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Pancreatic cancer stands out as a deadly disease because patients receive late
diagnosis and struggle with ineffective treatments. Exosomal microRNAs
(MiRNAs) that exist inside lipid bilayers help tumors grow and spread while
making cells resistant to treatment and enabling cell-to-cell communication.
Their ability to stay stable in body fluids makes them good candidates for early
disease detection and treatment prediction tests. Research shows that miR-21,
miR-17-5p, and miR-155 exosomal miRNAs help pancreatic cancer progress but
also provide new targets for medical treatment. This review consolidates current
evidence on the diagnostic, prognostic, and therapeutic potential of exosomal
miRNAs in pancreatic cancer, integrating mechanistic insights into key signaling
pathways such as PTEN/PI3Ky, KRAS/MAPK, and TGF-3. Compared with previous
reports, this work provides a comparative framework linking disease-specific
exomiR profiles to other cancers, highlighting miR-21, miR-17-5p, miR-155, and
miR-301a as central modulators. We further discuss methodological challenges,
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translational opportunities, and future directions in developing exosome-based
diagnostics and miRNA-loaded therapeutic platforms. Understanding exosomal
miRNA networks can pave the way for precision detection and targeted therapy
in pancreatic cancer

exosomal microRNAs, pancreatic cancer, biomarkers, diagnosis, prognosis

Introduction

Pancreatic cancer (PC) ranks as the seventh most prevalent
source of cancer-related mortality worldwide, primarily due to
infrequent diagnosis and scant treatment possibilities, leading to
an alarming survival rate of just 9% over five years (1). The
malignant tissue sample is most often acquired using invasive
techniques like: endoscopic ultrasound-guided biopsy, endoscopic
retrograde cholangiopancreatography (ERCP), brush cytology, or
computed tomography (CT)-guided percutaneous biopsy (2, 3).
Nevertheless, these techniques lack adequate sensitivity and
specificity for early-stage disease detection. As a result, there is a
great demand to identify new biomarkers that will enable early
detection, effective treatment monitoring and accurate prognosis
prediction in this unfortunate disease (4). Notable candidates for
PC biomarker discovery are microRNAs (miRNAs), a class of small
non-coding RNAs of approximately 19-23 nucleotides (5). The
aberrant miRNA expression patterns have been reported in various
malignancies including PC; in particular, such expression patterns
can act as PC diagnostic and prognostic markers (6).

Exosomes, which are tiny extracellular vesicles with a size
ranging between 30 and150 nm, are secreted by different cells
including cancer cells into biological fluids like blood, urine,
saliva, and even pancreatic fluid. They are formed from the
endosomal pathways and transport bioactive compounds like
protein, lipids, DNA, mRNA, and miRNAs between different cells
(7). Exosomes maintain their stability and functionality through
their lipid bilayer membrane which contains tetraspanins (CD9,
CD63, CD81), heat shock proteins, and integrins. Exosomes take
specific molecules from cells and deliver them to other cells to
change how genes work and how cells signal while also affecting
their immune response. PC tumors use exosomes to advance their
growth while spreading to new areas and helping them avoid
immune system detection. Exosomes show great potential as non-
invasive tests because they remain stable in body fluids and contain
tumor-specific information about pancreatic cancer (8, 9). The
current review will focus on giving a critical and extensive
summary of the available evidence on exosome-derived
microRNAs (exomiRs) in pancreatic cancer (PC) and its
diagnostic, prognostic, and therapeutic applications. Compared to
previous reviews, which summarized mostly descriptive evidence,
this manuscript incorporates recent mechanistic understanding of
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exosomal miRNAs regulation of oncogenic pathways (e.g., KRAS/
MAPK, PTEN/PI3KY, and TGF-B) and therapy resistance. This
work summarizes the available evidence across biofluids, cell types,
and clinical stages to define the emerging trends, unresolved
methodological concerns, and suggest translational approaches to
clinical implementation. What is new about this review is not only
that it combines exosomal miRNAs and pancreatic oncogenic
signaling, but also that it takes a translational viewpoint,
comparing recent molecular discoveries with possible diagnostic
and treatment strategies specific to pancreatic cancer. The Figure 1
illustrates the typical structure of an exosome, highlighting its lipid
bilayer membrane, surface markers, and internal cargo, including
proteins, mRNA, and miRNAs.

Detecting exosomal miRNAs (ExomiRs) provides a new
opportunity for extracting possible biomarkers from biofluids
(10). In the case of pancreatic cancer, there is often an
overabundance of certain miRNAs, and their altered expression is
associated with the onset and development of the disease (11).
Furthermore, exosomes play a vital role in cell-to-cell
communication by sending and delivering active molecules such
as miRNAs (12). Exosomes derived from tumor cells can remodel
the microenvironment and regulate neighboring cells behavior to
promote tumor progression and form a supportive niche (13, 14).
Therefore, exosomal miRNAs promise to be powerful PC
biomarkers reflecting PC origin, diagnosis and PC progression by
a simple biofluid assay. Pancreatic cancer (PC) is one of the
deadliest cancers and ranks seventh in cancer related deaths
worldwide (1). Pancreatic ductal adenocarcinoma (PDAC, the
most common form of pancreatic cancer) has an overall 5-year
survival rate of 12%. PDAC is generally associated with a poor
prognosis, mainly due to late diagnosis; 80% of patients present
with locally advanced or metastatic disease and the disease is also
very aggressive and resistant to therapy (15). Although early
detection and treatment of many cancers have made remarkable
progress, no progress has been made in the case of PDAC,
demonstrating the urgency of identifying novel diagnostic,
prognostic and therapeutic targets for this disease (16).

Pancreatic cancer is associated with many risk factors, each of
which falls under either changeable or unchangeable. In the case of
risk factors that can be changed, smoking is the most important one
since it almost triples the chances of getting pancreatic cancer. This
increase in chances is associated with cancer-inducing substances
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Representation of typical exosome structure. The figure outlines the defining characteristics of an exosome, which is a type of small extracellular
vesicle with a membrane lipid bilayer. Relevant surface markers described above that characterize the vesicles known as exosomes are tetraspanins
(CD9, CD63, CD81); they are positioned in the membrane. The internal cargo contains an assortment of bioactive compounds including proteins,
messenger RNA (mMRNA), microRNAs (miRNAs), and lipids which serve to modulate cellular communication, intercellular signaling and maturation
of the target cells. This structural outline increases understanding of exosomes regarding their complex constituents and structures and their

importance in biology under normal and disease conditions.

contained in cigarette smoke that have the ability to cause changes
to one’s DNA (17). A high-fat diet and obesity raise pancreatic
cancer risk because fat tissue promotes inflammation and insulin
resistance which promotes tumor growth. A sedentary lifestyle or
being physically inactive makes metabolic problems worse. Chronic
pancreatitis, characterized by long-term inflammation of the
pancreas, significantly increases the malignant transformation (18,
19). Diabetes mellitus, particularly newly diagnosed or long-
standing type 2 diabetes, is associated with pancreatic cancer, as
insulin resistance and hyperglycemia can create a tumor-promoting
environment (20, 21). Heavy alcohol consumption contributes to
chronic pancreatitis and oxidative stress, increasing pancreatic
cancer risk (22, 23). Prolonged exposure to industrial chemicals
and pesticides has also been implicated, as carcinogens in these
substances can induce DNA damage and oncogenic mutations (24).

Non-modifiable risk factors include increasing age, as most of
the pancreatic cancer develops after age 65 because body cells suffer
from too many years of genetic damage. When a direct relative
experiences pancreatic cancer, it greatly increases your personal risk
of developing the disease (17). Some genetic reasons along with
demographic characteristics also raise the chances of getting
pancreatic cancer (25). Inherited disorders like hereditary
pancreatitis, mutations in BRCA1 and BRCA2, along with Lynch
syndrome and Peutz-Jeghers syndrome are linked to inefficient
DNA repair pathways and higher susceptibility to cancer due to
increased genomic instability (26). Also, men are at greater risk than
women, likely attributable to differences in lifestyle and sex
hormones (27). Furthermore, African Americans seem to be at a
disproportionately greater risk, and this may arise due to an
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interaction of genetic factors and the environment. Having
complete knowledge of these risk factors helps us develop better
ways to spot pancreatic cancer early while reducing risks for
patients (28). Figure 2 categorizes the risk factors for pancreatic
cancer into modifiable and non-modifiable factors for
better visualization.

A class of short, non-coding RNAs that post transcriptionally
regulate target mRNAs, microRNAs (miRNAs) have been shown to
play an important role in cancer development (29). Several cancers
have been associated with changes in miRNA expression profiles
that correlate with the initiation, progression and metastasis of
these cancers (30). As oncomiRs or tumor suppressors dysregulated
miRNAs can affect the proliferation, apoptosis, migration, and
metastasis of cancer cells (31). Importantly, miRNAs can also be
isolated from body fluids, such as plasma, serum, urine and saliva,
and the expression of some miRNAs has been found to be
associated with cancer progression, treatment response and
patient survival, suggesting their potential as cancer
biomarkers (32).

MicroRNAs are small RNA (~22nt) non-coding RNAs that
regulate gene expression post transcriptionally by binding to the 3’
untranslated region of target mRNAs and repressing translation
and/or inducing mRNA degradation (33). Tumor associated
miRNAs can be oncogenic (oncomiRs), which promotes cancer
hallmarks or tumor suppressive (oncomiRs), which blocks cancer
hallmarks (34). The hallmarks of cancer can be induced by altered
miRNA expression patterns, and in this context, miRNAs are
promising as diagnostic markers (35). All types of cells secrete
30-150 nm extracellular vesicles, exosomes that transport proteins,

frontiersin.org


https://doi.org/10.3389/fonc.2025.1669213
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Mir et al. 10.3389/fonc.2025.1669213
Modifiable Risk factors
A
[ ) - P I
i € ')
<> 5
= 2 H : )r - Y
Smoking Obesity Sedentary Diabetes Chronic Chemicals and Alcohol
lifestyle pancreatitis Pesticides
MNPWDN Ethnicity
Age Family Gender Mutation
history l
Non-modifiable Risk factors
FIGURE 2

Overview of risk factors associated with the development of pancreatic cancer. The diagram separates the modifiable and non-modifiable risk
factors associated with pancreatic cancer. Concerning modifiable risk factors, these include smoking, a diet high in fat, physical inactivity, obesity,
chronic pancreatitis, diabetes mellitus, heavy alcohol consumption, and prolonged exposure to chemicals and pesticides. These risk factors are
commonly associated with inflammation, insulin resistance, oxidative stress, and even stranding of oxidative DNA damage. On the other hand, age,
family history, sex, inherited genetic mutations and ethnicity are classified as non-modifiable risk factors. The comprehensible classification of these

categories assists in accuracy of detection and prevention measures.

lipids, mRNAs and miRNAs. MiRNAs can be released from donor
cells into acceptor cells, and modulate their behavior, affecting
progression and metastasis (36, 37). Tenascin-C in tumor derived
exosomes in metastatic pancreatic cancer attenuates collagen gel
mediated tumor cell apoptosis through the TGF-f pathway in non-
cancerous stellate cells (38). Pancreatic cancer cell exosomes
activate hepatic stellate cells and stimulate extracellular matrix
deposition through Wnt paracrine signaling (39). PC cell derived
exosomal miR-10b promotes migration and invasion in normal
pancreatic ductal epithelial cells through HOXDI10 targeting. PC
cell exosomal miR-105 from PC cells enhances vascular
permeability and metastasis of PC cells to the liver (40).

This review seeks to examine the role of exosomal miRNAs in
the context of pancreatic cancer with an emphasis on their use as
prognostic and diagnostic biomarkers, their contribution in tumor
advancement and resistance to therapy, and the therapeutic
perspective of targeting exosomal miRNAs. It attempts to
demonstrate, based on available evidence, the importance and
prospective uses of exosomal miRNAs in the efficacious diagnosis
and tailored therapy of pancreatic cancer. This review is organized
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around a central question: How do exosomal miRNAs play a role in
the diagnosis, prognosis, and therapeutic resistance of pancreatic
cancer? This theme is represented in each of the sections that
discuss molecular mechanisms, diagnostic biomarkers, and
therapeutic applications to provide conceptual continuity. In
order to put the biological and clinical significance of exosomal
miRNAs into perspective, it is necessary to comprehend the state of
the art in the pancreatic cancer diagnostics and treatment.

Pancreatic cancer: overview and
current challenges

Pancreatic cancer (PC) is a highly lethal malignancy and the
fourth leading cause of cancer related mortality in the United states
(41). Complex treatment methodologies and clinical strategies have
not improved the prognosis of pancreatic cancer (42). The biology
specific to pancreatic tumors, which are inhibited from spreading
due to a dense fibrotic stroma, and lack early screening and specific/
delicate symptoms until the cancer has advanced, contribute to this
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(43). Even with debulking surgical efforts combined with multi
agent chemotherapy regimens, PC is extremely chemo resistant due
to the exploratory and fibrotic nature of tumor growth (44). All
forms of FDA approved monotherapy are also maintainantly
resistant against PC. Treatment outcomes are augmented by the
discovery of molecular therapeutic targets and the design of small
molecules against such targets (45, 46). Chemoresistance is due to
aberrant expression and mutation of specific genes and signaling
pathways targeted by currently available drugs. In addition, innate
and adaptive PC tumor mechanisms suppress the tumor’s ability to
be attacked by the immune system (47, 48).

Epidemiology and statistics

Pancreatic cancer (PC) is one of the malignancies with the worst
prognosis, based on its late diagnosis. Only 12% survive 5 years,
making the 5-year survival rate for all stages just 12% (49).
According to GLOBOCAN 2024, pancreatic cancer accounts for
approximately 2.6% of all new cancer cases and 4.8% of total cancer
deaths worldwide, underscoring its disproportionate lethality.
Exosome is a subtype of extracellular vesicles (EVs) with a size
from 30 to 150 nm and a phospholipid bilayer structure (50).
Exosomes are thought to be intercellular communicators,
transferring between cells proteins, lipids, and nucleic acids (51).
Recent studies show that tumor cells can induce the biogenesis and
secretion of exosomes to form a tumor friendly immune
microenvironment (52-54). Exosomes originating from

10.3389/fonc.2025.1669213

pathologically altered parent cells have a distinct cargo which
reflects the pathological state of the parent cells. Exosomal
microRNAs (miRNAs) are more resistant to environmental
stresses, and thus are potential noninvasive diagnostic and
prognostic biomarkers of cancers, including PC, than other
cargoes. These alarming epidemiological trends reinforce the need
to explore molecular biomarkers such as exosomal miRNAs for
early detection and better disease stratification.

Pathophysiology of pancreatic cancer

PC is usually diagnosed at an advanced stage, when treatment
options are reduced (55). Presently, treatment does little to improve
survival, underscoring the need for early detection of pancreatic
cancer (56). And PC is silent and insidious, so patients may be
asymptomatic in the early disease stage (57). Additionally, PC has
no specific symptoms, and no effective screening methodology.
Current methods of diagnosis of PC rely on the interpretation of
pancreatic imaging abnormalities and the broad-spectrum
evaluation of biochemical and hematological parameters (58).
Currently, the diagnosis of PC is based primarily on the
evaluation of imaging studies of the pancreas obtained through
ultrasound, CT scans, magnetic resonance imaging (MRI) as well as
a general assessment of metabolic and hematological factors with
focus on the elevation of the tumor marker CA19-9 (Figure 3).
Although these techniques are useful in discovering some form of
abnormality in the pancreas, they lack the requisite specificity and

Tumor Suppressor miRNAs

(miR-634, miR-1225, miR-623, miR-345-5p,

Emerging
Biomarkers:
miRNAs

Biomarker
Challenges

miR-30c)

Oncogenic miRNAs (Onco-MiRs)

(miR-194, miR-221)
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Current Diagnostic |
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FIGURE 3

Diagnostic challenges in pancreatic cancer and the promise of miRNA biomarkers. The figure summarizes key barriers to early pancreatic cancer
detection, including its asymptomatic progression and the limited sensitivity and specificity of current tools like CA19-9 and CEA. It also highlights
the emerging potential of exosomal miRNAs as stable, noninvasive biomarkers with improved diagnostic accuracy for early-stage disease.
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sensitivity necessary to identify PC in its most amenable stages. This
explains why a lot of people only seek medical attention when the
disease has significantly advanced, which makes it harder to
manage. There is a critical need for more accurate and easier
diagnostic techniques for the condition, such as non-invasive
biomarkers, capable of identifying the illness most reliably, which
would enhance survival rates.

Multiple studies have shown a dysregulation of miRNAs in the
development and progression of many different cancers including
pancreatic cancer (59, 60). Several miRNAs have been identified
with an oncogenic or tumor suppressive function (61). Newly
reported tumor suppressor miRNAs in pancreatic cancer include
miR-634, miR-1225, miR-623, miR-345-5p and miR-30c (62). On
the other hand, onco-miRs (miRNAs with oncogenic functions) are
miR-194 and miR-221. Pancreatic cancer altered expression
patterns of these miRNAs make them promising diagnostic and
prognostic indicators (59, 63).

Effect of miRNAs on signaling
associated with pancreatic cancer

Two of the most important KRAS signaling pathways that are
affected by oncogenic activity include MAPK/MEK/ERK and PI3K/
Akt. Both of these signaling pathways, inboard, are responsible for
the control of growth, cell cycle, and cellular apoptosis, thus, are
critical for the development and progression of PDAC (64). Also,
many recent research findings highlight that a range of microRNAs
(miRNAs) precisely control these oncogenic pathways through the
modulation of tumor suppressor genes and oncogenes at the
molecular level. These functions of miRNAs have the potential to
inhibit or promote malignancy depending on the circumstantial
context and the target genes’ semantics (65). Beyond the extensively
studied miR-21 and miR-155, several other miRNAs including
miR-181a, miR-196a, miR-221/222, and miR-210 have emerged
as regulators of critical oncogenic cascades. miR-221/222 enhance
invasion through the STAT3/MAPK axis, miR-181a targets SMAD4
to promote EMT, whereas miR-210 contributes to hypoxia
adaptation and metabolic reprogramming in PDAC cells.

In particular, miR-29¢ is noted to be significantly
downregulated in PDAC tissues. This phenomenon is attended by
the upregulation of MAPKI, thus contributing to further access
cellular proliferation and invasion via activating the downstream
MAPK/ERK signaling cascade (66). Also, miR-98-5p - a tumor
suppressive — was noted to be down regulated in PDAC
contributing to the overexpression of MAP4K4. The increased
MAP4K4 levels also support the activation of MAPK/ERK thus
enhancing the PDAC cells’ proliferation, invasion, and migration in
vitro (67).

Beyond tumor-suppressive miRNAs, certain oncogenic
miRNAs, such as miR-21, have been proposed to contribute
towards the progression of PDAC. miR-21 is known to stimulate
EGFR signaling through downstream effectors by oncogenically
targeting the negative regulator, Sprouty RTK signaling antagonist 2
(Spry2). This interaction further promotes downstream activation
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of MAPK/ERK and PI3K/Akt pathways, ultimately enhancing cell
proliferation and tumor growth (68).

Several noteworthy examples of such miRNAs exist, which are
capable of targeting multiple oncogenic pathways at once. For
instance, miR-24-3p contributes towards the aggressiveness of
PDAC by targeting LAMB3 and Anti-Silencing Function 1B
(ASF1B). miR-24-3p is known to inactivate LAMB3 resulting in
the activation of PI3K/Akt signaling axis, and simultaneously
interacting with ASF1B drives epithelial mesenchymal transition
(EMT) which is a pivotal process in metastasis (69).

Additionally, more recent investigations have noted tumor
suppressive function of miR-30d. In a 2021 study, separate
research groups noted low expression of miR-30d was associated
with poor prognosis in PDAC patients. miR-30d acts on malignant
phenotypes by silencing transcriptional oncogenes such as RUNX1
and SOX4, which leads to diminished expression of more aggressive
traits (70). Interestingly, one prior study demonstrated that RUNX1
binds to the promoter region of miR-93 and inhibits its
transcription, creating a feedback loop. This is important because
miR-93 is known to suppress EMT, invasion, and migration in
PDAC cells, indicating potentially intricate regulatory circuits
involving miRNAs and their transcriptional regulators (71).

Current diagnostic and prognostic
methods

Pancreatic cancer patients often lose weight and develop new
onset diabetes, but currently employed standard noninvasive tests
such as CT image analysis and endoscopic ultrasound (EUS) are not
effective for diagnosis as the tumor size (< 2 cm) is small at the early
stage (72). However, among invasive procedures endoscopic
retrograde cholangiopancreatography (ERCP) can be performed
to obtain bile duct tissues to investigate for mutations but this
approach is not simple because bile duct obstruction is typically
absent in early-stage PC (73). Currently, screening and monitoring
of PC relies on blood test of carbohydrate antigen 19-9 (CA19-9),
the best validated PC biomarker, but its high false negative and
positive rates (74). A class of small (19-25 nucleotides) non-coding
RNAs, microRNAs (miRNAs) recognize complementary sequences
in target mRNAs and either induce translational repression or
mRNA degradation. They control about 30 percent of the human
protein coding genes and are central to regulating many cellular
processes (75). It is now emerging evidences that miRNAs play a
role in the development and progression of cancers by controlling
the expression of many oncogenes and tumor suppressors in an
orchestrated fashion (76). Upregulated miRNAs in PC associated
with inflammation include the most studied miRNA in PC, miR-21,
and miR-155, as well as newly reported tumor suppressor miRNAs
negatively regulated by oncogenic KRAS, miR-634 and miR-1225,
respectively (77-79). In human tissues, pancreatic cancer is
associated with downregulation of miR-95, -186, -217, -218, and
-888 while upregulation of miR-10b, -21, -23b, -155, and -196 is
observed (80-83). Therefore, aberrant miRNA expression patterns
in pancreatic cancer tissues and biofluids might be exploited to
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distinguish pancreatic cancer patients from healthy individuals.
Blood miRNAs are regarded as robust biomarkers for diagnosis,
prognosis, and monitoring of pancreatic cancer (84).

Existing treatment options and
limitations

Because pancreatic cancer is so lethal and the seventh leading
cause of cancer-related mortality in the world, in part, because of its
poor prognosis. There is still early diagnosis as a major problem in
clinical practice, and the existing biomarkers for early detection of
pancreatic cancer are still imperfect (49). miRNAs are small, non-
coding RNAs that post transcriptionally regulate gene expression by
binding to complementary sequences in the targets mRNAs and
leading to translational repression and/or mRNA degradation;
therefore, they represent new classes of potential novel
biomarkers for early pancreatic cancer detection (85). Since
exosomal miRNAs have been detected in biofluids such as blood,
urine, and saliva, many studies aimed to understand the roles of
exosomal miRNAs in various types of carcinomas (86). By 2030,
pancreatic cancer is projected to be the second leading cause of
cancer related death. The disease is rapidly progressive, extends
widely and early metastasizes, and is highly lethal (87, 88). Curative
resection in pancreatic cancer patients is best treated with surgical
treatment. Unfortunately, only a small fraction of patients (about
15-20%) are diagnosed with resectable pancreatic cancer; the
majority come to us with locally advanced or metastatic disease
(89). To better understand the diagnostic and therapeutic
challenges in pancreatic cancer, the Table 1 provides a concise
summary of the key issues and emerging solutions:

Following surgery, most patients receive adjuvant therapy,
usually a combination of the chemotherapeutic agent
Gemcitabine and the radiation sensitizer Capecitabine. However,
these treatment options are often ineffective, and pancreatic cancer
is generally resistant to most available therapeutic options.
Although several novel therapeutic options, including targeted
therapy or immunotherapy, have been developed, no new
treatment has yet been approved for clinical use (90). Increasing
evidence implicates dysregulated miRNAs in chemoresistance and

TABLE 1 Key challenges and emerging solutions in pancreatic cancer.

Category Challenges

Epidemiology
80-90% of cases.

Diagnostic Limitations
advanced stages (79%).

Therapeutic Limitations
survival post-surgery (20%).

High mortality rate (5-year survival: 9%); late-stage diagnosis in

Lack of specific early screening tools; CA19-9 sensitivity limited to

Limited resectability (15-20% of cases); chemoresistance; low

10.3389/fonc.2025.1669213

therapeutic failure. Overexpression of miR-21, miR-155, and miR-
23a suppresses PTEN and PDCD4, reducing gemcitabine
sensitivity, whereas restoration of miR-34a or miR-143 re-
sensitizes PDAC cells to treatment. Experimental delivery of
tumor-suppressive miRNAs via exosomes or lipid nanoparticles is
emerging as a promising adjunct to conventional regimens.

Exosomes: biology, biogenesis, and
functional composition

Exosomes are nano-sized extracellular vesicles (30-150 nm)
which are released to the extracellular environment by most cell
types. Mature endosomes are therefore multivesicular bodies
formed from the inward budding of the plasma membrane and
endocytosis (91). Exosomes were reported to package some proteins
(MHC class I and IT molecules) and RNAs (mRNAs and miRNAs)
and then transfer them to adjacent or distant cells (92). Exosomes
are critical for intercellular communication or crosstalk to deliver
bioactive molecules, including protein, lipid, RNA, and DNA, to
recipient cells to influence their physiological or pathological
behavior (93). To provide a concise summary of exosomes’
biology and functions, the Table 2 highlights key aspects of their
structure, biogenesis, and roles:

Understanding exosome biogenesis is essential to understand
their use as biomarker or therapeutic agents. Generally, exosomes
are produced and secreted in a three-step process. Below is a visual
summary of the exosome biogenesis process, highlighting the three

main steps involved in their formation and secretion.

1. Invagination of the plasma membrane occurs early
endosomes with proteins and RNAs (94).

. Some endosomal proteins are modified by ubiquitin, in
which case the early endosomes are matured into late
endosomes or multivesicular bodies (MVB). In addition
to their content of intraluminal vesicles (ILVs), unique to
MVBs, MVB formation is induced by activation of the
endosomal-sorting complex required for transport
(ESCRT) machinery in a protein-ubiquitin dependent

Emerging Solutions

Early detection efforts through advanced biomarkers like miRNAs.
Exploration of exosomal miRNAs as non-invasive diagnostic tools.

Development of targeted therapies and immunotherapies; focus on
KRAS-targeting agents.

Biomarkers
elevated levels).

Current Treatments
modest success.
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CA19-9 lacks specificity (50% of patients with PC do not show

Surgery followed by Gemcitabine or Capecitabine often shows
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Validation of blood-based miRNAs as robust biomarkers for
prognosis.

Investigations into small molecules and immune checkpoint
inhibitors.
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TABLE 2 Key Features, Functions, and Applications of Exosomes.

10.3389/fonc.2025.1669213

Aspect Details References/Examples
Introduction Nano-sized extracellular vesicles (30-150 nm) released by most cell types; | Discovered during reticulocyte maturation; carry proteins (e.g.,
formed via inward budding of plasma membrane and endocytosis. MHC), RNAs (mRNA, miRNA).
Biogenesis 1) Early endosomes formed by plasma membrane invagination. 2) Depends on cellular states (normal/pathological).
Maturation into MVBs, creating ILVs with ESCRT machinery and
ceramide lipids. 3) Secretion as exosomes.
Composition Contain lipids, proteins, mRNA, miRNA. ExomiRNAs influence processes =~ miRNA-301a (activates M2 macrophages via PTEN/PI3KY);

like cancer progression and immune responses.

Role in Communication

Therapeutic Potential
promising for gene therapy.

Facilitate intercellular communication by transferring bioactive molecules

Non-immunogenic nature and protective cargo packaging make exosomes

miRNA-1246 (activates NF-kB pathway).

Enable paracrine signaling without direct cell-cell contact.

(e.g., proteins, lipids, RNA, DNA) to distant or adjacent cells.

Challenges: Efficient miRNA loading into exosomes (solubility,
charge factors).

Diagnostic Potential
traditional markers.

manner and accumulation of ceramide lipids,
sphingomyelin, and cholesterol (94, 95).

. MVBs can either fuse with lysosomes and ILVs are
degraded, or can fuse with the plasma membrane to
secrete exosomes. The size and number of exosomes
secreted from a cell are dependent on the state of the cell
(e.g. normal or pathological) (94, 96).

Almost all cells can secrete exosomes containing lipids,
proteins, mRNA and miRNA, which are dependent on the cell
type and microenvironment (97). MiRNA can be released from cells
into exosomes, or ‘exo-miRNAs’, and these exo-miRNAs have
accumulated significant evidence for roles in cancer initiation and
development (98). For example, exosomal miRNA-301a activated
the PTEN/PI3Ky pathway, and promoted M2 polarization of
macrophages derived from hypoxic pancreatic cancer cells (99).
Likewise, hypoxic pancreatic cancer cells were shown to secrete
exosomal miRNA-1246 that activated the NF-xB pathway in non-
tumor cells to induce the release of IL-6 and IL-8, to promote EMT
of pancreatic cancer cells (98). Previous studies have demonstrated
that exomiRNAs can be novel biomarkers drawn from blood serum
example a 5 exomiRNA signature that can classify healthy
individuals and pancreatic cancer patients with 85% accuracy
(100). But traditional serum biomarker CA19-9 was found to
classify in PC patients (101). It was found that pancreatic cancer
cells secrete miRNA-155 exosomes to activate fibroblasts and
promote desmoplasia (102). Additionally, exosomes are non-
immunogenic, and protect the biological cargo and are therefore
ideal gene therapy systems. However, major hurdles in exosomes
reaching the clinic include efficient miRNA loading into exosomes,
which are influenced by solubility and charge (103). The ability of
exosomes to selectively package and deliver miRNAs underlies their
diagnostic and therapeutic potential in pancreatic cancer, forming
the foundation for subsequent sections of this review.
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ExomiRNAs serve as biomarkers with higher diagnostic accuracy than
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5-exomiRNA signature (85% accuracy vs. 67% for CA19-9).

MicroRNAs: biogenesis, processing,
and gene regulation

MicroRNAs (miRNAs) are short, non-coding RNA molecules
(~19-25 nucleotides) that regulate gene expression at the post-
transcriptional level (104). They serve as key modulators of several
cellular processes, including proliferation, differentiation, apoptosis,
and metabolism. Aberrant miRNA expression has been reported in
many human diseases, particularly cancer, where upregulation of
oncogenic miRNAs (oncomiRs) such as miR-21 and miR-155 or
downregulation of tumor-suppressive miRNAs such as miR-30d
contributes to tumorigenesis (76). In pancreatic cancer, where late
diagnosis and therapy resistance remain major challenges, miRNAs
are being investigated as promising non-invasive biomarkers
because of their stability and detectability in biofluids (105, 106).
Combination with other molecules such as proteins further
enhances reliability of biofluid microRNA profiling as a means of
accurate diagnosis of pancreatic cancer (107, 108). Because
pancreatic cancer is an aggressive disease with a poor prognosis,
its deadly potential makes it an important candidate for biomarker
discovery. There are several genomically encoded cultivated
miRNAs in different families, characterized by sequence
similarities. Alteration of miRNAs dysregulation leads to changes
in their target genes and the pathological conditions such as cancer
(109). Several pancreatic cancer (PC) behaviors have been shown to
be attributable to emerging evidence of miRNA involvement. Being
stable, feasible, and accessible, miRNAs can serve as biomarkers for
diagnosis, prognosis, and monitoring of pancreatic cancer (106).
There is no doubt about the critically ill need for early detection of
pancreatic cancer. This, however, is hampered by the absence of
specific symptoms and effective screening methods. The low
sensitivity and specificity of current screening methods based on
the combination of risk factor assessment and laboratory blood tests
for the early detection of pancreatic cancer have been demonstrated
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(110). In recent years, genomic, transcriptomic, proteomic, and
metabolomic researches have reported various potential pancreatic
cancer biomarkers. Biomarker discovery technologies are from high
throughput omics-based profiling to small targeted investigations.
A number of pancreatic cancer biomarkers have been discovered,
progressed to validation studies in independent cohorts, and some
are on the path to commercialization (111).

The biogenesis of miRNAs follows a multistep process. miRNA
genes are transcribed by RNA polymerase II as long primary
transcripts (pri-miRNAs), which are subsequently cleaved in the
nucleus by the Drosha-DGCR8 complex into precursor miRNAs
(pre-miRNAs). These are exported to the cytoplasm by Exportin-5
and further processed by the RNase III enzyme Dicer into short
double-stranded miRNA duplexes (112, 113). One strand, known as
the guide strand, is incorporated into the RNA-induced silencing
complex (RISC), while the complementary passenger strand is
degraded (114). The mature miRNA-RISC complex then
recognizes complementary sequences in the 3’ untranslated
regions (3’-UTRs) of target messenger RNAs (mRNAs), leading
to translational repression or degradation of the target transcript
(11). Consequently, exosomal miRNAs may be novel noninvasive
biomarkers and therapeutic targets for cancer.

Pancreatic cancer is generally a poor prognosis disease due to
late diagnosis and resistance to treatment. Pancreatic cancer is
usually diagnosed at early stages when the clinical symptoms are
often not obvious and the cancer is not evident on imaging
technique. Pancreatic cancer is therefore often misdiagnosed with
chronic pancreatitis even with the help of imaging techniques (115).
Early detection of pancreatic cancer is currently not possible using
current serum biomarkers. Pancreatic cancer is usually diagnosed at
advanced stages, at which time surgical resection is infeasible. The
use of exosomal microRNAs (miRNAs) as promising diagnostic
and prognostic biomarkers for pancreatic cancer has been
intensively investigated (116). Exosomal miRNAs are uniquely
stable in biofluids and can withstand harsh condition such as
high enzymatic activity, extreme pH and high temperature. In
human tissues and biofluids, extensive profiling studies have
identified many differentially expressed exosomal miRNAs in
pancreatic cancer versus normal or benign controls (117). In
addition, exosomal miRNAs can be targeted to prevent the
development and progression of pancreatic cancer as therapeutic
targets. Preclinical studies have reported several candidates as
exosomal miRNA targets for the treatment of pancreatic cancer
(118, 119).

MicroRNAs (miRNAs) are small non-coding RNA molecules
that are important in the post-transcriptional regulation of gene
expression. miRNAs are 19-25 nucleotide long molecules that bind
to complementary sequences within target mRNAs and inhibit their
translation, deadenylate and degrade the target transcripts, and are
important in regulating a plethora of important biological processes
including cell development, cell cycle, proliferation, differentiation,
apoptosis and stress responses (120). The pathogenesis of human
cancers has been associated with deregulation of miRNA
expression. The functional role of the miRNA let-7 was first
reported as a tumor suppressor in lung cancer and the first report
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of a miRNA able to regulate cancer pathogenesis (76). Thereafter,
several studies have demonstrated that several miRNAs are
overexpressed or downregulated in pancreatic cancer and
exosomes. Various studies shows that the functional miRNAs
within exosomes of donor cells can be transferred to target cells,
and can modulate the expression of target proteins, were the first to
provide evidence that exosomes contain functional miRNAs (119,
121-124). From then on, numerous studies have examined the
functional roles of exosomal miRNAs in many human diseases
including cancer.

Exosomal microRNAs in pancreatic
cancer

This section synthesizes current evidence on exosome-derived
miRNAs in pancreatic cancer, focusing on their disease-specific
expression patterns and molecular roles. For most cancers, death
rates have fallen since 1990, except for PC, which has the greatest
increase. There were about 495,773 new pancreatic cancer cases and
466,003 related deaths in the world in 2020 (125). PC is usually
diagnosed at advanced stages and often inoperable because of early
subtle symptoms and poor screening methods. At present, surgical
resection remains the only curative option, but only 15-20% of
patients at diagnosis are eligible (126). Due to lack of current
systemic chemotherapy options and their ineffectiveness, urgent
developments of early detection, prevention, and treatment are
needed (127).

miRNAs are biogenetically transcribed by pol II or pol III to
yield primary miRNA transcripts that are coarsely processed by an
enzyme complex containing the RNAse III enzyme Drosha and the
double stranded RNA binding protein Pasha (128). miRNAs are
dysregulated in pancreatic cancer, and are implicated in the
development and progression of cancers (129). Different cancers
have been found to contain miRNAs with oncogenic or tumor
suppressing functions. Well studied oncomiRs in pancreatic cancer
include miR-7, miR-21, and miR-155 and newly reported tumor
suppressor miRNAs include miR-634, miR-1225, miR-623, miR-
345-5p, miR-30c, miR-194 and miR-221 (62). (Table 3) miRNAs
are attractive candidates as diagnostic and prognostic indicators
because their expression in pancreatic cancer is altered (130). Due
to the complex and context dependent role of miRNA in cancer, the
role of miRNA in PC is often not fully studied.

miRNAs are critical players of cellular processes including
tumor development in humans and control nearly 70% of mRNA
transcripts. More than a dozen human cancers, including PDAC,
have been linked to altered miRNA expression (131). There is a lot
of miRNA expression studies that show that there is a significant
difference in miRNA expression between normal pancreatic ductal
cells and pancreatic cancer cells. The past few years have seen
circulating miRNAs investigated as potential biomarkers, and 20
circulating miRNAs have been identified that are found to be
elevated in patients with pancreatic cancer. Promising diagnostic
tools for pancreatic cancer are plasma-based miRNA panels (59). A
large body of literature has been devoted to studying exosomal
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TABLE 3 Key insights on pancreatic cancer and exosomal miRNAs.

Category Details

Pancreatic Cancer Overview
of cases.

MicroRNAs (miRNAs)
human mRNA transcripts.

PC cases and deaths in 2020: 495,773 and 466,003, respectively.
Often diagnosed at advanced stages; resectable in only 15-20%

Small (22-nucleotide) non-coding RNAs regulating 70% of

10.3389/fonc.2025.1669213

Examples/Key Findings
Current systemic therapies remain ineffective; urgent need for early

detection and novel therapeutic approaches.

Dysregulated miRNAs include oncomiRs (e.g., miR-7, miR-21, miR-
155) and tumor suppressors (e.g., miR-634, miR-345-5p).

Circulating miRNAs
pancreatic cancer.

Exosomal miRNAs

communication and tumor microenvironment regulation.

Found in plasma; potential non-invasive biomarkers for

miRNAs carried in exosomes, crucial for intercellular

Around 20 circulating miRNAs show elevated levels in PC patients.

miR-17-5p and miR-21 are elevated in PC. Hypoxic PC cells secrete
miR-301a-enriched exosomes, polarizing M2 macrophages via PTEN/
PI3K signaling.

Tumor Microenvironment
therapy resistance.

Exosomal miRNAs modulate immune responses, EMT, and

PSC-derived miR-21-enriched exosomes activate RAS/ERK signaling.
NK cell exosomes with miR-3607-3p downregulate IL-26, suppressing
progression. PC cells use miR-194-5p to repair DNA damage post-
radiotherapy.

miRNAs, a key cargo of exosomes, in pancreatic cancer and
other malignancies.

Researchers in 2013 found higher levels of miR-17-5p and miR-
21 exosomes in the blood of patients who had pancreatic cancer.
Scientists found that the exosomal miRNAs named in that study
actively participate in pancreatic cancer progression across multiple
development phases (132). NK cell exosomes loaded with miR-
3607-3p reduce disease progression through lower IL-26 levels in
the body (133). Pancreatic stellate cells produce exosomes
containing high levels of miR-21 that cancer cells consume to
switch their cell structure from EMT through RAS/ERK pathway
activation. Research shows that pancreatic cancer cells can use
specific exosomal miRNAs such as miR-194-5p to pause their cell
division and make repairs to damaged DNA before regrowing after
radiotherapy treatment (134) (Table 3).

When pancreatic cancer cells face oxygen deprivation, they
produce exosomes filled with miR-301a that turn macrophages into
M2 cells by triggering PTEN/PI3K signaling. The macrophages use
exosomes loaded with miR-501-3p to stimulate TGF-f signaling
which drives tumor advancement (99). Figure 4 presents the
exosomal transfer of tumor microenvironment miRNAs in
their interactions.

Exosomal miRNAs as diagnostic
biomarkers for PDAC

Many different miRNA biomarkers have been studied for
pancreatic cancer over time, but their variability makes them
difficult to use in practice. The multiple forms of these circulating
miRNAs as free molecules or bound to proteins or inside exosomes
along with their origin from multiple cell types creates difficulty in
detecting them (106). Exosomal miRNAs provide a better detection
option because they stay intact and protected inside lipid bilayers.
Since these biomarkers come from tumor cells, they show tumor
changes and help doctors detect diseases (135). To summarize the
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diagnostic potential of exosomal miRNAs, the Table 4 provides key
examples and their uses:

Comparative Landscape of Exosomal miRNAs in Pancreatic
and Other Cancers A comparative perspective underscores both
shared and disease-specific exosomal miRNA signatures across
malignancies. For instance, miR-21 and miR-155 are ubiquitously
upregulated in pancreatic, breast, and lung cancers, reflecting their
generalized oncogenic role. However, miR-1246 and miR-301a
exhibit relatively higher specificity for pancreatic cancer,
mediating macrophage polarization and therapy resistance.
Table 5 summarizes the most reported exosomal miRNAs across
key cancer types, outlining their diagnostic and
functional implications.

Studies have discovered that pancreatic cancer detection can be
supported by analyzing certain miRNAs found in exosomes. When
measuring exosomal miRNA levels, researchers found that using a
combination of miR-17-5p, miR-21, miR-1246, and miR-196a can
help diagnose pancreatic cancer (132). The detection of pancreatic
cancer reached 100% accuracy when analyzing miRNAs that were
both increased (miR-10b, miR-21, miR-30c, and miR-181a) and
decreased (let7a) (136). Research shows that measuring miR-483-3p
in plasma exosomes helps doctors tell pancreatic cancer apart from
IPMN and similar diseases (137).

Scientists have not yet found one unique set of exosomal
miRNA markers for pancreatic cancer because different labs
process samples in different ways and use different testing
methods. We need uniform testing methods to make these
findings reliable and usable in medical practice. When we add
exosomal miRNA results to CA 19-9 measurements, we can better
detect pancreatic cancer at an earlier stage (138).

Exosomal miRNAs as prognostic
biomarkers for PDAC

Exosomal miRNAs are important for how pancreatic cancer
develops and how well patients do. Exosomal miRNAs guide gene
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In the pancreatic cancer tumor microenvironment, various cell types communicate with pancreatic cancer cells through exosomal miRNAs, influencing
tumor progression and therapy resistance. Cancer-associated fibroblasts (CAFs) release exosomes enriched with miR-106a, inducing resistance to
gemcitabine therapy. Pancreatic stellate cells (PSCs) secrete miR-21-containing exosomes, promoting EMT and metastasis. Natural killer (NK) cells

release miR-3607, inhibiting cancer cell proliferation. Dying cancer cells relea:

se exosomes with miR-194-5p, causing G1/S cell cycle arrest for DNA

repair. Under hypoxic conditions, pancreatic cancer cells release miR-301a-enriched exosomes, inducing M2 macrophage polarization. Polarized

macrophages then secrete miR-501-3p, activating TGF-f signaling to enhanc:
tumor progression and resistance mechanisms.

regulation in nearby cells to control how blood vessels develop, how
the immune system responds, and cancer cell spreading (139). In
particular, research shows that higher levels of miR-451a in plasma
exosomes are linked to cancer coming back, and miR-21 and miR-
221 help pancreatic cancer cells, PSCs, and CAFs talk to each other
and support tumor growth (140). When released in exosomes, the
specific miRNAs miR-23b-3p, miR-339-5p, and miR-222 encourage
cancer cells to multiply, travel, and invade other tissues (141-143).
Pancreatic cancer cells, when exposed to oxygen deficiency, send
enriched miR-301a-filled exosomes that reprogram immune cells
called macrophages and make the cancer more likely to
spread (144).
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e tumor growth. This complex network of exosomal miRNAs facilitates

On the other hand, certain exosomal miRNAs act to prevent
tumor growth. BMSC exosomes contain miR-126-3p that acts
against ADAMY to stop cancer cells from advancing. When
BMSCs and umbilical cord mesenchymal stromal cells release
miR-1231 and miR-145-5p, they stop pancreatic cancer from
spreading (145, 146).

Exosomal miRNAs also predict therapy responses. When
patients take lapatinib and capecitabine, higher levels of miR-221
in their body predict how well the drugs will work, as well as their
resistance to treatment (132). The exosomal miRNAs miR-146a and
miR-106b from cancer-associated fibroblasts promote gemcitabine
resistance by regulating transcription factors and signaling
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TABLE 4 Exosomal miRNAs in pancreatic cancer: diagnostic, prognostic,
and therapeutic biomarkers.

Source mMiRNAs Use
Serum miR-17-5p, miR-21 Diagnostic; prognostic;
recurrence
miR-1246, miR-4644, miR- Diagnostic
3976, miR-4306
miR-10b, miR-21, miR-30c, Diagnostic
miR-181a; miR-let7a (down)
Plasma miR-1246, miR-196a Diagnostic
miR-483-3p, miR-451a Prognostic; recurrence
Blood miR-16a, miR-196a Diagnostic

Pancreatic Juice
Saliva
Portal Vein

PCC

miR-21, miR-155
miR-1246, miR-4644
miR-4525, miR-451a, miR-21

miR-23b-3p, miR-339-5p, miR-
222

miR-155, miR-27a, miR-212-3p

Diagnostic; prognostic
Diagnostic
Prognostic; recurrence

Prognostic

Gemcitabine resistance;
immune suppression

miR-301a, miR-194-5p

PTEN/PI3K signaling;

prognosis
M2 Macrophages = miR-501-3p TGF-P signaling;
prognosis
NK Cells miR-3607-3p Prognostic
PSC miR-210 Gemcitabine resistance
BM-MSC miR-126-3p, miR-1231 Suppress development
UC-MSC miR-145-5p Suppress progression
CAF miR-146a, miR-106b Gemcitabine resistance

pathways. The research demonstrates that

exosomal microRNA

levels can help predict patient treatment outcomes and drug

resistance patterns (147).

Exosomal miRNAs in the treatment of

PDAC

Exosomes show great potential as drug carriers because they are

safe for the body and help load therapeutic molecules. Researchers

10.3389/fonc.2025.1669213

create exosomes to transport siRNAs or miRNAs that target KRAS
mutations found in 90% of pancreatic cancer patients (148).
Research with mice proves that exosomes delivering siRNA that
targets KRAS-G12D can stop tumor progression and increase
mouse survival times (149).

Exosome-delivered microRNAs could help doctors fight cancer
in patients whose treatments fail. Exosomal miR-7 helps stop
pancreatic cancer from growing and invading tissues by blocking
MAP3KY, but cancer growth is boosted by miR-182 through its
control of B-TrCP2 (132, 150, 151). We can improve how well
treatments work by putting these miRNAs inside exosomes. We
need additional studies and testing in clinical settings to confirm
how exosomal miRNAs can be used best to treat pancreatic cancer.

A clinical trial (NCT04636788), launched in late 2020, aims to
identify exosomal miRNA biomarkers for the early detection of
pancreatic cancer. This ongoing study is recruiting both patients
and healthy controls, with a target enrollment of 102 participants.
Each participant will provide 12 mL of venous blood, and small
RNAs—including miRNAs—will be analyzed using next-
generation sequencing. The primary outcome measures are
sensitivity and specificity of candidate biomarkers, while
secondary measures include patient survival outcomes.

In 2017, engineered exosomes loaded with siRNAs targeting
KRAS-G12D—a common mutation in PDAC—was tested in a
mouse model. These clinical-grade exosomes, derived from
KRAS-G12D-mutant mesenchymal stem cells, successfully
downregulated the expression of mutant KRAS-G12D, resulting
in prolonged survival with no significant toxicity (149, 152). These
promising preclinical results led to the initiation of a Phase I clinical
trial (NCT03608631) to evaluate the safety and efficacy of this
strategy in PDAC patients harboring the KRAS-G12D
mutation (153).

Additionally, preclinical studies have shown that specific
miRNAs may serve as therapeutic cargo for engineered exosomes.
Overexpression of miR-7, which targets MAP3K9, significantly
inhibited tumor growth in pancreatic cancer models (154). In
contrast, miR-182—known to target the cell cycle regulator B-
TrCP2—has been implicated in promoting tumor proliferation
and migration (155). Other miRNAs such as miR-205 and miR-
182 are also being explored for inclusion in exosomal delivery
systems (155). These findings suggest that loading tumor-
suppressive miRNAs like miR-7 into engineered exosomes could
represent a promising strategy for the targeted treatment of
pancreatic cancer.

TABLE 5 Comparative landscape of exosomal microRNAs (miRNAs) across pancreatic and other cancers: functional roles and clinical relevance.

Cancer Type

Key Exosomal miRNAs

Functional Role

Diagnostic/Prognostic

Relevance

Pancreatic cancer

miR-21, miR-155, miR-301a, miR-17-

Oncogenic; therapy resistance (PTEN/PI3Ky, TGF-

Diagnostic & prognostic

5p B)
Breast cancer miR-10b, miR-21 Metastasis, invasion Prognostic
Lung cancer miR-23b-3p, miR-210 Hypoxia adaptation Diagnostic
Colorectal cancer miR-200c, miR-1246 EMT regulation Prognostic
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Potential therapeutic targets

The increased serum levels of exosomal miR-17-5p and miR-21
was the baseline of the first study demonstrating diagnostic value of
exosomal miRNAs in PC (156). Over the years, more research has
been conducted, with many other exosomal miRNAs with
diagnostic usefulness being discovered. For instance, exosomal
miR-1246, miR-4644, miR-3976, and miR-4306 have all been
documented to be elevated in PC patients (157). A multi-marker
signature containing miR-10b, miR-21, miR-30c, miR-181a, as well
as downregulated miR-let 7a, markedly surpassed classic exosomal
markers like glypican-1 (158). Moreover, exosomal miR-451a is
showing promise as a predictor for advanced disease and
recurrence. Previous studies, emphasizes the presence of
significant amounts of mir-196a and mir-1246 in PC exosomes
and their elevation in plasma from patients with localized illness
(159). Additionally, exosomal miRNAs from other sources such as
pancreatic juice (miR-21, miR-155), saliva (miR-1246, miR-4644),
and portal blood (miR-4525, miR-451a, and miR-21) have
demonstrated potential for diagnostics as well as prognostics (132).

Exosomal communication between cancer cells and fibrotic
tissue cells results in the upregulation of oncogenic miR-21 and
miR-221 in pancreatic cancer cells because of cross talk with cancer-
associated fibroblasts (CAFs) or pancreatic stellate cells (PSCs)
(160). At the functional level, exosomal miR-23b-3p is known to
enhance proliferation, migration, and invasion in various diseases.
Likewise, miR-339-5p and miR-222 are associated with enhanced
invasive potential. Hypoxia-induced exosomal miR-301a is known
to foster the M2 macrophage phenotype via PTEN/PI3Ky signaling,
thereby enhancing metastatic potential (161). Exosomal miR-501-
3p, derived from M2 macrophages, has the opposite effect of
activating TGF-P signaling in PC cells and thus, drives
tumorigenesis. However, not all exosomal miRNAs have an
oncogenic potential.

They are also involved in immune evasion. For example, tumor-
derived miR-212-3p, transported to dendritic cells, silences the
RFXAP gene which is responsible for the expression of MHC
class II molecules and antigen presentation on the cell surface.
Although some progress has been made, the mechanisms
controlling miRNA packaging, delivery, and functional activity
within recipient cells remain elusive. More studies focusing on the
architecture of exosomal communication and their movement is
needed in order to use them in therapy.

Exosomal miRNAs are also important in PC chemoresistance,
particularly with regard to gemcitabine. Exosomes from CAFs Snail
and miR-146a release during gemcitabine exposure can induce
resistance in cancer cells after being taken up (162). Similarly,
miR-155 is upregulated in exosomes from gemcitabine-treated
cancer cells. This miRNA confers resistance by downregulating
DCK, an enzyme that activates gemcitabine. Resistance is reversible
by inhibiting miR-155 or by overexpressing DCK, demonstrating
therapeutic potential. CAF-derived exosomal miR-106b also
contributes to gemcitabine resistance through TP53INPI
downregulation. Moreover, gemcitabine-resistant pancreatic
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cancer stem cells (PCSCs) secrete exosomal miR-210, which
mediates transfer of resistance to more sensitive cells (163, 164).

Despite the rising evidence for exosomal miRNA involvement
in chemoresistance, many gaps still exist. Understanding the
mechanisms behind selective miRNA encapsulation and uptake,
as well as pertinent resistance-associated miRNAs, will be essential.
Filling these gaps may enhance therapeutic approaches that aim to
alleviate drug resistance in PC.

Challenges in developing miRNA-
based therapies

Creating miRNA-based therapies for pancreatic cancer faces
major barriers that must be met to realize their clinical value. One
key issue is the effective delivery of therapeutic miRNAs to the
target tumor cells. MiRNAs, due to their unstable nature, face rapid
degradation by nucleases in circulation, necessitating protective
delivery systems such as lipid nanoparticles, viral vectors, or
exosomes. Specialized lipid nanoparticles, viral vectors, or
exosomes can provide stability and ensure uptake on a structural
level; however, these systems are unfortunately unable to avoid off-
target effects, delivering medicine to areas outside of the tumor.

A different challenge presents itself in the selective targeting of
oncogenic or tumor-suppressing miRNAs. Although a wide range
of miRNAs are considered to be dysregulated in cancer, almost all of
them seem to have pleotropic effects due to their capability to
regulate multiple genes and pathways. The existence of non-
cancerous tissues coupled with the likelihood of triggering toxicity
or adverse immune responses increases the level of concern. The
efficiency with which these therapies work is severely diminished
due to the existence of redundancy and compensatory mechanisms
aplenty within the miRNA network when one of the targets is a
single miRNA.

The existence of diverse subpopulations of cancer cells, as well
as the stromal components within pancreatic tumors, is referred to
as tumor heterogeneity. In addition to the challenges already stated,
this type of tumor heterogeneity poses additional complications
with the expression of varying miRNA profiles within these parts.
With these recent advancements come novel ways of tackling the
selecting the appropriate miRNA targets und these will prove useful
in designing therapies.

Lastly, the lack of uniformity in the techniques used for
detecting and measuring miRNAs restricts consistency across
various research works. Variations in the steps taken within a
single laboratory, such as how samples are prepared, how they are
normalized, and how analysis is performed, affect the comparison of
results and slow down application in clinical settings.

Innovative approaches to the problems posed by delivery
methods, powerful bioinformatics capable of accurately predicting
miRNA-mRNA interactions, and well-designed clinical trials
assessing safety and efficacy are needed. Only through an
integrated approach can therapies targeting miRNAs become
practical for treating pancreatic cancer.
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Functional studies and validation
techniques

Candidate miRNAs can be selected based on proposed
screening criteria, including evidence of aberrant expression in
pancreatic cancer, functional evidence of modulation in growth or
phenotypic changes, and assessment in vivo (84, 165).

Techniques for validating regulatory interactions can be
conducted either pre or post functional studies. The reporter
methodology involves cloning candidate 3'UTRs with potential
binding sites for the miRNA into a vector containing a
fluorescent protein encoding sequence. Upon co-transfection with
the miRNA expression vector, the protein will be downregulated if
the binding is functional, reflected by decreased fluorescent signal
(166). miR-145 was validated as a regulator of ten-eleven
translocation 2 (TET2) using this technique. A similar approach
utilizes a non-coding luciferase reporter gene to measure light
production indirectly quantifying miRNA activity (167, 168).
miRNAs can also be evaluated through the quantitative
assessment of the target mRNA transcript level using RT-qPCR
(169). This approach has been used to demonstrate regulation of
phosphatase and tensin homolog (PTEN) by miR-21 in pancreatic
cancer cells (170). Western blotting can assess expression changes
of the corresponding protein target after miRNA modulation, as
with miR-27b regulation of Kriippel-like factor 4 (KLF4) in
pancreatic cancer (171). Using transcriptome sequencing to
compare mRNA levels before and after miRNA modulation can
identify candidate targets with significantly altered expression.
Bioinformatics predictions can complement functional studies by
identifying genes with regulatory sites for the candidate miRNA.
Popular algorithms include miranda, picTar, and TargetScan (172,
173). Although these resources have limitations, they are useful for
finding and prioritizing candidate targets. Experimental validation
of target site functionality is critical, as binding sites may not always
represent a direct regulatory relationship.

Future research directions

As the clinical need for innovative biomarker discovery
approaches and applications in pancreatic cancer research and
clinical practice rises, the availability of comprehensive
biomarker-associated datasets and analytical platforms will
encourage new research and clinical explorations emerging from
academic, clinical, and industrial communities (174). With an
emphasis on implantable microdevice-enabled biomarker
discovery, computational pathology, and ex vivo research, Illinois
demonstrates how smart biomarker discovery tools drive
innovation and collaboration across the bench-to-bedside
continuum (175, 176). This invigorating era for pancreatic cancer
biomarker discovery will support the accelerated development of
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the next generation of tools, technologies, and treatments to
improve patient outcomes across the cancer continuum. With
meeting the clinical needs as the driving force, pancreatic cancer
discovery research pivots to the rapidly emerging fields of liquid
biopsy, artificial intelligence, exosome, organoid, and microbiome,
leveraging interdisciplinary collaborations between researchers with
diverse expertise.

The progress and challenges in the discovery, function, and
clinical implications of miRNAs in pancreatic cancer are
summarized. Focusing on the miRNAs with the most significant
findings to date, particular attention is paid to the disruption of
miRNA transcription and processing machinery and the
experimentally validated role of single miRNAs with oncogenic or
tumor-suppressing functions in pancreatic cancer (62). The need to
decipher the complex interactions between miRNAs and target
genes to better understand the role of miRNAs in pancreatic cancer
is also highlighted. Efforts in discovering pan-cancer or biomarker
combinations for improved diagnostic accuracy are summarized. A
comprehensive pool of candidate biomarkers is provided, consisting
of miRNA expression profiles obtained from various biopsy
methods that offer insights into the molecular characteristics of
pancreatic tumors. Emerging applications of computational
methods are also discussed, ranging from simple statistical tests
to more sophisticated approaches incorporating machine-learning-
based algorithms. The pressing clinical needs for innovative
approaches in biomarker discovery are illustrated.

Conclusion

In conclusion exosomal miRNAs are multifactorial interactions
with the pancreatic tumor microenvironment that affect immune
modulation, stromal reprogramming, and resistance to therapy.
The combination of these two functions as mediators of oncogenic
signaling and as a biomarker that can be readily measured, makes
them invaluable to the future of pancreatic cancer diagnostics and
therapy. Though there has been rapid advancement,
methodological inconsistency in the isolation of exosomes,
quantification of miRNAnormalization of the reference is a
limiting factor to clinical application. Cross-cancer (e.g. miR-21
in pancreatic, breast, and colorectal cancer) comparative studies
indicate both commonality of pathways and context-specific
regulation, implying that multi-omic validation is necessary.
Predictive signatures could be achieved by combining
bioinformatics-based miRNA-mRNA network analysis with
longitudinal datasets of patients. The next round of research
ought to focus on standardized detection platforms, optimization
of therapeutic delivery and research into engineered exosomes as
miRNA carriers. Clinical translation of exosomal miRNAs is
potentially an important breakthrough of the early diagnosis and
personalized therapy of pancreatic cancer, and molecular precision
is matched to better patient survival. Altogether, this review
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highlights the translational edge of exosomal miRNAs in
pancreatic cancer, which is unlike the previous literature that
connects epidemiological urgency with mechanistic and
therapeutic knowledge.
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