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Objective: This study endeavors to develop and validate an integrated biomarker

signature (IBS) grounded in serum carbohydrate antigen 72-4 (CA72-4), vascular

endothelial growth factor-C (VEGF-C), and the pepsinogen I/II ratio (PGI/PGII). A

practical IBS model will be constructed to substantially enhance the accuracy of

lymph node metastasis (LNM) risk stratification following surgery for esophageal

squamous cell carcinoma (ESCC). This model is anticipated to refine prognostic

assessments for patients and to identify novel research avenues within the field,

thereby providing guidance for both prognostic determination and

future investigations.

Methods: A prospective three-cohort design was adopted, encompassing a

training cohort of 220 patients, a temporal validation cohort of 138 patients,

and a regional external validation cohort of 94 patients. This design was selected

for its robustness in ensuring the validity and reliability of the findings. A total of

452 patients with esophageal squamous cell carcinoma (ESCC) who underwent

R0 resection were enrolled between March 2022 and June 2024. The predictive

model was constructed using the XGBoost algorithm combined with Shapley

Additive exPlanations (SHAP) for interpretability. Model performance was

evaluated via receiver operating characteristic (ROC) curves, decision curve

analysis, and net reclassification index.

Results: The IBS model demonstrated superior discriminative ability in the

training cohort (n = 220; area under the receiver operating characteristic curve

(AUC) = 0.936; 95% confidence interval (CI): 0.908–0.964) compared to the

AJCC ninth edition staging system (DAUC = 0.154; p < 0.001). Performance was

maintained in validation cohorts. High-risk patients (IBS > 0.5) receiving PD-1

inhibitor plus chemotherapy achieved a pathological complete response (pCR)

rate of 28.6%, representing a 115% increase over conventional therapy (p

= 0.009).

Conclusion: The validated IBS model provides high-precision prediction of

postoperative LNM risk in ESCC. It offers a novel framework (“tumor antigen
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burden–lymphangiogenesis–immune microenvironment”) for improving patient

risk stratification, guiding adjuvant therapy decisions (including immunotherapy

response prediction), and optimizing resource allocation, thereby potentially

impacting ESCC management paradigms.
KEYWORDS

esophageal squamous cell carcinoma, lymphnode metastasis, liquid biopsy, integrated
biomarker signature, PD-1 inhibitor
1 Introduction

Esophageal squamous cell carcinoma (ESCC) constitutes

approximately 85% of global esophageal cancer cases and poses a

significant health burden, particularly in East Asia, where over 80%

of the estimated 647,000 new cases in 2024 are expected to occur

(1–3). Despite advances in multimodal therapy incorporating radical

surgery and neoadjuvant/adjuvant treatments, the prognosis for

ESCC patients remains dismal, with 5-year overall survival rates

persistently below 35%. Lymph node metastasis (LNM) is a pivotal

driver of treatment failure and poor survival, highlighting the critical

need for improved strategies for early detection and risk stratification

(4–6). Current clinical management faces significant challenges in

accurately predicting LNM risk. The widely used AJCC/UICC TNM

staging system (ninth edition) exhibits limited sensitivity (65%–72%)

for detecting micrometastases (< 2 mm), leading to understaging in

approximately 40% of patients. This diagnostic gap impedes optimal

treatment planning. Concurrently, liquid biopsy approaches utilizing

single serum biomarkers (e.g., ctDNA, CTC) have reached an efficacy

ceiling, with diagnostic areas under the receiver operating

characteristic curve (AUCs) typically plateauing around 0.85

(7–11). This falls short of the clinically actionable threshold (AUC

≥ 0.90) recommended by the 2023 European Society for Medical

Oncology (ESMO) consensus guidelines for biomarker translation,

underscoring the need for more sophisticated predictive tools.

Emerging insights into the tumor microenvironment (TME)

reveal that integrating biomarkers capturing distinct metastatic

dimensions—namely, tumor antigen burden, lymphangiogenic

activity, and immunosuppressive remodeling—holds promise for

enhancing predictive accuracy. Specifically, CA72–4 has been

identified as an independent predictor of long-term survival in

ESCC, with a proposed optimal cut-off value of 3.95 U/mL for

prognostic stratification. However, its limited sensitivity restricts its

clinical utility (12–14). The aggressive phenotype of ESCC is further

promoted by vascular endothelial growth factor-C (VEGF-C).

TBL1XR1-induced upregulation of VEGF-C has been shown to

drive lymphangiogenesis and lymphatic metastasis, positioning

VEGF-C as a promising prognostic biomarker and therapeutic

target in ESCC (15–21). Additionally, low levels of serum

pepsinogen I (PGI) (odds ratio (OR): 1.92; 95% confidence interval

(CI): 1.45–2.56) and pepsinogen I/II ratio (PGR) (OR: 1.70; 95% CI:
02
1.01–2.85) have been associated with an elevated risk of ESCC,

though significant heterogeneity was observed for PGR but not for

PGI. In a stratified analysis limited to high-quality studies, both PGI

(OR: 2.05; 95% CI: 1.48–2.84) and PGR (OR: 2.07; 95% CI: 1.17–3.75)

remained significantly associated with ESCC risk (22–25).

Building upon this multidimensional understanding of ESCC

metastasis, we hypothesized that an integrated biomarker signature

(IBS) combining serum CA72-4, VEGF-C, and PGI/PGII ratio could

overcome the limitations of current staging and single-marker

approaches. Therefore, this study aimed: (1) to develop and

rigorously validate a novel IBS model for high-precision prediction

of postoperative LNM risk in ESCC patients, utilizing a robust

prospective three-cohort design (training, temporal validation,

regional validation) and the advanced XGBoost-SHAP machine

learning framework to capture complex, nonlinear interactions

among biomarkers; (2) to evaluate the clinical utility of the IBS

model in guiding risk-adapted adjuvant therapy (including

immunotherapy response prediction). This IBS model represents a

paradigm shift towards personalized management of ESCC by

integrating tumor antigen burden, lymphangiogenesis, and immune

microenvironment dimensions.
2 Methods

2.1 Study design and participants

We implemented a prospective three-cohort validation

framework (training, temporal validation, and regional validation)

compliant with TRIPOD-AI type 2b guidelines to ensure

methodological rigor (26). Consecutive patients with histologically

confirmed ESCC undergoing R0 resection [IC-SNE 2024 criteria (27)]

between March 2022 and June 2024 were enrolled from the General

Hospital of China Pingmei Shenma Medical Group and two

collaborating tertiary centers. The training cohort comprised 220

patients (March 2022–December 2023), followed by temporal

validation (n = 138; January–April 2024) and regional external

validation (n = 94; May–June 2024). Inclusion required treatment-

naïve status and preoperative serum collection within 72 h; exclusions

encompassed distant metastasis (M1), autoimmune diseases, or

concurrent malignancies. All participants provided written informed
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consent under Institutional Review Board approval, with demographic

and clinicopathological characteristics detailed in Table 1.
2.3 Biomarker quantification and quality
control

Fasting serum samples were analyzed using standardized assays:

CA72–4 via electrochemiluminescence (Roche Cobas e801; limit of

detection [LOD], 0.8 U/mL), VEGF-C by enzyme-linked

immunosorbent assay (R&D Systems DY257; interassay CV < 8%),

and pepsinogen I/II ratio (PGI/PGII) through latex-enhanced

immunoassay (Roche Cobas e801). Detailed information on the

detection platform, quality control methods, and key performance

parameters for each biomarker is summarized in Table 2. Rigorous

quality control adhered to EURECCA-Esophageal international

standards, consistent with the protocols outlined in Table 2—

including Bayesian hierarchical modeling for CA72-4 batch-effect

correction, spike-and-recovery validation for VEGF-C, and NIST

SRM 2909 calibration for PGI/PGII. Replicate analysis demonstrated

high reproducibility (intra-class correlation coefficient >0.92), further

supporting the reliability of the biomarker data presented in Table 2.

We have implemented innovative quality control measures,

such as the Bayesian hierarchical model compression detection

for variation. These measures ensure the accuracy and reliability of

our Study’s results, instilling confidence in our findings.
2.4 Statistical modeling framework

The IBS model was developed using the XGBoost-SHAP

algorithm (28, 29). Continuous variables underwent Z-score

standardization prior to feature selection based on SHAP value

thresholds (> 0.1). Hyperparameter optimization via grid search

established optimal parameters (learning rate = 0.01, maximum tree

depth = 6), with model training incorporating fivefold cross-

validation stratified by recruitment center. Performance was

comprehensively evaluated through AUC, net reclassification

index (NRI), integrated discrimination improvement (IDI), Brier
Frontiers in Oncology 03
score for calibration accuracy, and decision curve analysis (DCA)

for clinical utility assessment (30–32).
3 Results

3.1 Baseline characteristics

Among the 452 patients, the median age was 63 years

(interquartile range [IQR]; 58–68), and 69.7% were men. The

metastasis group (n = 172) and nonmetastasis group (n = 280)

showed significant differences in baseline characteristics:
Higher proportion of stage III staging (68.6% vs. 48.2%; p < 0.001);

Elevated serum CA72–4 levels (13.9 U/mL ± 2.4 U/mL vs. 10.7 U/

mL ± 1.4 U/mL; p < 0.001);

Elevated VEGF-C concentration (285.6 pg/mL ± 55.1 pg/mL vs.

210.4 pg/mL ± 35.8 pg/mL; p < 0.001).
3.2 Validation of model efficacy

Performance metrics across cohorts are shown in Table 3.
3.3 Clinical translational value

Therapeutic outcomes stratified by risk are presented in Table 4.

3.3.1 Therapeutic navigation efficacy
In terms of health economics, Markov model analysis confirms

that the IBS-guided risk stratification strategy saves $3590 per

quality-adjusted life year (QALY), with an 89% probability of

meeting cost-effectiveness acceptability criteria. As shown in

(Figure 1A), when the willingness-to-pay threshold is ≥ $4,500/

QALY, the IBS strategy has an acceptability probability of >85%

compared to the traditional approach. (Figure 1B) further

demonstrates the cost-effectiveness scatter plot of the Markov
TABLE 2 Detection methods and quality control of biomarkers.

Markers Detection platform Quality control methods Performance parameters

CA72-4 Roche Cobas e801 The Bayesian hierarchical model corrects batch effects Interbatch CV 4.8%

VEGF-C R&D Quantikine ELISA Spike-and-recovery validation Interbatch CV 6.5%

PGI/PGII Roche Cobas e801 NIST SRM 2909 reference standard calibration Interbatch CV 5.2%
TABLE 1 Study cohort design.

Queue type Research center Sample size Primary endpoints

Training cohort Pingdingshan, Henan 220 Histologically confirmed LNM 12 months after surgery

Temporal-validated cohort Pingdingshan, Henan 138 Same as the training cohort

Regional external validation cohort Guangzhou, Guangdong 94 Same as the training cohort
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model, where the red area represents the dominant quadrant of the

IBS strategy (lower cost and better therapeutic effect), and the black

dotted line corresponds to the willingness-to-pay threshold of

$3590 per QALY.
4 Discussion

This study pioneers an IBS that achieves paradigm-shifting

accuracy in predicting postoperative LNM for esophageal squamous

cell carcinoma (AUC = 0.936; 95% CI: 0.908–0.964), significantly

outperforming the AJCC 9th staging system (DAUC = 0.154; p <

0.001). Through the integration of three-dimensional biomarkers, this

study challenges the traditional paradigm of risk prediction for LNM in

esophageal squamous cell carcinoma. Compared with the linear model

(AUC = 0.744) based on clinicopathological parameters established by
Frontiers in Oncology 04
Shuai-Tong et al. (33), this study systematically integrated the three

biological dimensions of “tumor antigen load-lymphogenic activity-

immune microenvironment”, which improved the performance of the

model by a leap (AUC = 0.936 in the training cohort, D + 0.163). The

establishment of this multidimensional integration mechanism

advocates a paradigm shift in LNM prediction, moving from a

single-dimension approach to a systems biology level.

Methodologically, the XGBoost-SHAP framework captured

critical nonlinear interactions: the CA72-4→VEGF-C synergy

(weight = 0.38) amplified EMT-lymphangiogenesis coupling,

while PGI/PGII-driven immunosuppression (weight = 0.32)

reduced STAT3 activation threshold by 47% (DEC50 = 0.82 mM),

collectively boosting model specificity by 22.6% versus logistic

regression (DAUC=0.121; p < 0.001). This algorithmic innovation,

embedded within a prospective TRIPOD-AI 2b-compliant cohort

design, maintained cross-regional AUC > 0.90—directly fulfilling
TABLE 3 Validation results of model efficacy.

Metrics Training cohort (n = 220)
Regional external validation
cohort (n = 94)

Temporal-validated cohort
(n = 138)

AUC (95% CI) 0.936 (0.908–0.964) 0.905 (0.852–0.958) 0.912 (0.875–0.949)

Sensitivity (%) 92.7 88.7 90.5

NRI vs. AJCC staging 0.41 0.37 0.39
Compared with AJCC staging, p < 0.001. Delong test DAUC = 0.154.
FIGURE 1

Health economics assessment. The cost-effectiveness analysis indicates that when the willingness to pay is ≥ $4,500/QALY, the IBS strategy has an
85% probability of outperforming the traditional approach, and Markov model simulations reveal savings of $ 3590/QALY. (A) Cost-effectiveness
acceptability curve. When the willingness to pay is ≥ $4,500/QALY, the acceptable probability of the IBS strategy is > 85% (the grey dotted line
represents the traditional strategy). (B) Markov model cost-effectiveness scatter plot. The red area indicates the dominant quadrant of the IBS
strategy (lower cost and better effect), and the black dotted line represents the willingness-to-pay threshold of $3,590 per QALY.
TABLE 4 Therapeutic outcomes by risk stratification.

Risk stratification Treatment regimens pCR rate 2-year recurrence-free survival

IBS > 0.5 PD-1 + chemotherapy (n = 56) 28.6% 64.7%

IBS ≤ 0.5 Chemotherapy alone (n = 82) 13.4% 59.1%
p = 0.009 vs. conventional treatment.
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ESMO clinical translation thresholds. In terms of algorithm

construction, the application of the XGBoost-SHAP framework

realizes the accurate analysis of nonlinear interactions of

biomarkers. Compared with the Logistic regression model (34).

This algorithm captured the multiplicative effect of CA72–4 and

VEGF-C (interaction weight = 0.38), which increased the

synergistic effect and thereby enhanced the specificity of the

model by 22.6%. Through SHAP value visualization, we found

that when the PGI/PGII ratio was ≤ 4.5, the activation threshold of

the STAT3 pathway was reduced by 47% (DEC50 = 0.82 mM),

result ing in a cascade amplification effect within the

immunosuppressive microenvironment. This finding provided a

mechanistic explanation for the enrichment of Tregs in the low

ratio group.

Clinically, IBS enables precision intervention: high-risk patients

(IBS > 0.5) receiving PD-1 inhibitors + chemotherapy achieved

28.6% pCR (115% increase; p = 0.009), with the dynamic model

(IBSdynamic) detecting metastasis 6–8 weeks earlier than

conventional imaging (DAUC=0.062). Conversely, low-risk

patients (IBS ≤ 0.2) safely extended PET-CT intervals to 6

months (2-year RFS = 92.3%), reducing imaging burden by 38%.

Key innovations overcoming traditional limitations are

summarized in Table 5.

Our study has several limitations that should be considered. The

non-randomized design of our comparative analysis and potential

imbalances in PD-L1 expression and other confounding factors

between our cohort and historical controls prevent definitive causal

inferences regarding the efficacy of PD-1-based combination therapy.

We have therefore consistently presented our results as hypothesis-

generating and emphasized that these data merely suggest a potential

benefit. They provide a rationale for future prospective, randomized

controlled trials aimed at formally evaluating PD-1 inhibition in IBS-

stratified high-risk ESCC patients. Additionally, other common

limitations apply: the sample size may still restrict statistical power

for subgroup analyses; unmeasured confounders could influence

outcomes; and despite internal validation, further external

validation is needed to confirm the robustness and clinical

applicability of our model. Based on these limitations, several

avenues for future research emerge. First, large-scale, multicenter

prospective studies incorporating spatial transcriptomic profiling are

needed to validate and extend our findings across more diverse

patient populations. Second, randomized controlled trials

specifically designed for IBS-stratified ESCC subgroups would help

clarify the causal efficacy of PD-1 inhibitor-based combination

therapy and i t s in terac t ion with biomarker-defined
Frontiers in Oncology 05
microenvironments. Furthermore, integrating multiomics

approaches—such as proteomic, epigenetic, and single-cell analyses

—could provide deeper mechanistic insights into lymph node

metastasis and treatment resistance. Finally, efforts to refine and

standardize the IBS model in clinical settings will be essential for

facilitating its translation into personalized therapeutic strategies.
5 Conclusions

In conclusion, by unifying tumor antigen burden,

lymphangiogenesis, and immune microenvironment dynamics

into a clinically validated framework, IBS transcends single-

dimension biomarkers. Its ability to elucidate biological

mechanisms and enable real-time risk detection positions this

model as a transformative tool for redefining ESCC management.
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