them particularly well-suited for

real-time intraoperative breast tumor excision.
Frontiers in Oncology 10
From a clinical application perspective, the real-time capability

and high-precision positioning of the YOLOv11n+ model hold

significant value. In minimally invasive breast tumor resection,

accurately determining the positional relationship between tumors

and cutter slot is critical for improving surgical success rates and

reducing risks. The YOLOv11n+ model can continuously provide

surgeons with accurate real-time feedback throughout the operation,

assisting them in making more informed decisions. Additionally, the

model’s low demand for computational resources enables it to

operate stably in resource-constrained medical environments,

significantly expanding its application scope and showing promise

for widespread adoption in more grassroots medical facilities.

Technically, this study has notable strengths: (1) YOLOv11n+,

with MIRB and MUIB integration, reduces parameters by 17.1% and

FLOPS by 27.0% while boosting detection accuracy, achieving 0.7 ms

GPU inference to meet real-time surgical needs; (2) Its dual-target

detection (tumors and cutter slots) directly addresses VABB

requirements, providing critical spatial feedback—outperforming

static image-focused solutions; (3) The lightweight design (4.6G

FLOPS) adapts to low-cost hardware, facilitating use in primary care.

Limitations include: a single-center dataset (167 patients) may

restrict generalizability, requiring multi-center validation;

performance is sensitive to ultrasound quality, with severe

artifacts potentially degrading detection of small/irregular tumors;

lack of direct comparison with latest real-time architectures (e.g.,

advanced Transformers); and reliance on 2D ultrasound limits

depth information—integrating 3D or other modalities would

need further optimization to balance precision and speed.

In summary, the positioning system built on the optimized

YOLOv11n+ model has achieved remarkable advancements in

recognition accuracy, real-time inference capability, and

computational efficiency. These breakthroughs not only provide

surgeons performing breast tumor resection with a powerful

decision-making tool but also significantly enhance the safety and

effectiveness of minimally invasive surgical techniques. By reducing

computational complexity while enabling efficient on-device operation,

the model fully demonstrates its immense potential in clinical

applications. Looking ahead, this model will undergo rigorous multi-

center clinical validation. However, there is currently a lack of

prospective trial data. On the methodological front, we will explore

additional deep learning models. Through continuous optimization

and adaptive improvements, the system is designed to expand its

applicability across various surgical scenarios, aiming to provide more

accurate and safer medical services for a broader patient population.
5 Conclusion

The increasing incidence of breast tumors has resulted in a

heightened demand for vacuum-assisted breast biopsy procedures.

Successful execution of this technique necessitates physicians’ precise

identification and localization of lesions via ultrasound imaging,

presenting a significant technical barrier. This challenge particularly
FIGURE 5

Precision-recall (P-R) curve.
FIGURE 6

ROC curve.
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impedes the capacity of less-experienced practitioners and primary

healthcare settings to perform such interventions effectively. This study

developed the YOLOv11n+ real-time intelligent positioning system.

Through deep architectural optimization, the system establishes an

efficient visual interaction interface capable of millisecond-level

dynamic tracking of the cutter slot and tumors during surgery,

clearly presenting their spatial positional relationship through precise

annotations. More critically, leveraging the deep neural network’s

intelligent decision-making capabilities, the system can analyze the

relative positions of surgical instruments and tumors. When the

optimal operation timing is reached, it automatically generates high-

precision prompt commands, explicitly instructing surgeons to activate

the rotational cutter for tumor resection, thereby providing fully

intelligent navigation support throughout the surgical procedure.

This study demonstrates significant application value as an

innovative surgical assistive tool. Consequently, the research team

plans to conduct multi-center clinical validation, further verifying the

system’s safety, efficacy, and reliability through large-scale, multi-

scenario testing with real-world cases. This effort aims to provide

robust technical support for advancing minimally invasive surgery

toward intelligent and precision-based approaches, facilitating the

medical field’s pursuit of more efficient and safer diagnostic and

therapeutic outcomes.
Frontiers in Oncology 11
Data availability statement

The datasets presented in this article are not readily available

because data usage must be restricted to researchers in the relevant

field, and communication with the corresponding authors via email is

required. Requests to access the datasets should be directed to Jianchun

Cui, cjc7162003@aliyun.com; Hang Sun, sunhang84@126.com.
Ethics statement

The studies involving humans were approved by Liaoning

Provincial People’s Hospital Ethics Committee. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.
Author contributions

HS: Conceptualization, Funding acquisition, Project

administration, Supervision, Writing – review & editing. HZ:

Methodology, Software, Visualization, Writing – original draft. MZ:

Software, Writing – original draft. HL: Formal Analysis, Investigation,

Supervision, Writing – review & editing. XS: Data curation, Validation,

Writing – original draft. YS: Data curation, Validation, Writing –

original draft. PS: Data curation, Validation, Writing – original draft.

JL: Funding acquisition, Investigation, Writing – review & editing. JY:

Visualization, Writing – original draft. LC: Visualization, Writing –

original draft. CJ: Conceptualization, Funding acquisition, Project

administration, Resources, Writing – review & editing.
TABLE 8 Comparative analysis with State-of-the-art methods.

Method Data Precision Recall mAP50

FS-YOLOv9 MRI 0.850 0.780 0.713

YOLOv4 Mammography 0.850 0.600

DGANet Ultrasound 0.762 0.841 0.831

YOLOv11n+ (ours) Ultrasound 0.856 0.736 0.813
FIGURE 7

Real-time intelligent guidance interface demonstrating.
frontiersin.org

mailto:cjc7162003@aliyun.com
mailto:sunhang84@126.com
https://doi.org/10.3389/fonc.2025.1675180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2025.1675180
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research has been

funded by Shenyang Ligong University High-Level Talent Scientific

Research Support Fund Initiative (No. 1010147001251),

Fundamental Research Funds for the Provincial Universities of

Liaoning Province (No. LJ212410144006), Applied Basic Research

Program of Liaoning Provincial Department of Science and

Technology (No. 2022020247-JH2/1013), National Natural

Science Foundation of China (No. 82260505).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Oncology 12
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Karmakar R, Nagisetti Y, Mukundan A, Wang H-C. Impact of the family and
socioeconomic factors as a tool of prevention of breast cancer. World J Clin Oncol.
(2025) 16:106569. doi: 10.5306/wjco.v16.i5.106569

2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J
Clin. (2023) 73:17–48. doi: 10.3322/caac.21763

3. Teng R, Wei Q, Zhou J, Dong M, Zhao W. The influence of preoperative biopsy
on the surgical method in breast cancer patients: a single-center experience of 3,966
cases in China. Gland Surg. (2021) 10:1038–45. doi: 10.21037/gs-20-889

4. Leung J-H, Karmakar R, Mukundan A, Thongsit P, Chen M-M, Chang W-Y, et al.
Systematic meta-analysis of computer-aided detection of breast cancer using hyperspectral
imaging. Bioengineering. (2024) 11:1060. doi: 10.3390/bioengineering11111060

5. Suman L, D’Ascoli E, Depretto C, Berenghi A, Berardinis CD, Pepa GD, et al.
Diagnostic performance of MRI-guided vacuum-assisted breast biopsy (VABB): an
essential but still underused technique. Breast Cancer Res Treat. (2025) 210:2.
doi: 10.1007/s10549-024-07579-1

6. Lu G, Tian R, YangW, Liu R, Liu D, Xiang Z, et al. Deep learning radiomics based
on multimodal imaging for distinguishing benign and Malignant breast tumors.
Front Med. (2024) 11. doi: 10.3389/fmed.2024.1402967

7. Xiang H, Wang X, Xu M, Zhang Y, Zeng S, Li C, et al. Deep learning-assisted
diagnosis of breast lesions on US images: a multivendor, multicenter study. Radiology:
Artif Intell. (2023) 5:220185. doi: 10.1148/ryai.220185

8. Magnuska ZA, Roy R, Palmowski M, Kohlen M, Winkler BS, Pfeil T, et al.
Combining radiomics and autoencoders to distinguish benign and Malignant breast
tumors on US images. Radiology. (2024) 312:11. doi: 10.1148/radiol.232554

9. Baek H-S, Kim J, Jeong C, Lee J, Ha J, Jo K, et al. Deep learning analysis with gray
scale and Doppler ultrasonography images to differentiate Graves’ disease. J Clin
Endocrinol Metab. (2024) 109:2872–81. doi: 10.1210/clinem/dgae254

10. Yiit Ali ncü, Sevim G, Mercan T, Vural V, Canpolat M. Differentiation of
tumoral and non-tumoral breast lesions using back reflection diffuse optical
tomography: A pilot clinical study. Int J Imaging Syst Technol. (2021) 31:1775–91.
doi: 10.1002/ima.22578

11. Chae EY, Kim HH, Sabir S, Kim Y, Choi YW. Development of digital breast
tomosynthesis and diffuse optical tomography fusion imaging for breast cancer
detection. Sci Rep. (2020) 10:13127. doi: 10.1038/s41598-020-70103-0

12. Vigil N, Barry M, Amini A, Akhloufi M, Maldague XPV, Ma L, et al. Dual-
intended deep learning model for breast cancer diagnosis in ultrasound imaging.
Cancers (Basel). (2022) 14:2663. doi: 10.3390/cancers14112663

13. Meng H, Liu X, Niu J, Wang Y, Liao J, Li Q, et al. DGANet: A dual global
attention neural network for breast lesion detection in ultrasound images. Ultrasound
Med Biol. (2023) 49:31–44. doi: 10.1016/j.ultrasmedbio.2022.07.006

14. Gui H, Su T, Jiang X, Li L, Xiong L, Zhou J, et al. FS-YOLOv9: A frequency and
spatial feature-based YOLOv9 for real-time breast cancer detection. Acad Radiol.
(2025) 32:1228–40. doi: 10.1016/j.acra.2024.09.048
15. Carvalho ED, de Carvalho Filho AO, Da Silva Neto OP. Deep learning-based
tumor segmentation and classification in breast MRI with 3TP method. Biomed Signal
Process. Control. (2024) 93:1–14. doi: 10.1016/j.bspc.2024.106199

16. Anitha V, Subramaniam M, Roseline AA. Improved breast cancer classification
approach using hybrid deep learning strategies for tumor segmentation. Sens. Imaging.
(2024) 25:1. doi: 10.1007/s11220-024-00475-4

17. Singh SP. Comparison of deep learning network for breast tumor segmentation
from X-ray. Cybern. Syst Int J. (2024) 55:8. doi: 10.1080/01969722.2022.2150810

18. Zhang L, Luo Z, Chai R, Arefan D, Sumkin J, Wu S. Deep-learning method for
tumor segmentation in breast DCE-MRI. Proc SPIE. (2019), 10954. doi: 10.1117/
12.2513090

19. Tian R, Lu G, Zhao N, Qian W, Ma H, Yang W. Constructing the optimal
classification model for benign and Malignant breast tumors based on multifeature
analysis from multimodal images. J Imaging Inform. Med. (2024) 37:1386–400.
doi: 10.1007/s10278-024-01036-7

20. Aicher AA, Cester D, Martin A, Pawlus K, Huber FA, Frauenfelder T, et al. An in-
silico simulation study to generate computed tomography images from ultrasound data by
using deep learning techniques. BJR Artif Intell. (2025) 2:1. doi: 10.1093/bjr/ubaf005

21. Bhowmik A, Eskreis-Winkler A. Deep learning in breast imaging. BJR Open.
(2022) 4:1. doi: 10.1259/bjr.20210060

22. Fujioka T, Mori M, Kubota K, Oyama J, Yamaga E, Yashima Y, et al. The utility
of deep learning in breast ultrasonic imaging: a review. Diagnostics. (2020) 10:1055.
doi: 10.3390/diagnostics10121055

23. Devi TG, Patil N, Rai S, Philipose CS. Gaussian blurring technique for detecting
and classifying acute lymphoblastic leukemia cancer cells from microscopic biopsy
images. Life (Basel Switzerland). (2023) 13:348. doi: 10.3390/life13020348

24. Wan C, Ye M, Yao C, Wu C. Brain MR image segmentation based on Gaussian
filtering and improved FCM clustering algorithm. Proc 10th Int Congr. Image Signal
Process. Biomed Eng. Inform. (CISP-BMEI). (2017), 1–5. doi: 10.1109/CISP-
BMEI.2017.8301978. IEEE.

25. Gaudio A, Smailagic A, Campilho A, Karray F, Wang Z. Enhancement of retinal
fundus images via pixel color amplification. Lect Notes Comput Sci. (2020) 12132:299–
312. doi: 10.1007/978-3-030-50516-5_26

26. Kim SH, Allebach JP. Optimal unsharp mask for image sharpening and noise
removal. Proc SPIE - Int Soc Opt. Eng. (2004) 5299:101–11. doi: 10.1117/12.538366

27. Terven J, Córdova-Esparza D-M, Romero-González J-A. A comprehensive
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