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Research on breast tumor
segmentation based on
the Mamba architecture
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*Anhui University of Chinese Medicine, Hefei, China, ?College of Medicine and Biological Information
Engineering, Northeastern University, Shenyang, China

Medical image segmentation is fundamental for disease diagnosis, particularly in
the context of breast cancer, a prevalent malignancy affecting women. The
accuracy of lesion localization and preservation of image details are essential for
ensuring the integrity of lesion segmentation. However, the low resolution of
breast tumor B-mode ultrasound images poses challenges in precisely
identifying lesion sites. To address this issue, this study introduces the Mamba
architecture model, which combines three foundational models with the long-
sequence processing model Mamba to develop a novel segmentation model for
breast tumor ultrasound images. The selective mechanism and hardware-aware
algorithm of the Mamba model enable longer sequence inputs and faster
computing speeds. Moreover, integrating a complete chain of VMamba blocks
into the basic model enhances segmentation accuracy and image detail
processing capabilities. Experimental segmentation was performed on two
benchmark ultrasound datasets (BUSI and BUS-BRA) using both the baseline
and improved models. The results were compared using metrics such as Dice
and loU, with additional evaluations conducted under small-sample training
conditions. This study is intended to provide guidance for the future
development of medical image segmentation. Moreover, the experimental
results demonstrate that the model incorporating the Mamba architecture
achieves superior performance on breast ultrasound images.

KEYWORDS
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1 Introduction

Tumors, which are caused by the aggregation of mutated cells into masses or growths,
can be categorized into benign tumors that do not spread and malignant tumors that are
uncontrollably cancerous (1). Breast cancer, one of the most commonly malignant tumors
among women, is also one of the leading causes of cancer death in females. In the early
stages, treatment is carried out through lumpectomy, with the goal of completely removing
the tumor while preserving as much healthy tissue as possible. Therefore, the precision of
tumor excision is a significant challenge in this surgery, and for patients with unclear
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margins, there is a high probability of requiring a second excision,
which may cause patients to miss the best treatment time and
increase their psychological burden. For the high incidence of
positive cancer margins after breast tumor excision, accurate
tumor localization is key to overcoming this challenge.
Ultrasound detection is considered the best method for
examining breast tumors due to its non-radiation and non-
invasive medical imaging approach (2). However, the frequency
of the ultrasound equipment and probe directly affects image
quality and lesion display, thereby influencing the diagnostician’s
judgment (3), leading to missed diagnoses and misdiagnoses, which
highlights the importance of early precise detection for
successful treatment.

Conventional diagnostic methods relying on subjective
judgments have limitations and risks of misdiagnosis (4). Medical
image segmentation is a crucial technology in medical image
processing (5, 6), essential for disease diagnosis, treatment
planning, and evaluating treatment outcomes. Accurate
segmentation delineates diseased and normal tissue boundaries,
providing precise anatomical and pathological information for
clinical decision-making (5). However, due to the inherent
limitations of ultrasound imaging, such as poor contrast and the
variability in the appearance of tumors, the development of reliable
and effective segmentation algorithms still faces significant
challenges. Deep convolutional neural networks (DCNNs) (7)
have revolutionized this field by automatically extracting key
visual features relevant to disease diagnosis from extensive
medical image datasets (8, 9). Recent advancements in medical
image segmentation, notably the UNet deep-learning network, have
shown remarkable potential in segmenting and classifying breast
tumor images (10). UNet’s exceptional performance and adaptable
network structure have made it a focal point in research (11).

To further enhance segmentation models, researchers are
exploring novel network architectures like dense connections
(12), residual blocks (13), and attention mechanisms (14). Kumari
et al. (15) utilized a neural network with a dense connection known
as Densely Connected Convolutional Network (DCCN) to identify
deep liver irregularities; (16) introduced a deep learning
architecture (MRFB-Net) that leverages an attention-based
pooling decoder module to enhance the segmentation of uterine
fibroids in preoperative ultrasound images. However, common
CNN models face limitations in their ability to model long-range
interactions, and Transformers are constrained by their quadratic
computational complexity, making them less than satisfactory for
processing breast ultrasound images. This has led to the emergence
of State Space Models (SSM) (17, 18), represented by Mamba, as a
promising solution. The Mamba model excels not only in modeling
long-range interactions but also in maintaining linear
computational complexity. It specifically improves the S4 state
space model through selective mechanisms and hardware-aware
algorithms, excelling in processing long-sequence data with its
unique features. By integrating the cross-scan module (CSM) into
the visual state space model (VMamba), Mamba enhances its
applicability to computer vision tasks by spatially traversing the
domain (17). (19) proposed the Shuffle-Reshuffle Gradient Mamba
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(SRGM) tailored for MMIF, and designed the Local and Global
Gradient Mamba (LGGM) to extract modality-specific features
while retaining rich spatial details. (20) introduced Semi-Mamba-
UNet, which integrates a pure vision-based Mamba-based U-
shaped encoder-decoder architecture with the traditional CNN-
based UNet into a semi-supervised learning (SSL) framework and
tested it on the ACDC and PROMISE12 medical imaging datasets.
(21) introduce Edge-Mix enhanced Mamba (EM-Mamba) for
kidney segmentation, which is designed to capture global and
local information from multi-scales. EM-Mamba leverages
SegMamba as its backbone, utilizing Mamba’s efficiency in
extracting long-range dependencies. Although Transformer
models excel at global modeling, their self-attention mechanism
requires a computational complexity that is quadratic with respect
to the image size (22), which becomes particularly evident in the
task of medical image segmentation that demands dense
predictions. Building on these advancements, our goal is to
enhance long-sequence data processing by integrating Mamba
into foundational models like UNet++ (23) and DeepLabv3+
(24), aiming to improve breast ultrasound image segmentation.
Integrating the VMamba block (VSS) (25) from the Mamba
model into other networks enhances the model’s medical image
segmentation performance. The VSS features a unique selective
mechanism and hardware-aware algorithm, offering significant
advantages in processing long-sequence data. By adaptively
selecting crucial information for processing, the Mamba model
avoids redundant computations, thereby enhancing computational
efficiency. Additionally, its hardware-aware algorithm enables
seamless adaptation to diverse hardware platforms, further
expediting the model’s inference process. Our research focuses on
demonstrating the notable benefits of incorporating the Mamba
structure into an image segmentation model for breast tumor image
segmentation and classification tasks. This integration enables
precise differentiation between tumor tissues and normal breast
tissues, resulting in high-precision image segmentation. Specifically,
we integrated the VMamba module into the encoder of the model,
thereby effectively capturing the multi-scale spatial features and
global contextual cues of breast ultrasound images. We conducted
extensive experiments on the BUSI and BUS-BRA datasets using
various metrics, and the results demonstrated that the models
incorporating the VSS block achieved higher segmentation
accuracy for breast ultrasound images compared to the original
models. This enhancement enables precise segmentation of diverse
breast tumors and their complex boundary structures. Such
accuracy provides valuable support for clinicians, advancing the
clinical application and scientific exploration of artificial
intelligence technology in medical image processing, particularly
in addressing challenges related to breast tumor image processing.

2 Mamba model structure

Mamba, a state space model (SSM), shares the capability of
transformers in extracting global features from lengthy sequences.
However, Mamba distinguishes itself through its selective
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mechanism and hardware-aware algorithm, resulting in an
inference speed five times faster than that of Transformers.
Notably, Mamba’s computational complexity and memory usage
scale linearly with input sequence length, allowing it to process
sequences of millions in length. In contrast, Transformers exhibit a
time and space complexity of O(1%), highlighting Mamba’s ability to
markedly alleviate GPU memory and computing resource demands
during the training of long-sequence text models (17). Mamba
integrates the SSM architecture with the multi-layer perceptron
(MLP) block within the Transformer framework. SSM serves to
characterize state representations and forecast their subsequent
states given specific inputs. The structured state space sequence
model operates on the following principle:

1

h (t) = Ah(t) + Bx(t) (1)

y(t) = Ch(t) + Dx(t) (2)

In this context, h(t) denotes the current state variable, A
signifies the state transition matrix, x(f) represents the input
control variable, and B indicates the impact of the control
variable on the state variable (26). Furthermore, y(f) denotes the
system output, while C signifies the influence of the current state
variable on the output. The state and output equations imply that
the state at time step ¢ is predicted from the preceding state. By
incorporating past information in the sequence and the input from
the prior state, the system’s future states can be anticipated. The A
state transition matrix plays a crucial role in updating the sequence
state by incorporating skip connections. These connections directly
combine the previous input with the output sequence, thereby
improving feature extraction. To tackle the challenge of context
sequence dependencies, SSM utilizes Hierarchical Positional
Pointers (HiPPO) for long-range dependencies. By employing
function approximation, SSM achieves the optimal solution (27)
of the matrix A, enabling the retention of a more extensive
historical record.

Selection Mechanism: The conventional SSM model excels in
processing structured input data. In contrast, Mamba introduces a
selective mechanism that parameterize the SSM input. This
mechanism selectively compresses historical data, filters out
extraneous 18 information, and preserves essential long-term
memory. Consequently, Mamba addresses the challenge faced by
traditional models in managing fluctuations or disorder in input
sequences, thereby ensuring that parameters influencing sequence
interactions adapt to the input dynamics. Specifically, a new
learnable parameter step size A represents the stage resolution,
sampling the continuous input signal over time to obtain discrete
output, which is realized by solving the ordinary differential
Equation 2 and performing a direct discretization operation.
Then, by sampling with step size A (i.e., drlg*‘ =A)), h(t,) can be
discretized by Equation 4.

b
h(ty) = @7 n(t,) + A1) /( B(Du(r)e " dr - (3)
t}
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i=a

b-1
hb = eA(AaJr'-'*Ab—l) ha + EBiuieA(Aa+.,,+Ay)Ai> ( (4)

In addition, performing zero-order hold processing on
parameters A, B to obtain A = exp (AA), B = (AA)™ (exp (AA) -
I)AB, ultimately converting the continuous SSM to a discrete SSM,
thus updating Equations 1 and 2 to 3 and 4.

hk = Ahk—l + Bxk (5)

Yk = Chy (6)

In contrast to the fixed spacing between input and output elements
in conventional copy tasks, selective copying involves adjusting token
positions based on content-specific reasoning to eliminate extraneous
information. As illustrated in Equation 7, this process incorporates an
additional linear layer in each matrix computation to selectively filter
input control and state variables, thereby enhancing reasoning
efficiency and augmenting data throughput. Enhancement of the B
matrix affecting input, the C matrix influencing state, and the A time-
size parameter enables the model to discern the content of individual
tokens, which represent the smallest meaningful units understood and
generated by the model. The dimensions of B, C and A can be extended
by incorporating functions sp(x), sc(x) and sx(x). The introduction of
the selection mechanism addresses the limitation of SSM in screening
signals across time.

sg(x) = Lineary(x), sc(x) = Lineary(x),

sa(x) = Linearp(x), T = softplus

Hardware-optimized algorithm

The Mamba algorithm utilizes a multi-threaded parallel scanning
approach that leverages the associative law for executing out-of-order
computations and aggregating outcomes. In this method, each
sequence involves updating the state H; according to Equation 8,
where it is computed by multiplying the previous state with a matrix A
and adding the current input X; multipied by B. The parallel scanning
process integrates segmental sequence computation and iteration to
achieve its objectives.

H; = AH, , + BX, 8)

Notably, the cyclic convolution mode enables bypassing the
initial fixed state (B, L, D, N), leading to the utilization of a more
efficient 3a convolution kernel (B, L, D) and significantly enhancing
computational performance.

The state H; is exclusively operational within the memory
hierarchy. To mitigate memory bandwidth constraints, the kernel
fusion technique is employed to diminish GPU memory occupancy,
thereby substantially enhancing training velocity. The utilization of
Flash Attention technology alters the computation outcomes
sequentially inscribed in DROM to batch writing from DRAM,
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TABLE 1 Introduction of dataset.

Case BUSI BUS-BRA
Number of Images 780 1875
Benign 437 1268
Malignant 210 607
Normal 133 -
Annotation Masks and BI-RADS
Information Masks classification
Dataset Characteristics Smaller Larger, suited for extensive

training

thereby curtailing the frequency of redundant read and write
operations (28). Consequently, is substitutedfor the initial (A, B)
with a scale of (B,L,D,N) and fed into the high-speed Static
Random-Access Memory (SRAM). To mitigate the need for storing
intermediate states during backpropagation, the utilization of
recomputation technology is imperative. This approach aims to
minimize memory usage by recalculating intermediate states during
the backward pass, rather than storing them when loading input from
High Bandwidth Memory (HBM) to SRAM. By implementing this
technique, the selective scanning layer can achieve a level of memory
efficiency akin to that of the high-speed attention Transformer.

3 Data processing

The study leveraged data from two publicly available datasets:
BUSI (29) and BUS-BRA (30). The BUSI dataset comprises breast
ultrasound images and their corresponding label images, collected
from 600 women aged 25 to 75 in 2018. Each original image is
paired with a tumor image (mask), with benign and malignant
samples typically featuring one or two lesions. As a result, the labels
outlining the lesion areas may require overlapping to consolidate
multiple lesions into a single label. The BUS-BRA dataset includes
1875 anonymized breast ultrasound images from 1064 patients,
with 722 benign and 342 malignant tumors. It provides BI-RADS
assessments, manual segmentations, and 5- and 10-fold cross-
validation partitions for standardized evaluation of CAD systems.
The detailed information of the dataset is shown in Table 1.

Adequate data is essential for effectively training deep learning
networks to prevent underfitting and subpar classification
performance (31). To bolster model robustness, a substantial
volume of high-quality datasets is necessary (32). However,
obtaining medical image data is intricate, necessitating the
expansion of existing public datasets through data augmentation
techniques. In our approach, we employ online augmentation,
randomly rotating and mirror-flipping each image and its
corresponding label in the dataset to enhance the model’s
generalization capabilities. Furthermore, we enhance image quality
by applying linear transformations to address the indistinct edges
characteristic of ultrasound images in the dataset in function (9), thus
suppressing the Hausdorff dimension inflation caused by ultrasonic
speckle noise. Because the scanning position varies across breasts, the
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collected ultrasound images exhibit inconsistent sharpness and
brightness. We therefore perform dynamic contrast normalization
as defined in Equation 9: the gray-level histogram of each image is
first computed, its intensity bins are used to derive an adaptive
weight, and the image contrast is adjusted accordingly, yielding a
standardized dataset.

O(,j) = axI(i,j) + b 0<i<HO0<j<W 9)

Here, H and W denote the height and width of the input image,
I(i,f) represents a pixel point in the input image, O(i,j) for the output
image; by adjusting the size of parameters a,b to achieve
transformation of the image grayscale range, thereby adjusting the
image contrast.

4 Research on ultrasound breast
tumor image segmentation based on
mamba architecture

This study integrates the Mamba model with different
segmentation network architectures to enhance the performance of
medical image segmentation. By incorporating the VSS block featuring
the Mamba model into diverse segmentation networks, improvements
in segmentation accuracy are achieved. Evaluation on a dataset and
comparison of segmentation outcomes of the fused models
demonstrate that the integration of the Mamba structure accelerates
computation while preserving long-term data information.

4.1 Analysis of the VMamba block

Figure 1 illustrates the architecture of the VMamba block,
comprising an H3 block and a gated MLP. The H3 block
embodies a selective SSM (independent sequence transformation)
state-space model. Simplifying the H3 structure involves
amalgamating linear attention and MLP blocks, stacking them
uniformly, and enabling controlled expansion of the model
dimension. The Mamba architecture is constructed by iteratively
replicating this block, incorporating residual connections and
standard normalization interchangeably. To mitigate gradient
vanishing, a residual term is introduced in conjunction with the
gated MLP. The VMamba block is limited to extracting features
from semantic data like text and cannot handle image data. To
address this limitation, Yue et al. (33) substituted the S6 module in
the VMamba block with the SS2D module, which is designed to
process image data using the VSS block. This modification resulted
in the creation of the VSS block.

Following layer normalization, the VSS block comprises two
branches. One branch employs a 3x3 depthwise convolutional layer
for feature extraction. Initially, the input undergoes processing in a
linear layer, a depthwise separable convolution, and an activation
function before entering the two-dimensional selective scanning
(SS2D) module for further feature extraction. Subsequently, feature
normalization is applied, followed by element-wise multiplication with
the output from the alternate branch to merge the pathways. A linear
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FIGURE 1

Structures of the Mamba block (left), the Vanilla VSS block (middle), and the VMamba (VSS) block.

layer is then utilized to blend the features, which are combined with a
residual connection to yield the VSS module output. The second
branch includes a linear mapping layer followed by a SiLU activation
layer to compute the multiplicative gating signal. Notably, the key
distinction from the standard VSS block lies in replacing the S6 module
with the SS2D module, enabling adaptive selective scanning for 2D
visual data. This design choice opts for a more compact structure
without the fully connected phase, resulting in denser stack blocks
within the same depth constraints.

4.2 Construction of the VM-UNet++ model

Figure 2 illustrates the architecture of VM-UNet++. This design
integrates the U-Net framework with the VSS block to construct the
encoder and decoder components. The U-Net features a
symmetrical U-shaped configuration comprising an encoder for
feature extraction, a decoder for feature fusion, and skip
connections to mitigate gradient vanishing (15). Within the
decoder’s upsampling phase, skip connections are employed post
each convolution to link with the downsampled encoder features at
the corresponding level and lower-level features, thereby
diminishing gradient vanishing and preserving more spatial detail
features. The VM-UNet++ configuration encompasses a patch
embedding layer, an encoder, a decoder, a final projection layer,
and skip connections. Initially, the input image is transformed into
a one-dimensional sequence of H/4xW/4xC via the patch and
linear embedding layers. The encoder incorporates multiple VSS
blocks and patch merging layers to extract token features, diminish
height and width, and augment dimensionality (34). The decoder
mirrors the encoder’s structure, with the patch merging layer
substituted by a patch expansion layer to enhance height and
width while reducing dimensionality, thereby generating outputs
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with consistent feature sizes. Ultimately, the linear projection layer
restores the channel count to align with the input resolution. A
densely connected network is introduced during the upsampling
phase, where the convolution output of the preceding layer is added
to each subsequent layer, forming local Unet networks within each
segment. This approach fuses low-resolution features from
upsampling with high-resolution features from downsampling to
retain both spatial detail features and global information. The
densely connected structure of the VM-UNet++ model facilitates
straightforward network depth augmentation to bolster learning
capacity during construction. Moreover, it permits a moderate
depth reduction through network pruning strategies without
compromising the original network architecture.

4.3 Construction of Deep-VMamba

DeepLabV3+ comprises an encoder and a decoder,
incorporating Atrous convolution, depthwise separable
convolution, Atrous Spatial Pyramid Pooling (ASPP), and fully
convolutional networks (31). As illustrated in Figure 3, this study
integrates the Mamba structure into the DeepLabV3+ architecture.
The VMamba block, fused with the encoder output of DeepLabV3
+, enhances the delineation of tumor lesions in ultrasound breast
images by capturing finer details and edge information. The
incorporation of the VMamba block supplements global
information to the original DeepLabV3+ segmentation, thereby
expanding the network’s receptive field without compromising
feature retention, facilitating more comprehensive malignant
tumor segmentation. Additionally, the encoder segment of
DeepLabV3+ encompasses a complete feature extraction and
sampling branch, preserving all feature extraction capabilities
while augmenting the model’s proficiency in feature extraction
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from images and processing extended sequences, without
compromising its original functionality.

4.4 Construction of the SAM-VMamba
model

The Segment Anything Model (SAM) model is tailored for a
novel image segmentation assignment, trained on a dataset of 11
million images with over one billion masks. Moreover, SAM can
segment images based on various prompts such as points, boxes,
and text, without the need for retraining on specific datasets. Its
efficient design and training facilitate zero shot transfer to new
image distributions and tasks, which has garnered widespread
attention. For instance, Ma and Wang et al. (35) proposed
MedSAM for general medical image segmentation. This model,
trained on a meticulously constructed dataset, is capable of
achieving desirable performance. However, the limited scale of
the assembled dataset and the modality imbalance issue restrict
MedSAM’s performance on ultrasound images. The MSA method
proposed by Wu et al. (36) significantly enhances image
segmentation performance by freezing the pre-trained parameters
of SAM and inserting adapter modules at specific locations. As
shown in Figure 4, the SAM model comprises an image encoder, a
prompt encoder, and a mask decoder, the SAM model employs a
prompting approach to segment user-specified points. Users can
provide prompt information through user-defined points,
bounding boxes, and randomly circled regions. Furthermore, free-
form text prompts are utilized to present initial results. Notably, the
prompt encoder of the SAM model can effectively segment desired
objects based on user prompts, thereby enabling targeted area
segmentation. For the segmentation of breast ultrasound images,
Tu et al. (37) proposed an innovative SAM adapter (BUSSAM),
which migrates the SAM framework to the field of breast ultrasound
image segmentation through adaptation techniques, and validated
its feasibility and effectiveness.

Although the SAM demonstrates evident effectiveness for the
segmentation of the vast majority of natural images, it faces
challenges when dealing with fine medical images due to the
inherent low resolution and complexity of medical imaging, leading
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to suboptimal performance in zero-shot segmentation scenarios.
Therefore, few-shot training becomes crucial for achieving superior
performance in practical applications. Moreover, considering the
limitations of SAM in global attention, our study incorporates the
VMamba block into the SAM model framework to enhance its
capabilities. As shown in Figure 5, the VMamba block, situated
alongside the ViT within the SAM image encoder, facilitates the
processing of extended input sequence data for a more
comprehensive contextual understanding. Illustrated in Figure 5, the
model comprises an image encoder, a prompt encoder, and a mask
decoder. Following the Patch Embedding step in the image encoder,
the VMamba block operates in parallel to convert the upper layer’s
output tokens into a linear vector with long-range memory. This vector
is then fused with the Transformer block output and subjected to two
convolutions (Neck layer) to generate the Image Embedding, which
subsequently serves as input for the mask decoder.

The enhanced comprehension of extended sequences by the
Mamba model enables SAM-VMamba to establish improved global
connections and achieve enhanced segmentation performance.
Additionally, the integration of a selective mechanism and hardware-
aware algorithm in SAM-VMamba expedites model training and
implementation without incurring additional time costs, thereby
substantially decreasing the time and resources needed for training
deep segmentation models. Moreover, by integrating the generalization
and pre-training capabilities of the SAM model, the SAM-VMamba
model is able to achieve accurate segmentation effects with only a small
number of breast ultrasound image training samples.

5 Experimental results and analysis
5.1 Experimental environment

The model proposed in our study is deployed and trained on the
RTX A6000 GPU, with all experiments conducted using the same
hardware device. The experiments utilize the PyTorch 2.2.0 deep
learning framework and Python 3.11.5 programming language,
with GPU computation supported by the CUDA 12.2
architecture. The batch size is set to 24, with a maximum of 100
training epochs, and the AdamW optimizer is employed in
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TABLE 2 Parameter table on the 5122 image.

10.3389/fonc.2025.1672274

Model #param FLOPs Throughput Train throughput Total mult-adds
Unet 24.4M 31.3G 75.38 57.69 31.26
Unet++ 26.1M 73.7G 71.12 33.72 73.53
DeepLabV3+ 22.4M 31.7G 73.71 58.44 31.54
VM-UNet 27.4M 164G 48.87 25.46 310.02
SAM-Med2D 221.9M 303.5G 21.28 24.10 259.31
VM-UNet++ 27.4M 272G 47.03 3027 443.97
Deep-VMamba 27.8M 121.2G 64.15 46.90 4328
SAM-VMamba 236.5M 259.8G 27.73 3535 303.26

conjunction with the CosineAnnealingLR learning rate scheduling
strategy for model optimization. Additionally, the proposed SAM-
VMamba network is initialized using the pre-trained weights of
SAM’s ViT-B.

5.2 Evaluation indicators

The Dice Coefficient (DICE) metric assesses model
performance in segmentation tasks by quantifying the overlap
between predicted and ground-truth regions. In medical image
analysis, the DICE coefficient is commonly employed to evaluate
neural network models in tasks like lesion detection and tissue
segmentation. The formula for calculating the DICE coefficient is
defined by Equation 10.

2|TP|

DICE=———"———
2[TP| + |FP| + |EN]

(10)

The MIoU metric assesses the correspondence between
predicted outcomes and true labels in semantic segmentation
tasks. It is computed as the mean of the Intersection over Union
(IoU) for individual categories. IoU represents the ratio of the
intersection to the union of predicted and actual values, reflecting
the degree of overlap. A higher IoU signifies improved
segmentation accuracy, indicating a greater overlap between
areas. The calculation is given by Equation 11.

|TP|

ToU=——1—
% Z1TP| + [FP| + |EN|

(63))
Precision is defined as the proportion of pixels that are correctly

identified as the true lesion area. It represents the ratio of true

positive pixels to the sum of true positive and false positive pixels,

| 7P|
[TP[+[FP[

correctly identified image pixels, that is, the ratio of breast tumor

expressed as: Accuracy represents the proportion of
and non-breast tumor areas to the total number of pixels (mask),
expressed as: %. Recall, also known as the sensitivity, is the
proportion of the actual lesion area that is identified in the image. It

represents the size of the true positive cases relative to the entire
|TP|

lesion area, expressed as: TTPRIENT:

Frontiers in Oncology

5.3 Experimental results

Table 2 summarizes the training hyper-parameters and
computational performance of each model. Where, throughput
denotes the maximum number of training samples the model can
process per second, while total multiply-adds signify the computational
burden of the model during a single forward propagation. The
exceptional long-sequence processing capabilities of Mamba are
confirmed through an assessment of the computational efficiency of
output images. This evaluation involves comparing parameters,
processes, and throughput during both training and inference to
gauge generalization performance. Results indicate that models
incorporating Mamba exhibit consistent performance across various
input image sizes. For instance, at an input resolution of 512 x 512,
Unet++ achieves the highest throughput among baseline models, while
DeepLabV3+ demonstrates the highest throughput per epoch during
training. Despite higher computational load compared to baseline
models at the same input size, the integration of the Mamba
structure allows for increased throughput capacity, enabling the
retention and processing of longer data sequences, thereby enhancing
comprehensive image data processing. Moreover, while the integrated
models maintain relatively high inference speeds (higher throughput
than baseline models) at a resolution of 512x512, their computational
load escalates significantly, surpassing that of baseline models and
indicating limited generalization capability. In terms of computational
efficiency, current SSM-based vision models typically exhibit superior
throughput only with large-scale inputs and high resolutions.

Based on Tables 3 and 4, it is evident that traditional models do
not achieve highly accurate segmentation of ultrasonic breast tumor
images. The Unet model, for instance, exhibits relatively low
performance with Dice coefficients of 81.92% and 82.10%, and
IoU values of 69.53% and 73.52% across the two datasets. In
contrast, models incorporating the VMamba block demonstrate a
significant improvement in segmentation metrics compared to their
original counterparts. Notably, the SAM-VMamba model, which
integrates the VMamba block, achieves the highest performance
with Dice scores of 90.62% and 90.25%, and IoU values of 82.55%
and 82.54%. This improvement can be attributed to the inherent
challenges posed by breast ultrasound images, characterized by low
clarity and predominantly dark tones, leading to a diminished
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TABLE 3 Presents a comparative evaluation of the segmentation outcomes of the models on BUSI.

Model DICE(%) loU(%) Precision(%) Accuray(%) Recall(%)
Unet 81.92 69.53 86.33 97.78 7853
Unet++ 8276 70.81 86.98 97.81 7932
DeepLabV3+ 83.61 7197 88.05 97.92 79.74
VM-UNet 83.56 74.13 84.58 97.60 84.43
SAM-Med2D 89.13 81.16 89.45 98.56 87.43
VM-UNet++ 84.89 75.59 86.57 97.99 87.61
Deep-VMamba 8424 7124 88.26 97.84 79.21
SAM-VMamba 90.62 82.55 88.44 98.08 92.05

signal-to-noise ratio. Given that breast tumors occupy a small  the distinctive prompt encoder of SAM enables precise regional
portion of the image, there is a risk of lesion oversight and  segmentation of images, enhancing its practical utility by eliminating
misjudgment. Furthermore, the indistinct boundary between  the need to process redundant image components.
breast tumors and normal tissues, coupled with blurred lesion Figures 9a, b depict the cumulative distribution of prediction effects
edges lacking distinctive features against the background, for each model based on 300 segmentation predictions of breast
contributes to reduced segmentation accuracy. Moreover, the  ultrasound images. The segmentation outcomes of conventional
uniform grayscale distribution in the images results in minimal  models such as U-Net predominantly cluster around 0.8 for Dice
variations in pixel intensities, thereby compromising texture and  and 0.7 for IoU. The integration of the Mamba model notably
detail resolution. However, the integration of Mamba facilitates the =~ enhances the overall segmentation performance, yielding higher
capture of prolonged sequential information, enabling more  accuracy metrics compared to the baseline models. Particularly
comprehensive breast tumor segmentation and enhanced  noteworthy is the superior segmentation efficacy of the SAM model
edge delineation. surpassing that of its counterparts. The SAM model demonstrates
Figures 6 and 7 visualize the actual segmentation results of each  heightened segmentation accuracy and data concentration, indicative
model on breast tumors. Traditional models exhibit poor performance  of its robust stability. The primary reason lies in the prompt encoder
in segmentation due to the limitations of their structure. The pooling  mechanism of the SAM model and its pretraining on large-scale
layers and downsampling operations used in network training result in ~ datasets, which enable superior adaptation and handling of out-of-
the loss of partial information as the network depth increases and size ~ domain datasets. In contrast, baseline models suffer from a substantial
decreases. In contrast, during upsampling, only a basic addition  loss distance between their initialized weights and the optimal solution,
operation is conducted on high-resolution images from the  requiring large sample sizes and extensive iterations to reduce this gap,
downsampling layer, leading to the loss of crucial “deep-layer”  thereby leading to unstable extrapolation in prediction distributions.
feature information. However, Mamba, characterized by its capacity =~ Moreover, models augmented with the Mamba structure further
for ultra-long sequence processing and memory within the integrated ~ enhance the multi-scale spatial decomposition of breast tumor
model, preserves more spatial details, thereby yielding superior  images and the modeling of intra-scale feature dependencies, thereby
segmentation outcomes. SAM-VMamba demonstrates superior facilitating the extraction of tumors with varying shapes and types.
performance with small-sample data due to its integration of the The Figures 10a, b illustrates notable enhancement in the model’s
SAM segmentation model. Furthermore, as illustrated in Figure 8,  performance with the integration of the Mamba structure compared to

TABLE 4 Presents a comparative evaluation of the segmentation outcomes of the models on BUS-BRA.

Model DICE (%) loU(%) Precision(%) Accuray(%) Recall(%)
Unet 82.10 73.52 87.30 97.51 84.27
Unet++ 84.88 76.28 87.02 97.43 85.71
DeepLabV3+ 86.43 77.98 87.50 97.74 88.24
VM-UNet 85.69 77.19 87.95 97.59 86.48
SAM-Med2D 88.68 80.05 97.49 98.35 81.76
VM-UNet++ 86.35 78.01 88.95 97.63 86.61
Deep-VMamba 87.16 79.01 87.82 97.82 88.99
SAM-VMamba 90.25 82.54 96.19 98.58 85.43
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FIGURE 5
Structure of the SAM-VMamba model

the original model. Specifically, the incorporation of this structure
significantly improves the segmentation performance of the model on
breast ultrasound images with long sequences. With an increase in the
number of training iterations, conventional models like Unet exhibit
some degree of enhancement. However, the integrated Mamba model
surpasses the performance of individual traditional models in overall
improvement. Particularly noteworthy is the superior segmentation
performance of the SAM model compared to other models, attributed
to its pre-training on a large dataset of millions of images. This model
requires only a limited number of training epochs to achieve a stable
and optimal performance level.

Figure 11 presents the performance of all models under few-sample
testing conditions. Findings indicate that when trained on a small

Original Image  Original Mask Unet++ VM-UNet

Malignant

Benign

Normal

FIGURE 6
Comparison of image segmentation effects on the BUSI dataset
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dataset, the model incorporating VMamba blocks generally
outperforms the baseline model in segmentation accuracy. The
primary reason is that breast tumors exhibit a relatively low signal-
to-noise ratio and indistinct features, which forces baseline models to
rely on large sample averaging to suppress noise. In contrast, Mamba
compresses two-dimensional spatial sequences into fixed-dimensional
state vectors, inherently embedding a Gaussian-Markov smoothing
mechanism that provides natural denoising. These advantages
collectively enable the Mamba-enhanced model to achieve an
average improvement of 9.12% in the IoU metric. Remarkably,
despite being pretrained on extensive data, the SAM model exhibits
sustained high segmentation performance in the context of limited-
sample training, maintaining an IoU value of approximately 80%.

SAM-Med2D
(1 point)

SAM-VMamba

VM-UNet++ i
(1 point)

DeepLabV3+ Deep-VMamba
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(1 point) (1 point)

FIGURE 7
Comparison of image segmentation effects on the BUS-BRA dataset.

revealed the superior performance of the model incorporating the
VMamba block across various evaluation metrics, including the
DICE coefficient, MIoU, Precision, and Recall. Benefiting from the
global attention capability of Mamba, the enhanced model is able to
simultaneously capture multi-scale global dependencies and better
focus on the details of breast tumor segmentation. Experimental

6 Conclusions

In this investigation, we enhanced the image segmentation
performance of the original model for breast tumor ultrasound
images by integrating the Mamba structure. Comparative analysis
with conventional models like Unet, DeepLabV3+, and Unet++

Original Mask 1 point prompt 2 point prompt local box prompt  global box

Original Image prompt

Malignant

Benign

FIGURE 8
Segmentation results of SAM-VMamba
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Comparison of segmentation accuracies among different models trained with a low number of iterations. (a) loU, (b) Dice.
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Comparison of segmentation accuracy (loU) of each model on small samples.

results show that incorporating Mamba into the model yields
average improvements of 3.07% and 5.11% in Dice and IoU on
the BUSI dataset, and 2.89% and 3.26% on the BUS-BRA dataset.
Notably, the SAM-VMamba achieved the highest segmentation
accuracy and quality, with Dice scores of 90.25% and 90.62% on
the BUSI and BUS-BRA datasets. These outcomes signify the
model’s success in accurately localizing and distinguishing
boundaries of breast tumors.
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