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Introduction: Breast tumors, predominantly benign, are a global health concern
affecting women. Vacuum-assisted biopsysystems (VABB) guided by ultrasound
are widely used forminimally invasive resection, but their reliance on surgeon
experience and positioning challenges hinder adoption in primary healthcare
settings. Existing Al solutions often focus on static ultrasound image analysis,
failing to meet real-time surgical demands.

Methods: This study presents a real-time positioning system for breast tumor
rotational resection based on an optimized YOLOv11n architecture to enhance
surgical navigation accuracy. Ultrasound video data from 167 patients (116 for
training, 33 for validation, and 18 for testing) were collected to train the model.
The model's architecture was optimized across three major components:
backbone, neck, and detection head. Key innovations include integrating
MobileNetV4 Inverted Residual Block and MobileNetV4 Universal Inverted
Bottleneck Block to reduce model parameters and computational load while
improving inference efficiency.

Results: Compared with the baseline YOLOvlln, the optimized YOLOv11n+
model achieves a 17.1% reduction in parameters and a 27.0% reduction in FLOPS,
increasing mAP50 for cutter slot and tumor detection by 2.1%. Two clinical
positioning algorithms (Surgical Method 1 and Surgical Method 2) were
developed to accommodate diverse surgical workflows. The system comprises
a deep neural network for target recognition and a real-time visualization
module, enabling millisecond-level tracking, precise annotation, and intelligent
prompts for optimal resection timing.

Conclusion: These research findings provide technical support for minimally
invasive breast tumor resection, holding the promise of reducing reliance on
surgical experience and thereby facilitating the application of this technique in
primary healthcare institutions.

KEYWORDS

breast tumor, deep learning, real-time positioning, minimally invasive rotational
resection, ultrasound guidance
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1 Introduction

Breast tumors are among the most prevalent diseases in women
worldwide, with a substantial proportion being benign (1, 2). The
ultrasound-guided Vacuum-Assisted Biopsy System (VABB) has
become the standard minimally invasive treatment for benign
breast tumors, owing to its advantages of reduced trauma, rapid
recovery, and precise localization (3). Since its introduction in 1994,
VABB technology has undergone continuous improvements and is
now also a vital tool in early breast cancer diagnosis (4, 5). However,
its clinical effectiveness largely depends on surgeons’ expertise in
real-time ultrasound image interpretation and precise instrument
manipulation. This dependency limits the widespread
implementation of VABB in primary healthcare settings.

Recent advancements in artificial intelligence (AI) have mainly
concentrated on analyzing static ultrasound images (5-10) for the
classification (7, 8, 11-14) and segmentation (15-19) of breast
tumors. Notably, Li Y et al. (6) developed an intelligent scoring
system that integrates tumor oxygen metabolism features using
multimodal AT algorithms for assessing malignancy. Similarly, Vigil
et al. (12) proposed a dual-modality deep learning model that
combines ultrasound images with radiomic features to improve
the classification of benign and malignant tumors. However, these
methods do not fully meet the real-time accuracy needs required for
minimally invasive rotational resection of breast tumors (4).

To overcome these limitations, this study presents an optimized
YOLOVI11 deep learning model for real-time localization of the
biopsy slot and tumor during surgery. The model incorporates
MobileNetV4 Inverted Residual Block (MIRB) and MobileNetV4
Universal Inverted Bottleneck Block (MUIB) in the Backbone
networks, reducing parameters and FLOPS by 17.1% and 27.0%,
respectively, compared to the baseline YOLOvI11n, while improving
mAP50 by 3.0%. Two surgical algorithms were designed to
accommodate different clinical practices. The integrated system
provides real-time tracking and visualization of the cutter slot and
tumor, offering intelligent prompts for optimal resection timing.

These results demonstrate the potential of the proposed
approach to enhance surgical precision and reduce reliance on
surgeon experience, thereby facilitating the adoption of minimally
invasive breast tumor rotational resection in primary
healthcare institutions.

2 Materials and methods

2.1 Materials

In this study, the ultrasound video data of 167 patients who
underwent vacuum-assisted minimally invasive rotational resection
of breast tumors at Liaoning Provincial People’s Hospital from May
2023 to July 2024 were collected. Statistics on patient characteristics

Abbreviations: MIRB, MobileNetV4 Inverted Residual Block; MUIB,
MobileNetV4 Universal Inverted Bottleneck Block; MCC, Matthews
Correlation Coefficient; ERR, Error Rate.
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such as age distribution, tumor size range, and histopathological
types are shown in Table 1. The ultrasound imaging systems used
were the GE Logiq P3 and SonoScape E1 Exp. The vacuum-assisted
tumor rotational resection system was EnCor® (Model: DR-
ENCOR) produced by Bard in the United States, and the
diameter of the rotational resection probe was 7G (Model: ECP017).

2.2 Data processing

To acquire effective training data, this study first performed
screening and extraction of surgical video clips. Guided by
professional surgeons, the original ultrasound surgical videos were
systematically sorted and clipped. The extraction scope covered the
complete operational process from the moment the rotational
resection knife penetrated the breast tissue surface to the
activation of the cutter slot for tumor resection. The video data
during this period accurately captured the surgical positioning
process, preserving not only the dynamic trajectory changes of
the cutter slot and tumor location but also critical operational
details such as the operator’s adjustment of instrument angle and
depth. This fully meets the experimental requirements for real-time
positioning of the cutter slot and tumor, as well as determination of
the optimal resection site.

The study then proceeds to the key frame extraction phase. To
balance data integrity with computational efficiency, a uniform
sampling strategy is employed, extracting one frame every 10
seconds. This approach systematically captures essential surgical
dynamics, such as the trajectory of the cutter slot and the
morphological changes of the tumor. Additionally, it minimizes
data redundancy that can occur with higher frequency sampling,
which significantly lowers the computational costs associated with
data storage and model training. This results in a time-efficient and
representative image dataset for the accurate positioning of the
cutter slot and the tumor in subsequent steps.

The image annotation process begins with a dual-review
mechanism to ensure the accuracy of the annotated data. First,
specialized doctors with over five years of clinical experience
identify the locations of tumors and the cutter slot in each
keyframe image, utilizing their professional medical knowledge.
Next, experts with more than twenty years of clinical experience
review and confirm the annotations. This hierarchical review
process effectively reduces annotation errors, providing high-
precision and reliable labeled data for training deep learning
models and establishing a solid foundation for subsequent work.

At the same time, data augmentation techniques (20-26) such
as color enhancement, mosaic enhancement, horizontal flipping,
and scaling are comprehensively employed to simulate diverse
surgical environments and changes in the quality of ultrasound
images (Table 2), effectively improving the robustness and detection
accuracy of the model in complex clinical scenarios.

The study utilized a multicenter dataset consisting of 11,610
images from 167 cases. These cases were divided into training (116
cases), validation (33 cases), and test sets (18 cases) using a 7:2:1
ratio. This division strategy encompasses a diverse array of tumor
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TABLE 1 Patient demographics.

Characteristic Dataset

Age (years) 44 (34.5-50) *

<40 67
40-49 56
49> 44
Tumor (mm) 10 (8-15) *
<10 69
10—19 76
>19 22
Operation time (min) 10 (6-18) *
BI-RADS
3 66(39.52%)
4a 101 (60.48%)
Histopathological types
Malignant 2
Inflammatory 15
Fibroadenosis 33
Fibroadenoma 117

a Median (interquartile range).

morphologies, locations, and surgical scenarios, allowing for a
comprehensive assessment of the model’s robustness and
reliability in practical applications. Ultimately, this approach
significantly enhances the model’s generalization ability.

2.3 Optimize network architecture

Building upon the high-quality annotated dataset constructed
in the preliminary stage, this study focuses on the requirements
for real-time localization of cutter slot and tumors in the context of

TABLE 2 Data augmentation parameters.

Augmentation

Random crop fraction crop_fraction 1

Rotation (°) degrees 0
Random erasing prob. erasing 0.4
Horizontal flip prob. fliplr 0.5

HSV Hue gain hsv_h 0.015

HSV Saturation gain hsv_s 0.7
HSV Value gain hsv_v 0.4
Mosaic prob. mosaic 0.5
Scaling (gain) scale 0.2
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breast rotational resection. It systematically compares and analyzes
different versions of the YOLO network architecture (27, 28). By
comprehensively applying technical means such as model lightweight
and optimized training methods, an efficient and precise real-time
localization method is proposed. To clearly present the research
context and technical roadmAP, the complete experimental design
process has been sorted out and depicted in Figure 1, covering core
aspects such as data processing, model construction, optimization
strategies, and performance evaluation.

The clinical practice of breast rotational resection requires two
critical factors for real-time ultrasound image processing: high
inference speed and precise recognition accuracy. The traditional
YOLOvI11 model (29) has a complex network structure that
consumes substantial computational resources and exhibits high
inference latency, rendering it unsuitable for rapid ultrasound
image analysis during surgeries on edge computing devices.
To address these challenges, this study focuses on optimizing
the YOLOvI1 architecture. A key improvement involves
incorporating MIRB and MUIB into the Backbone of YOLOv11.
This modification significantly enhances the model’s performance
across three dimensions: the Backbone, Neck, and Head. While
markedly reducing the number of model parameters, it effectively
maintains detection accuracy, achieving a balance between low
latency and high precision. This optimization provides a reliable
technical solution for real-time intraoperative localization.

In the Backbone of the model, ConvBN serves as the primary
unit for feature extraction, providing a stable foundation for this
process. To address the computational limitations of traditional
architectures and enhance model efficiency, we introduce the MIRB
and MUIB (30-33). The MIRB, which is based on depthwise
separable convolution, is designed specifically for low-level feature
extraction. Its design incorporates small channel numbers and
shorter stride lengths, ensuring effective feature extraction while
significantly lowering computational costs. On the other hand, the
MUIB combines depthwise and expanded convolutions, focusing
on mid-to-high-level feature extraction. By optimizing the
computational workflow, these blocks effectively reduce model
parameters while preserving detection accuracy, thereby
improving overall computational efficiency.

A channel-increasing strategy with values of 40-80-128-480-
512 is adopted to capture multi-scale image features from small to
large. Meanwhile, 3x3 and 5x5 convolutional kernels are flexibly
employed to fully leverage their advantages in local feature
extraction. Additionally, an initial downsampling operation with a
stride of 2 is performed to rapidly compress the feature mAP size,
alleviating computational pressure for subsequent processing.

The Neck network enhances the model’s capability to detect
targets of varying scales by integrating low-resolution and high-
resolution features through a multi-level upsampling and feature
fusion mechanism. To further boost inference efficiency, the
lightweight C3K2 module is incorporated, which employs a local
information pruning strategy to eliminate redundant computations.
This approach accelerates the inference process while preserving
detection accuracy, striking a favorable balance between detection
speed and precision.
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FIGURE 1
Methodological workflow.

In summary, by integrating the ConvBN, MIRB module, MUIB
module, SPPF module, C3K2 module, and cross-stage partial
connection technology (34-37) (Figure 2), the optimized
YOLOvlln and YOLOvlls architectures are designated as
YOLOvlln+ and YOLOv1ls+, respectively. As shown in the
model parameter comparison in Table 3, each module exhibits
clear functional specialization and efficient collaboration,
demonstrating exceptional performance in small-target
detection tasks.

2.4 Determination of cutter activation
This study addresses the core needs of breast rotational

resection by developing an intelligent algorithm for accurately
prompting the cutter slot of the rotational resection device to
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reach the specified position. Given the substantial variability in
clinicians’ manipulation techniques when operating the rotational
resection device and ultrasound probe, two differentiated
implementation schemes (Procedure I and Procedure II) are
designed to accommodate diverse surgical operation habits.

When the user selects Procedure I, the rotational resection
cutter should be positioned beneath the target tumor to ensure both
the tumor and cutter slot are within the ultrasound field of view. In
this mode, the ultrasound probe must remain stable above the
corresponding skin area to maintain image stability and avoid
significant movement. Once activated, the algorithm monitors the
real-time spatial relationship between the cutter slot and tumor. The
cutter slot is considered correctly positioned for activation when
both appear in the image, with the slot horizontally located to the
left of the tumor and vertically overlapping with it. Using the
following parameters: Cutter slot: top-left coordinates (x1, yl),

04
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YOLOv1ln+ architecture.

length L1, height H1; tumor: top-left coordinates (x2, y2), length L2,
height H2. The specific positioning logic is categorized into three
scenarios based on geometric dimensions:

a. Cutter slot larger than tumor (L1 - L2 > 20 pixels):

« Horizontal condition: xI - L1 x 0.2 < x2

« Vertical condition: y2 - H2 x 1.1 <yl

Rationale: Ensures the slot horizontally covers the tumor’s left
side and vertically overlaps with it at activation.

TABLE 3 Comparison of original parameters and improved parameters.

Original

Module Improved parameters

parameters

Output channels 80, 128; Kernel sizes 3x3,

MIRB None . . .
5x5; Expansion ratios 2, 4, 6; Strides 1, 2
h ls 80, 160; Kernel si s
MUIB None Output channels 80. . 60 'erne sizes 3x3
5x5; Expansion ratios 4, 6
Output ch: 1
utput © ann'e s Output channels 80, 160; Kernel sizes 3x3,
SPPF 1024; Kernel size . X
5x5; Expansion ratios 4, 6
5%5
Output channels
CIK2 25};’ 512 No Output channels 256, 512; Pruning enabled

i (True)
pruning
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b. Cutter slot smaller than tumor (L2 - L1 > 20 pixels):

« Horizontal condition: x2 - L2 x 0.2 < x1

o Vertical condition: y2 - H2 x 1.1 <yl

Rationale: Reverse coordinate comparison ensures the tumor
falls within the cutter’s horizontal range.

c. Similar sizes (|L1 - L2| < 20 pixels):

o Temporarily extend the tumor’s length by 20% (L2" = L2 x 1.2)
while keeping (x2, y2) unchanged.

o Apply scenario (b) rules to standardize calculations and
ensure compatibility across size variations.

This adaptive approach enables precise positioning guidance
tailored to diverse anatomical structures and equipment specifications.

In Procedure II, the user positions the rotational resection cutter
laterally to the tumor. This positioning requires the ultrasound
probe to switch back and forth between the cutter and the skin over
the tumor, resulting in the two appearing alternately in the
ultrasound’s field of view.

The system begins by analyzing multi-frame images to
accurately document the spatial position of the cutter slot while
continuously tracking the real-time position of the tumor. Using the
same spatial positioning algorithm as in Procedure I, the system
dynamically calculates the coordinates and size relationships
between the cutter slot and the tumor.
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When the cumulative number of frames detecting positional
overlap between the cutter and the tumor reaches 500, the system
activates a prompt mechanism to notify the user that the cutter is in
the optimal resection position. This provides a reliable basis for
making decisions regarding subsequent surgical operations.

3 Results
3.1 Model training results

The experiments were conducted on an NVIDIA RTX 4090
GPU using the PyTorch 2.6.0 framework, with multiple strategies
employed to ensure training effectiveness. A training schedule of
333 epochs was combined with an early stopping mechanism
(terminating training if validation set performance did not
improve for 55 consecutive epochs) to prevent overfitting (38,
39). The performance of various optimizers was compared in the
experiment (Table 4). The Stochastic Gradient Descent (SGD)
optimizer with momentum was selected, and its initial learning
rate was set to 0.01 to ensure stable model convergence (40). The
batch size was set to 64 to balance computational efficiency and
training stability.

The training curves demonstrate effective model convergence
within 35 epochs, with the detection losses (box_loss, cls_loss,
dfl_loss) of both training and validation sets steadily decreasing,
indicating robust learning without overfitting. The precision and
recall on the training set showed continuous performance
improvements, confirming the model’s optimized capabilities in
both localization and classification tasks. Figure 3 illustrates the
relevant results over 35 training epochs.

The experiments systematically compared different YOLO
architectures with our improved versions to quantitatively
evaluate the impact of each proposed enhancement. Through
controlled variable experiments, this study assessed key
performance metrics, with results presented in Table 5. The
proposed approach of integrating MIRB and MUIB into
YOLOv11n+ achieves the best real-time detection performance
for cutter slot and tumors.

The YOLOv11n+ model has a parameter count of 2,140,390, the
smallest among all models, indicating its highly compact design,
which helps reduce storage requirements and improve deployment
flexibility. Secondly, the model’s FLOPS is 4.6G, far lower than
other models, meaning it requires fewer computational resources
for image processing, thereby reducing energy consumption and
hardware costs. In terms of inference speed, the YOLOv11n+ model
also performs excellently. Its CPU inference time is only 12.2 ms,
and GPU inference time is 0.7 ms—both metrics are the lowest
among all models. This demonstrates that the YOLOv11n+ model
can provide faster response speeds in practical applications, which
is particularly critical for real-time processing scenarios.
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TABLE 4 Comparative analysis of optimizer.

Architecture Adam AdamW NAdam SGD
Precision (tumor) 0.861 0.912 0.854 0.862
Recall (tumor) 0.78 0.743 0.761 0.725
mAP50 (tumor) 0.868 0.823 0.855 0.827
Specificity (tumor) 0.845 0.831 0.815 0.834
MCC (tumor) 0.622 0.531 0.568 0.55
ERR (tumor) 0.191 0.231 0.217 0.23
Precision (cutter slot) 0.738 0.809 0.792 0.850
Recall (cutter slot) 0.575 0.722 0.784 0.746
mAP50 (cutter slot) 0.651 0.756 0.608 0.799
Specificity (cutter slot) 0.876 0.759 0.786 0.799
MCC (cutter slot) 0.480 0.474 0.571 0.534
ERR (cutter slot) 0.238 0.263 0.215 0.233
Precision (all) 0.799 0.861 0.823 0.856
Recall (all) 0.677 0.732 0.772 0.736
mAP50 (all) 0.760 0.789 0.732 0.813
Specificity (all) 0.861 0.795 0.800 0.817
MCC (all) 0.551 0.510 0.571 0.542
ERR (all) 0.222 0.245 0.215 0.232

“p < 0.05.

3.2 Detection of cutter slot and tumor

Building upon the optimized network model described
above, the experiments systematically compared the precision,
recall, and mAP50 values of different YOLOv architectures for
cutter slot, tumors, and their combined detection, as shown
in Table 6.

As seen in Table 4, YOLOvlln demonstrates superior
performance in tumor recognition compared to the proposed
YOLOvl1ln+ model. However, when it comes to recognizing
cutter slot and overall recognition performance, the optimized
YOLOvlln+ model presented in this paper shows improved
results. Based on the model training parameters and performance
evaluation metrics outlined in Table 3, the YOLOv11n+ model not
only significantly reduces the number of parameters for real-time
inference but also enhances the recognition performance for both
cutter slot and tumors.

To ensure a scientifically robust and reliable evaluation of model
performance, this experiment employed a three-fold cross-validation
strategy. Initially, all eligible cases were stratified such that each
individual patient constituted a distinct unit for data partitioning.
This approach was specifically designed to prevent data leakage by
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Training and validation loss (box_loss, cls_loss, dfl_loss) across 43 epochs and performance curves (precision, recall, mAP50, mAP50-95).

ensuring that samples originating from the same patient were not
distributed across different folds. The quantitative evaluation
outcomes are detailed in Table 7. Figure 4 shows the normalized
confusion matrix, while Figures 5, 6 present the Precision-Recall (P-R)
curve and ROC curve, both demonstrating that the proposed
YOLOv11n+ network architecture exhibits excellent real-time
recognition performance.

From the Precision-Recall Curve in Figure 5, the recognition
performance for the cutter slot, tumor, and their combined detection
can be observed. When the recall rate for the cutter slot reaches
approximately 0.75, the precision is around 0.85. In contrast, when the
recall rate for the tumor reaches approximately 0.72, the precision
remains at around 0.86, indicating that the model exhibits high
precision and robustness in tumor recognition. Overall, the average
performance of the combined detection still demonstrates that the
optimized network model proposed in this paper has excellent
recognition capabilities (41, 42).

3.3 Cutter slot activation command

The intelligent positioning system proposed in this paper
comprises two core components: a deep neural network target
recognition module and a real-time visualization module. The target

TABLE 5 Performance metrics comparison.

Architecture 1@ pops  CPU - GPU
params latency latency

YOLOVSs 11126358 28.4G 34.2ms 1.2ms

YOLOv11s 9413574 21.3G 32.6ms 1.2ms

YOLOvlln 2582542 6.3G 12.6ms 0.7ms

YOLOvV11s+(Ours) 7477470 13.9G 28.5ms 1.1ms

YOLOv11n+(Ours) 2140390 4.6G 12.2ms 0.7ms

Frontiers in Oncology

recognition module is built based on the optimized YOLOvI1In+
architecture, with structural improvements significantly enhancing
recognition accuracy and computational efficiency, laying the
foundation for intraoperative real-time guidance.

The real-time visualization module creates an interface using
OpenCV 4.9.0 for processing real-time ultrasound video streams
frame by frame. Each frame is analyzed quickly using the Intel
OpenVINO 2025.0.0 toolkit, which adds visually distinct
annotations. Based on the cutter slot activation determination
method described earlier, a command stating, “The operation can
begin now,” is issued, as illustrated in Figure 7.

The use of this system during surgery allows physicians to
quickly and accurately determine the spatial relationship between
the rotating cutter and the tumor, thereby reducing the overall
procedure time. However, the positioning system does not directly
decrease the incidence of surgical complications. The software can
be easily installed on any standard computer and does not require
high-end hardware. Its straightforward installation and user-
friendly interface further ensure that clinicians can readily
incorporate the system into their workflow.

4 Discussion

In the field of minimally invasive breast tumor treatment, the
development of precise positioning technology is pivotal for
enhancing surgical outcomes and patient prognosis. Addressing
this critical need, this study innovatively introduces YOLOv11n+,
an ultrasound-based positioning system tailored for minimally
invasive breast tumor resection. Built upon the deeply optimized
YOLOvl1ln+ model, the system enables real-time and accurate
localization of both the cutter slot and tumors during surgery,
offering surgeons intuitive and reliable surgical navigation support.

Compared to traditional YOLO architectures, the optimized
YOLOv11ln+ model achieves significant breakthroughs across
multiple key performance metrics. In terms of detection accuracy,
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TABLE 6 Comparative analysis of model performance.

10.3389/fonc.2025.1675180

. YOLOvlls YOLOvlin
Architecture YOLOvS8s YOLOv11s YOLOv1in
+(Ours) +(Ours)
Precisi
reision 0.827 0.820 0.830 0.815 0.862
(tumor)
Recall
0.759 0.758 0.760 0.759 0.725
(tumor)
mAP50
0.821 0.823 0.835 0.835 0.827
(tumor)
Specificity
0.821 0.806 0.826 0.815 0.834
(tumor)
M
ce 0.579 0.562 0.585 0.574 0.55
(tumor)
ERR
0.212 0.220 0.209 0.214 0.23
(tumor)
Precision
0.801 0.809 0.783 0.798 0.850
(cutter slot)
R
ccall 0.686 0.722 0.709 0.666 0.746
(cutter slot)
mAP50
0.735 0.756 0.742 0.724 0.799
(cutter slot)
Specificity
0.845 0.789 0.736 0.765 0.799
(cutter slot)
MCC
0.540 0.508 0.441 0.425 0.534
(cutter slot)
ERR
0.231 0.248 0.279 0.293 0.233
(cutter slot)
Precision 0.811 0.814 0.807 0.807 0.856
(all)
Recall
0.722 0.740 0.734 0.713 0.736
(all)
mAP50
0.778 0.789 0.789 0.779 0.813
(all)
Specificity
0.833 0.798 0.781 0.790 0.817
(all)
MCC
0.559 0.535 0.513 0.500 0.542
(all)
ERR
0.221 0.234 0.244 0.253 0.232
(all)

“p < 0.05.

the model delivers real-time recognition precision of 0.850 for
cutter slot and 0.862 for tumors, with corresponding recall rates
of 0.746 and 0725. The mAP50 metrics reach 0.799 for cutter slot
and 0.827 for tumors. These results fully demonstrate the
YOLOv11n+ model’s capability for precise target recognition and
localization in complex ultrasound imaging environments.

The improvement in model efficiency is a significant highlight of
YOLOv11n+. Through in-depth architectural optimizations, the study
introduced innovative elements, MIRB and MUIB, into the Backbone
components. Compared to YOLOvIln, this strategic modification
reduced the parameter count from 2,582,542 to 2,140,390 and
decreased the FLOPS from 6.3G to 4.6G. In terms of inference

Frontiers in Oncology

speed, CPU processing time was shortened from 12.6 ms to 12.2 ms,
while GPU inference achieved an impressive 0.7 ms—all while
maintaining high real-time detection accuracy. This computational
efficiency allows the YOLOv11ln+ system to seamlessly manage real-
time ultrasound video streams, providing robust technical support for
immediate feedback during surgical procedures.

To comprehensively evaluate the performance of the proposed
YOLOv11ln+ and YOLOvlls+ models, we compared them with
several state-of-the-art methods for breast lesion detection across
diverse imaging modalities. As summarized in Table 8, FS-YOLOvV9
achieved an mAP of 0.713 on MRI, indicating limited performance
in this modality (14). YOLOv4, meanwhile, exhibited relatively low
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TABLE 7 Three-fold results of YOLOv1in+.

Fold 1 2 3 A\Ys]
Precision (tumor) 0.803 0911 0.873 0.862
Recall (tumor) 0.759 0.692 0.726 0.725
mAP50 (tumor) 0.833 0.821 0.829 0.827
Specificity (tumor) 0.741 0.906 0.853 0.834
MCC (tumor) 0.496 0.594 0.572 0.55
ERR (tumor) 0.248 0.218 0.221 0.23
Precision (cutter slot) 0.892 0.819 0.839 0.850
Recall (cutter slot) 0.776 0.722 0.741 0.746
mAP50 (cutter slot) 0.842 0.756 0.799 0.799
Specificity (cutter slot) 0.857 0.757 0.783 0.799
MCC (cutter slot) 0.62 0.469 0.514 0.534
ERR (cutter slot) 0.192 0.264 0.242 0.233
Precision (all) 0.847 0.865 0.856 0.856
Recall (all) 0.768 0.707 0.733 0.736
mAP50 (all) 0.838 0.789 0.814 0.813
Specificity (all) 0.799 0.831 0.818 0.817
MCC (all) 0.558 0.532 0.542 0.542

ERR (all) 0.22 0.241 0.231 0.232
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FIGURE 4
Normalized confusion matrix.
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Precision-recall (P-R) curve.

recall rates on digital mammography, highlighting suboptimal
adaptability to dense breast tissues (43). Meng et al. proposed the
DGANet model, which outperformed YOLOX and Faster R-CNN
on a clinical dataset of 765 patients but suffered from relatively low
precision (13). In contrast, our YOLOv11n+ models achieved mAP
scores of 0.813 while maintaining a lightweight architecture and
high inference efficiency, making them particularly well-suited for
real-time intraoperative breast tumor excision.
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FIGURE 6
ROC curve.
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From a clinical application perspective, the real-time capability
and high-precision positioning of the YOLOv1In+ model hold
significant value. In minimally invasive breast tumor resection,
accurately determining the positional relationship between tumors
and cutter slot is critical for improving surgical success rates and
reducing risks. The YOLOv11n+ model can continuously provide
surgeons with accurate real-time feedback throughout the operation,
assisting them in making more informed decisions. Additionally, the
model’s low demand for computational resources enables it to
operate stably in resource-constrained medical environments,
significantly expanding its application scope and showing promise
for widespread adoption in more grassroots medical facilities.

Technically, this study has notable strengths: (1) YOLOv11n+,
with MIRB and MUIB integration, reduces parameters by 17.1% and
FLOPS by 27.0% while boosting detection accuracy, achieving 0.7 ms
GPU inference to meet real-time surgical needs; (2) Its dual-target
detection (tumors and cutter slots) directly addresses VABB
requirements, providing critical spatial feedback—outperforming
static image-focused solutions; (3) The lightweight design (4.6G
FLOPS) adapts to low-cost hardware, facilitating use in primary care.

Limitations include: a single-center dataset (167 patients) may
restrict generalizability, requiring multi-center validation;
performance is sensitive to ultrasound quality, with severe
artifacts potentially degrading detection of small/irregular tumors;
lack of direct comparison with latest real-time architectures (e.g.,
advanced Transformers); and reliance on 2D ultrasound limits
depth information—integrating 3D or other modalities would
need further optimization to balance precision and speed.

In summary, the positioning system built on the optimized
YOLOv1In+ model has achieved remarkable advancements in
recognition accuracy, real-time inference capability, and
computational efficiency. These breakthroughs not only provide
surgeons performing breast tumor resection with a powerful
decision-making tool but also significantly enhance the safety and
effectiveness of minimally invasive surgical techniques. By reducing
computational complexity while enabling efficient on-device operation,
the model fully demonstrates its immense potential in clinical
applications. Looking ahead, this model will undergo rigorous multi-
center clinical validation. However, there is currently a lack of
prospective trial data. On the methodological front, we will explore
additional deep learning models. Through continuous optimization
and adaptive improvements, the system is designed to expand its
applicability across various surgical scenarios, aiming to provide more
accurate and safer medical services for a broader patient population.

5 Conclusion

The increasing incidence of breast tumors has resulted in a
heightened demand for vacuum-assisted breast biopsy procedures.
Successful execution of this technique necessitates physicians’ precise
identification and localization of lesions via ultrasound imaging,
presenting a significant technical barrier. This challenge particularly
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FIGURE 7
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TABLE 8 Comparative analysis with State-of-the-art methods.

Method Data Precision Recall mAP50
FS-YOLOV9 MRI 0.850 0.780 0.713
YOLOv4 Mammography 0.850 0.600
DGANet Ultrasound 0.762 0.841 0.831
YOLOv11n+ (ours) Ultrasound 0.856 0.736 0.813

impedes the capacity of less-experienced practitioners and primary
healthcare settings to perform such interventions effectively. This study
developed the YOLOv1In+ real-time intelligent positioning system.
Through deep architectural optimization, the system establishes an
efficient visual interaction interface capable of millisecond-level
dynamic tracking of the cutter slot and tumors during surgery,
clearly presenting their spatial positional relationship through precise
annotations. More critically, leveraging the deep neural network’s
intelligent decision-making capabilities, the system can analyze the
relative positions of surgical instruments and tumors. When the
optimal operation timing is reached, it automatically generates high-
precision prompt commands, explicitly instructing surgeons to activate
the rotational cutter for tumor resection, thereby providing fully
intelligent navigation support throughout the surgical procedure.

This study demonstrates significant application value as an
innovative surgical assistive tool. Consequently, the research team
plans to conduct multi-center clinical validation, further verifying the
system’s safety, efficacy, and reliability through large-scale, multi-
scenario testing with real-world cases. This effort aims to provide
robust technical support for advancing minimally invasive surgery
toward intelligent and precision-based approaches, facilitating the
medical field’s pursuit of more efficient and safer diagnostic and
therapeutic outcomes.

Frontiers in Oncology

11

Data availability statement

The datasets presented in this article are not readily available
because data usage must be restricted to researchers in the relevant
field, and communication with the corresponding authors via email is
required. Requests to access the datasets should be directed to Jianchun
Cui, ¢jc7162003@aliyun.com; Hang Sun, sunhang84@126.com.

Ethics statement

The studies involving humans were approved by Liaoning
Provincial People’s Hospital Ethics Committee. The studies were
conducted in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study.

Author contributions

HS: Conceptualization, Funding acquisition, Project
administration, Supervision, Writing - review & editing. HZ:
Methodology, Software, Visualization, Writing — original draft. MZ:
Software, Writing - original draft. HL: Formal Analysis, Investigation,
Supervision, Writing — review & editing. XS: Data curation, Validation,
Writing — original draft. YS: Data curation, Validation, Writing -
original draft. PS: Data curation, Validation, Writing — original draft.
JL: Funding acquisition, Investigation, Writing — review & editing. JY:
Visualization, Writing — original draft. LC: Visualization, Writing -
original draft. CJ: Conceptualization, Funding acquisition, Project
administration, Resources, Writing — review & editing.

frontiersin.org


mailto:cjc7162003@aliyun.com
mailto:sunhang84@126.com
https://doi.org/10.3389/fonc.2025.1675180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Sun et al.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This research has been
funded by Shenyang Ligong University High-Level Talent Scientific
Research Support Fund Initiative (No. 1010147001251),
Fundamental Research Funds for the Provincial Universities of
Liaoning Province (No. L]J212410144006), Applied Basic Research
Program of Liaoning Provincial Department of Science and
Technology (No. 2022020247-JH2/1013), National Natural
Science Foundation of China (No. 82260505).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

1. Karmakar R, Nagisetti Y, Mukundan A, Wang H-C. Impact of the family and
socioeconomic factors as a tool of prevention of breast cancer. World J Clin Oncol.
(2025) 16:106569. doi: 10.5306/wjco.v16.i5.106569

2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer |
Clin. (2023) 73:17-48. doi: 10.3322/caac.21763

3. Teng R, Wei Q, Zhou J, Dong M, Zhao W. The influence of preoperative biopsy
on the surgical method in breast cancer patients: a single-center experience of 3,966
cases in China. Gland Surg. (2021) 10:1038-45. doi: 10.21037/gs-20-889

4. Leung J-H, Karmakar R, Mukundan A, Thongsit P, Chen M-M, Chang W-Y, et al.
Systematic meta-analysis of computer-aided detection of breast cancer using hyperspectral
imaging. Bioengineering. (2024) 11:1060. doi: 10.3390/bioengineering11111060

5. Suman L, D’Ascoli E, Depretto C, Berenghi A, Berardinis CD, Pepa GD, et al.
Diagnostic performance of MRI-guided vacuum-assisted breast biopsy (VABB): an
essential but still underused technique. Breast Cancer Res Treat. (2025) 210:2.
doi: 10.1007/s10549-024-07579-1

6. Lu G, Tian R, Yang W, Liu R, Liu D, Xiang Z, et al. Deep learning radiomics based
on multimodal imaging for distinguishing benign and Malignant breast tumors.
Front Med. (2024) 11. doi: 10.3389/fmed.2024.1402967

7. Xiang H, Wang X, Xu M, Zhang Y, Zeng S, Li C, et al. Deep learning-assisted
diagnosis of breast lesions on US images: a multivendor, multicenter study. Radiology:
Artif Intell. (2023) 5:220185. doi: 10.1148/ryai.220185

8. Magnuska ZA, Roy R, Palmowski M, Kohlen M, Winkler BS, Pfeil T, et al.
Combining radiomics and autoencoders to distinguish benign and Malignant breast
tumors on US images. Radiology. (2024) 312:11. doi: 10.1148/radiol.232554

9. Baek H-S, Kim J, Jeong C, Lee ], Ha ], Jo K, et al. Deep learning analysis with gray
scale and Doppler ultrasonography images to differentiate Graves’ disease. J Clin
Endocrinol Metab. (2024) 109:2872-81. doi: 10.1210/clinem/dgae254

10. Yiit Ali ncii, Sevim G, Mercan T, Vural V, Canpolat M. Differentiation of
tumoral and non-tumoral breast lesions using back reflection diffuse optical
tomography: A pilot clinical study. Int J Imaging Syst Technol. (2021) 31:1775-91.
doi: 10.1002/ima.22578

11. Chae EY, Kim HH, Sabir S, Kim Y, Choi YW. Development of digital breast
tomosynthesis and diffuse optical tomography fusion imaging for breast cancer
detection. Sci Rep. (2020) 10:13127. doi: 10.1038/s41598-020-70103-0

12. Vigil N, Barry M, Amini A, Akhloufi M, Maldague XPV, Ma L, et al. Dual-
intended deep learning model for breast cancer diagnosis in ultrasound imaging.
Cancers (Basel). (2022) 14:2663. doi: 10.3390/cancers14112663

13. Meng H, Liu X, Niu J, Wang Y, Liao J, Li Q, et al. DGANet: A dual global
attention neural network for breast lesion detection in ultrasound images. Ultrasound
Med Biol. (2023) 49:31-44. doi: 10.1016/j.ultrasmedbio.2022.07.006

14. Gui H, Su T, Jiang X, Li L, Xiong L, Zhou J, et al. FS-YOLOV9: A frequency and
spatial feature-based YOLOV9 for real-time breast cancer detection. Acad Radiol.
(2025) 32:1228-40. doi: 10.1016/j.acra.2024.09.048

Frontiers in Oncology

12

10.3389/fonc.2025.1675180

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

15. Carvalho ED, de Carvalho Filho AO, Da Silva Neto OP. Deep learning-based
tumor segmentation and classification in breast MRI with 3TP method. Biomed Signal
Process. Control. (2024) 93:1-14. doi: 10.1016/j.bspc.2024.106199

16. Anitha V, Subramaniam M, Roseline AA. Improved breast cancer classification
approach using hybrid deep learning strategies for tumor segmentation. Sens. Imaging.
(2024) 25:1. doi: 10.1007/s11220-024-00475-4

17. Singh SP. Comparison of deep learning network for breast tumor segmentation
from X-ray. Cybern. Syst Int ]. (2024) 55:8. doi: 10.1080/01969722.2022.2150810

18. Zhang L, Luo Z, Chai R, Arefan D, Sumkin J, Wu S. Deep-learning method for
tumor segmentation in breast DCE-MRI. Proc SPIE. (2019), 10954. doi: 10.1117/
12.2513090

19. Tian R, Lu G, Zhao N, Qian W, Ma H, Yang W. Constructing the optimal
classification model for benign and Malignant breast tumors based on multifeature
analysis from multimodal images. J Imaging Inform. Med. (2024) 37:1386-400.
doi: 10.1007/s10278-024-01036-7

20. Aicher AA, Cester D, Martin A, Pawlus K, Huber FA, Frauenfelder T, et al. An in-
silico simulation study to generate computed tomography images from ultrasound data by
using deep learning techniques. BJR Artif Intell. (2025) 2:1. doi: 10.1093/bjr/ubaf005

21. Bhowmik A, Eskreis-Winkler A. Deep learning in breast imaging. BJR Open.
(2022) 4:1. doi: 10.1259/bjr.20210060

22. Fujioka T, Mori M, Kubota K, Oyama J, Yamaga E, Yashima Y, et al. The utility
of deep learning in breast ultrasonic imaging: a review. Diagnostics. (2020) 10:1055.
doi: 10.3390/diagnostics10121055

23. Devi TG, Patil N, Rai S, Philipose CS. Gaussian blurring technique for detecting
and classifying acute lymphoblastic leukemia cancer cells from microscopic biopsy
images. Life (Basel Switzerland). (2023) 13:348. doi: 10.3390/1ife13020348

24. Wan C, Ye M, Yao C, Wu C. Brain MR image segmentation based on Gaussian
filtering and improved FCM clustering algorithm. Proc 10th Int Congr. Image Signal
Process. Biomed Eng. Inform. (CISP-BMEI). (2017), 1-5. doi: 10.1109/CISP-
BMEI.2017.8301978. IEEE.

25. Gaudio A, Smailagic A, Campilho A, Karray F, Wang Z. Enhancement of retinal
fundus images via pixel color amplification. Lect Notes Comput Sci. (2020) 12132:299—
312. doi: 10.1007/978-3-030-50516-5_26

26. Kim SH, Allebach JP. Optimal unsharp mask for image sharpening and noise
removal. Proc SPIE - Int Soc Opt. Eng. (2004) 5299:101-11. doi: 10.1117/12.538366

27. Terven J, Cordova-Esparza D-M, Romero-Gonzalez J-A. A comprehensive
review of YOLO architectures in computer vision: From YOLOvI to YOLOv8 and
YOLO-NAS. Mach Learn Knowl Extr. (2023) 5:1680-716. doi: 10.3390/make5040083

28. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-
time object detection. Proc IEEE Conf Comput Vis Pattern Recognit (CVPR). (2016),
779-88. doi: 10.1109/CVPR.2016.91

29. Ultralytics, YOLO11 models (2024). Ultralytics Documentation. Available
online at: https://docs.ultralytics.com/models/yolo11/ (Accessed February 18, 2025).

frontiersin.org


https://doi.org/10.5306/wjco.v16.i5.106569
https://doi.org/10.3322/caac.21763
https://doi.org/10.21037/gs-20-889
https://doi.org/10.3390/bioengineering11111060
https://doi.org/10.1007/s10549-024-07579-1
https://doi.org/10.3389/fmed.2024.1402967
https://doi.org/10.1148/ryai.220185
https://doi.org/10.1148/radiol.232554
https://doi.org/10.1210/clinem/dgae254
https://doi.org/10.1002/ima.22578
https://doi.org/10.1038/s41598-020-70103-0
https://doi.org/10.3390/cancers14112663
https://doi.org/10.1016/j.ultrasmedbio.2022.07.006
https://doi.org/10.1016/j.acra.2024.09.048
https://doi.org/10.1016/j.bspc.2024.106199
https://doi.org/10.1007/s11220-024-00475-4
https://doi.org/10.1080/01969722.2022.2150810
https://doi.org/10.1117/12.2513090
https://doi.org/10.1117/12.2513090
https://doi.org/10.1007/s10278-024-01036-7
https://doi.org/10.1093/bjr/ubaf005
https://doi.org/10.1259/bjr.20210060
https://doi.org/10.3390/diagnostics10121055
https://doi.org/10.3390/life13020348
https://doi.org/10.1109/CISP-BMEI.2017.8301978
https://doi.org/10.1109/CISP-BMEI.2017.8301978
https://doi.org/10.1007/978-3-030-50516-5_26
https://doi.org/10.1117/12.538366
https://doi.org/10.3390/make5040083
https://doi.org/10.1109/CVPR.2016.91
https://docs.ultralytics.com/models/yolo11/
https://doi.org/10.3389/fonc.2025.1675180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Sun et al.

30. Qin D, Leichner C, Delakis M, Fornoni M, Luo S, Yang F, et al. MobileNetV4 —
Universal models for the mobile ecosystem. Lect Notes Comput Sci. (2024) 14690:78-96.
Available online at: https://arxiv.org/abs/2404.10518.

31. Howard A, Sandler M, Chen B, Wang W, Chen LC, Tan M, et al. Searching for
mobileNetV3. Proc IEEE/CVF Int Conf Comput Vis (ICCV). (2019), 1314-24.
doi: 10.1109/ICCV43118.2019

32. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted
residuals and linear bottlenecks. Proc IEEE Conf Comput Vis Pattern Recognit (CVPR).
(2018), 4510-20. doi: 10.1109/CVPR.2018.00474

33. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
MobileNets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861. (2017) 4293-301. doi: 10.48550/arXiv.1704.04861

34. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. (2015) 37:1904-
16. doi: 10.1109/TPAMI.2015.2389824

35. Chen Y, Dai X, Liu M, Chen D, Yuan L, Liu Z. Dynamic convolution: Attention
over convolution kernels. Proc IEEE Conf Comput Vis Pattern Recognit. (2020), 11027~
36. doi: 10.1109/CVPR42600.2020

36. Li X, Hu X, Yang J. Spatial group-wise enhance: Improving semantic feature
learning in convolutional networks. arXiv preprint arXiv:1905.09646. (2019)
13845:687-702. doi: 10.48550/arXiv.1905.09646

Frontiers in Oncology

13

10.3389/fonc.2025.1675180

37. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-excitation networks.
IEEE Trans Pattern Anal Mach Intell. (2020) 42:2011-23. doi: 10.1109/TPAMI.
2019.2913372

38. Budka M, Gabrys B. Density-preserving sampling: Robust and efficient
alternative to cross-validation for error estimation. IEEE Trans Neural Netw Learn
Syst. (2013) 24:22-34. doi: 10.1109/TNNLS.2012.2222925

39. Arlot S, Celisse A. A survey of cross-validation procedures for model selection.
Stat Surv. (2010) 4:40-79. doi: 10.1214/09-SS054

40. Smith LN. Cyclical learning rates for training neural networks. Proc IEEE Winter
Conf Appl Comput Vis (WACV). (2017), 464-72. doi: 10.1109/WACV.2017.58

41. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc
IEEE Conf Comput Vis Pattern Recognit (CVPR). (2016), 770-8. doi: 10.1109/
CVPR.2016.90

42. Lin T-Y, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object
detection. IEEE Trans Pattern Anal Mach Intell. (2020) 42:318-27. doi: 10.1109/
TPAMI.2018.2858826

43. Kolchev A, Pasynkov D, Egoshin I, Kliouchkin I, Pasynkova O, Tumakov D.
YOLOvV4-based CNN model versus nested contours algorithm in the suspicious lesion
detection on the mammography image: A direct comparison in the real clinical settings.
J Imaging. (2022) 8: 88. doi: 10.3390/jimaging8040088

frontiersin.org


https://arxiv.org/abs/2404.10518
https://doi.org/10.1109/ICCV43118.2019
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR42600.2020
https://doi.org/10.48550/arXiv.1905.09646
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TNNLS.2012.2222925
https://doi.org/10.1214/09-SS054
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.3390/jimaging8040088
https://doi.org/10.3389/fonc.2025.1675180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Real-time AI-guided ultrasound localization method for breast tumor rotational resection
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Data processing
	2.3 Optimize network architecture
	2.4 Determination of cutter activation

	3 Results
	3.1 Model training results
	3.2 Detection of cutter slot and tumor
	3.3 Cutter slot activation command

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


