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Objective: Timely diagnosis of early gastric cancer (EGC) is significantly

associated with patient prognosis, but traditional endoscopic diagnosis relies

on the physician’s experience and has certain limitations. This study

comprehensively evaluated the accuracy of artificial intelligence (AI) in the

diagnosis of EGC through meta-analysis and compared the performance ability

of different AI models.

Methods: PubMed, Embase, Web of Science Cochrane Library, and China

National Knowledge Infrastructure databases were systematically searched

(established until January 2025), and studies evaluating the accuracy of AI

models in the diagnosis of EGC were included, requiring reporting of sensitivity

and specificity, or providing data for calculating these indicators. Data were

extracted independently by two reviewers, and sensitivity and specificity were

pooled using a bivariate random effects model, and subgroup analysis was

performed by AI model type. The primary outcome measures were the

summary sensitivity, specificity, and area under the curve (AUC) of all AI models.

Results: Of 26 studies involving 43,088 patients were included. Meta-analysis

results showed that the summary sensitivity of the AI model was 0.90 (95%CI:

0.87-0.93), the specificity was 0.92 (95%CI: 0.87-0.95), and the AUC was 0.96

(95%CI: 0.94-0.98), respectively. Subgroup analysis showed that the sensitivity of

deep convolutional neural network (DCNN) was higher than that of traditional

CNN (0.94 vs 0.89), while the specificity was almost equivalent (0.91 vs 0.91). In

dynamic video verification, the AUC of the AI model reached 0.98, which was

significantly better than the clinician level (AUC 0.85-0.90).

Conclusion: The AI model, especially the DCNN architecture, showed excellent

accuracy in the diagnosis of EGC. Future research should focus on the dynamic

effect of the model, improvement of interpretability, and multicenter

prospective validation.
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Introduction

Gastric cancer is one of the malignant tumors with high

morbidity and mortality worldwide (1). Its early diagnosis is crucial

to improving the prognosis of patients. Early gastric cancer (EGC)

refers to cancer confined to the gastric mucosa or submucosal layer

(2). If diagnosed in time and treated with minimally invasive

treatments such as endoscopic submucosal dissection (ESD), the 5-

year survival rate of patients can exceed 70%, and the medical burden

is also lower than that of advanced gastric cancer (3, 4). However, the

endoscopic diagnosis of EGC faces huge challenges: its lesions often

show subtle color changes on the mucosal surface, abnormal

microvascular structure or mild protrusion/depression (5, 6). These

morphological features are easily overlooked, especially in primary

medical institutions or among junior endoscopists, and the

misdiagnosis rate can over 20% (7, 8).

In recent years, artificial intelligence (AI) technology has

demonstrated significant advantages in the field of endoscopic image

analysis through breakthroughs in deep learning (DL) and generic

convolutional neural networks (CNN) (9, 10). Studies have shown that

AI can automatically extract the texture, morphology and

microvascular pattern features of lesions to achieve accurate

identification of EGC (9, 10). For example, the EfficientNetB7 model

has an accuracy rate of 97.88% in diagnosing early gastric cancer in

white light endoscopic images, significantly exceeding the level of

traditional physicians (11). In contrast, a 2021 systematic review and

meta-analysis by Jiang et al. (12), analyzed 16 studies and found that

AI-assisted endoscopic detection of EGC achieved a pooled sensitivity

of 0.86, specificity of 0.93, and an area under curve (AUC) of 0.96. But

its data only covered August 2022, and did not systematically compare

the differences between different model architectures.

With the rapid iteration of AI technology, new algorithms such

as deep convolutional neural networks (DCNN), an advanced CNN

variant with deeper layers for hierarchical feature extraction, unlike

generic CNNs with shallower architectures, and hybrid architecture

models (such as the HistoCell algorithm) continue to emerge (13).

DCNN differ from generic CNN by incorporating residual

connections and batch normalization, enabling better gradient

flow and performance on complex endoscopic images. Their

ability to analyze the association between pathological images and

molecular networks at the single-cell scale provides new ideas for

the very early warning of EGC (13). At the same time, the

application of dynamic endoscopic video analysis technology has

increased the detection rate of EGC through real-time quality
02
control and blind spot monitoring, and significantly improved the

number of biopsies (14–16). However, there are few major

limitations in existing studies: First, most evidence is based on

retrospective static images and lacks prospective video verification;

Second, the performance differences of different models (CNN,

DCNN, SVM) have not been quantified; Third, the sources of

publication bias and heterogeneity (such as endoscopic equipment

type, imaging technology) have not been fully explored.

Based on this, this study aims to comprehensively evaluate the

effectiveness of AI in the diagnosis of EGC through systematic

review and meta-analysis, quantify the diagnostic differences among

CNN, and non-DL models (such as SVM) through subgroup

analysis, and explore the application prospects of AI in the

diagnosis of early gastric cancer.
Methods

This study followed the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) guidelines and was registered

with PROSPERO (registration number: CRD420251003071).
Search strategy

We searched the following databases: PubMed, Embase, Web of

Science, Cochrane Library, and China National Knowledge

Infrastructure (CNKI) from inception to January 31, 2025. We

used the following keywords and their MeSH word combinations:

“artificial intelligence”, “machine learning”, “deep learning”,

“convolutional neural network”, “support vector machine”,

“random forest”, “early gastric cancer”, “endoscopy”, “diagnosis”,

and “accuracy”. The specific search formula is shown in

Supplementary Table 1. The search language was limited to

Chinese or English, and the references of the included studies and

related reviews were manually checked to supplement the

missing studies.
Inclusion and exclusion criteria

Inclusion criteria
The study aims to evaluate the performance of AI models in the

diagnosis of EGC, using endoscopic images or videos as input data.
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Provide sensitivity, specificity, or raw data that can calculate these

indicators (such as true positive, false positive, true negative, false

negative counts). Histopathological examination is used as the gold

standard for the diagnosis of EGC. The study was published in a

peer-reviewed journal and the full text is available.

Exclusion criteria
The type of AI model was not clearly stated or the diagnostic

performance indicators were not reported. The subjects were advanced

gastric cancer or other gastrointestinal diseases. Non-original research

(such as case reports, reviews, conference abstracts).
Data extraction

Two reviewers independently extracted data using a pre-designed

form. Data on study characteristics included authors, year of

publication, country, study design (prospective or retrospective), and

sample size. Patient characteristics included the number of EGC cases

and endoscope type (white light endoscopy, narrow band imaging

(NBI), etc.). For NBI, it was defined as “traditional NBI, with or without

magnification as per the primary study protocol. AI model

characteristics included model type (CNN, SVM, RF, etc.) and

training dataset size. Diagnostic performance data included

sensitivity, specificity, true positive (TP), false positive (FP), true

negative (TN), false negative (FN), and area under curve (AUC). If

data were missing, the author was contacted for supplementary

information. If there were any disagreements during the extraction

process, a third reviewer assisted in resolving them.
Quality assessment

The risk of bias and applicability of included studies were

assessed using the Quality Assessment Tool for Diagnostic

Accuracy Studies (QUADAS-2) (17). The risk of bias assessment

mainly covers four areas. In terms of patient selection, it is

determined whether patients are included continuously and

whether there is selection bias. In terms of index testing, it is

evaluated whether the implementation and validation of the AI

model are clearly described. In terms of reference standards, it is

determined whether all patients undergo histopathological

examination. In terms of process and time, it is determined

whether the time interval between the test and the reference

standard is reasonable. The risk of each study is divided into

“low”, “high” or “unclear”.
Statistical analysis

The pooled analysis was performed using the Meta Disc 2.0 tool

(18, 19). For sensitivity and specificity, 95% confidence intervals (CI)

were calculated, and summary receiver operating characteristic curves
Frontiers in Oncology 03
(SROC) were drawn, and AUC was reported. Subgroup analysis was

divided into CNN or non-CNN according to the type of AI model to

explore the impact of model architecture on diagnostic performance.

Heterogeneity was assessed using the I² statistic and the c² test.
If I²>50%, significant heterogeneity was considered, and the sources

(such as study design, sample size, endoscope type, model type)

were explored by subgroup analysis or meta-regression analysis if

possible. Publication bias was assessed using funnel plots and

Egger’s test, and p<0.05 was considered significant (20). All

analyses were completed using R software (version 4.4.3) and its

“mada” and “meta” packages. The impact of individual studies on

the overall results was assessed by excluding each study one by one

to ensure the robustness of the results. The results were considered

statistically significant at p<0.05.
Results

General information and baseline characteristics of the

included studies

A total of 26 studies (21–46) were included (Figure 1), with a

total of 39878 cases, including 18097 EGC cases (45.38%) and 21781

non-EGC cases (54.62%), covering endoscopic images and video

data (Figure 2A). The publication years spanned from 2016 to 2025.

Among them, the most studies were published in 2021, followed by

2020 and 2023. The studies mainly came from China and

Japan (Table 1).

Among the included studies, 23 retrospective studies accounted

for approximately 88.46%, while 3 studies (25, 36, 46) were

prospective (11.54%). Regarding the types of AI models, 21

studies (80.77%) utilized CNN, which included classic CNN and

their improved architectures. There were 2 SVM (7.69%) studies

(21, 22). Additionally, 1 study (44) used other models, but no details

about this model was given. For endoscopic imaging technology, 18

studies (69.23%) applied non - narrow - band imaging (Non - NBI),

which might be considered as white light endoscopy (WLI),

combined imaging (WLI + NBI), linked imaging (LCI), or video

dynamic analysis as indicated in the original text. Seven studies

(26.92%) used narrow band imaging (NBI).
QUADAS-2 quality assessment

All studies used histopathology to ensure the reliability of

diagnostic accuracy assessment (Table 2). They covered a variety

of endoscopic imaging techniques (WLI, NBI, or LCI) and AI

models (CNN, DCNN, or SVM), reflecting current research

trends. The methodological quality of the 26 studies included in

this meta-analysis was evaluated using the QUADAS-2 tool, which

assesses both risk of bias and applicability concerns across four

domains: patient selection, index test, reference standard, and flow

and timing. The results provide insight into the reliability and

generalizability of the findings.
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Risk of bias

Patient selection
Of the 26 studies, 18 (69.2%) were classified as having a low risk

of bias, while 8 (30.8%) were rated as high risk. High risk in this

domain typically stemmed from non-consecutive or non-random

patient sampling, which could introduce selection bias and

potentially overestimate diagnostic accuracy. Index Test:

Seventeen studies (65.4%) were at low risk, with 9 (34.6%) at high

risk. The elevated risk was often due to the lack of blinding of the

index test interpretation to the reference standard or the absence of

a pre-specified diagnostic threshold. Reference Standard: All 26

studies (100%) were at low risk, reflecting the consistent use of

histopathology as the gold standard, ensuring a reliable basis for

diagnostic accuracy assessment. Flow and Timing: Twenty-four

studies (92.3%) were at low risk, with 2 (7.7%) rated as unclear risk.

The unclear ratings may be attributed to insufficient details

regarding the timing between the index test and reference standard.
Frontiers in Oncology 04
Applicability concerns

Patient selection
Eighteen studies (69.2%) demonstrated low applicability

concerns, while 8 (30.8%) were at high risk. Index Test: Seventeen

studies (65.4%) were at low risk, with 9 (34.6%) exhibiting high

applicability concerns. Reference Standard: All studies (100%) were

at low risk, as histopathology was appropriately applied across all

studies, aligning well with the review question.
Overall diagnostic efficacy

Results of univariate model analysis
Overall diagnostic performance

Based on the univariate random effects model, the pooled

sensitivity of the AI model in the diagnosis of EGC was 0.91

(95% CI: 0.87–0.93), the specificity was 0.92 (95% CI: 0.87–0.95),
FIGURE 1

PRISMA flowchart.
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TABLE 1 Baseline characteristics of the included studies.

Study AI model Country
Prospective/
retrospective

Imaging Label EGC/total

Wu 2021 CNN China Prospective WLI CNN 3/194

Cho 2019 CNN Korea Prospective WLI CNN 46/172

Jun Wang 2023 GAIDS China Retrospective NBI GAIDS 38/160

Liming Zhang 2021 CNN China Retrospective WLI CNN 42/76

Kanesaka 2018 SVM Japan Retrospective NBI SVM 61/81

Lianlian Wu 2019 DCNN China Retrospective WLI_NBI DCNN 100/200

Namikawa 2020 CNN Japan Retrospective WLI_NBI CNN 100/220

Cho 2020 CNN Korea Retrospective WLI CNN 179/396

Liu 2016 SVM China Retrospective WLI SVM 130/400

Ikenoyama 2021 CNN Japan Retrospective WLI_NBI CNN 209/2940

Ishioka M 2023 CNN Japan Retrospective WLI CNN 150/315

Horiuchi 2020 CNN Japan Retrospective NBI CNN 151/258

Lan Li 2020 CNN China Retrospective NBI CNN 170/341

Yijie Zhu 2022 DCNN China Retrospective NBI DCNN 208/1193

(Continued)
F
rontiers in Oncology
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FIGURE 2

Univariate model analysis results of AI model diagnostic performance. (A) summary result of pooled data. (B) Forest plot of sensitivity. (C) Forest plot
of specificity. (D) SROC curve.
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TABLE 1 Continued

Study AI model Country
Prospective/
retrospective

Imaging Label EGC/total

Zhijie Wang 2018 DCNN China Retrospective WLI DCNN 232/710

Zhang 2021 CNN China Retrospective WLI CNN 333/644

Yoon 2019 CNN Korea Retrospective WLI CNN 330/660

Shibata 2020 CNN Japan Retrospective WLI CNN 533/1741

Jing Wang 2021 DCNN China Retrospective WLI DCNN 483/1539

Hongbo Wu 2021 CNN China Retrospective WLI_Video CNN 507/1329

Jing Jin 2023 CNN China Retrospective WLI_NBI CNN 534/892

Hiroya Ueyama 2021 CNN Japan Retrospective NBI CNN 1430/2300

Sakai 2018 CNN Japan Retrospective WLI CNN 4653/9650

Tang 2020 CNN China Retrospective WLI CNN 4810/10930

Feng J 2025 DCNN China Prospective WLI_NBI_Video DCNN 604/1289

Zhao Y 2024 CNN China Retrospective WLI_LCI CNN 55/110
F
rontiers in Oncology
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EGC, early gastric cancer; CNN, Convolutional Neural Network; GAIDS, Gastrointestinal Artificial Intelligence Diagnostic System; SVM, Support Vector Machine; DCNN, Deep Convolutional
Neural Network; WLI, White light imaging; NBI, Narrow Band Imaging; LCI, Linked Color Imaging.
TABLE 2 QUADAS-2 quality assessment results of included studies.

Study

Risk of bias Applicability concerns

Patient
selection

Index
test

Reference
standard

Flow and
timing

Patient
selection

Index
test

Reference
standard

Wu 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Cho 2019 High Risk High Risk Low Risk Unclear Risk High Risk High Risk Low Risk

Jun Wang 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Liming Zhang
2021

Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Zhao Y 2024 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Kanesaka 2018 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Feng J 2025 High Risk High Risk Low Risk Unclear Risk High Risk High Risk Low Risk

Lianlian Wu
2019

Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Namikawa 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Cho 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Liu 2016 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Ikenoyama 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Ishioka M 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Horiuchi 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Lan Li 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Yijie Zhu 2022 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Zhijie Wang
2018

Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Zhang 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

(Continued)
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and the diagnostic odds ratio (DOR) was 104.61 (95% CI: 56.01–

195.39) (Table 3). The positive likelihood ratio (LR+) was 10.81

(95% CI: 6.88–17.00), and the negative likelihood ratio (LR-) was

0.10 (95% CI: 0.07–0.15), indicating that AI has a high

discriminatory ability in the diagnosis of EGC.

Sensitivity and specificity analysis

The heterogeneity in sensitivity was 97.1%, indicating that there

was extremely high heterogeneity among the studies (p < 0.01). The

sensitivity of the included studies ranged from 0.28 to 1.00. Of note,

studies with small samples may have fluctuating results due to

insufficient data (e.g. Wu 2021, sample size 3, sensitivity 1.00, 95%

CI: 0.29–1.00). The forest plot of sensitivity showed (Figure 2B) that

the summary estimate was 0.90 (95% CI: 0.86–0.93).

The specific heterogeneity I² value was 97.8%, and the specificity

ranged from 0.39 to 1.00. In the specificity forest plot (Figure 2C),

the summary estimate of specificity of each study was 0.90 (95% CI:

0.86–0.94). High-specificity studies (specificity ≥ 0.90) accounted

for 57.69% (15/26), but Zhang 2021 (specificity 0.39) became an

outlier due to severe data imbalance (EGC accounted for only

22.6%). In addition, Hiroya Ueyama 2021 achieved specificity of

1.00, suggesting that selection bias may have a certain impact on

model performance. The SROC curve showed that the summary

AUC was 0.95, which was close to perfect diagnostic

performance (Figure 2D).
Results of bivariate model analysis

Based on the bivariate random effects model, the summary

sensitivity and specificity of the AI model in the diagnosis of EGC

were 0.90 (95% CI: 0.86–0.93) and 0.91 (95% CI: 0.86–0.94),

respectively, and the diagnostic odds ratio (DOR) was 83.55 (95%

CI: 41.61–167.75), indicating that AI has a high ability to

distinguish EGC from non-EGC. The positive likelihood ratio (LR

+) was 9.41 (95% CI: 6.15–14.40), indicating that AI positive results

have significant predictive value for EGC; the negative likelihood
Frontiers in Oncology 07
ratio (LR-) was 0.11 (95% CI: 0.08–0.16), indicating that AI negative

results can effectively exclude EGC (Table 3).

The sensitivity forest plot showed that the sensitivity varied

significantly among the studies (I² = 83.1%, p < 0.01), ranging from

0.16 to 1.00 (Figure 3A). Studies with higher sensitivity often used

high-quality endoscopic images (such as NBI) and advanced AI

models (such as DCNN), while studies with wider sensitivity range

may have small sample sizes.

In the specificity forest plot, the specificity of each study ranged

from 0.39 to 1.00, and the heterogeneity was also significant (I² =

93.1%, p < 0.01) (Figure 3B). Studies with lower specificity may have

data imbalance problems, resulting in a decrease in the model’s

ability to identify non-EGC cases.
ROC and model consistency

The ROC plane showed that the distribution of individual

studies was mainly located in the upper left of the figure

(Figure 3C). The SROC curve showed that the summary AUC

was 0.96 (95% CI: 0.94–0.98), which was close to perfect diagnostic

performance (Figure 4A). Most of the research points were

distributed in the upper left of the curve, indicating that high

sensitivity and specificity coexist. However, the prediction ellipse

covered a wide range (specificity 0.70–1.00), suggesting that the

performance fluctuations of some studies may be affected by

differences in AI models (Figure 4B), study type (Figure 4C) or

endoscopic image types (such as non-NBI vs. NBI, Figure 4D).
Subgroup analysis results

The subgroup analysis (Table 4) revealed distinct diagnostic

performance variations across AI models (Supplementary Figure 1),

imaging modalities (Supplementary Figure 2), and study designs

(Supplementary Figure 3). Among AI models, non-CNN

architectures demonstrated superior sensitivity (0.93 vs. 0.89) and
TABLE 2 Continued

Study

Risk of bias Applicability concerns

Patient
selection

Index
test

Reference
standard

Flow and
timing

Patient
selection

Index
test

Reference
standard

Yoon 2019 Low Risk High Risk Low Risk Low Risk Low Risk High Risk Low Risk

Shibata 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Jing Wang 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Hongbo Wu
2021

High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Jing Jin 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Hiroya Ueyama
2021

High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk

Sakai 2018 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

Tang 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
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specificity (0.96 vs. 0.90) compared to CNN, with notably higher

diagnostic odds ratios (DOR: 286.16 vs. 73.69) and positive

likelihood ratios (LR+: 21.55 vs. 8.69). However, non-CNN

models exhibited wider confidence intervals (e.g., DOR 95% CI:

29.98–2731.67), suggesting substantial heterogeneity or limited

sample reliability. For imaging techniques, NBI outperformed

non-NBI modalities in both sensitivity (0.94 vs. 0.85) and

specificity (0.94 vs. 0.87), supported by significantly elevated DOR

(243.00 vs. 39.73) and LR+ (15.00 vs. 6.75), alongside lower false-

positive rates (6.3% vs. 12.6%). Retrospective studies showed

marginally higher sensitivity (0.90 vs. 0.87) and specificity (0.91

vs. 0.90) compared to prospective designs, with improved

diagnostic accuracy metrics (DOR: 90.77 vs. 53.85; LR+: 9.77 vs.

7.85), though prospective studies displayed broader confidence

intervals (e.g., sensitivity CI span: 24.2%), reflecting potential real-

world variability.

Meta-regression analysis further quantified the differences

between subgroups and their statistical significance. Analysis by

study type revealed no significant differences in sensitivity (1.04,

95% CI 0.90–1.19, p = 0.58) or specificity (1.02, 0.90–1.16, p = 0.74)

between retrospective and prospective studies, with the global test

also showing no statistical significance (p = 0.844). Similarly,
FIGURE 3

Bivariate model analysis results of AI model diagnostic performance. (A) Forest plot of sensitivity. (B) Forest plot of specificity. (C) ROC plane.
TABLE 3 Summary results of AI model diagnostic performance.

Index
Estimated

value

95% Lower
confidence
interval

95% Upper
confidence
interval

Univariate model

Sensitivity 0.899 0.855 0.93

Specificity 0.904 0.857 0.937

DOR 83.677 45.659 153.354

LR+ 9.371 6.225 14.107

LR− 0.112 0.078 0.162

Bivariate model

Sensitivity 0.898 0.855 0.929

Specificity 0.905 0.858 0.937

DOR 83.545 41.609 167.746

LR+ 9.412 6.152 14.402

LR− 0.113 0.077 0.164
AI, artificial intelligence; DOR, Diagnostic Odds Ratio; LR+, Positive Likelihood Ratio; LR−,
Negative Likelihood Ratio.
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comparisons between AI models (CNN vs. others) showed no

significant differences in sensitivity (1.04, 0.94–1.15, p = 0.55) or

specificity (1.07, 0.98–1.16, p = 0.25), supported by a non-

significant global test (p = 0.50). However, subgroup analysis by

imaging modality demonstrated that non-NBI had significantly

lower sensitivity than NBI (0.90, 0.84–0.98, p = 0.008). Although

the difference in specificity did not reach significance (0.92, 0.86–

1.01, p = 0.09), the global test indicated a statistically significant

overall difference (p = 0.018), confirming the diagnostic superiority

of NBI. In summary, apart from imaging modality, neither study

design nor AI model significantly contributed to heterogeneity in

diagnostic performance.
Publication bias assessment

Publication bias was rigorously assessed using Egger’s

regression test, Begg’s rank correlation test, and the trim-and-fill

method. Egger’s test indicated significant small-study effects

(intercept = 3.03, p = 0.003), corroborated by Kendall’s rank

correlation test (t = 0.32, p = 0.02), revealing an asymmetric

funnel plot (Figure 5A) with a concentration of smaller studies on

the right, suggestive of publication bias where studies with larger

diagnostic odds ratios (DORs) are more likely published. The trim-

and-fill analysis imputed four missing studies (Figure 5B), reducing
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the pooled DOR from 83 to 46.997 (95% CI: 22.702–97.291), yet

retaining statistical significance (p < 0.001), thus affirming the

robustness of AI’s diagnostic advantage despite potential

overestimation. High heterogeneity (I² = 96.8%, 95% CI: 96.1%–

97.3%, p < 0.001) suggests that methodological differences, such as

variations in study design, AI model architectures, or endoscopic

imaging protocols, may further contribute to this variability.

Discussion
This study evaluated the performance of AI models in the

endoscopic diagnosis of EGC through a systematic review and

meta-analysis. The results showed that the pooled sensitivity and

specificity of the AI model were 0.91 and 0.92, respectively, and the

summary area under the curve (AUC) was 0.95, indicating that AI

had a high diagnostic accuracy in EGC detection. This result is

consistent with many studies in recent years, but by incorporating

the latest literature up to 2025, this study further verified the

potential of AI performance.

The subgroup analyses revealed critical insights into the

heterogeneity of diagnostic performance across technical and

methodological variables. The superior sensitivity and specificity

of NBI over non-NBI modalities, supported by statistically

significant meta-regression results (p = 0.018 for global

comparison), likely stem from its enhanced capability to visualize

microvascular patterns, thereby improving lesion differentiation
FIGURE 4

SROC curves of AI model diagnostic performance under bivariate model analysis. (A) overall SROC curve. (B) SROC curves comparing the AUC and
heterogeneity range of CNN and other AI models. (C) SROC curves comparing the AUC and heterogeneity range of prospective vs. retrospective
studies. (D) SROC curves comparing the AUC and heterogeneity range of different images.
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(47–49). This aligns with prior studies emphasizing NBI’s role in

reducing false-positive rates through higher quality imaging (47–

49). In contrast, the lack of significant differences between AI

models (CNN vs. others) or study designs (prospective vs.

retrospective) suggests that methodological variability, such as

data curation protocols or sample size limitations, may

overshadow inherent algorithmic advantages. For instance, the

wider confidence intervals observed in non-CNN models and

prospective studies imply potential heterogeneity in training

datasets or real-world confounding factors, which could dilute

measurable effects (50).

Notably, while non-CNN architectures showed nominally

higher DOR, their extreme confidence intervals underscore risks

of overinterpretation, possibly reflecting small-sample bias or

unaccounted covariates. Similarly, the non-significant differences

in sensitivity and specificity between retrospective and prospective

designs may indicate that retrospective studies, despite potential

selection bias, benefit from standardized data collection, whereas

prospective designs face practical challenges in controlling

clinical variables.
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With previous meta-analyses (51, 52) on the use of AI in the

diagnosis of EGC, this study showed significant differences and

continuity in methodology and depth of evidence. First, the scope of

the study was expanded to 2025, and dynamic endoscopic video data

was integrated, verifying the diagnostic potential of AI in real-time

scenarios (AUC 0.98 vs. static image AUC 0.96, data not shown), while

previous studies were mostly limited to static image analysis. Second,

this study refined the model architecture through subgroup analysis

and clarified the sensitivity difference between CNN and other models,

while previous analyses were mostly classified as “deep learning” and

failed to quantify the impact of model complexity on performance. In

addition, in response to high heterogeneity, this study used a bivariate

random effects model supplemented by meta-regression to identify

sources of heterogeneity (such as differences in endoscopic image

types), which is more robust than the fixed effects model. However,

consistent with the need for interpretability emphasized in recent

studies, this analysis still has the limitations of the “black box” model.

The high diagnostic performance of AI supports its use as an

auxiliary tool for endoscopists, especially in primary care institutions or

low-resource environments (53, 54). Dynamic video verification results

further show that AI can analyze endoscopic images in real time and
TABLE 4 Subgroup analysis results by different factors.

Parameter Estimate 95% LCI 95% UCI Estimate 95% LCI 95% UCI

AI models CNN CNN CNN Other models Other models Other models

Sensitivity 0.894 0.848 0.928 0.928 0.78 0.979

Specificity 0.897 0.846 0.933 0.957 0.83 0.99

DOR 73.694 35.896 151.292 286.158 29.977 2731.667

LR+ 8.689 5.633 13.404 21.549 4.895 94.868

LR- 0.118 0.08 0.175 0.075 0.022 0.255

FPR 0.103 0.067 0.154 0.043 0.01 0.17

Image types NBI NBI NBI Non-NBI Non-NBI Non-NBI

Sensitivity 0.942 0.902 0.966 0.852 0.784 0.901

Specificity 0.937 0.882 0.967 0.874 0.799 0.924

DOR 242.995 90.737 650.746 39.726 17.779 88.765

LR+ 15.002 7.816 28.795 6.746 4.062 11.203

LR- 0.062 0.036 0.107 0.17 0.112 0.257

FPR 0.063 0.033 0.118 0.126 0.076 0.201

Prospective/
Retrospective

Prospective Prospective Prospective Retrospective Retrospective Retrospective

Sensitivity 0.87 0.707 0.949 0.902 0.857 0.934

Specificity 0.889 0.732 0.959 0.908 0.856 0.942

DOR 53.845 9.818 295.316 90.773 42.432 194.185

LR+ 7.847 2.869 21.467 9.766 6.112 15.605

LR- 0.146 0.057 0.372 0.108 0.072 0.162

FPR 0.111 0.041 0.268 0.092 0.058 0.144
LCI, lower confidence interval; UCI, upper confidence interval; CNN, convolutional neural networks; DOR, diagnostic odds ratio; LR+, positive likelihood ratio; LR-, negative likelihood ratio;
FPR, False Positive Rate; NBI, Narrow Band Imaging.
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reduce diagnostic inconsistencies caused by differences in operator

experience. For example, In the Ueyama 2021 study (35), AI achieved

100% accuracy in recognizing EGC in NBI mode, while the average

missed diagnosis rate of clinicians was 15%–20%. However, most

current AI models still rely on retrospective static image data, and

their generalization ability in real clinical scenarios remains to be

verified. In addition, the integration of the model with existing

endoscopic workflows (such as real-time prompt systems) still

requires technical optimization. Emerging technologies like

transformer-based models offer superior attention mechanisms for

lesion detection. Multi-modal fusion enhances interpretability but

risks overfitting in small datasets. While promising, these require

robust external validation to address overfitting.

This study confirmed the significant existence of publication bias

through Egger’s test and Begg’s test. Egger’s test revealed significant

small-study effects (p=0.003), suggesting potential overestimation of AI

performance in smaller, early studies due to inflated effect sizes from

selective reporting or methodological optimism. Trim-and-fill

adjustment reduced the pooled DOR, indicating a more conservative

estimate of AI’s true diagnostic accuracy. These results indicate that this

meta-analysis may have missed some studies with negative or neutral
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results, resulting in an overestimation of the combined effect size. The

following aspects may be the reasons for the significant publication bias

(55). First, the tendency of selective publication. AI studies with high

diagnostic performance are more likely to be accepted by journals,

while negative results may not be published because they are

considered “non-innovative”. Second, quality defects in small sample

studies. Small sample studies often have methodological limitations,

and their overestimated effect sizes form an abnormal point in the

upper left corner of the funnel plot, exacerbating the asymmetry. Third,

language and database restrictions. This study only included Chinese

and English literature, and did not search preprint platforms (such as

medRxiv), which may have missed non-English studies that have not

been formally published.

Although this study controlled some heterogeneity through a

bivariate model, the following factors may affect the generalizability

of the results. First, data heterogeneity. The endoscopic devices

(such as white light endoscopy vs. NBI), sample size, and model

architecture (CNN, DCNN, SVM) included in the study were

significantly different, resulting in I² values of sensitivity and

specificity of 97.2% and 97.6%, respectively. Second, insufficient

dynamic validation. Only a small number of studies have verified
FIGURE 5

Funnel plots to detect publication bias. (A) original funnel plot; (B) funnel plot after trim-and-fill analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1670843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2025.1670843
real-time video diagnosis, and most evidence relies on retrospective

static data, which may overestimate clinical applicability. Third,

insufficient interpretability. Few AI models are “black boxes” and

lack visualization of the decision-making process, which limits

clinicians’ trust in the models. Last, challenges in real-world

deployment. Implementation of AI in real-world clinical settings

presents challenges, including variability in endoscopic equipment

across centers, which may compromise model generalizability.

Effective integration into clinical workflows demands seamless

interfaces between AI systems and endoscopes to minimize

disruption to routine practice. Additionally, interoperator

variability, such as experience, may introduce bias unless models

are retrained on diverse datasets. In the future, it is recommended to

improve the ability to identify EGC through multicenter prospective

validation, development of interpretable technology, and

multimodal technology fusion of AI with NBI, LCI and

magnifying endoscopy.
Conclusion

AI models, especially CNN-based architectures, have shown

high sensitivity and specificity in the endoscopic diagnosis of EGC

and have the potential to be used as clinical auxiliary tools.

However, their widespread application still needs to address key

issues such as heterogeneity, interpretability, and dynamic scene

adaptation. Future research should focus on prospective validation,

technical transparency, and multimodal integration to promote the

transformation of AI from experimental research to

clinical practice.
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Subgroup analysis results of different AI model diagnostic performance

(convolutional neural network (CNN) vs. other models). (A) Forest plot of

sensitivity. (B) Forest plot of specificity. (C) ROC plane.

SUPPLEMENTARY FIGURE 2

Subgroup analysis results of different AI model diagnostic performance in

terms of image types (narrow band images (NBI) vs. Non-NBI). (A) Forest plot
of sensitivity. (B) Forest plot of specificity. (C) ROC plane.

SUPPLEMENTARY FIGURE 3

Subgroup analysis results of different AI model diagnostic performance in

terms of study types (retrospective vs. prospective). (A) Forest plot of
sensitivity. (B) Forest plot of specificity. (C) ROC plane.
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T, et al. Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy
data. BMC Med Res Methodol. (2022) 22:306. doi: 10.1186/s12874-022-01788-2

19. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software
for meta-analysis of test accuracy data. BMC Med Res Methodol. (2006) 6:1–12.
doi: 10.1186/1471-2288-6-31

20. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. (2018)
74:785–94. doi: 10.1111/biom.12817

21. Liu DY, Gan T, Rao NN, Xing YW, Zheng J, Li S, et al. Identification of lesion
images from gastrointestinal endoscope based on feature extraction of combinational
methods with and without learning process. Med Image Anal. (2016) 32:281–94.
doi: 10.1016/j.media.2016.04.007

22. Kanesaka T, Lee TC, Uedo N, Lin KP, Chen HZ, Lee JY, et al. Computer-aided
diagnosis for identifying and delineating early gastric cancers in magnifying narrow-
band imaging. Gastrointest Endosc. (2018) 87:1339–44. doi: 10.1016/j.gie.2017.11.029

23. Sakai Y, Takemoto S, Hori K, Nishimura M, Ikematsu H, Yano T, et al. (2018).
Automatic detection of early gastric cancer in endoscopic images using a transferring
Frontiers in Oncology 13
convolutional neural network, in: Annual International Conference of the IEEE
Engineering in Medicine and Biology Society IEEE Engineering in Medicine and
Biology Society Annual International Conference New York, NY, USA: Institute of
Electrical and Electronics Engineers, Vol. 2018. pp. 4138–41.

24. Wang Z, Gao. J, Meng Q, Yang T, Wang Z, Chen X, et al. Artificial intelligence
based on deep learning for automatic detection of early gastric cancer. Chin J Digestive
Endoscopy. (2018) 35:551–6. doi: 10.3760/cma.j.issn.1007-5232.2018.08.004

25. Cho BJ, Bang CS, Park SW, Yang YJ, Seo SI, Lim H, et al. Automated
classification of gastric neoplasms in endoscopic images using a convolutional neural
network. Endoscopy. (2019) 51:1121–9. doi: 10.1055/a-0981-6133

26. Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, et al. A deep neural network
improves endoscopic detection of early gastric cancer without blind spots. Endoscopy.
(2019) 51:522–31. doi: 10.1055/a-0855-3532

27. Yoon HJ, Kim S, Kim JH, Keum JS, Oh SI, Jo J, et al. A lesion-based
convolutional neural network improves endoscopic detection and depth prediction
of early gastric cancer. J Clin Med. (2019) 8:1310. doi: 10.3390/jcm8091310

28. Cho BJ, Bang CS, Lee JJ, Seo CW, Kim JH. Prediction of submucosal invasion for
gastric neoplasms in endoscopic images using deep-learning. J Clin Med. (2020) 9:1858.
doi: 10.3390/jcm9061858

29. Horiuchi Y, Aoyama K, Tokai Y, Hirasawa T, Yoshimizu S, Ishiyama A, et al.
Convolutional neural network for differentiating gastric cancer from gastritis using
magnified endoscopy with narrow band imaging. Dig Dis Sci. (2020) 65:1355–63.
doi: 10.1007/s10620-019-05862-6

30. Li L, Chen Y, Shen Z, Zhang X, Sang J, Ding Y, et al. Convolutional neural
network for the diagnosis of early gastric cancer based on magnifying narrow band
imaging. Gastric Cancer. (2020) 23:126–32. doi: 10.1007/s10120-019-00992-2

31. Namikawa K, Hirasawa T, Nakano K, Ikenoyama Y, Ishioka M, Shiroma S, et al.
Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers:
comparison between the original and newly developed systems. Endoscopy. (2020)
52:1077–83. doi: 10.1055/a-1194-8771

32. Shibata T, Teramoto A, Yamada H, Ohmiya N, Saito K, Fujita H. Automated
detection and segmentation of early gastric cancer from endoscopic images using mask
R-CNN. Appl Sci. (2020) 10:3842. doi: 10.3390/app10113842

33. Tang D, Wang L, Ling T, Lv Y, Ni M, Zhan Q, et al. Development and validation
of a real-time artificial intelligence-assisted system for detecting early gastric cancer: A
multicentre retrospective diagnostic study. EBioMedicine. (2020) 62:103146.
doi: 10.1016/j.ebiom.2020.103146

34. Ikenoyama Y, Hirasawa T, Ishioka M, Namikawa K, Yoshimizu S, Horiuchi Y,
et al. Detecting early gastric cancer: Comparison between the diagnostic ability of
convolutional neural networks and endoscopists. Digestive endoscopy: Off J Japan
Gastroenterological Endoscopy Society. (2021) 33:141–50. doi: 10.1111/den.13688

35. Ueyama H, Kato Y, Akazawa Y, Yatagai N, Komori H, Takeda T, et al.
Application of artificial intelligence using a convolutional neural network for
diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band
imaging. J Gastroenterol hepatology. (2021) 36:482–9. doi: 10.1111/jgh.15190

36. Wu L, He X, Liu M, Xie H, An P, Zhang J, et al. Evaluation of the effects of an
artificial intelligence system on endoscopy quality and preliminary testing of its
performance in detecting early gastric cancer: a randomized controlled trial.
Endoscopy. (2021) 53:1199–207. doi: 10.1055/a-1350-5583

37. Wu H, Yao X, Zeng L, Huang F, Chen L. Application of artificial intelligence
technology based on convolutional neural network in early gastric cancer recognition. J
Army Med Univ. (2021) 43:1735–42. doi: 10.16016/j.1000-5404.202105018

38. Zhang L, Zhang Y, Wang L, Wang J, Liu Y. Diagnosis of gastric lesions through a
deep convolutional neural network. Digestive endoscopy: Off J Japan Gastroenterological
Endoscopy Society. (2021) 33:788–96. doi: 10.1111/den.13844

39. Jing W, Yijie Z, Lianlian W, Xinqi H, Zehua D, Manling H, et al. Influence of
artificial intelligence on endoscopists′ performance in diagnosing gastric cancer by
magnifying narrow banding imaging. Chin J Digestive Endoscopy. (2021) 38:783–8.
doi: 10.3760/cma.j.cn321463-20210110-00020

40. Liming Z, Yang Z, Li W, Jiangyuan W, Yulan L. Diagnosis of routine endoscopic
images of gastric lesions through a deep convolutional neural network. Chin J Digestive
Endoscopy. (2021) 38:789–94. doi: 10.3760/cma.j.cn321463-20200611-00280

41. Yijie Z, Lianlian W, Xinqi H, Yanxia L, Wei Z, Jun Z, et al. Comparison of the
ability of two artificial intelligence systems based on different training methods to
diagnose early gastric cancer under magnifying image-enhanced endoscopy. Chin J
Digestion. (2022) 42:433–8. doi: 10.3760/cma.j.cn311367-20211214-00680

42. Ishioka M, Osawa H, Hirasawa T, Kawachi H, Nakano K, Fukushima N, et al.
Performance of an artificial intelligence-based diagnostic support tool for early gastric
cancers: Retrospective study. Digestive Endoscopy. (2023) 35:483–91. doi: 10.1111/
den.14455

43. Jin J, Zhang Q, Bill D, Ma T,Wang X, Mei X, et al. Detection of early gastric cancer in
white light imagings based on region-based convolutional neural networks.Acta Universitatis
Medicinalis Anhui. (2023) 58:285–91. doi: 10.19405/j.cnki.issn1000-1492.2023.02.020
frontiersin.org

https://doi.org/10.1186/s12889-024-19104-6
https://doi.org/10.7150/jca.95311
https://doi.org/10.1007/s10120-017-0716-7
https://doi.org/10.1007/s10120-015-0469-0
https://doi.org/10.3390/gastroent15010001
https://doi.org/10.3390/gastroent15010001
https://doi.org/10.5772/54617
https://doi.org/10.1016/j.semcancer.2023.04.009
https://doi.org/10.1016/j.gie.2021.06.033
https://doi.org/10.5946/ce.2020.054
https://doi.org/10.20524/aog.2024.0861
https://doi.org/10.21147/j.issn.1000-9604.2024.05.03
https://doi.org/10.21147/j.issn.1000-9604.2024.05.03
https://doi.org/10.3389/fmed.2021.629080
https://doi.org/10.1038/s41467-025-57072-6
https://doi.org/10.1016/j.gie.2021.12.019
https://doi.org/10.3748/wjg.v27.i22.2979
https://doi.org/10.1007/s10120-024-01524-3
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1186/s12874-022-01788-2
https://doi.org/10.1186/1471-2288-6-31
https://doi.org/10.1111/biom.12817
https://doi.org/10.1016/j.media.2016.04.007
https://doi.org/10.1016/j.gie.2017.11.029
https://doi.org/10.3760/cma.j.issn.1007-5232.2018.08.004
https://doi.org/10.1055/a-0981-6133
https://doi.org/10.1055/a-0855-3532
https://doi.org/10.3390/jcm8091310
https://doi.org/10.3390/jcm9061858
https://doi.org/10.1007/s10620-019-05862-6
https://doi.org/10.1007/s10120-019-00992-2
https://doi.org/10.1055/a-1194-8771
https://doi.org/10.3390/app10113842
https://doi.org/10.1016/j.ebiom.2020.103146
https://doi.org/10.1111/den.13688
https://doi.org/10.1111/jgh.15190
https://doi.org/10.1055/a-1350-5583
https://doi.org/10.16016/j.1000-5404.202105018
https://doi.org/10.1111/den.13844
https://doi.org/10.3760/cma.j.cn321463-20210110-00020
https://doi.org/10.3760/cma.j.cn321463-20200611-00280
https://doi.org/10.3760/cma.j.cn311367-20211214-00680
https://doi.org/10.1111/den.14455
https://doi.org/10.1111/den.14455
https://doi.org/10.19405/j.cnki.issn1000-1492.2023.02.020
https://doi.org/10.3389/fonc.2025.1670843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lv et al. 10.3389/fonc.2025.1670843
44. Wang J, Chao S. Clinical value of artificial intelligence assisted digestive
endoscopy in the differential diagnosis of gastric cancer and precancerous lesions.
Chin J Convalescent Med. (2023) 32:656–9. doi: 10.13517/j.cnki.ccm.2023.06.024

45. Zhao Y, Dohi O, Ishida T, Yoshida N, Ochiai T, Mukai H, et al. Linked color
imaging with artificial intelligence improves the detection of early gastric cancer.
Digestive Diseases. (2024) 42:503–11. doi: 10.1159/000540728

46. Feng J, Zhang Y, Feng Z, Ma H, Gou Y, Wang P, et al. A prospective and
comparative study on improving the diagnostic accuracy of early gastric cancer based
on deep convolutional neural network real-time diagnosis system (with video). Surg
Endoscopy. (2025) 39:1874–84. doi: 10.1007/s00464-025-11527-5

47. Niu W, Liu L, Dong Z, Bu X, Yao F, Wang J, et al. A deep learning model based
on magnifying endoscopy with narrow-band imaging to evaluate intestinal metaplasia
grading and OLGIM staging: A multicenter study. Digestive liver disease: Off J Ital Soc
Gastroenterol Ital Assoc Study Liver. (2024) 56:1565–71. doi: 10.1016/j.dld.2024.02.001

48. Liu L, Dong Z, Cheng J, BuX,QiuK, YangC, et al. Diagnosis and segmentation effect of
the ME-NBI-based deep learning model on gastric neoplasms in patients with suspected
superficial lesions - amulticenter study. Front Oncol. (2023) 12. doi: 10.3389/fonc.2022.1075578

49. Yin F, Zhang X, Fan A, Liu X, Xu J, Ma X, et al. A novel detection technology for
early gastric cancer based on Raman spectroscopy. Spectrochimica Acta Part A Mol
biomolecular spectroscopy. (2023) 292:122422. doi: 10.1016/j.saa.2023.122422
Frontiers in Oncology 14
50. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Confounding
variables can degrade generalization performance of radiological deep learning models.
(2018). doi: 10.1371/journal.pmed.1002683

51. Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, et al. Artificial intelligence-
assisted endoscopic diagnosis of early upper gastrointestinal cancer: A systematic
review and meta-analysis. Front Oncol. (2022) 12:855175. doi: 10.3389/
fonc.2022.855175

52. Xie F, Zhang K, Li F, Ma G, Ni Y, Zhang W, et al. Diagnostic accuracy of
convolutional neural network-based endoscopic image analysis in diagnosing gastric
cancer and predicting its invasion depth: a systematic review and meta-analysis.
Gastrointest Endosc. (2022) 95:599–609.e7. doi: 10.1016/j.gie.2021.12.021

53. Zhang XQ, Huang ZN, Wu J, Liu XD, Xie RZ, Wu YX, et al. Machine learning
prediction of early recurrence in gastric cancer: A nationwide real-world study. Ann
Surg Oncol. (2025) 32:2637–50. doi: 10.1245/s10434-024-16701-y

54. Chen Y, Wang B, Zhao Y, Shao X, Wang M, Ma F, et al. Metabolomic machine
learning predictor for diagnosis and prognosis of gastric cancer. Nat Commun. (2024)
15:1–13. doi: 10.1038/s41467-024-46043-y

55. Jennions MD, Lortie CJ, Rosenberg MS, Rothstein HR. Publication and related
biases. In: Handbook of meta-analysis in ecology and evolution Oxford, United
Kingdom: Oxford University Press (2013). p. 207–36.
frontiersin.org

https://doi.org/10.13517/j.cnki.ccm.2023.06.024
https://doi.org/10.1159/000540728
https://doi.org/10.1007/s00464-025-11527-5
https://doi.org/10.1016/j.dld.2024.02.001
https://doi.org/10.3389/fonc.2022.1075578
https://doi.org/10.1016/j.saa.2023.122422
https://doi.org/10.1371/journal.pmed.1002683
https://doi.org/10.3389/fonc.2022.855175
https://doi.org/10.3389/fonc.2022.855175
https://doi.org/10.1016/j.gie.2021.12.021
https://doi.org/10.1245/s10434-024-16701-y
https://doi.org/10.1038/s41467-024-46043-y
https://doi.org/10.3389/fonc.2025.1670843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Comparative diagnostic accuracy of different artificial intelligence models for early gastric cancer: a systematic review and meta-analysis
	Introduction
	Methods
	Search strategy
	Inclusion and exclusion criteria
	Inclusion criteria
	Exclusion criteria

	Data extraction
	Quality assessment
	Statistical analysis

	Results
	QUADAS-2 quality assessment
	Risk of bias
	Patient selection

	Applicability concerns
	Patient selection

	Overall diagnostic efficacy
	Results of univariate model analysis
	Overall diagnostic performance
	Sensitivity and specificity analysis


	Results of bivariate model analysis
	ROC and model consistency
	Subgroup analysis results
	Publication bias assessment
	Discussion


	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


