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various neoadjuvant anti-HER2
targeted therapies combined
with chemotherapy for HER2-
positive breast cancer in the
real-world setting and
development of a predictive
model for pathological
complete response
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Lijia Wang4 and Cuizhi Geng1,2*

1Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang,
Hebei, China, 2Hebei Key Laboratory of Breast Cancer Molecular Medicine, The Fourth Hospital of
Hebei Medical University, Shijiazhuang, Hebei, China, 3Department of Gland Surgery, The Hebei
Province People’s Hospital, Shijiazhuang, Hebei, China, 4Department of Computed Tomography and
Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
Background: The development of a robust and clinically applicable predictive

model for pathological complete response (pCR) following neoadjuvant therapy

(NAT) in human epidermal growth factor receptor 2 (HER2)-positive breast

cancer (BC) is of critical importance.

Methods: In this retrospective study, 393 female patients with stage II–III BC who

received NAT followed by surgery between May 2021 and December 2023 were

included. Clinicopathological data, apparent diffusion coefficient (ADC) values

from breast MRI, and pathological remission after NAT were collected. The

change rate of ADC values after two cycles of NAT (DADC0-2%) was calculated.

The efficacy of NAT regimens containing trastuzumab plus pertuzumab (HP) and

trastuzumab plus pyrotinib (HPy) was compared. A nomogram predicting pCR

was constructed, and its performance was evaluated. The model was internally

validated using the bootstrap resampling method.

Results: The rate of total pathological complete response (tpCR) in the overall

population was 68%. There was no statistically significant difference in tpCR

between the HP and HPy groups (P > 0.05). Hormone receptor (HR) negativity,

HER2 3+, high Ki-67 index, moderate-highly (M-H) infiltrated tumor-infiltrating

lymphocytes (TILs), and DADC0-2% > 36.2% were independently associated with

tpCR (P < 0.05). The nomogram integrating these variables exhibited good

discrimination (AUC, 0.75) and calibration ability (P = 0.925), as well as valuable

clinical applicability.
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Conclusion: Both HP and HPy combined with chemotherapy can be considered

as optional NAT regimens for HER2-positive BC. The nomogram incorporating

common clinical indicators provides a basis for clinicians to predict NAT efficacy

at an earlier stage.
KEYWORDS

real world, HER2-positive breast cancer, neoadjuvant therapy, different anti-HER2
targeted therapies, pathological complete response, nomogram
Introduction

Human epidermal growth factor receptor 2 (HER2)-positive

breast cancer is a subtype of breast cancer (BC), characterized by

HER2 amplification and accounting for 20-25% of all BC cases (1).

Neoadjuvant therapy (NAT) is a crucial preoperative systemic

therapy for HER2-positive BC, facilitating tumor downstaging to

render it operable and breast-conserving (2). It also assesses drug

sensitivity, thereby optimizing postoperative adjuvant treatment

plans (3). According to the NeoSphere (4) and PEONY (5)

clinical trials, chemotherapy combined with trastuzumab (H) and

pertuzumab (P) is the standard of care for HER2-positive BC in

NAT. Based on the PHEDRA study (6), pyrotinib (Py), a small

molecule tyrosine kinase inhibitor originally developed in China, in

combination with H and docetaxel, has also become an optional

NAT regimen for patients with HER2-positive tumors. Although

the combination of two different anti-HER2 targeted drugs

significantly improves pathological response compared to single-

targeted treatment with H, there are currently no randomized

controlled clinical trials comparing the two combination regimens.

Pathological complete response (pCR) is a crucial indicator for

assessing the effectiveness of NAT (7). Patients with HER2-positive

tumors who achieve pCR through NAT tend to have significantly

prolonged survival (7). However, pCR can only be confirmed

through pathological testing of the tumor bed after surgery. If the

efficacy of NAT could be predicted earlier, allowing for timely

adjustment of the therapeutic regimen, the likelihood of achieving

pCR and improving prognosis would be significantly enhanced. To

date, numerous clinicopathological indicators and even

multidimensional radiomics have been incorporated into

predictive models for pCR in order to improve the accuracy of

predictions (8–12). However, there is a scarcity of models

specifically designed for the HER2-positive subtype, and the

parameters included in existing models are often complex and

not readily accessible (8–12), which limits their widespread

application by clinicians. Therefore, it is essential to construct a

predictive model specifically for HER2-positive breast cancer that

incorporates routine and readily available clinicopathological and

imaging parameters, making it more practical for clinical use.

Owing to its superior soft tissue resolution and multiparametric

imaging capabilities, MRI is considered the most accurate imaging
02
modality for evaluating the efficacy of NAT (13–16). Both imaging

and clinical guidelines recommend MRI for this purpose. The

apparent diffusion coefficient (ADC) is the most commonly used

parameter in MRI diffusion-weighted imaging (DWI). It describes

the speed and range of molecular diffusion in different directions of

the DWI sequence, reflecting the random motion of water

molecules within tissue. High ADC values typically indicate free

movement of water molecules, while low ADC values suggest

restricted movement, which may be associated with high cellular

density. Thus, ADC values can not only distinguish between benign

and malignant tumors (17, 18), but also provide valuable reference

for assessing the efficacy of NAT (19, 20). During NAT, if the

treatment is effective, the ADC value will increase as cancer cell

density decreases (17, 21–23). Numerous studies have confirmed

that ADC values and their changes are closely related to NAT

efficacy (12, 24). Moreover, it has been proposed that early changes

in ADC values can better predict pCR after NAT. Clinically, ADC

values are routinely recorded in standard MRI reports, offering

valuable insights for clinicians to evaluate patients’ conditions.

Consequently, this study was designed to compare the efficacy

of NAT regimens containing HP (trastuzumab plus pertuzumab)

and HPy (trastuzumab plus pyrotinib) in a real-world setting. It also

aimed to explore the correlation between the early change rate of

the ADC value (after two cycles of NAT) and the efficacy of NAT

for HER2-positive BC. Univariate and multivariate analyses were

conducted to identify predictors of pCR and to construct a

predictive nomogram that could forecast the probability of pCR

at an earlier stage.
Materials and methods

Patients

Patients who received NAT at the Fourth Hospital of Hebei

Medical University between May 2021 and December 2023 were

included in this study. The inclusion criteria were as follows:

(1) Female, (2) Pathologically confirmed HER2-positive primary

BC, (3) No prior treatment before NAT, (4) Completion of the full

course of NAT followed by surgery, (5) Periodic breast contrast-

enhanced (CE)-MRI examinations (before and after NAT, and
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every two cycles during NAT), (6) Availability of complete

clinicopathological information and imaging data. The exclusion

criteria were: (1) Bilateral or occult breast cancer, (2) Incomplete

NAT or surgery, (3) Insufficient clinicopathological data, (4) Loss to

follow-up. The study was approved by the Ethics Committee of the

Fourth Hospital of Hebei Medical University, in accordance with

the Helsinki Declaration of 1975.
Therapeutic regimens

Chemotherapy combined with dual anti-HER2 drugs is the

standard of care for HER2-positive BC in NAT. The chemotherapy

regimens used included:TCb: Albumin-bound paclitaxel (T, 250 mg/

m²) plus carboplatin (Cb, AUC = 6), administered for six cycles. AC-

T: Pirarubicin (A, 60 mg/m²) or doxorubicin liposome (35 mg/m²) or

epirubicin (90 mg/m²) plus cyclophosphamide (C, 600 mg/m²) for

four cycles, followed by albumin-bound paclitaxel (T, 250 mg/m²) for

four cycles. TA: Albumin-bound paclitaxel (T, 250 mg/m²) plus

pirarubicin (A, 50 mg/m²) or doxorubicin liposome (35 mg/m²) or

epirubicin (75 mg/m²), administered for six cycles. T: Albumin-

bound paclitaxel (T, 250 mg/m²) alone, administered for six cycles.

The anti-HER2 targeted combinations included: HP: Trastuzumab

(H, loading dose 8 mg/kg, maintenance dose 6 mg/kg) plus

pertuzumab (P, loading dose 840 mg, maintenance dose 420 mg).

HPy: Trastuzumab (H, loading dose 8 mg/kg, maintenance dose 6

mg/kg) plus pyrotinib (Py, initial dose 400 mg, with dose reduction to

320 mg or even 240 mg based on adverse events (AEs), taken orally

once daily). These combinations were administered concurrently

with chemotherapy throughout NAT. All regimens, except for

pyrotinib, were administered intravenously on day 1 every 21 days.

Dose reductions or delays were permitted for chemotherapy and

pyrotinib based on AEs. Dose reductions were not allowed for

trastuzumab and pertuzumab.
Clinicopathologic data collection and
definitions

The clinicopathological data collected included age, menstrual

status, T stage, axillary lymph node metastasis and N stage, TNM

stage (AJCC version 8.0), hormone receptor (HR) status, HER2

expression, Ki-67 index, tumor-infiltrating lymphocytes (TILs), the

change rate of the apparent diffusion coefficient (DADC0-2%), NAT

regimens, surgical method, Miller-Payne (MP) grading, and

residual cancer burden (RCB) classification. The estrogen receptor

(ER), progesterone receptor (PR), HER2, and Ki-67 were evaluated

using immunohistochemical (IHC) staining.

HR-positive status was defined as ER and/or PR expression of

≥1%, while HR-negative status was assigned to cases with

expression levels below this threshold (25). HER2-positive status

was determined by IHC staining showing 3+ or 2+ with

confirmatory fluorescence in situ hybridization (FISH) positivity.
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TILs were assessed via hematoxylin-eosin (HE) staining and

categorized as low (L, 0%-10%), moderate (M, 11%-59%), and

high (H, >60%) (26). DADC0-2% was calculated as (ADC value

after two cycles of NAT − ADC value pre-NAT)/ADC value pre-

NAT×100%. Total pathological complete response (tpCR) was

defined as the absence of residual invasive cancer cells in both the

breast and lymph nodes (ypT0/is and ypN0), corresponding to

residual cancer burden (RCB) 0. Breast pathological complete

response (bpCR) was defined as the absence of residual invasive

cancer in the breast, equivalent to Miller-Payne (MP) grade 5.
Statistical analysis

Data analysis was performed using SPSS version 27.0, R software

(version 4.0), and MedCalc 20.0. Continuous variables were

expressed as mean ± standard deviation (SD) or median

(interquartile range), and intergroup comparisons were made using

the t-test or nonparametric tests as appropriate. Categorical variables

were presented as frequencies with percentages, and differences

between groups were assessed using the Chi-square test or Fisher’s

exact test. Propensity score matching (PSM) was conducted at a 1:2

ratio to adjust for confounding variables between the HP and HPy

groups using R software. Multivariate binary logistic regression

analysis was performed to identify independent predictors of pCR.

A predictive nomogram for pCR was developed using the ‘rms’

package in R software. Receiver operating characteristic (ROC)

curves were generated using the ‘pROC’ and ‘ggplot2’ packages to

calculate the area under the curve (AUC) and determine the optimal

cutoff values, specificity, and sensitivity. ROC curves comparing each

variable and the nomogram were plotted using MedCalc 20.0

software, and the corresponding AUC, optimal cutoff values,

specificity, and sensitivity were calculated. The calibration accuracy

of the model was assessed using the Hosmer-Lemeshow Calibration

Curve. Decision curve analysis (DCA) was performed using the

‘rmda’ package to evaluate the clinical utility of the nomogram.

Internal validation of the model was conducted using the Bootstrap

resampling method. A two-tailed P value of less than 0.05 was

considered statistically significant.
Results

Patient characteristics

Between May 2021 and December 2023, a total of 428 patients

diagnosed with HER2-positive BC underwent NAT. Of these, 35

patients were excluded due to incomplete pathological information

post-NAT (n = 15) and missing baseline MRI (n = 20) (Figure 1).

Consequently, 393 patients (median age, 51 years) were included in

the study. At initial diagnosis, 57% of the patients were

premenopausal. The majority of patients were staged as T2

(67%), N1 (62%), and stage II (62%). The predominant
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pathological histological type was invasive ductal carcinoma (83%),

with most histological grades ranging from 1 to 2 (86%). The

proportion of HR negativity was 44%, while the positive rate was

56%. HER2 amplification was primarily manifested as 3+ (92%). A

relatively high percentage of patients (55%) exhibited high

expression of Ki-67 (> 30%). TILs predominantly showed low

infiltration (60%). The most commonly used chemotherapy

regimen was TCb*6 (57%), followed by T*6 (23%) and AC*4 -

T*4/TA*6 (20%). The primary anti-HER2 targeted combination

was HP (77%) (Table 1).
Pathological response after NAT of the
overall population and the optimal cutoff
of DADC0–2% for tpCR

All patients underwent surgery within 2 to 4 weeks after

completing NAT, with 80% undergoing mastectomy and 20%

undergoing breast-conserving surgery. The tpCR rate for the

entire cohort was 68%, and the pathological complete response

rate in the breast (bpCR) was 76%. Due to significant tumor

regression, ADC values were not obtainable for 66 patients after

two cycles of NAT. For the remaining patients with available

DADC0-2%, the tpCR rate was 64%, and the bpCR rate was 71%.

According to the ROC curve for DADC0-2% (Figure 2), the AUC

was 0.63 [95% CI: 0.58, 0.68], with an optimal cutoff value of 36.2%

for predicting tpCR. Based on this cutoff, patients were divided into

two groups for further analysis: those with DADC0-2% ≤ 36.2% and

those with DADC0-2% > 36.2%.
Frontiers in Oncology 04
Comparison of demographic
characteristics and pathological response
between the HP group and the HPy group

Before PSM
Before PSM (Table 2), statistically significant differences were

observed between the two groups in terms of patient age, menstrual

status, histological type, and the choice of chemotherapy regimen

(P < 0.05). Compared with patients treated with HP, a higher

proportion of patients in the HPy group were over 50 years old

(64%), postmenopausal (52%), had a histological type of non-

invasive ductal carcinoma (26%), and received a chemotherapy

regimen including anthracyclines (51%). No significant differences

were found between the two groups in other clinical and

pathological indicators (P > 0.05). The tpCR rate was numerically

higher in the HP group than in the HPy group, but the difference

was not statistically significant (69% vs 64%, P = 0.419). The bpCR

rate was significantly higher in the HP group (79% vs 67%,

P = 0.061).

After PSM
To eliminate confounding factors, this study employed a 1:2

nearest neighbor matching without replacement based on

propensity scores, with a caliper width set at 0.2. The post-

matching analysis demonstrated a more uniform distribution of

propensity scores between the two groups (Figure 3A), with the

standard deviation clustering around zero (Figure 3B). Following

PSM, the HP group included 106 individuals, and the HPy group

included 67 patients. Tumor characteristics were well-balanced
FIGURE 1

Flowchart shows patient exclusion for the study.
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TABLE 1 Characteristics of included patients.

Characteristics Included patients (n = 393)

Age, n(%)

≤50 177 (45)

>50 216 (55)

Menstrual Status, n(%)

Premenopause 224 (57)

Postmenopause 169 (43)

Pre-NAT a Clinical T Stage, n(%)

cT1 63 (16)

cT2 263 (67)

cT3 38 (10)

cT4 29 (7)

Pre-NATa Clinical N Stage, n(%)

cN0 36 (9)

cN1 243 (62)

cN2 13 (3)

cN3 101 (26)

Pre-NATa Clinical TNM Stage, n(%)

II 242 (62)

III 151 (38)

Pre-NATa Histopathological Type, n(%)

Invasive ductal carcinoma 328 (83)

others 65 (17)

Pre-NATa Histological Grade, n(%)

G1-2 339 (86)

G3 54 (14)

Pre-NATa HRb State, n(%)

Negative 172 (44)

Positive 221 (56)

Pre-NATa HER2 Expression, n(%)

2 + 32 (8)

3 + 361 (92)

Pre-NATa Ki-67 Expression, n(%)

≤30% 175 (45)

>30% 218 (55)

Pre-NATa TILsc Infiltration, n(%)

Low infiltrated 234 (60)

M-Hd infiltrated 159 (40)

(Continued)
F
rontiers in Oncology
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TABLE 1 Continued

Characteristics Included patients (n = 393)

△ADC0-2%
e, n(%)

≤ 36.2% 188 (48)

> 36.2% 139 (35)

missing 66 (17)

Chemotherapy Regimen for NAT, n(%)

platinum contained 224 (57)

anthracyclines contained 80 (20)

monoalbumin-bound paclitaxel 89 (23)

Anti-HER2 Regimen for NATa, n(%)

HP 303 (77)

HPy 90 (23)

Surgery of Breast post-NATa, n(%)

Mastectomy 313 (80)

Breast-conserving surgery 80 (20)

Surgery of Axilla post-NATa, n(%)

Sentinel lymph node biopsy 27 (7)

Axillary lymph node dissection 366 (93)
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
FIGURE 2

Receiver operating curve (ROC) of the apparent diffusion coefficient
(ADC) for pathological complete response (pCR) prediction.
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between the two groups (Table 3). After PSM, there was no

statistically significant difference in the tpCR (65% vs 64%, P =

0.902) and bpCR (75% vs 66%, P = 0.211) rates between the HP and

HPy groups.
Clinicopathological indicators influencing
tpCR

The analysis was conducted after excluding 66 patients who did

not have ADC values after the second cycle of NAT. Among the

clinicopathological and imaging characteristics (Table 4), positive

lymph nodes (P = 0.015), HR negativity (P < 0.001), high Ki-67

index (P = 0.005), moderate-to-high (M-H) infiltrated TILs (P <

0.001), DADC0-2% > 36.2% (P < 0.001), HER2 3+ (P < 0.001), and

the TCb regimen (P = 0.003) were associated with tpCR.

For patients receiving HP combined with chemotherapy (Table 5),

tpCR was more common in those with HR negativity (P = 0.004), high

Ki-67 levels (P = 0.003), M-H infiltrated TILs (P = 0.011), DADC0-2%

> 36.2% (P < 0.001), HER2 3+ (P = 0.008), and the TCb regimen (P =

0.013). For patients receiving HPy plus chemotherapy (Table 6), tpCR

was significantly associated with M-H infiltration of TILs (P = 0.008),

DADC0-2% > 36.2% (P = 0.003), and HER2 3+ (P = 0.007).
TABLE 2 Comparison of clinicopathological characteristics between the
HP and HPy groups before PSM.

Characteristics
HP

(n=303)
HPy

(n=90)
P

Value

Age, n(%) 0.039

≤ 50 145 (48) 32 (36)

> 50 158 (52) 58 (64)

Menstrual Status, n(%) 0.044

premenopause 181 (60) 43 (48)

postmenopause 122 (40) 47 (52)

Pre-NATa Clinical T Stage, n(%) 0.701

cT1 47 (16) 16 (18)

cT2 207 (68) 56 (62)

cT3 27 (9) 11 (12)

cT4 22 (7) 7 (8)

Pre-NATa Clinical N Stage, n(%) 0.469

cN0 29 (10) 7 (8)

cN1 181 (60) 62 (69)

cN2 10 (3) 3 (3)

cN3 83 (27) 18 (20)

Pre-NATa Clinical TNM Stage, n(%) 0.524

II 186 (61) 59 (66)

III 117 (39) 31 (34)

Pre-NATa Histopathological Type, n(%) 0.009

Invasive ductal carcinoma 261 (86) 67(74)

others 42 (14) 23 (26)

Pre-NATa Histological Grade, n(%) 0.409

G1-2 259 (85) 80 (89)

G3 44 (15) 10 (11)

Pre-NATa HRb State, n(%) 0.288

negative 137 (45) 35 (39)

positive 166 (55) 55 (61)

Pre-NATa HER2 Expression, n(%) 0.463

2+ 23 (8) 9 (10)

3+ 280 (92) 81(90)

Pre-NATa Ki-67 Expression, n(%) 0.325

≤ 30% 139 (46) 36 (40)

> 30% 164 (54) 54 (60)

Pre-NATa TILsc, n(%) 0.117

(Continued)
TABLE 2 Continued

Characteristics
HP

(n=303)
HPy

(n=90)
P

Value

Low infiltrated 174 (57) 60 (67)

M-Hd infiltrated 129 (43) 30 (33)

DADC0-2%
e, n(%) 0.167

≤ 36.2% 148 (49) 40 (45)

> 36.2% 110 (36) 29 (32)

missing 45 (15) 21 (23)

Chemotherapy Regimen for NATa, n(%) <0.001

anthracyclines contained 34 (11) 46 (51)

platinum contained 210 (69) 14 (16)

monoalbumin-bound
paclitaxel

59 (20) 30 (33)

Surgery of Breast post-NATa, n(%) 0.090

Mastectomy 247 66 (73)

Breast-conserving surgery 56 24 (27)

Surgery of Axilla post-NATa, n(%) 0.953

Sentinel lymph node biopsy 21 6 (7)

Axillary lymph node
dissection

282 84 (93)
fro
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
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Multivariate regression analyses of factors
affecting tpCR

The multivariate analysis (Table 7) revealed that HR negativity

(odds ratio [OR], 2.86; 95% CI: 1.64, 4.99; P < 0.001), HER2 3+ (OR,

4.63; 95% CI: 1.82, 11.79; P = 0.001), high Ki-67 index (OR, 2.52;

95% CI: 1.47, 4.32; P < 0.001), H-M infiltrated TILs (OR, 2.47; 95%

CI: 1.38, 4.40; P = 0.002), and DADC0-2% > 36.2% (OR, 3.68; 95%

CI: 2.10, 6.44; P < 0.001) were independent predictive indicators

for tpCR.
Nomogram development and validation

Based on the aforementioned results, the nomogram was

constructed using HR status, HER2 expression, Ki-67 index, TILs

infiltration, and DADC0-2% as predictors. The corresponding score

for each predictor was summed to generate a risk value that

reflected the probability of achieving tpCR (Figure 4). The

nomogram demonstrated good discrimination capability, as

evidenced by ROC curve analysis (Figure 5A), with an AUC of

0.75 [95% CI: 0.69, 0.80] (P = 0.001). Internal validation of the

nomogram model was performed using the bootstrap resampling

method with 1,000 repetitions, which confirmed its high

discriminative ability (AUC: 0.73). Furthermore, the nomogram

was compared with individual variables (HR status, HER2

expression, Ki-67 index, TILs infiltration, and DADC0-2%), and it

showed superior performance (Figure 5B). The calibration curve

indicated good calibration performance of the nomogram (c² =

3.14, df = 8, P = 0.925) (Figure 5C). DCA (Figure 6) further

demonstrated the excellent clinical application value of the

nomogram model.
Discussion

This study retrospectively reviewed the pathological remission

status of NAT for HER2-positive BC and compared the efficacy of
Frontiers in Oncology 07
HP and HPy targeted therapies combined with chemotherapy,

yielding results similar to those of previous studies (27–30).

Through univariate and multivariate regression analyses, HR

status, HER2 expression, Ki-67 index, TILs infiltration, and

DADC0-2% were included to develop a predictive model for tpCR.

The model demonstrated excellent performance compared with

individual variables and good clinical applicability. The variables

included in the nomogram are common and readily available for

clinical practice, facilitating its widespread application.

Based on published evidence, HP combined with chemotherapy

is the preferred NAT regimen recommended by various guidelines

(31, 32). Py, a novel oral irreversible tyrosine kinase inhibitor (TKI)

targeting HER1, HER2, and HER4, was initially approved in China

for the treatment of HER2-positive advanced or metastatic BC in

2018. By covalently binding to ATP at the intracellular kinase

domains, Py inhibits the formation of homodimers and

heterodimers as well as the auto-phosphorylation of the HER

family. This action blocks the activation of downstream signaling

pathways and inhibits the tumor cell cycle at the G1 phase,

restricting tumor progression (33, 34). Due to the different

mechanisms of action of H and Py, studies have explored their

combination efficacy in early (6) and advanced HER2-positive BC

(35). The results of the phase 3 PHERDA study indicated that HPy

significantly improved the pCR rate compared to H monotherapy

combined with chemotherapy (41.0% vs 22%, P < 0.0001) (6),

thereby establishing the role of Py in NAT for HER2-positive BC.

Currently, several studies have investigated the efficacy and safety of

different chemotherapy regimens plus HPy (28–30, 36–41). Studies

exploring TCb plus HPy demonstrated tpCR rates of 52%-73% (30,

36–38, 41). Other studies revealed that the tpCR rate for AC-T

combined with HPy ranged from 63% to 73% (28, 29, 39, 41).

Zhong et al. (40) reported that a T+H (weekly) plus Py regimen

achieved a tpCR of 57.1%. A multicenter retrospective study

involving 107 patients compared the efficacy of 4*T, 6*TCb/4*P

(cisplatin), and 4*AC-4*T plus HP, suggesting that long-cycle

taxane and platinum-containing regimens had higher tpCR and

bpCR rates (42). In this study, the pCR rates for AC-T/TA, TCb,

and T in combination with HPy (excluding patients without ADC
FIGURE 3

Testing the balance of covariates between the HP group and the HPy group before and after PSM. (A) Propensity score scatter plot before and after
the PSM. (B) Distribution histogram of standard deviation.
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values after 2 cycles of NAT) were 56% (20/36), 71% (5/7), and 50%

(13/26), respectively, which were consistent with previous studies.

However, due to the lack of large-scale, prospective, high-quality

randomized controlled clinical trials (RCTs), the optimal

chemotherapy regimen to be combined with HPy has not yet

been determined. Considering patients’ age, general condition,

comorbidities, and the prominent adverse reaction of diarrhea

associated with Py, tailored therapy should be considered.

Although both HP and HPy are currently optional anti-HER2

targeted combinations for HER2-positive BC, there is no definitive

conclusion on which regimen is superior due to the lack of

prospective, randomized head-to-head comparisons between

them. A retrospective study compared the efficacy of the two

targeted therapies combined with TCb (41), suggesting that the

pCR rates were comparable (TCb+HPy: 55.6%, TCb+HP: 56.6%).

Further subgroup analyses confirmed that there was no difference in

pCR rates between the two targeted combinations regardless of HR

status and HER2 expression. A meta-analysis incorporating nine

studies with a total of 1,745 patients also reached a similar

conclusion (43). In our study, the efficacy of HP and HPy was

evaluated. PSM was performed to account for confounding factors

such as gender, age, and histological grade. After PSM, there was no

statistically significant difference in pCR rates between the two

regimens, indicating comparable efficacy. Since this was a

retrospective study, AEs could not be fully collected, and the

safety of the two combinations was not compared. Given that the

prominent AE of Py is diarrhea, while the addition of P to H does
TABLE 3 Comparison of clinicopathological characteristics between the
HP and HPy groups after PSM.

Characteristics
HP

(n=106)
HPy

(n=67)
P

Value

Age, n(%) 0.915

≤ 50 42 (40) 26 (39)

> 50 64 (60) 41 (61)

Menstrual Status, n(%) 0.980

premenopause 54 (51) 34 (51)

postmenopause 52 (49) 33 (49)

Pre-NATa Clinical T Stage, n(%) 0.133

cT1 20 (19) 8 (12)

cT2 73 (69) 42 (63)

cT3 7 (7) 10 (15)

cT4 6 (5) 7 (10)

Pre-NATa Clinical N Stage, n(%) 0.498

cN0 8 (8) 7 (11)

cN1 64 (60) 42 (63)

cN2 2 (2) 3 (4)

cN3 32 (30) 15 (22)

Pre-NATa Clinical TNM Stage, n(%) 0.474

II 69 (65) 40 (60)

III 37 (35) 27 (40)

Pre-NATa Histopathological Type, n(%) 0.274

Invasive ductal carcinoma 92 (87) 54 (81)

others 14 (13) 13 (19)

Pre-NATa Histological Grade, n(%) 0.308

G1-2 91 (86) 61 (91)

G3 15 (14) 6 (9)

Pre-NATa HRb State, n(%) 0.835

negative 46 (43) 28 (42)

positive 60 (57) 39 (58)

Pre-NATa HER2 Expression, n(%) 0.916

2 + 9 (8) 6 (9)

3 + 97 (92) 61 (91)

Pre-NATa Ki-67 Expression, n(%) 0.873

≤ 30% 43 (41) 28 (42)

> 30% 63 (59) 39 (58)

Pre-NATa TILsc, n(%) 0.270

Low infiltrated 64 (60) 46 (69)

M-Hd infiltrated 42 (40) 21 (31)

(Continued)
TABLE 3 Continued

Characteristics
HP

(n=106)
HPy

(n=67)
P

Value

DADC0-2%
e, n(%) 0.429

≤ 36.2% 55 (52) 28 (42)

> 36.2% 32 (30) 25 (37)

missing 19 (18) 14 (21)

Chemotherapy Regimen for NAT, n(%) 0.474

anthracyclines contained 35 (33) 28 (42)

platinum contained 28 (26) 14 (21)

monoalbumin-bound
paclitaxel

43 (41) 25 (37)

Surgery of Breast post-NATa, n(%) 0.844

Mastectomy 89 (84) 57 (85)

Breast-conserving surgery 17 (16) 10 (15)

Surgery of Axilla post-NATa, n(%) 0.298

Sentinel lymph node biopsy 3 (3) 5 (7)

Axillary lymph node
dissection

103 (97) 62 (93)
fro
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
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not add extra AEs, the general condition of the patient,

comorbidities, economic status, drug availability, and patient

preference should be considered when selecting an appropriate

combined regimen.

Previous studies have employed clinical and pathological

parameters similar to those used in our study to construct

predictive models. For instance, Yang et al. (44) utilized ER and

PR expression, Ki-67 index, and HER2 status to build a predictive

model for HER2-positive BC. The AUC was 0.73, and further

validation demonstrated good discrimination and calibration.

Similarly, Fujii T et al. (45) incorporated IHC biomarkers (ER,

PR, and HER2 expression), clinical manifestation (inflammatory

breast cancer [IBC] vs. non-IBC), and NAT regimen. However, this

model was less discriminative (C-index: 0.69) and lacked

determination of clinical usefulness. Compared to IHC

biomarkers and NAT regimens, MRI image characteristics can

more objectively and precisely reflect the nature and changes of

lesions. Therefore, MRI parameters should be recommended for

inclusion in predictive model development.

Several studies have utilized a wide variety of MRI parameters to

construct models to forecast pCR following NAT. For example, Li

et al. (46) developed a predictive model for HER2-positive BC that

integrated radiomics based on contrast-enhanced MRI (CE-MRI),

which showed good calibration, discrimination, and superior

clinical usefulness. van der Voort A et al. (47) applied DWI
TABLE 4 Comparison of clinicopathological characteristics between the
pCR and non-pCR groups in the overall population.

Pathological response after NATa

Characteristics
non-pCR
(n=118)

pCR
(n=209)

P
Value

Age, n(%) 0.263

≤50 50 (42) 102 (49)

>50 68 (58) 107 (51)

Menstrual Status, n(%) 0.259

Premenopause 63 (53) 125 (60)

Postmenopause 55 (47) 84 (40)

Pre-NATa Clinical T Stage, n(%) 0.72

cT1 14 (12) 33 (16)

cT2 83 (71) 138 (66)

cT3 10 (8) 21 (10)

cT4 11 (9) 17 (8)

Pre-NATa Clinical N Stage, n(%) 0.015

Negative 5 (4) 24 (11)

Positive 113 (96) 185 (89)

Pre-NATa Clinical TNM Stage, n(%) 0.816

II 73 (62) 132 (63)

III 45 (38) 77 (37)

Pre-NATa Histopathological Type, n(%) 0.96

Invasive ductal
carcinoma

98 (83) 174 (83)

others 20 (17) 35 (17)

Pre-NATa Histological Grade, n(%) 0.111

G1-2 97 (82) 185 (89)

G3 21 (18) 24 (11)

Pre-NATa HRb State, n(%) <0.001

Negative 36 (31) 104 (50)

Positive 82 (69) 105 (50)

Pre-NATa HER2 Expression, n(%) <0.001

2 + 20 (17) 9 (4)

3 + 98 (83) 200 (96)

Pre-NATa ki-67 Expression, n(%) 0.005

≤ 30% 66 (56) 83 (40)

> 30% 52 (44) 126 (60)

Pre-NATa TILsc Infiltration, n(%) <0.001

Low infiltrated 89 (75) 116 (55)

M-Hd infiltrated 29 (25) 93 (45)

DADC0-2%
e, n(%) <0.001

(Continued)
TABLE 4 Continued

Pathological response after NATa

Characteristics
non-pCR
(n=118)

pCR
(n=209)

P
Value

≤ 36.2% 87 (74) 101 (48)

> 36.2% 31 (26) 108 (52)

Chemotherapy Regimen for NATa, n(%) 0.003

anthracyclines contained 27 (23) 43 (21)

platinum contained 52 (44) 128 (61)

monoalbumin-bound
paclitaxel

39 (33) 38 (18)

Anti-HER2 Regimen for NATa, n(%) 0.085

HP 87 (74) 171 (82)

HPy 31 (26) 38 (18)

Surgery of Breast post-NATa, n(%) 0.78

Mastectomy 98 (83) 171 (82)

Breast-conserving surgery 20 (17) 38 (18)

Surgery of Axilla post-NATa, n(%) 0.205

Sentinel lymph node
biopsy

4 (3) 18 (9)

Axillary lymph node
dissection

114 (97) 191 (91.87)
fron
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
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TABLE 5 Comparison of clinicopathological characteristics between the
pCR and non-pCR groups in patients receiving HP plus chemotherapy.

Pathological response after NATa

Characteristics
non-pCR
(n=87)

pCR
(n=171)

P
Value

Age, n(%) 0.359

≤50 38 (44) 85 (50)

>50 49 (56) 86 (50)

Menstrual Status, n(%) 0.335

Premenopause 48 (55) 105 (61)

Postmenopause 39 (45) 66 (39)

Pre-NATa Clinical T Stage, n(%) 0.364

cT1 9 (10) 29 (17)

cT2 63 (73) 114 (67)

cT3 6 (7) 16 (9)

cT4 9 (10) 12(7)

Pre-NATa Clinical N Stage, n(%) 0.063

Negative 4 (5) 20 (12)

Positive 83 (95) 151 (88)

Pre-NATa Clinical TNM Stage, n(%) 0.327

II 50 (57) 109 (64)

III 37 (43) 62 (36)

Pre-NATa Histopathological Type, n(%) 0.417

Invasive ductal carcinoma 72 (83) 148 (87)

others 15 (17) 23 (13)

Pre-NATa Histological Grade, n(%) 0.120

G1-2 70 (80) 150 (88)

G3 17 (20) 21 (12)

Pre-NATa HRb State, n(%) 0.004

Negative 28 (32) 87 (49)

Positive 59 (68) 84 (51)

Pre-NATa HER2 Expression, n(%) 0.008

2 + 13 (15) 9 (5)

3 + 74 (85) 162 (95)

Pre-NATa ki-67 Expression, n(%) 0.003

≤ 30% 52 (60) 69 (40)

> 30% 35 (40) 102 (60)

Pre-NATa TILsc Infiltration, n(%) 0.011

Low infiltrated 62 (71) 94 (55)

M-Hd infiltrated 25 (29) 77 (45)

DADC0-2%
e, n(%) <0.001

(Continued)
F
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TABLE 5 Continued

Pathological response after NATa

Characteristics
non-pCR
(n=87)

pCR
(n=171)

P
Value

≤ 36.2% 63 (72) 85 (50)

> 36.2% 24 (28) 86 (50)

Chemotherapy Regimen for NATa, n(%) 0.013

anthracyclines contained 11 (13) 23 (13)

platinum contained 50 (57) 123 (72)

monoalbumin-bound
paclitaxel

26 (30) 25 (15)

Surgery of Breast post-NATa, n(%) 0.377

Mastectomy 12 (14) 31 (18)

Breast-conserving surgery 75 (86) 140 (82)

Surgery of Axilla post-NATa, n(%) 0.113

Sentinel lymph node
biopsy

3 (3) 15 (9)

Axillary lymph node
dissection

84 (97) 156 (91)
fron
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
TABLE 6 Comparison of clinicopathological characteristics between the
pCR and non-pCR groups in patients receiving HPy plus chemotherapy.

Pathological response after NATa

Characteristics
non-pCR
(n=31)

pCR
(n=38)

Age, n (%) 0.614

≤50 12 (39) 17 (45)

>50 19 (61) 21 (55)

Menstrual Status, n (%) 0.726

Premenopause 15 (48) 20 (53)

Postmenopause 16 (52) 18 (47)

Pre-NATa Clinical T Stage, n (%) 0.752

cT1 5 (16) 4 (11)

cT2 20 (65) 24 (63)

cT3 4 (13) 5 (13)

cT4 2 (6) 5 (13)

Pre-NATa Clinical N Stage, n (%) 0.187

Negative 1 (3) 6 (16)

Positive 30 (97) 32 (84)

Pre-NATa Clinical TNM Stage, n (%) 0.328

(Continued)
tier
sin.org

https://doi.org/10.3389/fonc.2025.1673810
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2025.1673810

Frontiers in Oncology 11
combined with DCE-MRI but found no added value in identifying

pCR for early HER2-positive BC. Kim SY et al. (48) introduced

multiple indicators, including pre-NAT characteristics (tumor size,

lesion type, rim enhancement, and peritumoral edema) and post-

NAT characteristics (tumor size, lesion-to-background

parenchymal signal enhancement ratio [SER]). Although the

integration of various indices can enhance model performance, it

involves a significant workload and is inconvenient for clinicians to

apply in routine clinical practice.

The ADC value is commonly used to evaluate the response to

NAT. Moreover, increases in ADC value during NAT have been

shown to be more valuable than changes in tumor size or volume

after treatment (49). Previous studies have investigated the

association between ADC value and pCR, but the conclusions
TABLE 6 Continued

Pathological response after NATa

Characteristics
non-pCR
(n=31)

pCR
(n=38)

II 23 (74) 24 (63)

III 8 (26) 14 (37)

Pre-NATa Histopathological Type, n (%) 0.138

Invasive ductal carcinoma 26 (84) 26 (68)

others 5 (16) 12 (32)

Pre-NATa Histological Grade, n (%) 0.776

G1-2 27 (87) 35 (92)

G3 4 (13) 3 (8)

Pre-NATa HRb State, n (%) 0.104

Negative 8 (26) 17 (45)

Positive 23 (74) 21 (55)

Pre-NATa HER2 Expression, n (%) 0.007

2 + 7 (23) 0 (0)

3 + 24 (77) 38 (100)

Pre-NATa ki-67 Expression, n (%) 0.484

≤ 30% 14 (45) 14 (37)

> 30% 17 (55) 24 (63)

Pre-NATa TILsc Infiltration, n (%) 0.008

Low infiltrated 27 (87) 22 (58)

M-Hd infiltrated 4 (13) 16 (42)

DADC0-2%
e, n(%) 0.003

≤ 36.2% 24 (77) 16 (42)

> 36.2% 7 (23) 22 (58)

Chemotherapy Regimen for NATa, n(%) 0.588

anthracyclines contained 16 (52) 20 (53)

platinum contained 2 (6) 5 (13)

monoalbumin-bound
paclitaxel

13 (42) 13 (34)

Surgery of Breast post-NATa, n(%) 0.459

Mastectomy 23 (74) 31(82)

Breast-conserving surgery 8 (26) 7 (18)

Surgery of Axilla post-NATa, n(%) 0.758

Sentinel lymph node biopsy 1 (3) 3 (8)

Axillary lymph node
dissection

30 (97) 35 (92)
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
TABLE 7 Multivariate binary logistic regression analysis of variables for
their association with pCR after NATa.

Characteristics Odds ratio 95% CI P Value

Intercept 0.14 0.03, 0.73 0.02

Pre-NATa Clinical Lymph Node Metastasis

Negative Reference

Positive 0.42 0.14, 1.22 0.11

Pre-NATa HRb State

Positive Reference

Negative 2.86 1.64, 4.99 <0.001

Pre-NATa HER2 Expression

2 + Reference

3 + 4.63 1.82, 11.79 0.001

Pre-NATa Ki-67 Expression

≤ 30% Reference

> 30% 2.52 1.47, 4.32 <0.001

Pre-NATa TILsc Infiltration

Low infiltrated Reference

M-Hd infiltrated 2.47 1.38, 4.40 0.002

DADC0-2%
e

≤ 36.2% Reference

> 36.2% 3.68 2.10, 6.44 <0.001

Chemotherapy Regimen for NATa

anthracyclines contained Reference

platinum contained 1.85 0.96, 3.58 0.07

monoalbumin-bound
paclitaxel

0.78 0.37, 1.64 0.51
fro
a NAT: neoadjuvant therapy, b HR: hormone receptor, c TILs: tumor-infiltrating
lymphocytes, d M-H: moderate-high, e △ADC0-2%: change rate of ADC after two cycles
of neoadjuvant therapy.
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have been contradictory. For example, some studies (24, 50, 51)

suggested that a low pretreatment ADC value is more likely to

achieve pCR, while others (21, 47, 52, 53) did not identify a

significant association between pCR and pretreatment ADC

values. Two factors may contribute to these conflicting results:

First, the lack of standardization of ADC values regarding scanner

technology, equipment, and imaging sequences/protocols (54),

which leads to diverse ADC values; Second, pretreatment ADC

values vary across different molecular subtypes of BC (24).

Therefore, the change rate of ADC values after NAT may be a

preferable alternative.

Consequently, in this study, we utilized the change rate of ADC

values during NAT. However, a key question remains: Which time

point of the change rate should be used? Currently, there is no

consensus on this issue (12, 21, 51, 55). Evidence suggests that the

change rate of ADC value after two cycles of NAT is more indicative

of pCR (9, 55). In this study, we also investigated the ADC value

change rate following two cycles (DADC0-2%) of treatment and
FIGURE 4

Nomogram for pCR prediction following neoadjuvant therapy in HER2-positive breast cancer.
FIGURE 5

Validation of the nomogram. (A) ROC of the nomogram. (B) ROC of the variables and the nomogram. (C) Calibration plot of the nomogram.
FIGURE 6

The decision curve analysis (DCA) for the nomogram.
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determined the optimal cutoff for pCR to be 36.2%. However, Lu

et al. (12) demonstrated that only an ADC value change below 15%

was related to pCR (OR = 9.865, 95% CI 1.024–95.021). The

different cutoff values may result from disparate study cohorts, as

treatment response varies with underlying molecular subtypes and

tumor biology (21). This highlights the importance of constructing

predictive models specific to various molecular subtypes.

Additionally, our cutoff value of DADC0-2% is higher than that

reported in a previous study (12), which may be attributed to the

higher rate of pCR observed in our cohort.

This study has several limitations. Firstly, it was a retrospective,

single-center study, which is susceptible to selection bias. Secondly,

the limited sample size of patients receiving the HPy regimen may

reduce the persuasiveness of the comparison between HPy and HP.

Thirdly, given that the collection of AEs in retrospective studies

may be incomplete, no summary or comparison of AEs was

performed. Fourthly, external validation based on data from other

institutions was not conducted; thus, verifying the performance of

our nomogram through external validation is essential. And lastly,

we only selected the rate of change in ADC values after two cycles of

NAT, future work should analyze more time points.
Conclusions

In conclusion, this study retrospectively reviewed the efficacy of

NAT in patients with HER2-positive BC from a single center,

comparing the pathological response of the combinations of HP

or HPy with chemotherapy. A nomogram integrating the early

change rate of ADC values and clinicopathological variables was

developed to predict pCR, demonstrating good performance and

clinical utility. Further head-to-head randomized clinical trials are

needed to confirm the benefits and risks of HP and HPy plus

chemotherapy. Additionally, external validation studies should be

conducted to validate our nomogram model.
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