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Research on breast tumor 
segmentation based on 
the Mamba architecture 
Weihao Wei1,2, Jiacheng Wu1* and Guangming Shao1* 

1Anhui University of Chinese Medicine, Hefei, China, 2College of Medicine and Biological Information 
Engineering, Northeastern University, Shenyang, China 
Medical image segmentation is fundamental for disease diagnosis, particularly in 
the context of breast cancer, a prevalent malignancy affecting women. The 
accuracy of lesion localization and preservation of image details are essential for 
ensuring the integrity of lesion segmentation. However, the low resolution of 
breast tumor B-mode ultrasound images poses challenges in precisely 
identifying lesion sites. To address this issue, this study introduces the Mamba 
architecture model, which combines three foundational models with the long-
sequence processing model Mamba to develop a novel segmentation model for 
breast tumor ultrasound images. The selective mechanism and hardware-aware 
algorithm of the Mamba model enable longer sequence inputs and faster 
computing speeds. Moreover, integrating a complete chain of VMamba blocks 
into the basic model enhances segmentation accuracy and image detail 
processing capabilities. Experimental segmentation was performed on two 
benchmark ultrasound datasets (BUSI and BUS-BRA) using both the baseline 
and improved models. The results were compared using metrics such as Dice 
and IoU, with additional evaluations conducted under small-sample training 
conditions. This study is intended to provide guidance for the future 
development of medical image segmentation. Moreover, the experimental 
results demonstrate that the model incorporating the Mamba architecture 
achieves superior performance on breast ultrasound images. 
KEYWORDS 

breast tumors, medical image segmentation, Mamba, selective mechanism, hardware-
aware algorithm 
1 Introduction 

Tumors, which are caused by the aggregation of mutated cells into masses or growths, 
can be categorized into benign tumors that do not spread and malignant tumors that are 
uncontrollably cancerous (1). Breast cancer, one of the most commonly malignant tumors 
among women, is also one of the leading causes of cancer death in females. In the early 
stages, treatment is carried out through lumpectomy, with the goal of completely removing 
the tumor while preserving as much healthy tissue as possible. Therefore, the precision of 
tumor excision is a significant challenge in this surgery, and for patients with unclear 
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margins, there is a high probability of requiring a second excision, 
which may cause patients to miss the best treatment time and 
increase their psychological burden. For the high incidence of 
positive cancer margins after breast tumor excision, accurate 
tumor localization is key to overcoming this challenge. 
Ultrasound detection is considered the best method for 
examining breast tumors due to its non-radiation and non­
invasive medical imaging approach (2). However, the frequency 
of the ultrasound equipment and probe directly affects image 
quality and lesion display, thereby influencing the diagnostician’s 
judgment (3), leading to missed diagnoses and misdiagnoses, which 
highlights the importance of early precise detection for 
successful treatment. 

Conventional diagnostic methods relying on subjective 
judgments have limitations and risks of misdiagnosis (4). Medical 
image segmentation is a crucial technology in medical image 
processing (5, 6), essential for disease diagnosis, treatment 
planning, and evaluating treatment outcomes. Accurate 
segmentation delineates diseased and normal tissue boundaries, 
providing precise anatomical and pathological information for 
clinical decision-making (5). However, due to the inherent 
limitations of ultrasound imaging, such as poor contrast and the 
variability in the appearance of tumors, the development of reliable 
and effective segmentation algorithms still faces significant 
challenges. Deep convolutional neural networks (DCNNs) (7) 
have revolutionized this field by automatically extracting key 
visual features relevant to disease diagnosis from extensive 
medical image datasets (8, 9). Recent advancements in medical 
image segmentation, notably the UNet deep-learning network, have 
shown remarkable potential in segmenting and classifying breast 
tumor images (10). UNet’s exceptional performance and adaptable 
network structure have made it a focal point in research (11). 

To further enhance segmentation models, researchers are 
exploring novel network architectures like dense connections 
(12), residual blocks (13), and attention mechanisms (14). Kumari 
et al. (15) utilized a neural network with a dense connection known 
as Densely Connected Convolutional Network (DCCN) to identify 
deep liver irregularities; (16) introduced a deep learning 
architecture (MRFB-Net) that leverages an attention-based 
pooling decoder module to enhance the segmentation of uterine 
fibroids in preoperative ultrasound images. However, common 
CNN models face limitations in their ability to model long-range 
interactions, and Transformers are constrained by their quadratic 
computational complexity, making them less than satisfactory for 
processing breast ultrasound images. This has led to the emergence 
of State Space Models (SSM) (17, 18), represented by Mamba, as a 
promising solution. The Mamba model excels not only in modeling 
long-range  interactions  but  also  in  maintaining  linear  
computational complexity. It specifically improves the S4 state 
space model through selective mechanisms and hardware-aware 
algorithms, excelling in processing long-sequence data with its 
unique features. By integrating the cross-scan module (CSM) into 
the visual state space model (VMamba), Mamba enhances its 
applicability to computer vision tasks by spatially traversing the 
domain (17). (19) proposed the Shuffle-Reshuffle Gradient Mamba 
Frontiers in Oncology 02 
(SRGM) tailored for MMIF, and designed the Local and Global 
Gradient Mamba (LGGM) to extract modality-specific features 
while retaining rich spatial details. (20) introduced Semi-Mamba-

UNet, which integrates a pure vision-based Mamba-based U-
shaped encoder-decoder architecture with the traditional CNN-
based UNet into a semi-supervised learning (SSL) framework and 
tested it on the ACDC and PROMISE12 medical imaging datasets. 
(21) introduce Edge-Mix enhanced Mamba (EM-Mamba) for 
kidney segmentation, which is designed to capture global and 
local information from multi-scales. EM-Mamba leverages 
SegMamba as its backbone, utilizing Mamba’s efficiency in 
extracting long-range dependencies. Although Transformer 
models excel at global modeling, their self-attention mechanism 
requires a computational complexity that is quadratic with respect 
to the image size (22), which becomes particularly evident in the 
task of medical image segmentation that demands dense 
predictions. Building on these advancements, our goal is to 
enhance long-sequence data processing by integrating Mamba 
into foundational models like UNet++ (23) and DeepLabv3+ 
(24), aiming to improve breast ultrasound image segmentation. 

Integrating the VMamba block (VSS) (25) from the Mamba 
model into other networks enhances the model’s medical image 
segmentation performance. The VSS features a unique selective 
mechanism and hardware-aware algorithm, offering significant 
advantages in processing long-sequence data. By adaptively 
selecting crucial information for processing, the Mamba model 
avoids redundant computations, thereby enhancing computational 
efficiency. Additionally, its hardware-aware algorithm enables 
seamless adaptation to diverse hardware platforms, further 
expediting the model’s inference process. Our research focuses on 
demonstrating the notable benefits of incorporating the Mamba 
structure into an image segmentation model for breast tumor image 
segmentation and classification tasks. This integration enables 
precise differentiation between tumor tissues and normal breast 
tissues, resulting in high-precision image segmentation. Specifically, 
we integrated the VMamba module into the encoder of the model, 
thereby effectively capturing the multi-scale spatial features and 
global contextual cues of breast ultrasound images. We conducted 
extensive experiments on the BUSI and BUS-BRA datasets using 
various metrics, and the results demonstrated that the models 
incorporating the VSS block achieved higher segmentation 
accuracy for breast ultrasound images compared to the original 
models. This enhancement enables precise segmentation of diverse 
breast tumors and their complex boundary structures. Such 
accuracy provides valuable support for clinicians, advancing the 
clinical application and scientific exploration of artificial 
intelligence technology in medical image processing, particularly 
in addressing challenges related to breast tumor image processing. 
2 Mamba model structure 

Mamba, a state space model (SSM), shares the capability of 
transformers in extracting global features from lengthy sequences. 
However, Mamba distinguishes itself through its selective 
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mechanism and hardware-aware algorithm, resulting in an 
inference speed five  times faster than that of Transformers.

Notably, Mamba’s computational complexity and memory usage 
scale linearly with input sequence length, allowing it to process 
sequences of millions in length. In contrast, Transformers exhibit a 
time and space complexity of O(n2), highlighting Mamba’s ability to 
markedly alleviate GPU memory and computing resource demands 
during the training of long-sequence text models (17). Mamba 
integrates the SSM architecture with the multi-layer perceptron 
(MLP) block within the Transformer framework. SSM serves to 
characterize state representations and forecast their subsequent 
states given specific inputs. The structured state space sequence 
model operates on the following principle: 

0 
h (t) =  Ah(t) +  Bx(t) (1) 

y(t) =  Ch(t) +  Dx(t) (2) 

In this context, h(t) denotes the current state variable, A 
signifies the state transition matrix, x(t) represents the input 
control variable, and B indicates the impact of the control 
variable on the state variable (26). Furthermore, y(t) denotes the 
system output, while C signifies the influence of the current state 
variable on the output. The state and output equations imply that 
the state at time step t is predicted from the preceding state. By 
incorporating past information in the sequence and the input from 
the prior state, the system’s future states can be anticipated. The A 
state transition matrix plays a crucial role in updating the sequence 
state by incorporating skip connections. These connections directly 
combine the previous input with the output sequence, thereby 
improving feature extraction. To tackle the challenge of context 
sequence dependencies, SSM utilizes Hierarchical Positional 
Pointers (HiPPO) for long-range dependencies. By employing 
function approximation, SSM achieves the optimal solution (27) 
of the matrix A, enabling the retention of a more extensive 
historical record. 

Selection Mechanism: The conventional SSM model excels in 
processing structured input data. In contrast, Mamba introduces a 
selective mechanism that parameterize the SSM input. This 
mechanism selectively compresses historical data, filters out 
extraneous 18 information, and preserves essential long-term 
memory. Consequently, Mamba addresses the challenge faced by 
traditional models in managing fluctuations or disorder in input 
sequences, thereby ensuring that parameters influencing sequence 
interactions adapt to the input dynamics. Specifically, a new 
learnable parameter step size D represents the stage resolution, 
sampling the continuous input signal over time to obtain discrete 
output, which is realized by solving the ordinary differential 
Equation 2 and performing a direct discretization operation. 
Then, by sampling with step size D (i.e., dt ❘ttii 

+1 = Di), h(tb) can be 
discretized by Equation 4. 

Z tb 

h(tb) =  eA(tb−ta)h(ta) +  eA(tb−ta) B(t)u(t)e −A(t−ta) dt (3) 
ta 
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hb = eA(Da+…+Db−1) ha + oBiuie
−A(Da+…+Di )Di (4) 

i=a 

In addition, performing zero-order hold processing on 
parameters A, B to obtain A� = exp (DA), B� = (DA)−1(exp (DA) − 
I)DB, ultimately converting the continuous SSM to a discrete SSM, 
thus updating Equations 1 and 2 to 3 and 4. 

hk = � BxkAhk−1 + � (5) 

yk = Chk (6) 

In contrast to the fixed spacing between input and output elements 
in conventional copy tasks, selective copying involves adjusting token 
positions based on content-specific reasoning to eliminate extraneous 
information. As illustrated in Equation 7, this process incorporates an 
additional linear layer in each matrix computation to selectively filter 
input control and state variables, thereby enhancing reasoning 
efficiency and augmenting data throughput. Enhancement of the B 
matrix affecting input, the C matrix influencing state, and the D time-

size parameter enables the model to discern the content of individual 
tokens, which represent the smallest meaningful units understood and 
generated by the model. The dimensions of B, C and D can be extended 
by incorporating functions sB(x), sC(x) and  sD(x). The introduction of 
the selection mechanism addresses the limitation of SSM in screening 
signals across time.  

sB(x) =  LinearN (x), sC (x) =  LinearN (x), 
(7) 

sD(x) =  LinearD(x), tD = softplus 
Hardware-optimized algorithm 

The Mamba algorithm utilizes a multi-threaded parallel scanning 
approach that leverages the associative law for executing out-of-order 
computations and aggregating outcomes. In this method, each 
sequence involves updating the state Hi according to Equation 8, 
where it is computed by multiplying the previous state with a matrix A�

and adding the current input Xi multipied by B�. The parallel scanning 
process integrates segmental sequence computation and iteration to 
achieve its objectives. 

Hi = � BXiAHi−1 + � (8) 

Notably, the cyclic convolution mode enables bypassing the 
initial fixed state (B, L, D, N), leading to the utilization of a more 
efficient 3a convolution kernel (B, L, D) and significantly enhancing 
computational performance. 

The state Hi is exclusively operational within the memory 
hierarchy. To mitigate memory bandwidth constraints, the kernel 
fusion technique is employed to diminish GPU memory occupancy, 
thereby substantially enhancing training velocity. The utilization of 
Flash Attention technology alters the computation outcomes 
sequentially inscribed in DROM to batch writing from DRAM, 
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thereby curtailing the frequency of redundant read and write 
operations (28). Consequently, is substitutedfor the initial (A� , B�) 
with a scale of (B, L, D, N) and fed into the high-speed Static 
Random-Access Memory (SRAM). To mitigate the need for storing 
intermediate states during backpropagation, the utilization of 
recomputation technology is imperative. This approach aims to 
minimize memory usage by recalculating intermediate states during 
the backward pass, rather than storing them when loading input from 
High Bandwidth Memory (HBM) to SRAM. By implementing this 
technique, the selective scanning layer can achieve a level of memory 
efficiency akin to that of the high-speed attention Transformer. 
 

3 Data processing 

The study leveraged data from two publicly available datasets: 
BUSI (29) and BUS-BRA (30). The BUSI dataset comprises breast 
ultrasound images and their corresponding label images, collected 
from 600 women aged 25 to 75 in 2018. Each original image is 
paired with a tumor image (mask), with benign and malignant 
samples typically featuring one or two lesions. As a result, the labels 
outlining the lesion areas may require overlapping to consolidate 
multiple lesions into a single label. The BUS-BRA dataset includes 
1875 anonymized breast ultrasound images from 1064 patients, 
with 722 benign and 342 malignant tumors. It provides BI-RADS 
assessments, manual segmentations, and 5- and 10-fold cross-
validation partitions for standardized evaluation of CAD systems. 
The detailed information of the dataset is shown in Table 1. 

Adequate data is essential for effectively training deep learning 
networks to prevent underfitting and subpar classification 
performance (31). To bolster model robustness, a substantial 
volume of high-quality datasets is necessary (32). However, 
obtaining medical image data is intricate, necessitating the 
expansion of existing public datasets through data augmentation 
techniques. In our approach, we employ online augmentation, 
randomly rotating and mirror-flipping each image and its 
corresponding label in the dataset to enhance the model’s 
generalization capabilities. Furthermore, we enhance image quality 
by applying linear transformations to address the indistinct edges 
characteristic of ultrasound images in the dataset in function (9), thus 
suppressing the Hausdorff dimension inflation caused by ultrasonic 
speckle noise. Because the scanning position varies across breasts, the 
Frontiers in Oncology 04
collected ultrasound images exhibit inconsistent sharpness and 
brightness. We therefore perform dynamic contrast normalization 
as defined in Equation 9: the gray-level histogram of each image is 
first computed, its intensity bins are used to derive an adaptive 
weight, and the image contrast is adjusted accordingly, yielding a 
standardized dataset. 

O(i, j) =  a*I(i, j) +  b  0 ≤ i < H, 0  ≤ j < W  (9) 

Here, H and W denote the height and width of the input image, 
I(i,j) represents a pixel point in the input image, O(i,j) for the output 
image; by adjusting the size of parameters a,b to achieve 
transformation of the image grayscale range, thereby adjusting the 
image contrast. 
4 Research on ultrasound breast 
tumor image segmentation based on 
mamba architecture 

This study integrates the Mamba model with different 
segmentation network architectures to enhance the performance of 
medical image segmentation. By incorporating the VSS block featuring 
the Mamba model into diverse segmentation networks, improvements 
in segmentation accuracy are achieved. Evaluation on a dataset and 
comparison of segmentation outcomes of the fused models 
demonstrate that the integration of the Mamba structure accelerates 
computation while preserving long-term data information. 
4.1 Analysis of the VMamba block 

Figure 1 illustrates the architecture of the VMamba block, 
comprising an H3 block and a gated MLP. The H3 block 
embodies a selective SSM (independent sequence transformation) 
state-space model. Simplifying  the H3 structure  involves
amalgamating linear attention and MLP blocks, stacking them 
uniformly, and enabling controlled expansion of the model 
dimension. The Mamba architecture is constructed by iteratively 
replicating this block, incorporating residual connections and 
standard normalization interchangeably. To mitigate gradient 
vanishing, a residual term is introduced in conjunction with the 
gated MLP. The VMamba block is limited to extracting features 
from semantic data like text and cannot handle image data. To 
address this limitation, Yue et al. (33) substituted the S6 module in 
the VMamba block with the SS2D module, which is designed to 
process image data using the VSS block. This modification resulted 
in the creation of the VSS block. 

Following layer normalization, the VSS block comprises two 
branches. One branch employs a 3×3 depthwise convolutional layer 
for feature extraction. Initially, the input undergoes processing in a 
linear layer, a depthwise separable convolution, and an activation 
function before entering the two-dimensional selective scanning 
(SS2D) module for further feature extraction. Subsequently, feature 
normalization is applied, followed by element-wise multiplication with 
the output from the alternate branch to merge the pathways. A linear 
TABLE 1 Introduction of dataset. 

Case BUSI BUS-BRA 

Number of Images 780 1875 

Benign 437 1268 

Malignant 210 607 

Normal 133 – 

Annotation 
Information 

Masks 
Masks and BI-RADS 

classification 

Dataset Characteristics Smaller 
Larger, suited for extensive 

training 
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layer is then utilized to blend the features, which are combined with a 
residual connection to yield the VSS module output. The second 
branch includes a linear mapping layer followed by a SiLU activation 
layer to compute the multiplicative gating signal. Notably, the key 
distinction from the standard VSS block lies in replacing the S6 module 
with the SS2D module, enabling adaptive selective scanning for 2D 
visual data. This design choice opts for a more compact structure 
without the fully connected phase, resulting in denser stack blocks 
within the same depth constraints. 
4.2 Construction of the VM-UNet++ model 

Figure 2 illustrates the architecture of VM-UNet++. This design 
integrates the U-Net framework with the VSS block to construct the 
encoder and decoder components. The U-Net features a 
symmetrical U-shaped configuration comprising an encoder for 
feature extraction, a decoder for feature fusion, and skip 
connections to mitigate gradient vanishing (15). Within the 
decoder’s upsampling phase, skip connections are employed post 
each convolution to link with the downsampled encoder features at 
the corresponding level and lower-level features, thereby 
diminishing gradient vanishing and preserving more spatial detail 
features. The VM-UNet++ configuration encompasses a patch 
embedding layer, an encoder, a decoder, a final projection layer, 
and skip connections. Initially, the input image is transformed into 
a one-dimensional sequence of H/4×W/4×C via the patch and 
linear embedding layers. The encoder incorporates multiple VSS 
blocks and patch merging layers to extract token features, diminish 
height and width, and augment dimensionality (34). The decoder 
mirrors the encoder’s structure, with the patch merging layer 
substituted by a patch expansion layer to enhance height and 
width while reducing dimensionality, thereby generating outputs 
Frontiers in Oncology 05 
with consistent feature sizes. Ultimately, the linear projection layer 
restores the channel count to align with the input resolution. A 
densely connected network is introduced during the upsampling 
phase, where the convolution output of the preceding layer is added 
to each subsequent layer, forming local Unet networks within each 
segment. This approach fuses low-resolution features from 
upsampling with high-resolution features from downsampling to 
retain both spatial detail features and global information. The 
densely connected structure of the VM-UNet++ model facilitates 
straightforward network depth augmentation to bolster learning 
capacity during construction. Moreover, it permits a moderate 
depth reduction through network pruning strategies without 
compromising the original network architecture. 
4.3 Construction of Deep-VMamba 

DeepLabV3+  comprises  an  encoder  and  a  decoder,  
incorporating Atrous convolution, depthwise separable 
convolution, Atrous Spatial Pyramid Pooling (ASPP), and fully 
convolutional networks (31). As illustrated in Figure 3, this study 
integrates the Mamba structure into the DeepLabV3+ architecture. 
The VMamba block, fused with the encoder output of DeepLabV3 
+, enhances the delineation of tumor lesions in ultrasound breast 
images by capturing finer details and edge information. The 
incorporation of the VMamba block supplements global 
information to the original DeepLabV3+ segmentation, thereby 
expanding the network’s receptive field without compromising 
feature retention, facilitating more comprehensive malignant 
tumor segmentation. Additionally, the encoder segment of 
DeepLabV3+ encompasses a complete feature extraction and 
sampling branch, preserving all feature extraction capabilities 
while augmenting the model’s proficiency in feature extraction 
FIGURE 1 

Structures of the Mamba block (left), the Vanilla VSS block (middle), and the VMamba (VSS) block. 
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FIGURE 2 

Structure diagram of VM-UNet++. 
FIGURE 3 

Structure of the Deep-VMamba model. 
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from images and processing extended sequences, without 
compromising its original functionality. 
 

 

4.4 Construction of the SAM-VMamba 
model 

The Segment Anything Model (SAM) model is tailored for a 
novel image segmentation assignment, trained on a dataset of 11 
million images with over one billion masks. Moreover, SAM can 
segment images based on various prompts such as points, boxes, 
and text, without the need for retraining on specific datasets. Its 
efficient design and training facilitate zero shot transfer to new 
image distributions and tasks, which has garnered widespread 
attention. For instance, Ma and Wang et al. (35) proposed 
MedSAM for general medical image segmentation. This model, 
trained on a meticulously constructed dataset, is capable of 
achieving desirable performance. However, the limited scale of 
the assembled dataset and the modality imbalance issue restrict 
MedSAM’s performance on ultrasound images. The MSA method 
proposed by Wu et al. (36) significantly enhances image 
segmentation performance by freezing the pre-trained parameters 
of SAM and inserting adapter modules at specific locations. As 
shown in Figure 4, the SAM model comprises an image encoder, a 
prompt encoder, and a mask decoder, the SAM model employs a 
prompting approach to segment user-specified points. Users can 
provide prompt information through user-defined points, 
bounding boxes, and randomly circled regions. Furthermore, free-
form text prompts are utilized to present initial results. Notably, the 
prompt encoder of the SAM model can effectively segment desired 
objects based on user prompts, thereby enabling targeted area 
segmentation. For the segmentation of breast ultrasound images, 
Tu et al. (37) proposed an innovative SAM adapter (BUSSAM), 
which migrates the SAM framework to the field of breast ultrasound 
image segmentation through adaptation techniques, and validated 
its feasibility and effectiveness. 

Although the SAM demonstrates evident effectiveness for the 
segmentation of the vast majority of natural images, it faces 
challenges when dealing with fine medical images due to the 
inherent low resolution and complexity of medical imaging, leading 
Frontiers in Oncology 07 
to suboptimal performance in zero-shot segmentation scenarios. 
Therefore, few-shot training becomes crucial  for achieving  superior
performance in practical applications. Moreover, considering the 
limitations of SAM in global attention, our study incorporates the 
VMamba block into the SAM model framework to enhance its 
capabilities. As shown in Figure 5, the VMamba block, situated 
alongside the ViT within the SAM image encoder, facilitates the 
processing of extended input sequence data for a more 
comprehensive contextual understanding. Illustrated in Figure 5, the
model comprises an image encoder, a prompt encoder, and a mask 
decoder. Following the Patch Embedding step in the image encoder, 
the VMamba block operates in parallel to convert the upper layer’s 
output tokens into a linear vector with long-range memory. This vector 
is then fused with the Transformer block output and subjected to two 
convolutions (Neck layer) to generate the Image Embedding, which 
subsequently serves as input for the mask decoder. 

The enhanced comprehension of extended sequences by the 
Mamba model  enables SAM-VMamba to establish improved global

connections and achieve enhanced segmentation performance. 
Additionally, the integration of a selective mechanism and hardware-
aware algorithm in SAM-VMamba expedites model training and 
implementation without incurring additional time costs, thereby 
substantially decreasing the time and resources needed for training 
deep segmentation models. Moreover, by integrating the generalization 
and pre-training capabilities of the SAM model, the SAM-VMamba 
model is able to achieve accurate segmentation effects with only a small 
number of breast ultrasound image training samples. 
5 Experimental results and analysis 

5.1 Experimental environment 

The model proposed in our study is deployed and trained on the 
RTX A6000 GPU, with all experiments conducted using the same 
hardware device. The experiments utilize the PyTorch 2.2.0 deep 
learning framework and Python 3.11.5 programming language, 
with  GPU  computation  supported  by  the  CUDA  12.2  
architecture. The batch size is set to 24, with a maximum of 100 
training epochs, and the AdamW optimizer is employed in 
FIGURE 4 

Structure of the SAM model. 
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conjunction with the CosineAnnealingLR learning rate scheduling 
strategy for model optimization. Additionally, the proposed SAM-

VMamba network is initialized using the pre-trained weights of 
SAM’s ViT-B. 
5.2 Evaluation indicators 

The Dice Coefficient (DICE) metric assesses model 
performance in segmentation tasks by quantifying the overlap 
between predicted and ground-truth regions. In medical image 
analysis, the DICE coefficient is commonly employed to evaluate 
neural network models in tasks like lesion detection and tissue 
segmentation. The formula for calculating the DICE coefficient is 
defined by Equation 10. 

2 TP
DICE = 

j j  
(10)

2j jTP + FP + FNj j j  j  

The MIoU metric assesses the correspondence between 
predicted outcomes and true labels in semantic segmentation 
tasks. It is computed as the mean of the Intersection over Union 
(IoU) for individual categories. IoU represents the ratio of the 
intersection to the union of predicted and actual values, reflecting 
the degree of  overlap. A higher  IoU signifies improved 
segmentation accuracy, indicating a greater overlap between 
areas. The calculation is given by Equation 11. 

TP
IoU = 

j j  
(11)j jTP + FP + FNj j j  j  

Precision is defined as the proportion of pixels that are correctly 
identified as the true lesion area. It represents the ratio of true 
positive pixels to the sum of true positive and false positive pixels, 

TPj jexpressed as: j jTP + FP . Accuracy represents the proportion of j j
correctly identified image pixels, that is, the ratio of breast tumor 
and non-breast tumor areas to the total number of pixels (mask), 

j j  expressed as: j jTP
T
+
+P
TN . Recall, also known as the sensitivity, is the 

proportion of the actual lesion area that is identified in the image. It 
represents the size of the true positive cases relative to the entire 

j jlesion area, expressed as: TP
j j.j jTP + FN
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5.3 Experimental results 

Table 2 summarizes the training hyper-parameters and 
computational performance of each model. Where, throughput 
denotes the maximum number of training samples the model can 
process per second, while total multiply-adds signify the computational 
burden of the model during a single forward propagation. The 
exceptional long-sequence processing capabilities of Mamba are 
confirmed through an assessment of the computational efficiency of 
output images. This evaluation involves comparing parameters, 
processes, and throughput during both training and inference to 
gauge generalization performance. Results indicate that models 
incorporating Mamba exhibit consistent performance across various 
input image sizes. For instance, at an input resolution of 512 × 512, 
Unet++ achieves the highest throughput among baseline models, while 
DeepLabV3+ demonstrates the highest throughput per epoch during 
training. Despite higher computational load compared to baseline 
models at the same input size, the integration of the Mamba 
structure allows for increased throughput capacity, enabling the 
retention and processing of longer data sequences, thereby enhancing 
comprehensive image data processing. Moreover, while the integrated 
models maintain relatively high inference speeds (higher throughput 
than baseline models) at a resolution of 512×512, their computational 
load escalates significantly, surpassing that of baseline models and 
indicating limited generalization capability. In terms of computational 
efficiency, current SSM-based vision models typically exhibit superior 
throughput only with large-scale inputs and high resolutions. 

Based on Tables 3 and 4, it is evident that traditional models do 
not achieve highly accurate segmentation of ultrasonic breast tumor 
images. The Unet model, for instance, exhibits relatively low 
performance with Dice coefficients of 81.92% and 82.10%, and 
IoU values of 69.53% and 73.52% across the two datasets. In 
contrast, models incorporating the VMamba block demonstrate a 
significant improvement in segmentation metrics compared to their 
original counterparts. Notably, the SAM-VMamba model, which 
integrates the VMamba block, achieves the highest performance 
with Dice scores of 90.62% and 90.25%, and IoU values of 82.55% 
and 82.54%. This improvement can be attributed to the inherent 
challenges posed by breast ultrasound images, characterized by low 
clarity and predominantly dark tones, leading to a diminished 
TABLE 2 Parameter table on the 5122 image. 

Model #param FLOPs Throughput Train throughput Total mult-adds 

Unet 24.4M 31.3G 75.38 57.69 31.26 

Unet++ 26.1M 73.7G 71.12 33.72 73.53 

DeepLabV3+ 22.4M 31.7G 73.71 58.44 31.54 

VM-UNet 27.4M 16.4G 48.87 25.46 310.02 

SAM-Med2D 221.9M 303.5G 21.28 24.10 259.31 

VM-UNet++ 27.4M 27.2G 47.03 30.27 443.97 

Deep-VMamba 27.8M 121.2G 64.15 46.90 43.28 

SAM-VMamba 236.5M 259.8G 27.73 35.35 303.26 
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signal-to-noise ratio. Given that breast tumors occupy a small 
portion of the image, there is a risk of lesion oversight and 
misjudgment. Furthermore, the indistinct boundary between 
breast tumors and normal tissues, coupled with blurred lesion 
edges lacking distinctive features against the background, 
contributes to reduced segmentation accuracy. Moreover, the 
uniform grayscale distribution in the images results in minimal 
variations in pixel intensities, thereby compromising texture and 
detail resolution. However, the integration of Mamba facilitates the 
capture of prolonged sequential information, enabling more 
comprehensive breast tumor segmentation and enhanced 
edge delineation. 

Figures 6 and 7 visualize the actual segmentation results of each 
model on breast tumors. Traditional models exhibit poor performance 
in segmentation due to the limitations of their structure. The pooling 
layers and downsampling operations used in network training result in 
the loss of partial information as the network depth increases and size 
decreases. In contrast, during upsampling, only a basic addition 
operation is conducted on high-resolution images from the 
downsampling layer, leading to the loss of crucial “deep-layer” 
feature information. However, Mamba, characterized by its capacity 
for ultra-long sequence processing and memory within the integrated 
model, preserves more spatial details, thereby yielding superior 
segmentation outcomes. SAM-VMamba demonstrates superior 
performance with small-sample data due to its integration of the 
SAM segmentation model. Furthermore, as illustrated in Figure 8, 
Frontiers in Oncology 09
the distinctive prompt encoder of SAM enables precise regional 
segmentation of images, enhancing its practical utility by eliminating 
the need to process redundant image components. 

Figures 9a, b depict the cumulative distribution of prediction effects 
for each model based on 300 segmentation predictions of breast 
ultrasound images. The segmentation outcomes of conventional 
models such as U-Net predominantly cluster around 0.8 for Dice 
and 0.7 for IoU. The integration of the Mamba model notably 
enhances the overall segmentation performance, yielding higher 
accuracy metrics compared to the baseline models. Particularly 
noteworthy is the superior segmentation efficacy of the SAM model 
surpassing that of its counterparts. The SAM model demonstrates 
heightened segmentation accuracy and data concentration, indicative 
of its robust stability. The primary reason lies in the prompt encoder 
mechanism of the SAM model and its pretraining on large-scale 
datasets, which enable superior adaptation and handling of out-of­
domain datasets. In contrast, baseline models suffer from a substantial 
loss distance between their initialized weights and the optimal solution, 
requiring large sample sizes and extensive iterations to reduce this gap, 
thereby leading to unstable extrapolation in prediction distributions. 
Moreover, models augmented with the Mamba structure further 
enhance the multi-scale spatial decomposition of breast tumor 
images and the modeling of intra-scale feature dependencies, thereby 
facilitating the extraction of tumors with varying shapes and types. 

The Figures 10a, b illustrates notable enhancement in the model’s 
performance with the integration of the Mamba structure compared to 
TABLE 4 Presents a comparative evaluation of the segmentation outcomes of the models on BUS-BRA. 

Model DICE (%) IoU(%) Precision(%) Accuray(%) Recall(%) 

Unet 82.10 73.52 87.30 97.51 84.27 

Unet++ 84.88 76.28 87.02 97.43 85.71 

DeepLabV3+ 86.43 77.98 87.50 97.74 88.24 

VM-UNet 85.69 77.19 87.95 97.59 86.48 

SAM-Med2D 88.68 80.05 97.49 98.35 81.76 

VM-UNet++ 86.35 78.01 88.95 97.63 86.61 

Deep-VMamba 87.16 79.01 87.82 97.82 88.99 

SAM-VMamba 90.25 82.54 96.19 98.58 85.43 
 

TABLE 3 Presents a comparative evaluation of the segmentation outcomes of the models on BUSI. 

Model DICE(%) IoU(%) Precision(%) Accuray(%) Recall(%) 

Unet 81.92 69.53 86.33 97.78 78.53 

Unet++ 82.76 70.81 86.98 97.81 79.32 

DeepLabV3+ 83.61 71.97 88.05 97.92 79.74 

VM-UNet 83.56 74.13 84.58 97.60 84.43 

SAM-Med2D 89.13 81.16 89.45 98.56 87.43 

VM-UNet++ 84.89 75.59 86.57 97.99 87.61 

Deep-VMamba 84.24 71.24 88.26 97.84 79.21 

SAM-VMamba 90.62 82.55 88.44 98.08 92.05 
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the original model. Specifically, the incorporation of this structure 
significantly improves the segmentation performance of the model on 
breast ultrasound images with long sequences. With an increase in the 
number of training iterations, conventional models like Unet exhibit 
some degree of enhancement. However, the integrated Mamba model 
surpasses the performance of individual traditional models in overall 
improvement. Particularly noteworthy is the superior segmentation 
performance of the SAM model compared to other models, attributed 
to its pre-training on a large dataset of millions of images. This model 
requires only a limited number of training epochs to achieve a stable 
and optimal performance level. 

Figure 11 presents the performance of all models under few-sample 
testing conditions. Findings indicate that when trained on a small 
Frontiers in Oncology 10 
dataset, the model incorporating VMamba blocks generally 
outperforms the baseline model in segmentation accuracy. The 
primary reason is that breast tumors exhibit a relatively low signal-
to-noise ratio and indistinct features, which forces baseline models to 
rely on large sample averaging to suppress noise. In contrast, Mamba 
compresses two-dimensional spatial sequences into fixed-dimensional 
state vectors, inherently embedding a Gaussian–Markov smoothing 
mechanism that provides natural denoising. These advantages 
collectively enable the Mamba-enhanced model to achieve an 
average improvement of 9.12% in the IoU metric. Remarkably, 
despite being pretrained on extensive data, the SAM model exhibits 
sustained high segmentation performance in the context of limited-

sample training, maintaining an IoU value of approximately 80%. 
FIGURE 5 

Structure of the SAM-VMamba model. 
FIGURE 6 

Comparison of image segmentation effects on the BUSI dataset. 
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6 Conclusions 

In this investigation, we enhanced the image segmentation 
performance of the original model for breast tumor ultrasound 
images by integrating the Mamba structure. Comparative analysis 
with conventional models like Unet, DeepLabV3+, and Unet++ 
Frontiers in Oncology 11 
revealed the superior performance of the model incorporating the 
VMamba block across various evaluation metrics, including the 
DICE coefficient, MIoU, Precision, and Recall. Benefiting from the 
global attention capability of Mamba, the enhanced model is able to 
simultaneously capture multi-scale global dependencies and better 
focus on the details of breast tumor segmentation. Experimental 
FIGURE 8 

Segmentation results of SAM-VMamba. 
FIGURE 7 

Comparison of image segmentation effects on the BUS-BRA dataset. 
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FIGURE 9 

Cumulative distributions of dice and IoU under 300 predictions. (a) Dice, (b) IoU. 
FIGURE 10 

Comparison of segmentation accuracies among different models trained with a low number of iterations. (a) IoU, (b) Dice. 
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results show that incorporating Mamba into the model yields 
average improvements of 3.07% and 5.11% in Dice and IoU on 
the BUSI dataset, and 2.89% and 3.26% on the BUS-BRA dataset. 
Notably, the SAM-VMamba achieved the highest segmentation 
accuracy and quality, with Dice scores of 90.25% and 90.62% on 
the BUSI and BUS-BRA datasets. These outcomes signify the 
model’s success in accurately localizing and distinguishing 
boundaries of breast tumors. 
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Comparison of segmentation accuracy (IoU) of each model on small samples. 
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