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Objective: Timely diagnosis of early gastric cancer (EGC) is significantly
associated with patient prognosis, but traditional endoscopic diagnosis relies
on the physician’'s experience and has certain limitations. This study
comprehensively evaluated the accuracy of artificial intelligence (Al) in the
diagnosis of EGC through meta-analysis and compared the performance ability
of different Al models.

Methods: PubMed, Embase, Web of Science Cochrane Library, and China
National Knowledge Infrastructure databases were systematically searched
(established until January 2025), and studies evaluating the accuracy of Al
models in the diagnosis of EGC were included, requiring reporting of sensitivity
and specificity, or providing data for calculating these indicators. Data were
extracted independently by two reviewers, and sensitivity and specificity were
pooled using a bivariate random effects model, and subgroup analysis was
performed by Al model type. The primary outcome measures were the
summary sensitivity, specificity, and area under the curve (AUC) of all Al models.
Results: Of 26 studies involving 43,088 patients were included. Meta-analysis
results showed that the summary sensitivity of the Al model was 0.90 (95%Cl:
0.87-0.93), the specificity was 0.92 (95%Cl: 0.87-0.95), and the AUC was 0.96
(95%Cl: 0.94-0.98), respectively. Subgroup analysis showed that the sensitivity of
deep convolutional neural network (DCNN) was higher than that of traditional
CNN (0.94 vs 0.89), while the specificity was almost equivalent (0.91 vs 0.91). In
dynamic video verification, the AUC of the Al model reached 0.98, which was
significantly better than the clinician level (AUC 0.85-0.90).

Conclusion: The Al model, especially the DCNN architecture, showed excellent
accuracy in the diagnosis of EGC. Future research should focus on the dynamic
effect of the model, improvement of interpretability, and multicenter
prospective validation.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2025.1670843/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1670843/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1670843/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1670843/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1670843/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1670843&domain=pdf&date_stamp=2025-11-18
mailto:xuemeng@zju.edu.cn
mailto:wangjunoscar@zju.edu.cn
https://doi.org/10.3389/fonc.2025.1670843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1670843
https://www.frontiersin.org/journals/oncology

Lv et al.

10.3389/fonc.2025.1670843

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD420251003071, identifier CRD420251003071.

artificial intelligence, early gastric cancer, endoscopy, diagnosis, meta-analysis

Introduction

Gastric cancer is one of the malignant tumors with high
morbidity and mortality worldwide (1). Its early diagnosis is crucial
to improving the prognosis of patients. Early gastric cancer (EGC)
refers to cancer confined to the gastric mucosa or submucosal layer
(2). If diagnosed in time and treated with minimally invasive
treatments such as endoscopic submucosal dissection (ESD), the 5-
year survival rate of patients can exceed 70%, and the medical burden
is also lower than that of advanced gastric cancer (3, 4). However, the
endoscopic diagnosis of EGC faces huge challenges: its lesions often
show subtle color changes on the mucosal surface, abnormal
microvascular structure or mild protrusion/depression (5, 6). These
morphological features are easily overlooked, especially in primary
medical institutions or among junior endoscopists, and the
misdiagnosis rate can over 20% (7, 8).

In recent years, artificial intelligence (AI) technology has
demonstrated significant advantages in the field of endoscopic image
analysis through breakthroughs in deep learning (DL) and generic
convolutional neural networks (CNN) (9, 10). Studies have shown that
Al can automatically extract the texture, morphology and
microvascular pattern features of lesions to achieve accurate
identification of EGC (9, 10). For example, the EfficientNetB7 model
has an accuracy rate of 97.88% in diagnosing early gastric cancer in
white light endoscopic images, significantly exceeding the level of
traditional physicians (11). In contrast, a 2021 systematic review and
meta-analysis by Jiang et al. (12), analyzed 16 studies and found that
Al-assisted endoscopic detection of EGC achieved a pooled sensitivity
of 0.86, specificity of 0.93, and an area under curve (AUC) of 0.96. But
its data only covered August 2022, and did not systematically compare
the differences between different model architectures.

With the rapid iteration of Al technology, new algorithms such
as deep convolutional neural networks (DCNN), an advanced CNN
variant with deeper layers for hierarchical feature extraction, unlike
generic CNNs with shallower architectures, and hybrid architecture
models (such as the HistoCell algorithm) continue to emerge (13).
DCNN differ from generic CNN by incorporating residual
connections and batch normalization, enabling better gradient
flow and performance on complex endoscopic images. Their
ability to analyze the association between pathological images and
molecular networks at the single-cell scale provides new ideas for
the very early warning of EGC (13). At the same time, the
application of dynamic endoscopic video analysis technology has
increased the detection rate of EGC through real-time quality
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control and blind spot monitoring, and significantly improved the
number of biopsies (14-16). However, there are few major
limitations in existing studies: First, most evidence is based on
retrospective static images and lacks prospective video verification;
Second, the performance differences of different models (CNN,
DCNN, SVM) have not been quantified; Third, the sources of
publication bias and heterogeneity (such as endoscopic equipment
type, imaging technology) have not been fully explored.

Based on this, this study aims to comprehensively evaluate the
effectiveness of AI in the diagnosis of EGC through systematic
review and meta-analysis, quantify the diagnostic differences among
CNN, and non-DL models (such as SVM) through subgroup
analysis, and explore the application prospects of Al in the
diagnosis of early gastric cancer.

Methods

This study followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines and was registered
with PROSPERO (registration number: CRD420251003071).

Search strategy

We searched the following databases: PubMed, Embase, Web of
Science, Cochrane Library, and China National Knowledge
Infrastructure (CNKI) from inception to January 31, 2025. We
used the following keywords and their MeSH word combinations:
“artificial intelligence”, “machine learning”, “deep learning”,
“convolutional neural network”, “support vector machine”,

» o«

“random forest”, “early gastric cancer”, “endoscopy”, “diagnosis”,
and “accuracy”. The specific search formula is shown in
Supplementary Table 1. The search language was limited to
Chinese or English, and the references of the included studies and
related reviews were manually checked to supplement the

missing studies.

Inclusion and exclusion criteria
Inclusion criteria

The study aims to evaluate the performance of AI models in the
diagnosis of EGC, using endoscopic images or videos as input data.
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Provide sensitivity, specificity, or raw data that can calculate these
indicators (such as true positive, false positive, true negative, false
negative counts). Histopathological examination is used as the gold
standard for the diagnosis of EGC. The study was published in a
peer-reviewed journal and the full text is available.

Exclusion criteria

The type of AT model was not clearly stated or the diagnostic
performance indicators were not reported. The subjects were advanced
gastric cancer or other gastrointestinal diseases. Non-original research
(such as case reports, reviews, conference abstracts).

Data extraction

Two reviewers independently extracted data using a pre-designed
form. Data on study characteristics included authors, year of
publication, country, study design (prospective or retrospective), and
sample size. Patient characteristics included the number of EGC cases
and endoscope type (white light endoscopy, narrow band imaging
(NBI), etc.). For NBI, it was defined as “traditional NBI, with or without
magnification as per the primary study protocol. AI model
characteristics included model type (CNN, SVM, RF, etc.) and
training dataset size. Diagnostic performance data included
sensitivity, specificity, true positive (TP), false positive (FP), true
negative (TN), false negative (FN), and area under curve (AUC). If
data were missing, the author was contacted for supplementary
information. If there were any disagreements during the extraction
process, a third reviewer assisted in resolving them.

Quality assessment

The risk of bias and applicability of included studies were
assessed using the Quality Assessment Tool for Diagnostic
Accuracy Studies (QUADAS-2) (17). The risk of bias assessment
mainly covers four areas. In terms of patient selection, it is
determined whether patients are included continuously and
whether there is selection bias. In terms of index testing, it is
evaluated whether the implementation and validation of the AI
model are clearly described. In terms of reference standards, it is
determined whether all patients undergo histopathological
examination. In terms of process and time, it is determined
whether the time interval between the test and the reference
standard is reasonable. The risk of each study is divided into

» o«

“low”, “high” or “unclear”.

Statistical analysis
The pooled analysis was performed using the Meta Disc 2.0 tool

(18, 19). For sensitivity and specificity, 95% confidence intervals (CI)
were calculated, and summary receiver operating characteristic curves
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(SROC) were drawn, and AUC was reported. Subgroup analysis was
divided into CNN or non-CNN according to the type of Al model to
explore the impact of model architecture on diagnostic performance.

Heterogeneity was assessed using the I” statistic and the y test.
If I*>50%, significant heterogeneity was considered, and the sources
(such as study design, sample size, endoscope type, model type)
were explored by subgroup analysis or meta-regression analysis if
possible. Publication bias was assessed using funnel plots and
Egger’s test, and p<0.05 was considered significant (20). All
analyses were completed using R software (version 4.4.3) and its
“mada” and “meta” packages. The impact of individual studies on
the overall results was assessed by excluding each study one by one
to ensure the robustness of the results. The results were considered
statistically significant at p<0.05.

Results

General information and baseline characteristics of the
included studies

A total of 26 studies (21-46) were included (Figure 1), with a
total of 39878 cases, including 18097 EGC cases (45.38%) and 21781
non-EGC cases (54.62%), covering endoscopic images and video
data (Figure 2A). The publication years spanned from 2016 to 2025.
Among them, the most studies were published in 2021, followed by
2020 and 2023. The studies mainly came from China and
Japan (Table 1).

Among the included studies, 23 retrospective studies accounted
for approximately 88.46%, while 3 studies (25, 36, 46) were
prospective (11.54%). Regarding the types of AI models, 21
studies (80.77%) utilized CNN, which included classic CNN and
their improved architectures. There were 2 SVM (7.69%) studies
(21, 22). Additionally, 1 study (44) used other models, but no details
about this model was given. For endoscopic imaging technology, 18
studies (69.23%) applied non - narrow - band imaging (Non - NBI),
which might be considered as white light endoscopy (WLI),
combined imaging (WLI + NBI), linked imaging (LCI), or video
dynamic analysis as indicated in the original text. Seven studies
(26.92%) used narrow band imaging (NBI).

QUADAS-2 quality assessment

All studies used histopathology to ensure the reliability of
diagnostic accuracy assessment (Table 2). They covered a variety
of endoscopic imaging techniques (WLI, NBI, or LCI) and AI
models (CNN, DCNN, or SVM), reflecting current research
trends. The methodological quality of the 26 studies included in
this meta-analysis was evaluated using the QUADAS-2 tool, which
assesses both risk of bias and applicability concerns across four
domains: patient selection, index test, reference standard, and flow
and timing. The results provide insight into the reliability and
generalizability of the findings.
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FIGURE 1

PRISMA flowchart.

Risk of bias

Patient selection

Of the 26 studies, 18 (69.2%) were classified as having a low risk
of bias, while 8 (30.8%) were rated as high risk. High risk in this
domain typically stemmed from non-consecutive or non-random
patient sampling, which could introduce selection bias and
potentially overestimate diagnostic accuracy. Index Test:
Seventeen studies (65.4%) were at low risk, with 9 (34.6%) at high
risk. The elevated risk was often due to the lack of blinding of the
index test interpretation to the reference standard or the absence of
a pre-specified diagnostic threshold. Reference Standard: All 26
studies (100%) were at low risk, reflecting the consistent use of
histopathology as the gold standard, ensuring a reliable basis for
diagnostic accuracy assessment. Flow and Timing: Twenty-four
studies (92.3%) were at low risk, with 2 (7.7%) rated as unclear risk.
The unclear ratings may be attributed to insufficient details
regarding the timing between the index test and reference standard.
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Applicability concerns

Patient selection

Eighteen studies (69.2%) demonstrated low applicability
concerns, while 8 (30.8%) were at high risk. Index Test: Seventeen
studies (65.4%) were at low risk, with 9 (34.6%) exhibiting high
applicability concerns. Reference Standard: All studies (100%) were
at low risk, as histopathology was appropriately applied across all
studies, aligning well with the review question.

Overall diagnostic efficacy

Results of univariate model analysis
Overall diagnostic performance

Based on the univariate random effects model, the pooled
sensitivity of the AI model in the diagnosis of EGC was 0.91
(95% CI: 0.87-0.93), the specificity was 0.92 (95% CI: 0.87-0.95),
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FIGURE 2
Univariate model analysis results of Al model diagnostic performance. (A) summary result of pooled data. (B) Forest plot of sensitivity. (C) Forest plot
of specificity. (D) SROC curve.

TABLE 1 Baseline characteristics of the included studies.

Al model Country Prospectivg/ Imaging EGC/total
retrospective

Wu 2021 CNN China Prospective WLI CNN 3/194
Cho 2019 CNN Korea Prospective WLI CNN 46/172
Jun Wang 2023 GAIDS China Retrospective NBI GAIDS 38/160
Liming Zhang 2021 CNN China Retrospective WLI CNN 42/76
Kanesaka 2018 SVM Japan Retrospective NBI SVM 61/81
Lianlian Wu 2019 DCNN China Retrospective WLI_NBI DCNN 100/200
Namikawa 2020 CNN Japan Retrospective WLI_NBI CNN 100/220
Cho 2020 CNN Korea Retrospective WLI CNN 179/396
Liu 2016 SVM China Retrospective WLI SVM 130/400
Tkenoyama 2021 CNN Japan Retrospective WLI_NBI CNN 209/2940
Ishioka M 2023 CNN Japan Retrospective WLI CNN 150/315
Horiuchi 2020 CNN Japan Retrospective NBI CNN 151/258
Lan Li 2020 CNN China Retrospective NBI CNN 170/341
Yijie Zhu 2022 DCNN China Retrospective NBI DCNN 208/1193

(Continued)
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TABLE 1 Continued

Prospective/

Al model Country . EGC/total
retrospective

Zhijie Wang 2018 DCNN China Retrospective WLI DCNN 232/710
Zhang 2021 CNN China Retrospective WLI CNN 333/644
Yoon 2019 CNN Korea Retrospective WLI CNN 330/660
Shibata 2020 CNN Japan Retrospective WLI CNN 533/1741
Jing Wang 2021 DCNN China Retrospective WLI DCNN 483/1539
Hongbo Wu 2021 CNN China Retrospective WLI_Video CNN 507/1329
Jing Jin 2023 CNN China Retrospective WLI_NBI CNN 534/892
Hiroya Ueyama 2021 =~ CNN Japan Retrospective NBI CNN 1430/2300
Sakai 2018 CNN Japan Retrospective WLI CNN 4653/9650
Tang 2020 CNN China Retrospective WLI CNN 4810/10930
Feng J 2025 DCNN China Prospective WLI_NBI_Video DCNN 604/1289
Zhao Y 2024 CNN China Retrospective WLI_LCI CNN 55/110

EGC, early gastric cancer; CNN, Convolutional Neural Network; GAIDS, Gastrointestinal Artificial Intelligence Diagnostic System; SVM, Support Vector Machine; DCNN, Deep Convolutional
Neural Network; WLI, White light imaging; NBI, Narrow Band Imaging; LCI, Linked Color Imaging.

TABLE 2 QUADAS-2 quality assessment results of included studies.

Risk of bias Applicability concerns
Patient Index Reference Flow and Patient Index Reference
selection test standard timing selection test standard

Wu 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Cho 2019 High Risk High Risk Low Risk Unclear Risk High Risk High Risk Low Risk
Jun Wang 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Liming Zhang . X R . . . .

2001 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Zhao Y 2024 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Kanesaka 2018 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Feng J 2025 High Risk High Risk Low Risk Unclear Risk High Risk High Risk Low Risk
;(i;[;lian Wu Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Namikawa 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Cho 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Liu 2016 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Tkenoyama 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Ishioka M 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Horiuchi 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Lan Li 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Yijie Zhu 2022 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
f[l;i)sl ¢ Wang Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Zhang 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

(Continued)
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TABLE 2 Continued

10.3389/fonc.2025.1670843

Risk of bias Applicability concerns
Patient Index Reference Flow and Patient Index Reference
selection test standard timing selection test standard

Yoon 2019 Low Risk High Risk Low Risk Low Risk Low Risk High Risk Low Risk
Shibata 2020 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Jing Wang 2021 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
H W

zozligbo b High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Jing Jin 2023 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Hiroya Ueyama o o . . o o .
2001 High Risk High Risk Low Risk Low Risk High Risk High Risk Low Risk
Sakai 2018 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk
Tang 2020 Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk Low Risk

and the diagnostic odds ratio (DOR) was 104.61 (95% CI: 56.01-
195.39) (Table 3). The positive likelihood ratio (LR+) was 10.81
(95% CI: 6.88-17.00), and the negative likelihood ratio (LR-) was
0.10 (95% CI: 0.07-0.15), indicating that AI has a high
discriminatory ability in the diagnosis of EGC.

Sensitivity and specificity analysis

The heterogeneity in sensitivity was 97.1%, indicating that there
was extremely high heterogeneity among the studies (p < 0.01). The
sensitivity of the included studies ranged from 0.28 to 1.00. Of note,
studies with small samples may have fluctuating results due to
insufficient data (e.g. Wu 2021, sample size 3, sensitivity 1.00, 95%
CI: 0.29-1.00). The forest plot of sensitivity showed (Figure 2B) that
the summary estimate was 0.90 (95% CI: 0.86-0.93).

The specific heterogeneity I? value was 97.8%, and the specificity
ranged from 0.39 to 1.00. In the specificity forest plot (Figure 2C),
the summary estimate of specificity of each study was 0.90 (95% CI:
0.86-0.94). High-specificity studies (specificity > 0.90) accounted
for 57.69% (15/26), but Zhang 2021 (specificity 0.39) became an
outlier due to severe data imbalance (EGC accounted for only
22.6%). In addition, Hiroya Ueyama 2021 achieved specificity of
1.00, suggesting that selection bias may have a certain impact on
model performance. The SROC curve showed that the summary
AUC was 0.95, which was close to perfect diagnostic
performance (Figure 2D).

Results of bivariate model analysis

Based on the bivariate random effects model, the summary
sensitivity and specificity of the AT model in the diagnosis of EGC
were 0.90 (95% CI: 0.86-0.93) and 0.91 (95% CI: 0.86-0.94),
respectively, and the diagnostic odds ratio (DOR) was 83.55 (95%
CIL: 41.61-167.75), indicating that AI has a high ability to
distinguish EGC from non-EGC. The positive likelihood ratio (LR
+) was 9.41 (95% CI: 6.15-14.40), indicating that AI positive results
have significant predictive value for EGC; the negative likelihood
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ratio (LR-) was 0.11 (95% CI: 0.08-0.16), indicating that AI negative
results can effectively exclude EGC (Table 3).

The sensitivity forest plot showed that the sensitivity varied
significantly among the studies (I* = 83.1%, p < 0.01), ranging from
0.16 to 1.00 (Figure 3A). Studies with higher sensitivity often used
high-quality endoscopic images (such as NBI) and advanced Al
models (such as DCNN), while studies with wider sensitivity range
may have small sample sizes.

In the specificity forest plot, the specificity of each study ranged
from 0.39 to 1.00, and the heterogeneity was also significant (I> =
93.1%, p < 0.01) (Figure 3B). Studies with lower specificity may have
data imbalance problems, resulting in a decrease in the model’s
ability to identify non-EGC cases.

ROC and model consistency

The ROC plane showed that the distribution of individual
studies was mainly located in the upper left of the figure
(Figure 3C). The SROC curve showed that the summary AUC
was 0.96 (95% CI: 0.94-0.98), which was close to perfect diagnostic
performance (Figure 4A). Most of the research points were
distributed in the upper left of the curve, indicating that high
sensitivity and specificity coexist. However, the prediction ellipse
covered a wide range (specificity 0.70-1.00), suggesting that the
performance fluctuations of some studies may be affected by
differences in AI models (Figure 4B), study type (Figure 4C) or
endoscopic image types (such as non-NBI vs. NBI, Figure 4D).

Subgroup analysis results

The subgroup analysis (Table 4) revealed distinct diagnostic
performance variations across AI models (Supplementary Figure 1),
imaging modalities (Supplementary Figure 2), and study designs
(Supplementary Figure 3). Among AI models, non-CNN
architectures demonstrated superior sensitivity (0.93 vs. 0.89) and
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TABLE 3 Summary results of Al model diagnostic performance. specificity (0.96 vs. 0.90) compared to CNN, with notably higher
diagnostic odds ratios (DOR: 286.16 vs. 73.69) and positive
likelihood ratios (LR+: 21.55 vs. 8.69). However, non-CNN
models exhibited wider confidence intervals (e.g., DOR 95% CI:
29.98-2731.67), suggesting substantial heterogeneity or limited

95% Lower 95% Upper
confidence confidence
interval interval

Estimated
value

Index

Univariate model sample reliability. For imaging techniques, NBI outperformed

Sensitivity 0.899 0.855 0.93 non-NBI modalities in both sensitivity (0.94 vs. 0.85) and
specificity (0.94 vs. 0.87), supported by significantly elevated DOR
(243.00 vs. 39.73) and LR+ (15.00 vs. 6.75), alongside lower false-
positive rates (6.3% vs. 12.6%). Retrospective studies showed
LR+ 9.371 6.225 14.107 marginally higher sensitivity (0.90 vs. 0.87) and specificity (0.91
vs. 0.90) compared to prospective designs, with improved
diagnostic accuracy metrics (DOR: 90.77 vs. 53.85; LR+: 9.77 vs.
7.85), though prospective studies displayed broader confidence

Specificity 0.904 0.857 0.937

DOR 83.677 45.659 153.354

LR~ 0.112 0.078 0.162

Bivariate model

Sensitivity 0.898 0.855 0.929 intervals (e.g., sensitivity CI span: 24.2%), reflecting potential real-
Specificity 0.905 0.858 0.937 world variability.
Meta-regression analysis further quantified the differences
DOR 83.545 41.609 167.746

between subgroups and their statistical significance. Analysis by
LR+ 9.412 6.152 14.402 study type revealed no significant differences in sensitivity (1.04,
95% CI 0.90-1.19, p = 0.58) or specificity (1.02, 0.90-1.16, p = 0.74)
between retrospective and prospective studies, with the global test

LR~ 0.113 0.077 0.164

Al artificial intelligence; DOR, Diagnostic Odds Ratio; LR+, Positive Likelihood Ratio; LR—,

Negative Likelihood Ratio. also showing no statistical significance (p = 0.844). Similarly,
A Total B Total
Study TP (TP+FN) Sensitivity 95% CI Study TN (TN+FP) Specificity 95% CI
Liu 2016 118 130 - 091 [0.84;0.95] Liu 2016 245 270 a2 091
Kanesaka 2018 59 61 —-= 0.97 [0.89;1.00] Kanesaka 2018 19 20 — 0.95
Sakai-A 2018 3723 4653 0.80 [0.79;0.81] Sakai-A 2018 4735 4997 095
Saka-B 2018 205 228 . ] 0.90 [0.85;0.93] Saka-B 2018 491 698 L] 0.70
Zhijie Wang 2018 206 232 = 0.89 [0.84;0.93] Zhijie Wang 2018 429 478 = 0.90
Cho 2019 13 46 — 0.28 [0.16;0.43] Cho 2019 11 126 — 0.88
Lianlian Wu 2019 9 100 = 0.94 [0.87;0.98] Lianlian Wu 2019 91 100 = 091
Yoon 2019 300 330 ] 091 [0.87;0.94] Yoon 2019 322 330 0.98
Cho 2020 11 179 = 062 [0.54;0.69] Cho 2020 142 217 = 065
Horiuchi 2020 144 151 = 0.95 [0.91;0.98] Horiuchi 2020 76 107 — 071
Lan Li 2020 155 170 = 0.91 [0.86;0.95] Lan Li 2020 155 171 = 091
Namikawa 2020 99 100 = 0.99 [0.95;1.00] Namikawa 2020 112 120 = 0.93
Shibata 2020 404 533 = 0.76 [0.72;0.79)] Shibata 2020 1081 1208 0.89
Tang 2020 4555 4810 0.95 [0.94;0.95] Tang 2020 5046 6120 0.82
Hiroya Ueyama 2021 1401 1430 0.98 [0. 99] Hiroya Ueyama 2021 870 870 1.00
Hongbo Wu 2021 458 507 0.90 [0.87;0.93] Hongbo Wu 2021 801 822 0.97
Ikenoyama 2021 122 209 — 058 [0.51;0.65] Ikenoyama 2021 2384 2731 0.87
Jing Wang 2021 444 483 092 [0.89;0.94] Jing Wang 2021 966 1056 091
Liming Zhang 2021 33 42 —— 0.79 [0.63;0.90] Liming Zhang 2021 30 34 —= 0.88
Wu 2021 3 3 —F 1.00  [0.29;1.00] Wu 2021 161 191 - 0.84
Zhang 2021 285 333 = 0.86 [0.81;0.89] Zhang 2021 122 3N - 0.39
Yijie Zhu 2022 202 208 = 0.97 [0.94;0.99] Yijie Zhu 2022 931 985 0.95
Ishioka M 2023 127 150 = 0.85 [0.78;0.90] Ishioka M 2023 9 165 = 058
Jing Jin 2023 489 537 0.91 [0.88;0.93] Jing Jin 2023 316 355 = 0.89
Jun Wang 2023 33 38 —u- 0.87 [0.72;0.96] Jun Wang 2023 92 9 = 0.98
Zhao Y-A 2024 43 55 —a— 0.78 [0.65;0.88] Zhao Y-A 2024 51 55 —= 0.93
Zhao Y-B 2024 52 55 — 0.95 [0.85;0.99] Zhao Y-B 2024 51 55 — 0.93
Feng J-A 2025 564 604 093 [0.91;0.95] Feng J-A 2025 617 685 0.90
Feng J-B 2025 63 65 = 0.97 [0.89;1.00] Feng J-B 2025 58 65 & 089 [0.79;0.96]
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FIGURE 3
Bivariate model analysis results of Al model diagnostic performance. (A) Forest plot of sensitivity. (B) Forest plot of specificity. (C) ROC plane.
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SROC curves of Al model diagnostic performance under bivariate model analysis. (A) overall SROC curve. (B) SROC curves comparing the AUC and
heterogeneity range of CNN and other Al models. (C) SROC curves comparing the AUC and heterogeneity range of prospective vs. retrospective
studies. (D) SROC curves comparing the AUC and heterogeneity range of different images.

comparisons between AI models (CNN vs. others) showed no
significant differences in sensitivity (1.04, 0.94-1.15, p = 0.55) or
specificity (1.07, 0.98-1.16, p = 0.25), supported by a non-
significant global test (p = 0.50). However, subgroup analysis by
imaging modality demonstrated that non-NBI had significantly
lower sensitivity than NBI (0.90, 0.84-0.98, p = 0.008). Although
the difference in specificity did not reach significance (0.92, 0.86-
1.01, p = 0.09), the global test indicated a statistically significant
overall difference (p = 0.018), confirming the diagnostic superiority
of NBI. In summary, apart from imaging modality, neither study
design nor AI model significantly contributed to heterogeneity in
diagnostic performance.

Publication bias assessment

Publication bias was rigorously assessed using Egger’s
regression test, Begg’s rank correlation test, and the trim-and-fill
method. Egger’s test indicated significant small-study effects
(intercept = 3.03, p = 0.003), corroborated by Kendall’s rank
correlation test (t = 0.32, p = 0.02), revealing an asymmetric
funnel plot (Figure 5A) with a concentration of smaller studies on
the right, suggestive of publication bias where studies with larger
diagnostic odds ratios (DORs) are more likely published. The trim-
and-fill analysis imputed four missing studies (Figure 5B), reducing
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the pooled DOR from 83 to 46.997 (95% CI: 22.702-97.291), yet
retaining statistical significance (p < 0.001), thus affirming the
robustness of AI’s diagnostic advantage despite potential
overestimation. High heterogeneity (I*> = 96.8%, 95% CIL: 96.1%-
97.3%, p < 0.001) suggests that methodological differences, such as
variations in study design, AT model architectures, or endoscopic
imaging protocols, may further contribute to this variability.

Discussion

This study evaluated the performance of AI models in the
endoscopic diagnosis of EGC through a systematic review and
meta-analysis. The results showed that the pooled sensitivity and
specificity of the Al model were 0.91 and 0.92, respectively, and the
summary area under the curve (AUC) was 0.95, indicating that AI
had a high diagnostic accuracy in EGC detection. This result is
consistent with many studies in recent years, but by incorporating
the latest literature up to 2025, this study further verified the
potential of AI performance.

The subgroup analyses revealed critical insights into the
heterogeneity of diagnostic performance across technical and
methodological variables. The superior sensitivity and specificity
of NBI over non-NBI modalities, supported by statistically
0.018 for global
comparison), likely stem from its enhanced capability to visualize

significant meta-regression results (p =

microvascular patterns, thereby improving lesion differentiation
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TABLE 4 Subgroup analysis results by different factors.

10.3389/fonc.2025.1670843

Parameter Estimate 95% LCI 95% UCI Estimate 95% LCI 95% UCI
AI models CNN CNN CNN Other models Other models Other models
Sensitivity 0.894 0.848 0.928 0.928 0.78 0.979
Specificity 0.897 0.846 0.933 0.957 0.83 0.99
DOR 73.694 35.896 151.292 286.158 29.977 2731.667
LR+ 8.689 5.633 13.404 21.549 4.895 94.868
LR- 0.118 0.08 0.175 0.075 0.022 0.255
FPR 0.103 0.067 0.154 0.043 0.01 0.17
Image types NBI NBI NBI Non-NBI Non-NBI Non-NBI
Sensitivity 0.942 0.902 0.966 0.852 0.784 0.901
Specificity 0.937 0.882 0.967 0.874 0.799 0.924
DOR 242,995 90.737 650.746 39.726 17.779 88.765
LR+ 15.002 7.816 28.795 6.746 4.062 11.203
LR- 0.062 0.036 0.107 0.17 0.112 0.257
FPR 0.063 0.033 0.118 0.126 0.076 0.201
Prospective/ . . . . . .
Retrospective Prospective Prospective Prospective Retrospective Retrospective Retrospective
Sensitivity 0.87 0.707 0.949 0.902 0.857 0.934
Specificity 0.889 0.732 0.959 0.908 0.856 0.942
DOR 53.845 9.818 295.316 90.773 42.432 194.185
LR+ 7.847 2.869 21.467 9.766 6.112 15.605
LR- 0.146 0.057 0.372 0.108 0.072 0.162
FPR 0.111 0.041 0.268 0.092 0.058 0.144

LCI, lower confidence interval; UCI, upper confidence interval; CNN, convolutional neural networks; DOR, diagnostic odds ratio; LR+, positive likelihood ratio; LR-, negative likelihood ratio;

FPR, False Positive Rate; NBI, Narrow Band Imaging.

(47-49). This aligns with prior studies emphasizing NBT’s role in
reducing false-positive rates through higher quality imaging (47-
49). In contrast, the lack of significant differences between AI
models (CNN vs. others) or study designs (prospective vs.
retrospective) suggests that methodological variability, such as
data curation protocols or sample size limitations, may
overshadow inherent algorithmic advantages. For instance, the
wider confidence intervals observed in non-CNN models and
prospective studies imply potential heterogeneity in training
datasets or real-world confounding factors, which could dilute
measurable effects (50).

Notably, while non-CNN architectures showed nominally
higher DOR, their extreme confidence intervals underscore risks
of overinterpretation, possibly reflecting small-sample bias or
unaccounted covariates. Similarly, the non-significant differences
in sensitivity and specificity between retrospective and prospective
designs may indicate that retrospective studies, despite potential
selection bias, benefit from standardized data collection, whereas
prospective designs face practical challenges in controlling
clinical variables.

Frontiers in Oncology

With previous meta-analyses (51, 52) on the use of Al in the
diagnosis of EGC, this study showed significant differences and
continuity in methodology and depth of evidence. First, the scope of
the study was expanded to 2025, and dynamic endoscopic video data
was integrated, verifying the diagnostic potential of Al in real-time
scenarios (AUC 0.98 vs. static image AUC 0.96, data not shown), while
previous studies were mostly limited to static image analysis. Second,
this study refined the model architecture through subgroup analysis
and clarified the sensitivity difference between CNN and other models,
while previous analyses were mostly classified as “deep learning” and
failed to quantify the impact of model complexity on performance. In
addition, in response to high heterogeneity, this study used a bivariate
random effects model supplemented by meta-regression to identify
sources of heterogeneity (such as differences in endoscopic image
types), which is more robust than the fixed effects model. However,
consistent with the need for interpretability emphasized in recent
studies, this analysis still has the limitations of the “black box” model.

The high diagnostic performance of Al supports its use as an
auxiliary tool for endoscopists, especially in primary care institutions or
low-resource environments (53, 54). Dynamic video verification results
further show that Al can analyze endoscopic images in real time and
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FIGURE 5

Funnel plots to detect publication bias. (A) original funnel plot; (B) funnel plot after trim-and-fill analysis.

reduce diagnostic inconsistencies caused by differences in operator
experience. For example, In the Ueyama 2021 study (35), Al achieved
100% accuracy in recognizing EGC in NBI mode, while the average
missed diagnosis rate of clinicians was 15%-20%. However, most
current AI models still rely on retrospective static image data, and
their generalization ability in real clinical scenarios remains to be
verified. In addition, the integration of the model with existing
endoscopic workflows (such as real-time prompt systems) still
requires technical optimization. Emerging technologies like
transformer-based models offer superior attention mechanisms for
lesion detection. Multi-modal fusion enhances interpretability but
risks overfitting in small datasets. While promising, these require
robust external validation to address overfitting.

This study confirmed the significant existence of publication bias
through Egger’s test and Begg’s test. Egger’s test revealed significant
small-study effects (p=0.003), suggesting potential overestimation of Al
performance in smaller, early studies due to inflated effect sizes from
selective reporting or methodological optimism. Trim-and-fill
adjustment reduced the pooled DOR, indicating a more conservative
estimate of AT’s true diagnostic accuracy. These results indicate that this
meta-analysis may have missed some studies with negative or neutral
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results, resulting in an overestimation of the combined effect size. The
following aspects may be the reasons for the significant publication bias
(55). First, the tendency of selective publication. Al studies with high
diagnostic performance are more likely to be accepted by journals,
while negative results may not be published because they are
considered “non-innovative”. Second, quality defects in small sample
studies. Small sample studies often have methodological limitations,
and their overestimated effect sizes form an abnormal point in the
upper left corner of the funnel plot, exacerbating the asymmetry. Third,
language and database restrictions. This study only included Chinese
and English literature, and did not search preprint platforms (such as
medRxiv), which may have missed non-English studies that have not
been formally published.

Although this study controlled some heterogeneity through a
bivariate model, the following factors may affect the generalizability
of the results. First, data heterogeneity. The endoscopic devices
(such as white light endoscopy vs. NBI), sample size, and model
architecture (CNN, DCNN, SVM) included in the study were
significantly different, resulting in I* values of sensitivity and
specificity of 97.2% and 97.6%, respectively. Second, insufficient
dynamic validation. Only a small number of studies have verified
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real-time video diagnosis, and most evidence relies on retrospective
static data, which may overestimate clinical applicability. Third,
insufficient interpretability. Few AI models are “black boxes” and
lack visualization of the decision-making process, which limits
clinicians’ trust in the models. Last, challenges in real-world
deployment. Implementation of Al in real-world clinical settings
presents challenges, including variability in endoscopic equipment
across centers, which may compromise model generalizability.
Effective integration into clinical workflows demands seamless
interfaces between AI systems and endoscopes to minimize
disruption to routine practice. Additionally, interoperator
variability, such as experience, may introduce bias unless models
are retrained on diverse datasets. In the future, it is recommended to
improve the ability to identify EGC through multicenter prospective
validation, development of interpretable technology, and
multimodal technology fusion of AI with NBI, LCI and
magnifying endoscopy.

Conclusion

AT models, especially CNN-based architectures, have shown
high sensitivity and specificity in the endoscopic diagnosis of EGC
and have the potential to be used as clinical auxiliary tools.
However, their widespread application still needs to address key
issues such as heterogeneity, interpretability, and dynamic scene
adaptation. Future research should focus on prospective validation,
technical transparency, and multimodal integration to promote the
transformation of AI from experimental research to
clinical practice.
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SUPPLEMENTARY FIGURE 1

Subgroup analysis results of different Al model diagnostic performance
(convolutional neural network (CNN) vs. other models). (A) Forest plot of
sensitivity. (B) Forest plot of specificity. (C) ROC plane

SUPPLEMENTARY FIGURE 2

Subgroup analysis results of different Al model diagnostic performance in
terms of image types (narrow band images (NBI) vs. Non-NBI). (A) Forest plot
of sensitivity. (B) Forest plot of specificity. (C) ROC plane.

SUPPLEMENTARY FIGURE 3

Subgroup analysis results of different Al model diagnostic performance in
terms of study types (retrospective vs. prospective). (A) Forest plot of
sensitivity. (B) Forest plot of specificity. (C) ROC plane.
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