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Purpose

In this study, we aimed to determine the diagnostic performance of MRI in assessing neoadjuvant therapy (NAT) response, investigate determinants of its accuracy, and develop a nomogram for predicting pathological complete response (pCR) following NAT.





Methods

A retrospective analysis was conducted on 554 female patients who received NAT between January 2019 and December 2022 and underwent MRI scans pre- and post-treatment. Clinicopathological and MRI characteristics were collected. Univariable logistic regression identified predictors of diagnostic accuracy. Patients were then randomly allocated to training (n=388, 70%) and validation (n=166, 30%) cohorts. Using multivariable logistic regression in the training cohort, we identified independent predictors of pCR and constructed a predictive nomogram. Model performance was assessed in both cohorts using receiver operating characteristic (ROC) curves, area under the curve (AUC), and goodness-of-fit tests.





Results

The overall accuracy of breast MRI in evaluating NAT response was 77.44%. Multivariable analysis identified three factors independently associated with reduced MRI accuracy: ER-negative status, absence of ductal carcinoma in situ (DCIS), and coexistence of mass lesions with non-mass enhancement (NME). Independent predictors of pCR included: ER-negative, HER2-positive, without the presence of DCIS, the coexistence of mass lesions and NME on pre-NAT MRI, radiologic complete remission (rCR), smaller tumor size, and increasing/plateau TIC on post-NAT MRI. The predictive nomogram demonstrated robust discrimination, with AUC values of 0.894 (95% CI: 0.857–0.932) in the training cohort and 0.888 (95% CI: 0.841–0.935) in the validation cohort.





Conclusion

Breast MRI accuracy was reduced in ER-negative tumors, those lacking DCIS, and lesions exhibiting coexistent mass and NME. A clinicopathological-MRI integrated nomogram demonstrated robust predictive performance for pCR after NAT completion, potentially aiding in surgical strategy planning.
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Introduction

According to the latest global cancer statistics in 2022, breast cancer has become the most common malignant tumor and the leading cause of cancer-related death among women worldwide (1). Neoadjuvant therapy (NAT), which refers to systemic drug treatment before surgery, is increasingly being applied not only to patients with locally advanced disease who are initially inoperable but also to those with early-stage disease. NAT confers several advantages, including enhancing tumor resectability and augmenting the likelihood of breast-conserving surgery. Additionally, NAT response patterns enable personalized adaptation of post-neoadjuvant treatment algorithms (2). Previous research indicated that patients achieved pathological complete response (pCR) after NAT tend to have significantly better long-term outcomes (3). Some patients may even be candidates for de-escalation of treatment (4). However, a subset of patients demonstrates suboptimal response or disease progression during or following NAT, mandating timely treatment strategy adjustment to avoid ineffective therapeutic exposure. Consequently, early and precise assessment of NAT efficacy is critical for implementing individualized precision oncology paradigms.

Although pCR represents the reference standard for post-treatment tumor response assessment, its determination is inherently delayed—requiring completion of neoadjuvant therapy and subsequent surgical resection. Currently, various methods, including physical examination, breast ultrasound (US), mammography (MMG), breast magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT), are employed to assess NAT efficacy. However, none of these methods achieve the desired level of accuracy. Among them, breast MRI, particularly dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DWI-MRI), demonstrates considerable potential for assessment. DCE-MRI can reflect changes in tumor blood perfusion and vascular permeability, while DWI-MRI provides information on tumor cell structure and membrane integrity, thereby endowing MRI diagnosis with high sensitivity and specificity. Despite reported overall accuracy rates of 76–90% for breast MRI in evaluating neoadjuvant therapy response, persistent diagnostic inaccuracies remain a clinical challenge (5, 6).

Previous studies have explored factors influencing the accuracy of breast MRI in assessing NAT efficacy (7, 8), but these studies were limited by small sample sizes and incomplete inclusion of factors, resulting in restricted conclusions. The present study aims to conduct a comprehensive multifactorial analysis of determinants influencing NAT response and develop a validated prediction model integrating breast MRI features with clinicopathological indicators. The visualized nomogram may provide clinicians with a precision medicine tool for early efficacy assessment and evidence-based therapeutic decision optimization.





Materials and methods




Study population

A total of 554 female patients with breast cancer who received treatment at Tianjin Medical University Cancer Institute and Hospital from January 2019 to December 2022 were ultimately included in this study. All patients had histologically confirmed invasive breast carcinoma via core needle biopsy and received guideline-concordant neoadjuvant therapy followed by definitive surgery. In addition, all patients underwent breast MRI examinations before and after NAT. The exclusion criteria were as follows: (1) incomplete clinicopathological or imaging data; (2) failure to complete NAT and subsequent surgical treatment; (3) bilateral breast cancer; (4) occult breast cancer or accessory breast cancer; (5) partial or complete resection of the primary tumor before NAT; (6) distant metastasis or recurrence at the time of diagnosis; (7) presence of other primary malignant tumors (Figure 1).
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Figure 1 | Study flowchart of the patient enrollment.





Clinical characteristics

Clinical data, including age at diagnosis, menopausal status, presence of lymph node metastasis, clinical stage of the tumor, NAT regimen and cycles, and type of breast surgery (mastectomy or breast-conserving surgery), were collected. The clinical stage of the tumor was strictly determined according to the 8th edition of the American Joint Committee on Cancer (AJCC) TNM staging manual for breast cancer. All patients received standard NAT regimen before surgery. Specifically, for patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer, treatment regimens included trastuzumab monotherapy or dual-target therapy with trastuzumab and pertuzumab. For patients with hormone receptor (HR)-positive or triple-negative breast cancer (TNBC), the majority received neoadjuvant therapy regimens based on anthracycline-based chemotherapy combined with or followed by taxane-based chemotherapy.





Histopathologic analysis

Pathological parameters were evaluated using pretreatment core needle biopsy specimens and definitive surgical resection specimens, including: histological type, presence of DCIS, histological grade, molecular subtype, expression of estrogen receptor (ER), progesterone receptor (PR), HER2, Ki-67, and tumor-infiltrating lymphocytes (TILs). ER/PR expression status: Positive expression was defined when nuclear-stained tumor cells accounted for ≥1% of total tumor cells; otherwise, it was negative1. HER2 expression status: Positive expression was defined as IHC (3+), or IHC (2+) with FISH (+); IHC (2+) with FISH (-), IHC (1+), and IHC (0) were considered negative for HER2 expression. Molecular subtype: Based on the expression of ER, PR, and HER2, breast cancer was categorized into four molecular subtypes: HR+/HER2-, HR+/HER2+, HR-/HER2+, and HR-/HER2- (TNBC). Ki-67 expression was quantified by the percentage of immunoreactive nuclei in invasive carcinoma cells, with high expression defined as ≥20% and low expression as <20% staining. Stromal TIL density was quantified according to the 2014 recommendations of the International Working Group on TILs in Breast Cancer (9), defined as the percentage of tumor stromal area infiltrated by lymphocytes. TIL levels were stratified as low (<10%) or moderate-to-high (≥10%). pCR was defined as the absence of invasive carcinoma in the primary lesion, with or without DCIS allowed, and negative regional lymph nodes (ypT0/is ypN0).





MRI acquisition and evaluations

In the pre-neoadjuvant MRI, the assessment included the amount of fibroglandular tissue (FGT; non-dense, dense), the level of background parenchymal enhancement (BPE; minimal or mild, moderate or marked), the morphological features of each lesion, the type of time-signal intensity curve (TIC; increasing/plateau, washout), the signal intensity on T2-weighted imaging (T2WI), associated features, peritumoral edema, subcutaneous edema, and lymph node status. The morphological features included tumor size (maximum tumor diameter), tumor distribution (single, multifocal, or multicentric), lesion type (mass, non-mass enhancement [NME], mass with NME), distribution of NME, internal enhancement of the mass, as well as the shape and margin of the mass. On pre-NAT MRI, the assessment included: radiologic complete remission (rCR), tumor size and type of TIC. Radiologic complete response (rCR) was defined in strict accordance with RECIST 1.1 criteria: (10) the complete absence of both early and late enhancement, and the short-axis diameter of all pathological lymph nodes (whether target or non-target) must be <10 mm. Because the consequences of undertreatment attributable to undetected residual disease outweigh those of overtreatment, we deliberately adopted a more stringent rCR threshold than has been employed in prior reports. This high specificity definition maximizes the avoidance of false-negative classifications but necessarily lowers MRI sensitivity. Consequently, the observed rCR rate in the present study is expected to be lower than that reported in series using conventional criteria. Finally, by comparing the MRI data before and after neoadjuvant therapy, the indexes of variability were derived, including the tumor size change (Δ tumor size) and TIC type change (Δ TIC), where ΔTIC-negative indicates no change and ΔTIC-positive indicates change. Finally, the time intervals between hollow needle biopsy and MRI examination prior to NAT (days to biopsy), as well as between the last MRI examination after NAT and surgery (days to surgery), were retrospectively collected. Breast MRI examinations before and after NAT were independently interpreted by two radiologists with more than five years of experience in breast imaging diagnosis. In addition, both radiologists were blinded to the pathological results. Discordant cases achieved consensus with re-review of the images and discussion.





Statistical analysis

To evaluate the diagnostic performance of MRI for pCR, rCR was classified as “negative” and non-rCR as “positive.” On this basis, sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated, each with 95% confidence intervals (CIs). The reference definitions were as follows: true negative (TN), MRI indicated rCR and pathology confirmed pCR; true positive (TP), MRI indicated non-rCR and pathology showed non-pCR; false negative (FN), MRI indicated rCR but pathology showed non-pCR; false positive (FP), MRI indicated non-rCR but pathology showed pCR. Patients with FP or FN results were assigned to the imaging–pathology discordant group, whereas those with TP or TN were assigned to the concordant group.

For continuous variables, the Shapiro-Wilk (SW) normality test was first performed. Data meeting the criteria for normal distribution were expressed as mean ± standard deviation (x ± s), and independent samples t-tests or analysis of variance (ANOVA) were used for between-group comparisons; data not following a normal distribution were expressed as the median and interquartile range [M (Q1, Q3)], and the Wilcoxon rank-sum (Mann–Whitney U) tests were used for intergroup comparisons. For categorical data, rates or proportions (%) were used, and Pearson’s chi-square test or Fisher’s exact test was employed for intergroup comparisons. Based on the results of intergroup comparisons, potential influencing factors were preliminarily identified. Further univariate and multivariate logistic regression analyses were conducted to determine independent factors influencing the accuracy of MRI assessment of NAT efficacy. Variables with p<0.05 in univariate logistic regression analysis are included in further multivariate analysis.

Patients were randomly allocated to training (70%) and validation (30%) cohorts. Baseline characteristics were compared to ensure cohort balance. Within the training set, multivariable logistic regression identified independent predictors of pCR using surgical pathology as the reference standard. Bootstrap resampling (1000 iterations) was performed to assess the stability of predictors. Variables with confidence intervals excluding zero and sign consistency >90% across bootstrap samples were considered stable. A predictive nomogram was developed and validated for NAT response assessment. The model’s performance was evaluated using the following metrics: discriminative ability by the area under the receiver operating characteristic curve (AUC), calibration by calibration curves, goodness-of-fit by the Brier score, as well as clinical utility by decision curve analysis.

Cohen’s Kappa coefficient was used to assess the agreement of the interpretations of the two radiologists. Interpretation criteria of agreement were as follows: 0.00– 0.20, poor; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1.00, almost perfect.

All tests with p<0.05 were considered statistically significant. Statistical analyses were conducted using SPSS for Windows (version 25.0; SPSS, Inc, Chicago, IL, USA) and R software (version 4.4.3).






Results




Clinical and pathological characteristics

A total of 554 patients were enrolled in this study, and the median age at diagnosis was 48 years (interquartile range: 40–57 years). The initial clinical stage was mainly stage I/II (n=354, 63.9%). The molecular subtype distribution: HR+/HER2- 44.9% (n=249), HR-/HER2 + 19.9% (n=110), HR+/HER2 + 19.1% (n=106), and TNBC 16.1% (n=89). All patients received 4–8 cycles NAT. The median interval between the last MRI examination and surgery was 9 days (IQR 3–13 days). Regarding the choice of breast surgery, 86.8% (n=481) underwent mastectomy and 13.2% (n=73) underwent breast-conserving surgery.





Diagnostic accuracy assessment

Pathological results of post-NAT surgical specimens showed that 136 patients (24.5%) achieved pCR; among 418 (75.5%) non-pCR patients, the median size of paraffin pathological residual tumors was 1.6 cm (interquartile spacing: 0.0-2.5 cm), and 15 breasts had no invasive carcinoma residue but axillary lymph node metastases were present. Post-NAT MRI evaluation showed that only 15 cases (2.7%) achieved rCR; among the 539 non-rCR patients, 301 (55.8%) had mass enhancement, 146 (27.1%) had NME, and 92 (17.1%) had the coexistence of mass lesions and NME. The overall accuracy of breast MRI in assessing the efficacy of NAT was 77.44%. Of the 429 (77.4%) pathologies assessed accurately, pCR and rCR accounted for 3.0% (13 cases) and non-pCR and non-rCR accounted for 97.0% (416 cases); and of the 125 (22.6%) cases assessed inaccurately, non-pCR but rCR accounted for 1.6% (2 cases) and pCR but non-rCR accounted for 98.4% (123 cases), as detailed in Table 1.The performance of MRI in diagnosing pCR is as follows: sensitivity 99.5% (95% CI 98.2–99.9%, Wilson method), specificity 9.6% (95% CI 5.6–15.6%, Clopper-Pearson method), PPV 77.2% (95% CI 73.5–80.5%, Wilson method), NPV 86.7% (95% CI 61.1–96.0%, Wilson method).


Table 1 | Analysis of agreement between MRI and pathological assessment.
	   
	
	Pathological assessment
	Total


	
	
	non-pCR
	pCR



	MRI assessment
	non-rCR
	416
	123
	539


	rCR
	2
	13
	15


	Total
	418
	136
	554











Analysis of influencing factors of MRI in evaluating the accuracy of NAT efficacy

Clinicopathological characteristic analysis showed significant differences between the imaging-pathology consistent group and discordance group in neoadjuvant regimen, neoadjuvant treatment cycles, histological grade, expressions of ER, PR, HER2, Ki-67 (p = 0.003), and TILs (p = 0.043), as well as presence of DCIS (p<0.001, Table 2). In the analysis of MRI characteristics, the two groups differed significantly in BPE (p = 0.005) and lesion type (p = 0.013) (Table 3), with no statistical significance found in the remaining indexes (p >0.05).


Table 2 | Comparison of clinicopathological characteristics between concordant and discordant groups.
	
	
	
	Discordant
	Concordant
	p value


	
	
	
	(n=125)
	(n=429)



	Clinical characteristics
	Age(y)
	 
	48[40,57]
	48[39,56]
	0.774


	Menopausal status
	Premenopausal
	68(54.4)
	260(60.6)
	0.214


	Postmenopausal
	57(45.6)
	169(39.4)


	Lymph node
status
	Negative
	42(33.6)
	111(25.9)
	0.089


	Positive
	83(66.4)
	318(74.1)


	Clinical stage
	I/II
	83(66.4)
	271(63.2)
	0.508


	III
	42(33.6)
	158(36.8)


	Neoadjuvant regimens
	AT/AC-T
	22(17.6)
	223(52.0)
	<0.001


	HER2-targeted
	91(72.8)
	112(26.1)


	Other
	12(9.6)
	94(21.9)


	Neoadjuvant treatment cycle
	 
	6[6,6]
	6[6,6]
	<0.001


	Breast surgery type
	Mastectomy
	110(88.0)
	371(86.5)
	0.658


	Breast-conserving surgery
	15(12.0)
	58(13.5)


	Pathologic characteristics
	Histologic grade
	I/II
	63(50.4)
	291(67.8)
	<0.001


	III
	62(49.6)
	138(32.2)


	Histological type
	IDC
	107(85.6)
	363(84.6)
	0.787


	Other
	18(14.4)
	66(15.4)


	Molecular subtype
	HR+/HER2-
	8(6.4)
	241(56.2)
	<0.001


	HR+/HER2+
	30(24.0)
	76(17.7)


	HR-/HER2+
	64(51.2)
	46(10.7)


	HR-/HER2-
	23(18.4)
	66(15.4)


	ER
	Negative
	87(69.6)
	112(26.1)
	<0.001


	Positive
	38(30.4)
	317(73.9)


	 
	PR
	Negative
	102(81.6)
	168(39.2)
	<0.001


	Positive
	23(18.4)
	261(60.8)


	HER2
	Negative
	31(24.8)
	307(71.6)
	<0.001


	Positive
	94(75.2)
	122(28.4)


	Ki-67 Expression
	Ki-67<20%
	3(2.4)
	47(11.0)
	0.003


	Ki-67≥20%
	122(97.6)
	382(89.0)


	TILs
	TILs<10%
	101(80.8)
	377(87.9)
	0.043


	TILs≥10%
	24(19.2)
	52(12.1)


	Presence of
DCIS
	Negative
	96(76.8)
	253(59.0)
	<0.001


	Positive
	29(23.2)
	176(41.0)








Table 3 | Comparison of MRI characteristics between concordant and discordant groups.
	
	
	
	Discordant
	Concordant
	p value


	
	
	
	(n=125)
	(n=429)



	 
	Days to biopsy
	 
	2[-1,10]
	2[-1,7]
	0.500


	 
	Days to surgery
	 
	7[3,13]
	7[3,14]
	0.760


	 
	FGT
	Non-dense
	109(87.2)
	372(86.7)
	0.887


	Dense
	16(12.8)
	57(13.3)


	BPE
	Minimal or Mild
	86(68.8)
	234(54.5)
	0.005


	Moderate or Marked
	39(31.2)
	195(45.5)


	Tumor distribution
	Single
	103(82.4)
	368(85.8)
	0.351


	Multifocal or multicentric
	22(17.6)
	61(14.2)


	Lesion type
	Mass
	68(54.4)
	242(56.4)
	0.013


	NME
	25(20.0)
	122(28.4)


	Mass and NME
	32(25.6)
	65(15.2)


	NME
	Distribution of NME
	Linear or Focal
	12(48.0)
	63(51.6)
	0.952


	Segmental or Regional
	10(40.0)
	43(35.2)


	Multiple regional or Diffuse
	3(12.0)
	16(13.1)


	Mass
	Shape of mass
	Irregular
	68(100.0)
	237(97.9)
	0.516


	Round or oval
	0(0.0)
	5(2.1)


	Margin of mass
	Circumscribed
	0(0.0)
	4(1.7)
	0.117


	Not circumscribed
	66(97.1)
	215(88.8)


	Spiculated
	2(2.9)
	23(9.5)


	Internal enhancement of mass
	Heterogenous
	66(97.1)
	235(97.1)
	1.000


	 
	Rim enhancement
	2(2.9)
	7(2.9)


	 
	Tumor size(cm)
	 
	4.8[3.3,7.0]
	4.6[3.2,7.2]
	0.753


	 
	T2WI
	Low signal
	61(48.8)
	195(45.5)
	0.509


	 
	High signal
	64(51.2)
	234(54.5)


	 
	TIC
	Increasing/Plateau
	10(8.0)
	29(6.8)
	0.633


	 
	Washout
	115(92.0)
	400(93.2)


	 
	Associated features*
	Negative
	9(7.2)
	36(8.4)
	0.668


	 
	Positive
	116(92.8)
	393(91.6)


	 
	Peritumoral edema
	Negative
	95(76.0)
	346(80.7)
	0.256


	 
	Positive
	30(24.0)
	83(19.3)





*Associated features include nipple retraction, nipple invasion, skin retraction, skin thickening, skin invasion, axillary adenopathy, pectoralis muscle invasion, chest wall invasion, architectural distortion, and so on.



Univariate logistic regression analysis showed that neoadjuvant regimen, neoadjuvant treatment cycles, histologic grade, expressions of ER, PR, HER2, Ki-67 and TILs, presence of DCIS, BPE, and lesion type were all significantly correlated with the accuracy of the NAT efficacy as assessed by MRI (p<0.05). Multivariate logistic regression analysis further revealed that ER-negative (OR = 0.300, 95% CI: 0.152-0.592, p = 0.001), absence of DCIS (OR = 0.522, 95% CI: 0.301-0.905, p = 0.021), and the coexistence of mass lesions and NME (OR = 0.469, 95% CI: 0.226-0.974, p = 0.042) were independent influential factors of inaccurate MRI assessment of NAT efficacy (Table 4).


Table 4 | Univariate and multivariate analysis for factors associated with discordance between MRI and pathological assessment.
	
	
	Univariate
	Multivariate


	
	
	OR
	95%CI
	p value
	OR
	95%CI
	p value



	Clinical characteristics
	Neoadjuvant regimens
	 
	 
	<0.001
	 
	 
	0.651


	Other
	reference
	 
	 
	 
	 
	 


	AT/AC-T
	0.773
	0.367-1.625
	0.497
	1.999
	0.458-8.722
	0.357


	HER2-targeted
	6.365
	3.285-12.332
	<0.001
	1.055
	0.465-2.392
	0.898


	treatment cycles
	0.644
	0.541-0.766
	<0.001
	0.959
	0.778-1.182
	0.692


	Pathologic characteristics
	Histologic grade
	 
	 
	 
	 
	 
	 


	I/II
	reference
	 
	 
	 
	 
	 


	III
	2.075
	1.384-3.111
	<0.001
	0.888
	0.530-1.487
	0.651


	ER
	 
	 
	 
	 
	 
	 


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.154
	0.100-0.239
	<0.001
	0.3
	0.152-0.592
	0.001


	PR
	 
	 
	 
	 
	 
	 


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.145
	0.089-0.237
	<0.001
	0.585
	0.277-1.235
	0.160


	HER2
	 
	 
	 
	 
	 
	 


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	7.630
	4.832-12.050
	<0.001
	3.11
	0.698-13.864
	0.137


	Ki-67
	 
	 
	 
	 
	 
	 


	Ki-67<20%
	reference
	 
	 
	 
	 
	 


	Ki-67≥20%
	5.003
	1.530-16.362
	0.008
	1.139
	0.297-4.368
	0.849


	TILs
	 
	 
	 
	 
	 
	 


	TILs<10%
	reference
	 
	 
	 
	 
	 


	TILs≥10%
	1.723
	1.013-2.930
	0.045
	1.583
	0.829-3.020
	0.164


	 
	Presence of DCIS
	 
	 
	 
	 
	 
	 


	 
	Negative
	reference
	 
	 
	 
	 
	 


	 
	Positive
	0.434
	0.275-0.686
	<0.001
	0.522
	0.301-0.905
	0.021


	MRI characteristics
	BPE
	 
	 
	 
	 
	 
	 


	Minimal or Mild
	reference
	 
	 
	 
	 
	 


	Moderate or Marked
	0.544
	0.356-0.831
	0.005
	0.649
	0.391-1.078
	0.095


	Lesion type
	 
	 
	0.014
	 
	 
	0.123


	Mass and NME
	reference
	 
	 
	 
	 
	 


	Mass
	0.571
	0.346-0.942
	0.028
	0.645
	0.348-1.196
	0.164


	 
	NME
	0.416
	0.228-0.761
	0.004
	0.469
	0.226-0.974
	0.042











Comparison of baseline characteristics between the training cohort and validation cohort

In this study, 388 patients were included in the training cohort and 166 in the validation cohort, and a comparison of the baseline characteristics was shown in Table 5. The statistics showed that there were significant differences between the training and validation cohorts in terms of the T2WI signal intensity (p = 0.036, φ=0.089), the type of TIC (p = 0.003, φ=0.128), and peritumor edema (p = 0.005, φ=0.119) on pre-NAT breast MRI, while the rest of the characteristics were not statistically significant (p>0.05). After correction by the Bonferroni method (α=0.05/33≈0.0015), these differences were no longer significant. All standardized effect sizes were below 0.3, indicating negligible clinical differences. The baseline characteristics demonstrated satisfactory comparability between cohorts.


Table 5 | Comparison of baseline characteristics between the training and validation cohorts.
	Characteristics
	Training cohort
	Validation cohort
	P value


	(n=388)
	(n=166)



	Clinical characteristics
	Age(y)
	 
	48 [39,56]
	49 [41,57]
	0.166


	Menopausal status
	Premenopausal
	231(59.5)
	97(58.4)
	0.809


	Postmenopausal
	157(40.5)
	69(41.6)


	Lymph node status
	Negative
	108(27.8)
	45(27.1)
	0.861


	Positive
	280(72.2)
	121(72.9)


	Clinical stage
	I/II
	249(64.2)
	105(63.3)
	0.836


	III
	139(35.8)
	61(36.7)


	Pathologic characteristics
	pCR
	Negative
	299(77.1)
	119(71.7)
	0.178


	Positive
	89(22.9)
	47(28.3)


	Histologic grade
	I/II
	250(64.4)
	104(62.7)
	0.689


	III
	138(35.6)
	62(37.3)


	Histological type
	IDC
	332(85.6)
	138(83.1)
	0.464


	Other
	56(14.4)
	28(16.9)


	Molecular subtype
	HR+/HER2-
	179(46.1)
	70(42.2)
	0.287


	HR+/HER2+
	66(17.0)
	40(24.1)


	HR-/HER2+
	79(20.4)
	31(18.7)


	HR-/HER2-
	64(16.5)
	25(15.1)


	ER
	Negative
	143(36.9)
	56(33.7)
	0.483


	Positive
	245(63.1)
	110(66.3)


	PR
	Negative
	190(49.0)
	80(48.2)
	0.867


	Positive
	198(51.0)
	86(51.8)


	HER2
	Negative
	244(62.9)
	94(56.6)
	0.166


	Positive
	144(37.1)
	72(43.4)


	Ki-67 expression
	Ki-67<20%
	31(8.0)
	19(11.4)
	0.193


	Ki-67≥20%
	357(92.0)
	147(88.6)


	TILs
	TILs≤10%
	339(87.4)
	139(83.7)
	0.254


	TILs>10%
	49(12.6)
	27(16.3)


	Presence of DCIS
	Negative
	236(60.8)
	113(68.1)
	0.106


	Positive
	152(39.2)
	53(31.9)


	Pre-NAT MRI characteristics
	Lymph node status
	Negative
	77(19.8)
	26(15.7)
	0.246


	Positive
	311(80.2)
	140(84.3)


	FGT
	Non-dense
	330(85.1)
	151(91.0)
	0.059


	Dense
	58(14.9)
	15(9.0)


	BPE
	Minimal or Mild
	230(59.3)
	90(54.2)
	0.269


	Moderate or Marked
	158(40.7)
	76(45.8)


	Tumor distribution
	Single
	334(86.1)
	137(82.5)
	0.283


	Multifocal or multicentric
	54(13.9)
	29(17.5)


	Lesion type
	Mass
	223(57.5)
	87(52.4)
	0.538


	NME
	100(25.8)
	47(28.3)


	Mass and NME
	65(16.8)
	32(19.3)


	NME
	Distribution
of NME
	Linear or Focal
	47(47.0)
	28(59.6)
	0.187


	Segmental or Regional
	37(37.0)
	16(34.0)


	Multiple regional or Diffuse
	16(16.0)
	3(6.4)


	Mass
	Shape of
mass
	Irregular
	220(98.7)
	85(97.7)
	0.923


	Round or oval
	3(1.3)
	2(2.3)


	Margin of
mass
	Circumscribed
	2(0.9)
	2(2.3)
	0.634


	Not circumscribed
	203(91.0)
	78(89.7)


	Spiculated
	18(8.1)
	7(8.0)


	Internal enhancement of mass
	Heterogenous
	217(97.3)
	84(96.6)
	1.000


	Rim enhancement
	6(2.7)
	3(3.4)


	Tumor size
	 
	4.5[3.1,7.2]
	4.9[3.5,7.0]
	0.340


	T2WI
	Low signal
	168(43.3)
	88(53.0)
	0.036


	High signal
	220(56.7)
	78(47.0)


	TIC
	Increasing/
Plateau
	19(4.9)
	20(12.0)
	0.003


	Washout
	369(95.1)
	146(88.0)


	Peritumoral edema
	Negative
	321(82.7)
	120(72.3)
	0.005


	Positive
	67(17.3)
	46(27.7)


	subcutaneous edema
	Negative
	326(84.0)
	142(85.5)
	0.651


	Positive
	62(16.0)
	24(14.5)


	Post-NAT MRI characteristics
	rCR
	Negative
	379(97.7)
	160(96.4)
	0.566


	Positive
	9(2.3)
	6(3.6)


	Tumor size
	 
	3.3[2.2,4.8]
	3.3[2.3,5.0]
	0.520


	TIC
	Increasing/
Plateau
	282(72.7)
	128(77.1)
	0.276


	Washout
	106(27.3)
	38(22.9)


	ΔTIC
	Negative
	108(27.8)
	36(21.7)
	0.131


	Positive
	280(72.2)
	130(78.3)


	ΔTumor size
	 
	1.1[0.5,1.8]
	1.1[0.5,2.2]
	0.492











Analysis of influencing factors of the efficacy of neoadjuvant therapy

Univariable regression analysis (Table 6) identified several factors associated with pCR (p < 0.05), including lymph node status, histologic grade, expression of ER, PR, HER2, Ki-67, and TILs, presence of DCIS, BPE, lesion type, and peritumoral edema on pre-NAT breast MRI, rCR, tumor size, TIC on post-NAT breast MRI, as well as ΔTumor size and ΔTIC.


Table 6 | Univariate and multivariate analyses of factors associated with pCR.
	Characteristics
	Univariate
	Multivariate


	OR
	95%CI
	P value
	OR
	95%CI
	P value



	Clinical characteristics
	Lymph node status


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.643
	0.424-0.976
	0.038
	0.715
	0.404-1.266
	0.249


	Histologic grade


	I/II
	reference
	 
	 
	 
	 
	 


	III
	2.256
	1.521-3.348
	<0.001
	1.144
	0.652-2.008
	0.640


	ER


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.157
	0.103-0.240
	<0.001
	0.249
	0.119-0.520
	<0.001


	PR


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.138
	0.086-0.223
	<0.001
	0.574
	0.261-1.262
	0.167


	HER2


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	8.425
	5.385-13.180
	<0.001
	6.041
	3.388-10.771
	<0.001


	Ki-67


	Ki-67<20%
	reference
	 
	 
	 
	 
	 


	Ki-67≥20%
	8.692
	2.084-36.256
	0.003
	2.807
	0.515-15.287
	0.233


	TILs


	TILs≤10%
	reference
	 
	 
	 
	 
	 


	TILs>10%
	1.998
	1.196-3.338
	0.008
	1.471
	0.732-2.955
	0.279


	Presence of DCIS


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	0.373
	0.237-0.587
	<
0.001
	0.495
	0.273-0.899
	0.021


	Pre-NAT MRI characteristics
	BPE


	Minimal or Mild
	reference
	 
	 
	 
	 
	 


	Moderate or Marked
	0.599
	0.399-0.899
	0.013
	0.585
	0.335-1.022
	0.060


	Lesion type
	
	
	0.005
	
	
	0.058


	Mass and NME
	reference
	 
	 
	 
	 
	 


	Mass
	0.565
	0.347-0.922
	0.022
	0.45
	0.207-0.981
	0.045


	NME
	0.381
	0.210-0.688
	0.001
	0.415
	0.187-0.923
	0.031


	Peritumoral edema


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	1.594
	1.012-2.511
	0.044
	0.795
	0.417-1.514
	0.485


	post-NAT MRI characteristics
	rCR


	Negative
	reference
	 
	 
	 
	 
	 


	Positive
	21.984
	4.894-98.744
	<
0.001
	19.888
	2.985-132.498
	0.002


	Tumor size
	0.888
	0.806-0.980
	0.018
	0.78
	0.662-0.920
	0.003


	TIC


	Increasing/Plateau
	reference
	 
	 
	 
	 
	 


	Washout
	0.077
	0.031-0.191
	<
0.001
	0.033
	0.005-0.240
	0.001


	ΔTumor size
	1.260
	1.100-1.442
	0.001
	1
	0.821-1.217
	0.996


	ΔTIC


	Negative
	reference
	 
	 
	 
	 


	Positive
	7.716
	3.670-16.222
	<
0.001
	0.363
	0.062-2.131
	0.262







Multivariable logistic regression analysis revealed that ER-negative status (OR, 0.249 [95% CI: 0.119–0.520]; p<0.001), HER2-positive status (OR, 6.041 [95% CI: 3.388–10.771]; p<0.001), absence of DCIS (OR, 0.495 [95% CI: 0.273–0.899]; p = 0.021), rCR (OR, 19.888 [95% CI: 2.985–132.498]; p = 0.002), smaller tumor size (OR, 0.780 [95% CI: 0.662–0.920]; p = 0.003), and increasing/plateau TIC (OR, 0.033 [95% CI: 0.005–0.240]; p = 0.001) were associated with a higher pCR rate. On pre-NAT MRI, mass lesions (OR = 0.45) and NME (OR = 0.415) were associated with a lower pCR rate compared to Mass and NME mixed lesions.

Meanwhile, we performed an additional 1,000 bootstrap resampling iterations in the training set to evaluate variable stability. As a result, the 95% confidence interval for the coefficient of the lesion type variable included zero, and this variable exhibited low sign consistency (Mass type: 50.2%; NME type: 89.6%; Supplementary Table 7). Consequently, the lesion type variable was excluded from the final model. The final multivariable model incorporated six robust predictor variables (Supplementary Table 8). Subsequent internal validation via bootstrap resampling confirmed excellent stability for all included variables, with 95% confidence intervals excluding zero and sign consistency exceeding 99% for every predictor.





Development and validation of the nomogram

Based on the univariate and multivariate Logistic regression analyses of the development cohort, a nomogram model for predicting pCR was further constructed (Figure 2). The nomogram demonstrated good discrimination ability in both the training cohort (AUC = 0.894, 95% CI: 0.857–0.932) (Figure 3A) and the validation cohort (AUC = 0.888, 95% CI: 0.841–0.935) (Figure 3B). Model calibration was deemed acceptable. In the training cohort, the calibration curve fitted well with the ideal calibration line (Figure 4A), and in the validation cohort, the calibration curve still generally clustered around the ideal calibration line (Figure 4B). The Brier scores for the training and validation cohorts were 0.102 and 0.131, respectively. Finally, the clinical decision curve showed (Figures 5A, B) that the net benefit of the model was better than that of the all-pCR/all-non-pCR diagnostic strategy at most thresholds, and it has clinical application value.

[image: Nomogram for predicting probability of pathological complete response (pCR) in breast cancer treatment. Variables include Presence of DCIS, ER, HER2, rCR, TIC at post NAT MRI, Tumor size at post NAT MRI. Points and total points are scored, correlating to pCR probability on a scale from 0.001 to 0.95.]
Figure 2 | Predictive nomogram for pCR probability.

[image: Two ROC curves are displayed. Panel A shows a red curve for the training cohort with an AUC of 0.894. Panel B shows a blue curve for the validation cohort with an AUC of 0.888. Both graphs plot sensitivity against 1-specificity, featuring a diagonal baseline for reference.]
Figure 3 | ROC Curve of the nomogram for predicting pCR. (A) ROC of the training cohort (AUC = 0.894, 95% CI: 0.857–0.932); (B) ROC of the validation cohort (AUC = 0.888, 95% CI: 0.841–0.935).

[image: Side-by-side calibration plots labeled A and B compare observed versus predicted probabilities. Both plots feature blue “Apparent,” red “Bias-corrected,” and black dashed “Ideal” lines. Plot A shows lines following the ideal line closely. Plot B shows deviation, especially at lower probabilities, indicating overfitting. Axes are marked from zero to one for both observed and predicted probabilities.]
Figure 4 | Calibration plot of the nomogram for predicting pCR. (A) calibration plot of the training cohort; (B) calibration plot of the validation cohort.

[image: Two line graphs display net benefit across high-risk thresholds. Graph A shows data for a training cohort in red, Graph B for a validation cohort in blue. Both graphs also include gray lines representing “All” and black lines for “None.” Net benefit decreases as the high-risk threshold increases in both cohorts.]
Figure 5 | DCA of the nomogram for predicting pCR. (A) DCA curve of the training cohort; (B) DCA curve of the validation cohort.






Discussion

Data from our study indicated an overall accuracy of 77.44% for breast MRI in assessing the response to NAT, consistent with previous research (11). Investigating the factors contributing to radiologic-pathologic discordance will facilitate optimized clinical interpretation of MRI findings in patients with specific clinicopathological or imaging characteristics, thereby providing a basis for enhancing MRI performance.

Current studies on the impact of concomitant DCIS on MRI accuracy predominantly rely on postoperative paraffin-embedded pathology, suggesting reduced MRI assessment accuracy in patients with DCIS—a finding influenced by pCR definitions (12, 13). In contrast, this study focuses on early assessment of NAT response, addressing the inherent time lag of conventional pathological evaluation. Notably, we observed higher MRI inaccuracy in patients without DCIS on core needle biopsy, a finding discordant with conventional understanding. We postulate this discrepancy may stem from sampling limitations of core needle biopsy, wherein multifocal or microscopic DCIS foci could remain undetected (14). In cases diagnosed via core needle biopsy as “without concomitant DCIS,” there may exist diffusely distributed DCIS components that were not sampled during the biopsy procedure. Such occult DCIS tends to be less responsive to NAT and is more likely to persist post-treatment. Its persistent enhancement on MRI may be misinterpreted as residual invasive carcinoma, thereby reducing the specificity and overall accuracy of MRI assessment in this subgroup. In contrast, the classification of cases with biopsy-confirmed “concomitant DCIS” is more reliable. Therefore, in clinical practice, caution should be exercised regarding the risk of false-positive MRI findings due to residual DCIS after NAT in patients initially diagnosed as DCIS-negative on biopsy. These conclusions still require further validation through large-scale prospective studies. Consequently, these results warrant cautious interpretation and further validation. The observation presents dual challenges for breast imaging and pathology. Future research may explore quantitative analysis of multimodal MRI and artificial intelligence imaging recognition techniques, in combination with more precise biopsy strategies (e.g., stereotactic localization, multi-target sampling), to further enhance the accuracy of MRI assessment.

In this study, it was found that the diagnostic efficacy of breast MRI varies among different molecular subtypes of breast cancer. The accuracy rates in each subtype are as follows: HR+/HER2- type (96.79%), HR-/HER2- type (74.16%), HR+/HER2+ type (67.92%), and HR-/HER2+ type (41.82%). These findings are generally consistent with the trends reported in previous literature, which are 94.5% for Luminal A type, 74.4% for Luminal B type, 88.9% for TNBC, and 58.2% for HER2 type (7). The relatively high accuracy of MRI assessment in TNBC may be directly related to its unique cellular and vascular characteristics. TNBC typically exhibits a higher histological grade, accompanied by increased cellular proliferation, higher cellular density, greater structural complexity, and significantly enhanced metabolic activity. Furthermore, it demonstrates increased neovascularization, leading to aberrant tumor vascular structure and function, elevated arteriovenous shunting, and dysregulated blood flow. These features collectively promote greater uptake of contrast agent and enhanced leakage into the extracellular space, ultimately manifesting as more pronounced enhancement on MRI. This likely underlies the higher diagnostic accuracy of MRI for TNBC (15, 16). Conversely, the lower MRI diagnostic accuracy for HER2-positive tumors may be mechanistically explained by several factors. Firstly, HER2 gene amplification is closely linked to neovascularization. Targeted therapies inhibit HER2 signaling transduction, disrupting the balance between pro-angiogenic and anti-angiogenic factors. This suppresses angiogenesis and promotes the normalization of abnormal vasculature, consequently altering MRI imaging characteristics (17). Secondly, the residual effects of angiogenesis may play a role. HER2-positive breast cancers are inherently highly proliferative and often present with a high level of angiogenesis at diagnosis. Even after achieving a pCR following NAT, residual neovasculature may still manifest as a non-rCR on MRI, contributing to reduced diagnostic accuracy (18).

Regarding baseline MRI features, multiple studies have demonstrated their association with MRI-pathology discordance following NAT. Research by Hu et al. indicated that multifocal/multicentric lesions, segmental or regional NME distribution, and enhancing mass margins increase the risk of discordance (7). Negrão et al. reported that NME was the sole significant factor associated with MRI-pathology discordance (19). The reduced accuracy of MRI assessment for NME lesions stems from two primary factors. Firstly, unlike well-defined, homogeneous mass lesions, NME exhibits diffuse, heterogeneous growth patterns and often regresses irregularly after NAT. In contrast, masses typically demonstrate concentric shrinkage. This difference renders MRI size estimation more challenging for NME (20–22). Secondly, focal, regional, or asymmetric background parenchymal enhancement (BPE) can be readily misinterpreted as NME. For instance, Chikarmane et al. found that 20% (77 cases) of lesions previously classified as NME were actually BPE (23). Furthermore, this study revealed that the coexistence of mass and NME components significantly amplifies MRI assessment inaccuracy. This arises from the complex interplay of heterogeneous enhancement patterns, conflicting imaging characteristics, divergent underlying pathology, and variable treatment responses.

The association between the presence of DCIS on core needle biopsy and pCR to NAT remains inconsistent across existing studies. Labrosse et al. found no significant association between concomitant DCIS on biopsy and pCR (14). Conversely, von Minckwitz et al. reported that the absence of DCIS was an independent predictor of pCR in HER2-positive breast cancer (24). Similarly, Helal et al. demonstrated a significant association between the absence of DCIS on biopsy and pCR in TNBC (25). In the present study, we observed comparable results: the absence of DCIS on pre-treatment core biopsy was associated with a higher likelihood of achieving pCR. This observation may be explained by the fact that while DCIS can exhibit some response to NAT and may be completely eradicated in some cases, DCIS cells generally possess lower proliferative and invasive potential compared to invasive carcinoma. Consequently, breast cancers associated with DCIS typically exhibit lower overall response rates to NAT than pure invasive carcinomas, resulting in reduced responsiveness to neoadjuvant treatment (26, 27).

Furthermore, we found that MRI-assessed rCR was significantly correlated with pCR. This aligns with Santamaría et al., who demonstrated that the absence of late-phase enhancement on post-NAT MRI significantly correlated with pCR (28). Similarly, Kim et al. showed that the absence of both early and late enhancement within the tumor bed on post-NAT MRI was independently associated with pCR (29). In our study, rCR was defined as the absence of both early and late enhancement at the primary site on post-treatment MRI, combined with a short-axis diameter of <10 mm for all pathological lymph nodes (targeted or non-targeted). Multivariate regression analysis confirmed rCR as a strong predictor of NAT response. However, due to the limited sample size of rCR cases in this cohort (n=15, 2.7%), future studies with larger cohorts are warranted to validate this finding. Additionally, the post-NAT TIC type was significantly associated with pCR, consistent with previous reports (30). TIC reflects lesion hemodynamics, specifically related to tissue blood flow perfusion and microvascular permeability (31). Patients achieving pCR often exhibit TIC curves characterized as persistent or plateau types. This pattern likely results from tumor vascular remodeling or obliteration, reduced angiogenesis coupled with increased destruction, and decreased vascular wall permeability. Although some literature suggests that changes in TIC pattern between pre- and post-NAT MRI correlate with pCR (32), our multivariate analysis did not reveal a statistically significant association between TIC pattern change and pCR.

Numerous studies have developed predictive models for NAT response based on MRI features (33, 34). Compared to these previous models, the model constructed in this study demonstrated superior performance in terms of discrimination, calibration, and clinical decision applicability. Our present model incorporates only baseline characteristics and MRI parameters on post-NAT breast MRI. Consequently, its primary utility lies in pre-operative risk stratification to inform surgical decision-making. To this end, we systematically evaluated a range of probability thresholds and report the corresponding sensitivities and specificities (Supplementary Table 9). To minimize the risk of long-term survival detriment attributable to under-treatment while maintaining adequate sensitivity, we adopted a probability threshold of 0.70. At this threshold, the model achieves a specificity of 97.7% and a sensitivity of 40.4%, thereby correctly identifying the vast majority of patients with pathologically confirmed pCR. Based on this threshold, when the predicted probability is ≥0.70, breast-conserving surgery (BCS) combined with sentinel lymph node biopsy (SLNB) may be discussed with the patient (One representative application case is depicted in the Supplementary Figure 1), and the feasibility of omitting surgery could be evaluated in future prospective trials. Conversely, if the predicted probability is <0.70, standard modified radical mastectomy or conventional BCS is recommended.

However, this study has several limitations. First, it was a single-center, retrospective analysis. Second, due to the limited sample size, subgroup analyses based on molecular subtypes were not performed. Additionally, the small number of cases achieving MRI-assessed rCR (n=15, 2.7%) compromised the evaluation of diagnostic performance for this outcome. Finally, the training and validation cohorts exhibited minor discrepancies in a few baseline MRI features. Although statistical analyses and model performance metrics suggest these differences had limited impact, they nevertheless represent a limitation. Future work will undertake external validation in a more independent and balanced cohort to further confirm the model’s generalizability.





Conclusions

In summary, our research indicates that breast MRI demonstrates good accuracy in predicting NAT response. However, its accuracy in post-NAT efficacy assessment decreases in tumors that are ER-negative, lack concomitant DCIS, and exhibit both mass and non-mass enhancement lesions. Consequently, when utilizing MRI to evaluate NAT response, a comprehensive analysis integrating baseline clinicopathological characteristics and MRI findings is essential. The MRI feature-based predictive model developed here shows promise in efficacy prediction and may serve as a valuable supplementary tool for clinical decision-making.
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Supplementary Figure 1 | A representative case from our retrospective cohort notably demonstrates the potential clinical utility of this strategy. A 65-year-old female patient was diagnosed via core needle biopsy with HR-negative/HER2-positive invasive ductal carcinoma (histologic grade 2). Initial staging indicated a tumor measuring 4.5 cm in maximum diameter with lymph node involvement (cT2N1, stage IIb). Key variables incorporated into the model included: DCIS component, ER negativity, HER2 positivity, post-NAT MRI indicating rCR, TIC showing wash-out pattern, and residual tumor size of 0 cm. The nomogram total score was approximately 310, corresponding to a predicted pCR probability exceeding 0.80. Based on the predefined decision threshold of 0.70, the patient was recommended for and successfully underwent breast-conserving surgery combined with sentinel lymph node biopsy. Final pathological evaluation confirmed pCR. This case supports the feasibility of safely omitting further surgery in patients with a nomogram-predicted pCR probability ≥ 0.70 in future prospective trials.
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