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Objective: To develop a combined predictive model based on CT radiomics and
clinical features and evaluate its diagnostic value for predicting the efficacy
prognosis of immunotherapy in stage llI-IV non-small cell lung cancer (NSCLC).
Methods: A retrospective analysis was conducted on 106 patients with stage Illa—
IVB NSCLC who underwent immunotherapy at the Second Affiliated Hospital of
Soochow University between December 2018 and December 2023. Patients
were divided into two groups based on whether their progression-free survival
(PFS) exceeded 12 months. The cohort was randomly split into a training set (75
patients) and a validation set (31 patients) in a 7:3 ratio. Clinical and imaging data
were collected, and independent predictive factors were identified through
univariate and multivariate logistic regression analysis to construct a clinical
feature model. Radiomic features were extracted from contrast-enhanced chest
CT images, and LASSO algorithm along with Pearson correlation coefficients
were applied to select optimal features and calculate a radiomics score. A
combined predictive model integrating clinical independent predictors and
radiomic features was developed and visualized as a nomogram. Model
performance was assessed by subject work characteristics (ROC) curves and
area under the curve (AUC). Clinical utility was assessed via decision curve
analysis (DCA), and calibration curves were used to evaluate the nomogram’s
predictive accuracy.

Results: Tumor location was an independent predictor of immunotherapy
efficacy and formed the clinical model. Twelve contrast-enhanced CT
radiomic features comprised the radiomics model. The combined model
(clinical + radiomic) demonstrated superior diagnostic performance: training
set AUCs (clinical: 0.705, radiomics: 0.835, combined: 0.896);validation set AUCs
(clinical: 0.691, radiomics: 0.833, combined: 0.863). The combined model's AUC
was significantly higher than either submodel alone in both sets. DCA confirmed
its highest net clinical benefit, and calibration curves indicated good accuracy.
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Conclusion: This study developed a predictive model based on clinical and
radiomic features for assessing immunotherapy efficacy in NSCLC. The model
demonstrated excellent performance, suggesting its potential as a clinical
decision-support tool for prognosis prediction and treatment planning in
NSCLC immunotherapy.

radiomics, immunotherapy response, non-small cell lung cancer, nomogram, decision

curve analysis

1 Introduction

The advent of immune checkpoint inhibitors (ICIs) has
revolutionized the treatment paradigm for advanced non-small
cell lung cancer (NSCLC), with approximately 20-30% of patients
achieving durable responses (1). However, the current gold-
standard biomarker PD-L1 expression exhibits limited predictive
accuracy (objective response rate concordance: 45-60%) (2, 3),
while emerging biomarkers like tumor mutational burden (TMB)
face challenges in clinical standardization (4-6). This predictive
uncertainty leads to non-negligible rates of premature treatment
discontinuation (34.7% in real-world studies (7)) and unnecessary
immune-related adverse events (irAEs),highlighting the urgent
need for more robust stratification tools. Radiomics, as a non-
invasive approach decoding tumor heterogeneity through high-
throughput imaging feature analysis, has demonstrated unique
advantages in ICI response prediction. Recent studies revealed
that CT-based radiomic signatures could reflect tumor
microenvironment characteristics (e.g., CD8+ T-cell infiltration
(8)) and predict progression-free survival (PFS) with AUCs of
0.71-0.79 (9, 10).By extracting quantitative radiomics features
from patient CT images and computing the radiomics signature,
combined with selecting predictive clinical indicators from patient
medical records, we developed and validated a Combined
Forecasting Model (CFM) to predict treatment response to
immunotherapy in non-small cell lung cancer (NSCLC) patients.

2 Materials and methods
2.1 General information

This study is a retrospective, multicenter investigation that
collected clinical and imaging data from patients with advanced
NSCLC who received ICIs treatment at two domestic centers: the
Second Affiliated Hospital of Soochow University (Center 1) and
the First Affiliated Hospital of Soochow University (Center 2)
between December 2018 and December 2023.Baseline clinical data
and computed tomography (CT) imaging were collected for all
participants,. This study was conducted in accordance with the
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ethical principles of the Declaration of Helsinki (2013 revision)
and received approval from the Ethics Committee of the First
Affiliated Hospital of Soochow University and the Second
Affiliated Hospital of Soochow University. Inclusion Criteria:
@Pathologically confirmed stage IIIa-IVb NSCLC according to
the 9th edition of the TNM system (10) @Treatment with at least
two cycles of either anti-PD-1/PD-L1 monotherapy or combination
therapy of immunotherapy with platinum-based doublet
chemotherapy. Patients who received concurrent or sequential
radiotherapy, targeted therapy, or any other anticancer regimens
were excluded. ®Availability of contrast-enhanced CT scans
obtained within 2 months prior to immunotherapy initiation
@Complete clinical documentation;Exclusion Criteria: ®Primary
tumor undetectable or unsegmentable on chest CT imaging, or poor
image quality @Receipt of any additional anticancer therapy beyond
specified immunotherapy or chemotherapy regimens ®@Presence of
active autoimmune diseases @Loss to follow-up or incomplete
postoperative surveillance records.

2.2 Indicator collection

Clinical data collected included patient demographics (age, sex,
smoking history), tumor characteristics (non-small cell lung cancer
histologic subtype, PD-L1 expression level, tumor stage, location),
serum fibrinogen levels, and enhanced CT imaging findings. The
administered anti-PD-1/PD-L1 monoclonal antibodies included
Camrelizumab, Pembrolizumab, Sintilimab, Tislelizumab, and
Toripalimab (see Table 1 for details). Treatment response was
assessed per RECIST vl.1, classifying outcomes as progressive
disease (PD), stable disease (SD), partial response (PR), or
complete response (CR) using electronic medical records. The
primary endpoint was progression-free survival (PES), defined as
the time from immunotherapy initiation until disease progression,
death from any cause, or final follow-up. Patients were stratified into
two groups based on whether their PFS exceeded 12 months. A PFS
threshold of 12 months was chosen to define the durable clinical
benefit (DCB) group, as it is a commonly used surrogate endpoint in
immuno-oncology studies to reflect sustained treatment efficacy and
is clinically meaningful for prognosis assessment.
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TABLE 1 Baseline characteristics of patients in the training and external validation cohorts.

External validation cohort

Characteristict Training cohort (n=75)* (n=34) p-value
Age (years) 70.0 (8.8) 72 (9.9) 0.315
Sex 0.684
Female 11 (15%) 4 (12%)
Male 64 (85%) 30 (88%)
PD-L1 Expression 0.017
<1% 9 (12%) 9 (26%)
1-49% 36 (48%) 20 (59%)
>50% 30 (40%) 5 (15%)
Tumor Location 0.826
Central 37 (49%) 16 (47%)
Peripheral 38 (51%) 18 (53%)
Cancer Type 0.576
Squamous 44 (59%) 18 (53%)
Adenocarcinoma 31 (41%) 16 (47%)
T Stage 0.844
3A 6 (8.0%) 3 (9%)
3B 17 (23%) 9 (26%)
3C 8 (11%) 3 (9%)
4A 25 (33%) 8 (24%)
4B 19 (25%) 11 (32%)
Immunotherapy Drug 0.221
Camrelizumab 10 (13%) 9 (26%)
Pembrolizumab 19 (25%) 8 (24%)
Sintilimab 27 (36%) 12 (35%)
Tislelizumab 18 (24%) 4 (12%)
Toripalimab 1(1.3%) 1 (3%)
Treatment Regimen 0.773
Imm. 15 (20%) 6 (18%)
Imm. + Chemo. 60 (80%) 28 (82%)
Smoking Status 0.251
Non-smoker 33 (44%) 11 (32%)
Smoker 42 (56%) 23 (68%)
Fibrinogen 4.23 (1.18) 3.63 (0.98) 0.728

'Data presented as n (%) or mean (SD).

2.3 Analysis and extraction of radiomics manually segmented slice-by-slice on lung window settings
features (width: 1500 HU; level: -600 HU) using 3D Slicer software

(v4.11) to define volumetric regions of interest (VOIs). The use

Enhanced CT images in DICOM format were retrieved from  of contrast-enhanced images facilitated more accurate delineation
the institutional PACS system and anonymized. The contrast-  of tumor boundaries, particularly in distinguishing the tumor
enhanced CT images were reviewed, and tumor lesions were  from adjacent vessels and atelectatic lung tissue. A total of 1,036
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radiomics features were extracted from 3D VOIs using the
PyRadiomics package (v3.0.1) in Python, encompassing four
feature classes:1.First-order statistics (e.g., intensity histogram
metrics)2.Shape-based features (3D orphological descriptors)
3.Texture features: Gray-Level Co-occurrence Matrix (GLCM):
Correlation, Energy Gray-Level Run- Length Matrix (GLRLM):
Long Run Emphasis (LRE) Gray-Level Size Zone Matrix
(GLSZM): Size Zone Non-Uniformity 4.Higher-order features
(filtered image approximations).To evaluate the reproducibility
of radiomic feature extraction, both inter-observer and intra-
observer reliability were assessed. For inter-observer reliability,
volumetric segmentations were performed independently by two
radiologists on a randomly selected subset of 30 patients. For
intra-observer reliability, the primary radiologist repeated the
segmentations on the same subset after a four-week interval to
minimize memory bias. The intraclass correlation coefficient
(ICC) was calculated for both assessments. Only features
exhibiting excellent reproducibility (ICC > 0.75) in both
evaluations were retained for subsequent analysis. Features with
ICC >0.75 (11, 12) were retained, indicating excellent agreement
according to established criteria.

2.4 Construction of clinical
characterization model, CT imaging
histology model

Using the “Pyradiomics” package in Python to extract
radiomics features, we first conduct Z-score normalization on the
extracted radiomics features. Then, we perform dimensionality
reduction on the radiomics data using mRMR and LASSO. We
use Logistic Regression(LR)as the classifier to build the radiomics
model. Moreover, we adopt 10-fold cross-validation to enhance the
stability of the model. Univariate logistic regression analysis was
used to screen out the predictors. Subsequently, multivariate logistic
regression analysis was used for the clinical indicators with
statistical differences in univariate analysis to screen out the
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independent predictors, and a clinical model was constructed
based on this.

2.5 Construction and evaluation of the
CFM

The independent clinical predictors and the radiomics score
(Rad-score) were integrated into a final multivariate logistic
regression analysis to construct the Combined Forecasting Model
(CFM). A nomogram was generated to visualize this model. The
performance of all models was evaluated using several metrics.
Receiver Operating Characteristic (ROC) curves were used to assess
discriminative ability, calibration curves were used to evaluate
model reliability, and Decision Curve Analysis (DCA) was used
to assess the net clinical benefit and clinical utility the independent
predictors and radiomics scores were included in the multivariate
logistic regression analysis, and a combined model was constructed
based on this, and a nomogram was drawn. The ROC curve was
used to evaluate CEM, the calibration curve was used to evaluate the
reliability of the model, and the DCA was used to evaluate the
clinical efficacy of the radiomics model and CFM.

3 Results

3.1 Baseline characteristics of patients in
the training and external validation cohorts

No significant differences in baseline characteristics existed
between the training and external test sets, as confirmed by
independent samples t-tests/Mann-Whitney U tests for
continuous variables and chi-square tests for categorical variables
(Table 1). The balanced distribution of clinical features across both
cohorts supports the validity of the external validation approach
and ensures that performance differences reflect true model efficacy
rather than cohort disparities.
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Binomial Deviance

12

10

08
1

A [ Log(%.)
Coefficients

Screening of the radiomics features in the training set via LASSO regression. (A) Features maintaining non-zero coefficients at the (A) 1se threshold
(vertical dashed line) in LASSO regression analysis.” (B) The final feature subset with non-zero coefficients selected by LASSO regression at the
optimal penalty parameter (A. 1se) (C) The optimal regularization parameter (A. 1se) was determined through cross-validation, as indicated by the

vertical dashed line on the right.
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ROC curves comparing model performance across datasets.

3.2 Rad-scores and their predictive

performance

Finally,12 radiomic features with non-zero coefficients were

immunotherapy efficacy. The radiomics features of the above-
mentioned radiomics model were linearly combined and weighted
by their respective coefficient AUC = 0.896 (0.825-0.966) to
calculate the rad-scores.

obtained from the 1036 radiomic features in the training set using
the LASSO method. (Figure 1) The radiomics prediction models for
the training and validation sets achieved AUC values of 0.835 and
0.833 under the ROC curve, respectively. The accuracy rates were
0.813 and 0.806,respectively, and the sensitivity rates were 0.828
and 0.792, respectively. (Figure 2) These results indicate that the
radiomics model demonstrated robust performance in predicting

3.3 Construction of the clinical model

Collecting clinical data on all patients. Univariate and
multifactorial logistic regression analyses showed that tumor
location: peripheral or central was of predictive value (Table 2).

TABLE 2 Univariate and multivariate logistic regression analysis of predictive factors.

Variable Univar_iate logistic regression p-value? Multivgriate logistic regression p-value?
analysis OR (95%Cl) analysis OR (95%Cl)
Age (years) 2.242 (0.569-8.832) 0.143
Sex 2.242 (0.569-8.832) 0.249
PD-L1 Expression 1.897 (0.837-4.302) 0.125
Tumor Location 0.151 (0.039-0.585) 0.006 0.127 (0.025-0.653) 0.013
Cancer Type 0.739 (0.249-2.194) 0.586
Stage 1.596 (0.997-2.554) 0.052
Treatment Regimen 0.462 (0.093-2.284) 0.343
Smoking 1.594 (0.538-4.723) 0.4
Fibrinogen 0.820 (0.524-1.284) 0.386 3.63 (0.98)
rad_score 3.305 (1.662-6.569) <0.001 <0.001
Data presented as n (%) or mean (SD).
Frontiers in Oncology 05 frontiersin.org
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TABLE 3 Performance metrics of clinical, radiomics and combined models across datasets.

Model Dataset AUC (95% CI) Accuracy Sensitivity Specificity
Internal Training Set 0.705 (0.592-0.818) 0.64 0.586 0.824
Internal Validation Set 0.691 (0.486-0.895) 0.677 0.667 0.714
Clinical Model
External Validation Set 0.653 (0.450-0.857) 0.618 0.593 0.714
Internal Training Set 0.835 (0.733-0.937) 0.813 0.828 0.765
Internal Validation Set 0.833 (0.624-1.000) 0.806 0.792 0.857
Radiomics Model External Validation Set 0.831 (0.641-1.000) 0.912 1 0.571
Internal Training Set 0.896 (0.825-0.966) 0.787 0.724 1
Internal Validation Set 0.863 (0.713-1.000) 0.71 0.625 1
Combined Model
External Validation Set 0.884 (0.757-1.000) 0.735 0.667 1

3.4 Performance and evaluation of the
Combined Forecasting Model

A CFM was established by incorporating the Rad-score and the
independent clinical factor (tumor location) into a logistic
regression model, which was visualized as a nomogram
(Figure 3). The performance of the CFM was superior to the
individual models. As shown in Table 3, the CFM achieved an
AUC of 0.902 (95% CI: 0.833-0.970) in the internal training cohort
and 0.863 (95% CI: 0.813-1.000) in the internal validation cohort.
The model’s high performance was maintained in the independent
external validation cohort (AUC = 0.863, 95% CI: 0.813-1.000),
underscoring its robustness and generalizability. To quantitatively
assess the model’s performance and generalizability, DeLong tests
were conducted to compare the AUCs among the three models
within each cohort. In the training cohort, the combined model

significantly outperformed the clinical model (p < 0.001). However,
no significant differences were found between the combined model
and the radiomics model (p = 0.095), nor among any of the three
models in both the internal validation (all p > 0.30) and external
validation cohorts (all p > 0.07). These results indicate that the
combined model achieves robust and stable predictive performance
without overfitting, generalizing well to independent patient
cohorts. Detailed results of the pairwise comparisons are provided
in Supplementary Figure 1. Decision Curve Analysis (DCA)
demonstrated that the CFM provided the highest net clinical
benefit across a wide range of threshold probabilities compared to
the clinical-only or radiomics-only models in all cohorts (Figure 4).
Furthermore, the calibration curves indicated good agreement
between the model’s predicted probabilities and the actual
observed outcomes in both the training and validation datasets,
confirming the model’s reliability (Figure 5).
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FIGURE 3
Nomogram of the comprehensive forecasting model.
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4 Discussion

This study integrated clinical characteristics and CT radiomics
features of patients with stage ITI-IV non-small cell lung cancer
(NSCLC) receiving immunotherapy to develop an integrated
diagnostic model. This study first explored independent predictors
of immunotherapy efficacy in the clinical setting and found that

central tumor location was adverse prognostic outcomes in
NSCLC. Previous studies (13, 14) have shown that in terms of
microenvironment, central-type tumors have 2.8-fold more TGF-3
expression than peripheral-type, CD8+ T-cell density is decreased by
40% under multiple fluorescence, and central-type lung cancers have
significantly worse (15) OS than peripheral-type lung cancers; there
are also previous studies (16) that emphasized the peritumor texture-
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entropy imaging histological features of central-type lung cancers
compared with the peripheral-type lung cancers. Based on the above
independent influences on the efficacy of immunotherapy, the
present study firstly modeled the clinical characteristics of
prognosis. Utilizing data from the Second Affiliated Hospital of
Soochow University, a cohort of 106 patients was included. The
constructed integrated diagnostic model demonstrated (17)superior
diagnostic efficacy, achieving areas under the AUC of 0.902 and 0.863
in the training and validation sets. The nomogram developed in this
study serves as an intuitive tool with potential for integration into
clinical decision support systems (CDSS). In future clinical practice,
prior to initiating immunotherapy, clinicians could input the patient’s
tumor location and CT-based Rad-score to obtain an individualized
probability of treatment response. This approach would help identify
patients likely to derive suboptimal benefit, enabling consideration of
alternative treatment strategies or more intensive monitoring,
ultimately advancing toward precision immunotherapy for lung
cancer. Furthermore, grayscale normalization techniques (18) were
applied during preprocessing to mitigate image variations attributable
to differences in imaging acquisition parameters. Comparative
analysis using ROC curves evaluated the clinical feature model, CT
radiomics model, and the integrated diagnostic model. The results
revealed that the AUC of the integrated model was significantly
higher than the other two models in both the training and validation
sets, indicating its robust diagnostic performance and favorable
generalizability (19).DCA demonstrated that the integrated
diagnostic model yielded the highest net clinical benefit across both
the training and validation cohorts compared to the clinical feature
model and the CT radiomics model. Calibration curves indicated
good agreement between predicted and observed outcomes for the
integrated model, although variations in performance across different
predicted probability ranges were noted among all models. This study
has several limitations that should be considered. First, despite being
a two-center study, its retrospective design may still introduce
selection bias (20). To mitigate this, we applied strict, consistent
inclusion and exclusion criteria across both participating centers.
Second, the sample size, particularly for the external validation cohort
(n=34), remains relatively small (21, 22), which may affect the
stability of the estimates. Future large-sample studies needed to
confirm our findings. we acknowledge that the sample size,
particularly of the external validation cohort, is relatively modest.
While larger-scale prospective studies are certainly needed to further
solidify our findings, a key strength of our work is the very inclusion
of an independent external validation set. The model’s excellent and
stable performance in this cohort (AUC: 0.863) provides strong
preliminary evidence of its generalizability, addressing a common
limitation in many radiomics studies. Third, heterogeneity in
immunotherapy regimens exists. Although our univariate analysis
showed that the specific treatment regimen was not a significant
predictor, the eterogeneity in drugs and combinations (e.g.,
mono-immunotherapy vs. chemo-immunotherapy) remains a
limitation. We subsequently performed a post hoc exploratory
analysis by stratifying patients according to treatment regimen
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(immunotherapy monotherapy versus combined immunotherapy-
chemotherapy). The combined model maintained robust
discriminatory capacity across all subgroups (all AUCs > 0.80);
however, formal statistical comparisons were not conducted due to
limited sample sizes within the subgroups. Future studies with larger,
more homogeneous cohorts could further refine the model’s
applicability. Fourth, manual segmentation inherently carries a risk
of inter-observer variability. We minimized this by having
segmentations performed by an experienced radiologist following a
standardized protocol and by rigorously assessing feature
reproducibility (ICC > 0.75). Fifth, our study currently lacks delta-
radiomics (23-25) from longitudinal imaging, which represents a
promising future direction to capture dynamic changes in tumor
biology during therapy and potentially further enhance predictive
performance (26, 27).
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