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and Haitao Ma1*
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Medical University, Bengbu, China, 3Department of Rheumatology and Immunology, The Third
Affiliated Hospital of Soochow University, Changzhou, China
Objective: To develop a combined predictive model based on CT radiomics and

clinical features and evaluate its diagnostic value for predicting the efficacy

prognosis of immunotherapy in stage III–IV non-small cell lung cancer (NSCLC).

Methods: A retrospective analysis was conducted on 106 patients with stage IIIa–

IVB NSCLC who underwent immunotherapy at the Second Affiliated Hospital of

Soochow University between December 2018 and December 2023. Patients

were divided into two groups based on whether their progression-free survival

(PFS) exceeded 12 months. The cohort was randomly split into a training set (75

patients) and a validation set (31 patients) in a 7:3 ratio. Clinical and imaging data

were collected, and independent predictive factors were identified through

univariate and multivariate logistic regression analysis to construct a clinical

feature model. Radiomic features were extracted from contrast-enhanced chest

CT images, and LASSO algorithm along with Pearson correlation coefficients

were applied to select optimal features and calculate a radiomics score. A

combined predictive model integrating clinical independent predictors and

radiomic features was developed and visualized as a nomogram. Model

performance was assessed by subject work characteristics (ROC) curves and

area under the curve (AUC). Clinical utility was assessed via decision curve

analysis (DCA), and calibration curves were used to evaluate the nomogram’s

predictive accuracy.

Results: Tumor location was an independent predictor of immunotherapy

efficacy and formed the clinical model. Twelve contrast-enhanced CT

radiomic features comprised the radiomics model. The combined model

(clinical + radiomic) demonstrated superior diagnostic performance: training

set AUCs (clinical: 0.705, radiomics: 0.835, combined: 0.896);validation set AUCs

(clinical: 0.691, radiomics: 0.833, combined: 0.863). The combined model’s AUC

was significantly higher than either submodel alone in both sets. DCA confirmed

its highest net clinical benefit, and calibration curves indicated good accuracy.
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Conclusion: This study developed a predictive model based on clinical and

radiomic features for assessing immunotherapy efficacy in NSCLC. The model

demonstrated excellent performance, suggesting its potential as a clinical

decision-support tool for prognosis prediction and treatment planning in

NSCLC immunotherapy.
KEYWORDS

radiomics, immunotherapy response, non-small cell lung cancer, nomogram, decision
curve analysis
1 Introduction

The advent of immune checkpoint inhibitors (ICIs) has

revolutionized the treatment paradigm for advanced non-small

cell lung cancer (NSCLC), with approximately 20-30% of patients

achieving durable responses (1). However, the current gold-

standard biomarker PD-L1 expression exhibits limited predictive

accuracy (objective response rate concordance: 45-60%) (2, 3),

while emerging biomarkers like tumor mutational burden (TMB)

face challenges in clinical standardization (4–6). This predictive

uncertainty leads to non-negligible rates of premature treatment

discontinuation (34.7% in real-world studies (7)) and unnecessary

immune-related adverse events (irAEs),highlighting the urgent

need for more robust stratification tools. Radiomics, as a non-

invasive approach decoding tumor heterogeneity through high-

throughput imaging feature analysis, has demonstrated unique

advantages in ICI response prediction. Recent studies revealed

that CT-based radiomic signatures could reflect tumor

microenvironment characteristics (e.g., CD8+ T-cell infiltration

(8)) and predict progression-free survival (PFS) with AUCs of

0.71-0.79 (9, 10).By extracting quantitative radiomics features

from patient CT images and computing the radiomics signature,

combined with selecting predictive clinical indicators from patient

medical records, we developed and validated a Combined

Forecasting Model (CFM) to predict treatment response to

immunotherapy in non-small cell lung cancer (NSCLC) patients.
2 Materials and methods

2.1 General information

This study is a retrospective, multicenter investigation that

collected clinical and imaging data from patients with advanced

NSCLC who received ICIs treatment at two domestic centers: the

Second Affiliated Hospital of Soochow University (Center 1) and

the First Affiliated Hospital of Soochow University (Center 2)

between December 2018 and December 2023.Baseline clinical data

and computed tomography (CT) imaging were collected for all

participants,. This study was conducted in accordance with the
02
ethical principles of the Declaration of Helsinki (2013 revision)

and received approval from the Ethics Committee of the First

Affiliated Hospital of Soochow University and the Second

Affiliated Hospital of Soochow University. Inclusion Criteria:

①Pathologically confirmed stage IIIa-IVb NSCLC according to

the 9th edition of the TNM system (10) ②Treatment with at least

two cycles of either anti-PD-1/PD-L1 monotherapy or combination

therapy of immunotherapy with platinum-based doublet

chemotherapy. Patients who received concurrent or sequential

radiotherapy, targeted therapy, or any other anticancer regimens

were excluded. ③Availability of contrast-enhanced CT scans

obtained within 2 months prior to immunotherapy initiation

④Complete clinical documentation;Exclusion Criteria: ①Primary

tumor undetectable or unsegmentable on chest CT imaging, or poor

image quality ②Receipt of any additional anticancer therapy beyond

specified immunotherapy or chemotherapy regimens ③Presence of

active autoimmune diseases ④Loss to follow-up or incomplete

postoperative surveillance records.
2.2 Indicator collection

Clinical data collected included patient demographics (age, sex,

smoking history), tumor characteristics (non-small cell lung cancer

histologic subtype, PD-L1 expression level, tumor stage, location),

serum fibrinogen levels, and enhanced CT imaging findings. The

administered anti-PD-1/PD-L1 monoclonal antibodies included

Camrelizumab, Pembrolizumab, Sintilimab, Tislelizumab, and

Toripalimab (see Table 1 for details).Treatment response was

assessed per RECIST v1.1, classifying outcomes as progressive

disease (PD), stable disease (SD), partial response (PR), or

complete response (CR) using electronic medical records. The

primary endpoint was progression-free survival (PFS), defined as

the time from immunotherapy initiation until disease progression,

death from any cause, or final follow-up. Patients were stratified into

two groups based on whether their PFS exceeded 12 months. A PFS

threshold of 12 months was chosen to define the durable clinical

benefit (DCB) group, as it is a commonly used surrogate endpoint in

immuno-oncology studies to reflect sustained treatment efficacy and

is clinically meaningful for prognosis assessment.
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2.3 Analysis and extraction of radiomics
features

Enhanced CT images in DICOM format were retrieved from

the institutional PACS system and anonymized. The contrast-

enhanced CT images were reviewed, and tumor lesions were
Frontiers in Oncology 03
manually segmented slice-by-slice on lung window settings

(width: 1500 HU; level: -600 HU) using 3D Slicer software

(v4.11) to define volumetric regions of interest (VOIs). The use

of contrast-enhanced images facilitated more accurate delineation

of tumor boundaries, particularly in distinguishing the tumor

from adjacent vessels and atelectatic lung tissue. A total of 1,036
TABLE 1 Baseline characteristics of patients in the training and external validation cohorts.

Characteristict Training cohort (n=75)1
External validation cohort

(n=34)
1P-value

Age (years) 70.0 (8.8) 72 (9.9) 0.315

Sex 0.684

Female 11 (15%) 4 (12%)

Male 64 (85%) 30 (88%)

PD-L1 Expression 0.017

<1% 9 (12%) 9 (26%)

1-49% 36 (48%) 20 (59%)

≥50% 30 (40%) 5 (15%)

Tumor Location 0.826

Central 37 (49%) 16 (47%)

Peripheral 38 (51%) 18 (53%)

Cancer Type 0.576

Squamous 44 (59%) 18 (53%)

Adenocarcinoma 31 (41%) 16 (47%)

T Stage 0.844

3A 6 (8.0%) 3 (9%)

3B 17 (23%) 9 (26%)

3C 8 (11%) 3 (9%)

4A 25 (33%) 8 (24%)

4B 19 (25%) 11 (32%)

Immunotherapy Drug 0.221

Camrelizumab 10 (13%) 9 (26%)

Pembrolizumab 19 (25%) 8 (24%)

Sintilimab 27 (36%) 12 (35%)

Tislelizumab 18 (24%) 4 (12%)

Toripalimab 1 (1.3%) 1 (3%)

Treatment Regimen 0.773

Imm. 15 (20%) 6 (18%)

Imm. + Chemo. 60 (80%) 28 (82%)

Smoking Status 0.251

Non-smoker 33 (44%) 11 (32%)

Smoker 42 (56%) 23 (68%)

Fibrinogen 4.23 (1.18) 3.63 (0.98) 0.728
1Data presented as n (%) or mean (SD).
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radiomics features were extracted from 3D VOIs using the

PyRadiomics package (v3.0.1) in Python, encompassing four

feature classes:1.First-order statistics (e.g., intensity histogram

metrics)2.Shape-based features (3D orphological descriptors)

3.Texture features: Gray-Level Co-occurrence Matrix (GLCM):

Correlation, Energy Gray-Level Run- Length Matrix (GLRLM):

Long Run Emphasis (LRE) Gray-Level Size Zone Matrix

(GLSZM): Size Zone Non-Uniformity 4.Higher-order features

(filtered image approximations).To evaluate the reproducibility

of radiomic feature extraction, both inter-observer and intra-

observer reliability were assessed. For inter-observer reliability,

volumetric segmentations were performed independently by two

radiologists on a randomly selected subset of 30 patients. For

intra-observer reliability, the primary radiologist repeated the

segmentations on the same subset after a four-week interval to

minimize memory bias. The intraclass correlation coefficient

(ICC) was calculated for both assessments. Only features

exhibiting excellent reproducibility (ICC > 0.75) in both

evaluations were retained for subsequent analysis. Features with

ICC >0.75 (11, 12) were retained, indicating excellent agreement

according to established criteria.
2.4 Construction of clinical
characterization model, CT imaging
histology model

Using the “Pyradiomics” package in Python to extract

radiomics features, we first conduct Z-score normalization on the

extracted radiomics features. Then, we perform dimensionality

reduction on the radiomics data using mRMR and LASSO. We

use Logistic Regression(LR)as the classifier to build the radiomics

model. Moreover, we adopt 10-fold cross-validation to enhance the

stability of the model. Univariate logistic regression analysis was

used to screen out the predictors. Subsequently, multivariate logistic

regression analysis was used for the clinical indicators with

statistical differences in univariate analysis to screen out the
Frontiers in Oncology 04
independent predictors, and a clinical model was constructed

based on this.
2.5 Construction and evaluation of the
CFM

The independent clinical predictors and the radiomics score

(Rad-score) were integrated into a final multivariate logistic

regression analysis to construct the Combined Forecasting Model

(CFM). A nomogram was generated to visualize this model. The

performance of all models was evaluated using several metrics.

Receiver Operating Characteristic (ROC) curves were used to assess

discriminative ability, calibration curves were used to evaluate

model reliability, and Decision Curve Analysis (DCA) was used

to assess the net clinical benefit and clinical utility the independent

predictors and radiomics scores were included in the multivariate

logistic regression analysis, and a combined model was constructed

based on this, and a nomogram was drawn. The ROC curve was

used to evaluate CFM, the calibration curve was used to evaluate the

reliability of the model, and the DCA was used to evaluate the

clinical efficacy of the radiomics model and CFM.
3 Results

3.1 Baseline characteristics of patients in
the training and external validation cohorts

No significant differences in baseline characteristics existed

between the training and external test sets, as confirmed by

independent samples t-tests/Mann-Whitney U tests for

continuous variables and chi-square tests for categorical variables

(Table 1). The balanced distribution of clinical features across both

cohorts supports the validity of the external validation approach

and ensures that performance differences reflect true model efficacy

rather than cohort disparities.
FIGURE 1

Screening of the radiomics features in the training set via LASSO regression. (A) Features maintaining non-zero coefficients at the (A) 1se threshold
(vertical dashed line) in LASSO regression analysis." (B) The final feature subset with non-zero coefficients selected by LASSO regression at the
optimal penalty parameter (A. 1se) (C) The optimal regularization parameter (A. 1se) was determined through cross-validation, as indicated by the
vertical dashed line on the right.
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3.2 Rad-scores and their predictive
performance

Finally,12 radiomic features with non-zero coefficients were

obtained from the 1036 radiomic features in the training set using

the LASSO method. (Figure 1) The radiomics prediction models for

the training and validation sets achieved AUC values of 0.835 and

0.833 under the ROC curve, respectively. The accuracy rates were

0.813 and 0.806,respectively, and the sensitivity rates were 0.828

and 0.792, respectively. (Figure 2) These results indicate that the

radiomics model demonstrated robust performance in predicting
Frontiers in Oncology 05
immunotherapy efficacy. The radiomics features of the above-

mentioned radiomics model were linearly combined and weighted

by their respective coefficient AUC = 0.896 (0.825-0.966) to

calculate the rad-scores.
3.3 Construction of the clinical model

Collecting clinical data on all patients. Univariate and

multifactorial logistic regression analyses showed that tumor

location: peripheral or central was of predictive value (Table 2).
FIGURE 2

ROC curves comparing model performance across datasets.
TABLE 2 Univariate and multivariate logistic regression analysis of predictive factors.

Variable
Univariate logistic regression
analysis OR (95%CI)

p-value2
Multivariate logistic regression
analysis OR (95%CI)

p-value2

Age (years) 2.242 (0.569-8.832) 0.143

Sex 2.242 (0.569-8.832) 0.249

PD-L1 Expression 1.897 (0.837-4.302) 0.125

Tumor Location 0.151 (0.039-0.585) 0.006 0.127 (0.025-0.653) 0.013

Cancer Type 0.739 (0.249-2.194) 0.586

Stage 1.596 (0.997-2.554) 0.052

Treatment Regimen 0.462 (0.093-2.284) 0.343

Smoking 1.594 (0.538-4.723) 0.4

Fibrinogen 0.820 (0.524-1.284) 0.386 3.63 (0.98)

rad_score 3.305 (1.662-6.569) <0.001 <0.001
1Data presented as n (%) or mean (SD).
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3.4 Performance and evaluation of the
Combined Forecasting Model

A CFM was established by incorporating the Rad-score and the

independent clinical factor (tumor location) into a logistic

regression model, which was visualized as a nomogram

(Figure 3). The performance of the CFM was superior to the

individual models. As shown in Table 3, the CFM achieved an

AUC of 0.902 (95% CI: 0.833-0.970) in the internal training cohort

and 0.863 (95% CI: 0.813-1.000) in the internal validation cohort.

The model’s high performance was maintained in the independent

external validation cohort (AUC = 0.863, 95% CI: 0.813-1.000),

underscoring its robustness and generalizability. To quantitatively

assess the model’s performance and generalizability, DeLong tests

were conducted to compare the AUCs among the three models

within each cohort. In the training cohort, the combined model
Frontiers in Oncology 06
significantly outperformed the clinical model (p < 0.001). However,

no significant differences were found between the combined model

and the radiomics model (p = 0.095), nor among any of the three

models in both the internal validation (all p > 0.30) and external

validation cohorts (all p > 0.07). These results indicate that the

combined model achieves robust and stable predictive performance

without overfitting, generalizing well to independent patient

cohorts. Detailed results of the pairwise comparisons are provided

in Supplementary Figure 1. Decision Curve Analysis (DCA)

demonstrated that the CFM provided the highest net clinical

benefit across a wide range of threshold probabilities compared to

the clinical-only or radiomics-only models in all cohorts (Figure 4).

Furthermore, the calibration curves indicated good agreement

between the model’s predicted probabilities and the actual

observed outcomes in both the training and validation datasets,

confirming the model’s reliability (Figure 5).
TABLE 3 Performance metrics of clinical, radiomics and combined models across datasets.

Model Dataset AUC (95% CI) Accuracy Sensitivity Specificity

Clinical Model

Internal Training Set 0.705 (0.592-0.818) 0.64 0.586 0.824

Internal Validation Set 0.691 (0.486-0.895) 0.677 0.667 0.714

External Validation Set 0.653 (0.450-0.857) 0.618 0.593 0.714

Internal Training Set 0.835 (0.733-0.937) 0.813 0.828 0.765

Radiomics Model

Internal Validation Set 0.833 (0.624-1.000) 0.806 0.792 0.857

External Validation Set 0.831 (0.641-1.000) 0.912 1 0.571

Internal Training Set 0.896 (0.825-0.966) 0.787 0.724 1

Combined Model
Internal Validation Set 0.863 (0.713-1.000) 0.71 0.625 1

External Validation Set 0.884 (0.757-1.000) 0.735 0.667 1
FIGURE 3

Nomogram of the comprehensive forecasting model.
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4 Discussion

This study integrated clinical characteristics and CT radiomics

features of patients with stage III-IV non-small cell lung cancer

(NSCLC) receiving immunotherapy to develop an integrated

diagnostic model. This study first explored independent predictors

of immunotherapy efficacy in the clinical setting and found that
Frontiers in Oncology 07
central tumor location was adverse prognostic outcomes in

NSCLC. Previous studies (13, 14) have shown that in terms of

microenvironment, central-type tumors have 2.8-fold more TGF-b
expression than peripheral-type, CD8+ T-cell density is decreased by

40% under multiple fluorescence, and central-type lung cancers have

significantly worse (15) OS than peripheral-type lung cancers; there

are also previous studies (16) that emphasized the peritumor texture-
FIGURE 4

(A) Training set DCA curve (B) Validation set DCA curve (C) Calibration curve of the comprehensive forecasting model in the training set.
(D) Calibration curve of the comprehensive forecasting model in the test set.
FIGURE 5

(E) External Validation DCA curve (F) Calibration curve of the comprehensive forecasting in the External Validation.
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entropy imaging histological features of central-type lung cancers

compared with the peripheral-type lung cancers. Based on the above

independent influences on the efficacy of immunotherapy, the

present study firstly modeled the clinical characteristics of

prognosis. Utilizing data from the Second Affiliated Hospital of

Soochow University, a cohort of 106 patients was included. The

constructed integrated diagnostic model demonstrated (17)superior

diagnostic efficacy, achieving areas under the AUC of 0.902 and 0.863

in the training and validation sets. The nomogram developed in this

study serves as an intuitive tool with potential for integration into

clinical decision support systems (CDSS). In future clinical practice,

prior to initiating immunotherapy, clinicians could input the patient’s

tumor location and CT-based Rad-score to obtain an individualized

probability of treatment response. This approach would help identify

patients likely to derive suboptimal benefit, enabling consideration of

alternative treatment strategies or more intensive monitoring,

ultimately advancing toward precision immunotherapy for lung

cancer. Furthermore, grayscale normalization techniques (18) were

applied during preprocessing tomitigate image variations attributable

to differences in imaging acquisition parameters. Comparative

analysis using ROC curves evaluated the clinical feature model, CT

radiomics model, and the integrated diagnostic model. The results

revealed that the AUC of the integrated model was significantly

higher than the other two models in both the training and validation

sets, indicating its robust diagnostic performance and favorable

generalizability (19).DCA demonstrated that the integrated

diagnostic model yielded the highest net clinical benefit across both

the training and validation cohorts compared to the clinical feature

model and the CT radiomics model. Calibration curves indicated

good agreement between predicted and observed outcomes for the

integrated model, although variations in performance across different

predicted probability ranges were noted among all models. This study

has several limitations that should be considered. First, despite being

a two-center study, its retrospective design may still introduce

selection bias (20). To mitigate this, we applied strict, consistent

inclusion and exclusion criteria across both participating centers.

Second, the sample size, particularly for the external validation cohort

(n=34), remains relatively small (21, 22), which may affect the

stability of the estimates. Future large-sample studies needed to

confirm our findings. we acknowledge that the sample size,

particularly of the external validation cohort, is relatively modest.

While larger-scale prospective studies are certainly needed to further

solidify our findings, a key strength of our work is the very inclusion

of an independent external validation set. The model’s excellent and

stable performance in this cohort (AUC: 0.863) provides strong

preliminary evidence of its generalizability, addressing a common

limitation in many radiomics studies. Third, heterogeneity in

immunotherapy regimens exists. Although our univariate analysis

showed that the specific treatment regimen was not a significant

predictor, the eterogeneity in drugs and combinations (e.g.,

mono-immunotherapy vs. chemo-immunotherapy) remains a

limitation. We subsequently performed a post hoc exploratory

analysis by stratifying patients according to treatment regimen
Frontiers in Oncology 08
(immunotherapy monotherapy versus combined immunotherapy-

chemotherapy). The combined model maintained robust

discriminatory capacity across all subgroups (all AUCs > 0.80);

however, formal statistical comparisons were not conducted due to

limited sample sizes within the subgroups. Future studies with larger,

more homogeneous cohorts could further refine the model’s

applicability. Fourth, manual segmentation inherently carries a risk

of inter-observer variability. We minimized this by having

segmentations performed by an experienced radiologist following a

standardized protocol and by rigorously assessing feature

reproducibility (ICC > 0.75). Fifth, our study currently lacks delta-

radiomics (23–25) from longitudinal imaging, which represents a

promising future direction to capture dynamic changes in tumor

biology during therapy and potentially further enhance predictive

performance (26, 27).
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