
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Francesco Cuccia,
ARNAS Ospedali Civico Di Cristina Benfratelli,
Italy

REVIEWED BY

Qianqian Li,
Institute of Basic Medical Sciences, China
Ningbo Liu,
Tianjin Medical University, China

*CORRESPONDENCE

Fuli Zhang

radiozfli@163.com

Jianfeng Qiu

jfqiu100@gmail.com

Yinglun Sun

sunyinglun@sdfmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 19 July 2025
ACCEPTED 03 November 2025

PUBLISHED 20 November 2025

CITATION

Liu Y, Pan Y, Wang Q, Jiang H, Lu N, Chen D,
Yu Y, Gao Y, Zhang H, Sun Y, Qiu J and
Zhang F (2025) Integration of intratumoral/
peritumoral radiomics and deep learning for
predicting overall survival in non-small cell
lung cancer patients: a multicenter study.
Front. Oncol. 15:1669200.
doi: 10.3389/fonc.2025.1669200

COPYRIGHT

© 2025 Liu, Pan, Wang, Jiang, Lu, Chen, Yu,
Gao, Zhang, Sun, Qiu and Zhang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 November 2025

DOI 10.3389/fonc.2025.1669200
Integration of intratumoral/
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non-small cell lung cancer
patients: a multicenter study
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Huayong Jiang1, Na Lu1, Diandian Chen1, Yanjun Yu1,
Yanxiang Gao1, Huijuan Zhang1, Yinglun Sun2*,
Jianfeng Qiu4* and Fuli Zhang1*

1Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army
PLA General Hospital, Beijing, China, 2School of Radiology, Shandong First Medical University and
Shandong Academy of Medical Sciences, Taian, China, 3School of Automation Science and Electrical
Engineering, Beihang University, Beijing, China, 4The First Affiliated Hospital of Shandong First Medical
University, Jinan, China
Background: Prognostic assessment of non-small cell lung cancer (NSCLC)

relies on TNM staging, yet tumor heterogeneity limits its accuracy. This study

aimed to develop a model for improving the prediction of overall survival (OS) in

NSCLC patients receiving radiotherapy, which integrated intratumoral/

peritumoral radiomics features and 3D deep learning (DL) features.

Methods: A total of 303 NSCLC patients from three centers were retrospectively

enrolled. Radiomics features were extracted from intratumoral and 3/6/9 mm

peritumoral regions on CT scans. A network named 3D-SE-ResNet was

proposed to extract DL features. Lasso-Cox and principal component analysis

(PCA) were used to integrate multidimensional features to establish a combined

model. Performance was evaluated via the concordance index (C-index) and

area under the curve (AUC). Survival differences were visualized through Kaplan–

Meier curves.

Results: The 6 mm expansion peritumoral radiomics features analysis showed

the best performance (C-index: 0.63). The DL features outperformed the

radiomics features (C-index: 0.74 vs 0.63). The combined model achieved the

highest accuracy (C-index: 0.77/0.73 across datasets). K–M analysis confirmed

significant survival differences (log-rank P < 0.001).

Conclusion: The combined model integrates intratumoral/peritumoral

radiomics features and 3D DL features and effectively predicts the OS of

NSCLC patients, offering a novel tool for personalized radiotherapy strategies.
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Introduction

Non-small cell lung cancer (NSCLC) is a leading cause of

cancer-related mortality worldwide, accounting for 80%–85% of

all lung cancer cases (1–3). Radiotherapy (RT) plays a pivotal role in

the therapeutic management of NSCLC patients. However, the

current 5-year survival rate remains below 30% (4–6),

highlighting the urgent need for precise prognostic stratification

to optimize RT strategies and adjuvant therapeutic decisions.

The conventional TNM staging system has limited predictive

accuracy because of its inability to capture the heterogeneity of the

tumor microenvironment (7, 8). Radiological assessment is limited

in quantifying tumor information because of its heavy reliance on

subjective experience. Radiomics has shown substantial potential in

tumor prognosis prediction (9–11). Accumulated evidence

indicates that the peritumoral lung parenchyma, a key pathway

for tumor dissemination, is closely linked to recurrence and poor

prognosis (12–14). Peritumoral radiomics, which quantifies

heterogeneity in surrounding regions, has been shown to

effectively capture microenvironmental dynamics and enhance

prognostic predictions (15–17). Nevertheless, the optimal

expansion distance of peritumoral regions of interest (ROIs)

remains controversial across studies, which may hinder their

clinical generalizability (18–20).

The integration of artificial intelligence (AI) with radiomics

offers a novel direction for prognostic modeling. Compared with

conventional 2D convolutional neural networks (CNNs), 3D CNNs

can more comprehensively capture three-dimensional spatial

heterogeneity and have demonstrated superiority in tasks such as

pulmonary nodule classification (21–23). However, limitations

exist, including overfitting risks due to limited medical imaging

datasets and a shortage of networks optimized for survival analysis.

We propose a novel network architecture named 3D-SE-ResNet,

which embeds a squeeze-and-excitation (SE) module into the 3D

ResNet framework to achieve adaptive feature channel calibration.

Furthermore, this study establishes a novel paradigm for

personalized prognosis by synergistically integrating intratumoral/

peritumoral radiomics features with 3D deep learning (DL) features

through a principal component analysis (PCA)-driven

fusion strategy.

This study aimed to construct a multicenter-validated

combined model for predicting overall survival (OS) in NSCLC

patients undergoing RT by integrating intratumoral/peritumoral

radiomics features and 3D DL features. These advancements aim to
Abbreviations: AUC, area under the curve; CI, confidence interval; C-index,

concordance index; CNNs, convolutional neural networks; CT, computed

tomography; CTV, clinical target volume; DL, deep learning; GAP, global

average pooling; GTV, gross tumor volume; HR, hazard ratio; Lasso, least

absolute shrinkage and selection operator; LoG, Laplacian of Gaussian;

NSCLC, non-small cell lung cancer; OS, overall survival; PCA, principal

component analysis; ROI, region of interest; RT, radiotherapy; SE, squeeze-

and-excitation.

Frontiers in Oncology 02
provide a robust tool for opt imiz ing individual ized

radiotherapy strategies.
Materials and methods

Patients data

This multicenter retrospective study included 303 non-small

cell lung cancer (NSCLC) patients from three centers. The training

set included 203 adenocarcinoma and squamous cell carcinoma

patients from the publicly available MAASTRO Clinic dataset (24),

with the study dates (from the metadata file) ranging from

November 2004 to January 2014. The test set included 100

histologically confirmed adenocarcinoma or squamous cell

carcinoma patients enrolled between January 2016 and August

2021 (68 from the Seventh Medical Center of Chinese PLA

General Hospital and 32 from Shandong Provincial Hospital

Affiliated with Shandong First Medical University), all of whom

met the following criteria.

The inclusion criteria were as follows: (1) histologically verified

NSCLC (adenocarcinoma or squamous cell carcinoma); (2) aged >18

years; (3) received radiotherapy or chemoradiotherapy; (4) available

radiotherapy planning CT scans; and (5) complete clinical records. The

exclusion criteria included the following: (1) the presence of other

primary malignancies; (2) poorly defined tumor boundaries; and (3)

loss to follow-up.

The protocol was conducted in compliance with the Declaration

of Helsinki and has been approved by the Ethics Committee of the

Seventh Medical Center of Chinese PLA General Hospital (No.

S2025-030-01) and the Ethics Committee of Shandong First

Medical University (No. SB-KJCX2101). Owing to the

retrospective nature of the study and the use of anonymized data,

written informed consent was waived. The study workflow is shown

in Figure 1.
Treatment and follow-up

In the training set, patients with stage N2/N3 and T4 disease

were required to first receive 3 cycles of induction chemotherapy

with gemcitabine combined with cisplatin or carboplatin, and

radiotherapy was initiated at least 14 days after the completion of

chemotherapy. All radiotherapy was performed in accordance with

the principles that mean lung dose (MLD)≤ 19 Gy and the

maximum spinal cord dose ≤ 54 Gy, with a maximum radiation

dose of 79.2 Gy. Among these patients, a fractionation schedule of

1.8 Gy per fraction (twice daily) was adopted for those undergoing

radical radiotherapy with a minimum of 8 h between the two

fractions. Three dimensional conformal radiotherapy (3D-CRT) or

intensity modulated radiotherapy (IMRT) techniques were used.

For patients undergoing concurrent chemoradiotherapy, 2 cycles of

chemotherapy were completed first, followed by irradiation of 45

Gy at 1.5 Gy per fraction (twice daily); thereafter, the fractionation
frontiersin.org
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schedule was adjusted to 2.0 Gy per fraction (once daily) for a boost

irradiation of 6–24 Gy.

All patients in the test set underwent definitive radiotherapy

(RT) or chemoradiotherapy. The RT target volume covered the

primary lesion and involved lymph nodes, with a conventional

fractionation schedule: 2 Gy per fraction, five fractions per week,

and a total dose of 50–60 Gy. RT techniques were implemented

according to the clinical routines of the participating centers: the

Seventh Medical Center of Chinese PLA General Hospital adopted

intensity-modulated radiotherapy (IMRT) or volumetric modulated

arc therapy (VMAT), while Shandong Provincial Hospital used

IMRT. For VMAT, two full arcs were used; for IMRT, 5–7 coplanar

fields were used. For patients undergoing chemoradiotherapy,

platinum-based dual-drug combination regimens were mainly

adopted: etoposide combined with cisplatin (EP regimen) was

preferred for patients with squamous cell carcinoma; pemetrexed

combined with cisplatin or carboplatin (PC regimen) was

recommended for patients with non-squamous cell carcinoma; in

addition, paclitaxel combined with carboplatin was also an

alternative regimen for cisplatin-intolerant patients.

The baseline clinical characteristics included sex, age, histologic

subtype, TNM stage, and overall stage. The study’s major outcome

measure was OS, which was calculated from the commencement of

RT to either mortality occurrence or censoring at the final follow-up

(August 2024). Patients in the test set were followed every 3 months

during the initial postdiagnosis year and every 6–12 months

thereafter, with a minimum follow-up of 36 months. Survival

outcomes for the training set were derived from the publicly

available dataset (24).
Frontiers in Oncology 03
Image acquisition and preprocessing

RT planning CT scans were performed on Philips and Siemens

large-bore simulation scanners, covering the thoracic region with a

tube voltage of 120 kV, slice thickness of 2–5 mm, and a

reconstruction matrix of 512×512. To mitigate variability from

multicenter imaging protocols, CT images were preprocessed as

follows: DICOM files were converted to NIFTI format, followed by

isotropic resampling with B-spline interpolation to standardize the

voxel dimensions to 1×1×1 mm3.
ROI segmentation and radiomics feature
extraction

The intratumoral region of interest (ROI) was defined as the

gross tumor volume (GTV) by an experienced radiation oncologist

(working for over 20 years). To evaluate the prognostic impact of

peritumoral regions, three concentric peritumoral expansions (3/6/

9 mm) were generated via SimpleITK (v 2.3.1). Radiomics features

were extracted using PyRadiomics (v 3.1) with the following

parameters: intensity normalization enabled and a bin width of

25 for histogram discretization. A total of 1316 radiomics features

were extracted from each ROI, encompassing five categories: first-

order statistics (n=18), shape-based features (n=14), texture features

(n=75), wavelet-filtered features (n=744), and Laplacian of

Gaussian (LoG)-filtered features (n=465, with sigma values set to

[1.0, 2.0, 3.0, 4.0, 5.0]).
FIGURE 1

Study design and workflow: DL, deep learning; LoG, Laplacian of Gaussian; PCA, principal component analysis; ROI, regions of interest; SE, Squeeze-
and-Excitation.
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Deep learning network establishment

The 3D-SE-ResNet architecture was systematically adapted

from ResNet18 to accommodate 3D survival analysis tasks. As

illustrated in Figure 2, the network comprises three core

components: (1) a backbone module containing an initial 3D

convolutional layer (kernel size=3×3×3, stride=2) for spatial

downsampling and preliminary feature extraction, which is

followed by a 3D max-pooling layer (kernel size = 3×3×3, stride

= 2) to further reduce spatial dimensions. (2) Four sequential

residual blocks with a progressively increasing number of filters

(64, 128, 256, 512). Each residual block contains two 3D

convolutional basic units, both utilizing 3×3×3 kernels combined

with batch normalization and ReLU activation, and employs skip

connections to mitigate the gradient vanishing problem. The first

unit’s convolutional layer in the first residual block acts directly on

the input, while the second unit’s convolutional layer follows a “BN

+ReLU+convolution” architecture; both units use a convolution

stride of 1. In subsequent residual blocks, the first unit’s convolution

uses a stride of 2, and the second unit uses a stride of 1, with both

units adopting the “BN+ReLU+convolution” architecture for their

convolutional layers. (3) A squeeze-and-excitation (SE) module

integrated after each residual block to implement the channel

attention mechanisms.

The SE module performs feature recalibration through three

steps (with a compression ratio of 64): (1) Spatial compression:

Generating channel-wise statistics via global average pooling

(GAP), transforming each 3D feature map (H×W×D×C, where C

is the number of channels) into a 1D vector (1×1×1×C). (2)

Channel dependency modeling: Establishing inter-channel

dependencies through two fully connected layers. The first fully

connected layer reduces the dimension to C/64 with ReLU

activation, and the second restores the dimension to C with

sigmoid activation, generating channel weights (range: 0–1). (3)

Feature map rescaling: Adaptive enhancement of prognosis-

relevant channels and suppression of irrelevant signals via

element-wise multiplication between the original feature maps

and the learned channel weights. The network terminates with
Frontiers in Oncology 04
fully connected layers (512→512→256→128 units), dropout

(rate=0.4), and L2 regularization (l=1e-4). The output layer uses

tanh activation for survival prediction. Ablation experiments were

conducted to validate the contribution of the SE module.
Deep learning network training and feature
extraction

The model training encompassed three phases: preprocessing,

augmentation, and optimization. Intratumoral ROIs were resized to

64×64×64 via linear interpolation and normalized via Z score

transformation. To increase data diversity, seven types of 3D

augmentations were implemented, including contrast adjustment,

brightness scaling, gamma correction, Gaussian noise addition,

blurring, 3D mirroring, and spatial rotation, with the technical

specifications provided in Table 1. Network optimization employs

the Cox negative partial likelihood loss function (25), which is

optimized via the Adam optimizer with an initial learning rate of

1×10-4, exponentially decayed by a factor of 0.96 every 1000 steps,

and a batch size of 32. Training proceeded for 100 epochs with early

stopping triggered if the validation loss plateaued for 15 consecutive

epochs. The feature vectors (512-dimensional) were extracted from

the GAP layer post training. All the implementations utilized

TensorFlow 2.7 on an NVIDIA GeForce RTX 4070 Ti GPU with

CUDA 11.2 acceleration.
Feature selection and model development

The feature selection procedures were restricted to the training

set. For radiomics and deep learning features, a three-step process

was applied: (1) Z score normalization to standardize feature scales;

(2) univariate cox analysis (P < 0.05) to identify survival-associated

features; and (3) least absolute shrinkage and selection operator

(Lasso) Cox regression with standard 10-fold cross-validation to

retain nonzero coefficients. The feature selection workflow is

illustrated in Figure 1. A radiomics/deep learning signature was
FIGURE 2

3D-SE-ResNet framework diagram: BN, batch normalization; Conv, convolution layer; FC, fully connected layer; GAP, global average pooling layer;
RB, residual block.
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derived via a linear combination of selected features and

their coefficients.

Principal component analysis (PCA) was performed on the

integrated intratumoral/peritumoral radiomics and deep learning

features, retaining components accounting for ≥ 95% of the

cumulative variance. Factor loading heatmaps were used to

visualize the contribution of each feature to the principal

components. Within the training set, the dimensionality-

reduced features were integrated to construct the combined

predictive model.
Model validation and evaluation

Model discrimination was assessed via Harrell’s concordance

index (C-index) and area under the curve (AUC) from receiver

operating characteristic curve (ROC) analysis. Calibration curves

(bootstrap resampling: 1000 iterations) were used to evaluate the

agreement between the predicted and observed survival

probabilities. Patients were stratified into low/high-risk subgroups

through the median risk score in the training set to determine the

optimal cutoff value.

To further evaluate the model’s utility in personalized risk

stratification, subgroup analyses were conducted. Specifically, we

stratified patients by overall stage (Stage I - II vs. Stage III),

histologic subtype (adenocarcinoma vs. squamous cell

carcinoma), gender (male vs. female), and age (≥ 65 years vs. <

65 years) in both the training and test sets. For each subgroup,

survival differences between cohorts were analyzed via the Kaplan–

Meier method with log - rank tests, and the corresponding Kaplan–

Meier curves were plotted.
Statistical analysis

Statistical computations were conducted with R v4.4.0 and

Python 3.9. Categorical variables were evaluated via Fisher’s exact

test or the chi-square test; for continuous variables, normality was

first determined using the Shapiro-Wilk test, with the independent t
Frontiers in Oncology 05
test applied for normally distributed variables and the Mann-

Whitney U test for non-normally distributed variables. DeLong’s

test was used to compare differences in AUC values between the

single signature and combined models. Subgroup analyses stratified

by clinical characteristics (tumor stage, histological type, age, and

gender) were performed in both the training and testing sets; for

survival-related outcomes, the log-rank test was employed to

compare survival differences between subgroups. All hypothesis

tests were two-tailed with a significance threshold set at a=0.05.
Results

Patient cohort characteristics

A total of 303 non-small cell lung cancer (NSCLC) patients

from three centers were included in this study. The baseline clinical

characteristics of all patients are listed in Table 2.
Radiomics feature analysis

From the intratumoral and peritumoral regions (3 mm, 6 mm,

and 9 mm expansions), 1316 radiomics features were extracted.

Univariate cox regression identified 214 significant intratumoral

radiomics features and 83, 88, and 125 peritumoral radiomics

features, respectively. Subsequent Lasso-Cox analysis further

refined these features to 12 intratumoral and 9, 10, and 10

peritumoral key radiomics features. To explore the synergistic

effects of the intratumoral and peritumoral regions, combined

radiomics signatures were generated by integrating selected

radiomics features from both regions. Predictive performance

varied significantly across peritumoral expansion distances and

their combinations (Table 3). Among the standalone peritumoral

radiomics signatures, the 6-mm expansion radiomics signature

achieved the highest C-index (0.63, 95% CI: 0.58–0.67), whereas

the combined Rad+Rad_6 mm radiomics signature further

improved the C-index (0.65, 95% CI: 0.60–0.69); thus, this

radiomics signature was selected as the standardized peritumoral

region. The names and corresponding coefficients of all features

within the Rad + Rad_6 mm radiomics signature are presented

in Figure 3.
Deep learning feature analysis

Among 512 deep learning (DL) features extracted from 3D-SE-

ResNet, 11 key prognostic features were retained after univariate

cox and Lasso-Cox screening. Compared with the intratumoral and

6-mm peritumoral radiomics signatures, the DL signature showed a

trend of improved discriminative performance, with a C-index of

0.74 (95% CI: 0.70-0.77) in the training set and 0.66 (95% CI: 0.58–

0.73) in the test set. Ablation experiments confirmed the critical role

of the SE module: its integration yielded a 13.8% performance gain

in the 3D-ResNet model (C-index: 0.74 vs. 0.65), indicating that the
TABLE 1 Technical details of 3D data augmentation.

Augmentation type Parameter settings Probability

Contrast Adjustment Multiplier range (1.0-1.75) 15%

Brightness Multiplicative
Adjustment

Scaling factor (0.7-1.5) 15%

Gamma Correction g range (0.5-2.0) 15%

Gaussian Noise Variance range (0-0.05) 15%

Gaussian Blur s range (0.5-1.5) 15%

3D Mirroring
Random flipping along X/Y/

Z axes
30%

3D Spatial Rotation
Rotation (0-360°) around

Z-axis
30%
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SE module effectively enhances the extraction of prognosis-related

features. As shown in Figure 4, the AUC values of the 3D-SE-

ResNet DL signature for predicting 1-, 2-, and 3-year overall

survival were higher than those of the baseline model at

all timepoints.
Combined model development and
validation

Principal component analysis (PCA) was applied to integrate

intratumoral radiomics, 6-mm peritumoral radiomics, and DL
Frontiers in Oncology 06
features, with the distribution of feature contributions across

principal components visualized in Figure 5. The combined

model, which integrates PCA-reduced features, achieved C-index

values of 0.77 (95% CI: 0.75–0.81) in the training set and 0.73 (0.72–

0.86) in the test set, outperforming individual signatures. ROC

analysis revealed AUCs of 0.86 (95% CI: 0.81–0.90), 0.90 (0.86–

0.94), and 0.95 (0.92–0.97) for predicting 1-, 2-, and 3-year OS,

respectively (Table 4), with the corresponding ROC curves

illustrated in Figure 6.
Risk stratification and survival analysis

Calibration analyses revealed high concordance between the

predicted and observed survival probabilities (Figure 7). Patients

were stratified into high-risk and low-risk groups by applying a risk

threshold (cutoff value = 1.14), which was derived from the

combined model’s median risk score. The high-risk group had a

significantly poorer prognosis compared to the low-risk group in

both datasets: the hazard ratio (HR) for the training set was 5.39

(95% CI: 3.83–7.59), and for the test set was 4.48 (95% CI: 2.54–

7.91). Kaplan–Meier analysis further confirmed significant survival

differences between the two risk groups (log-rank P < 0.0001 for

both datasets; Figure 8).

To comprehensively evaluate the personalized risk stratification

ability of the combined model, subgroup analyses were performed

within clinically relevant strata. The model demonstrated consistent

risk discrimination capabilities across gender subgroups (Figure 9),

age subgroups (Figure 10), histologic subtype subgroups

(Figure 11), and overall stage subgroups (Figure 12). Statistically

significant survival differences were observed between high - and

low - risk groups in both the training and test sets (log - rank test, P

< 0.05), validating its robustness across patient populations with

diverse clinical characteristics.
Discussion

This study developed a multicenter-validated combined model

that integrates intratumoral/peritumoral radiomics features and 3D

deep learning features to predict overall survival (OS) in non-small

cell lung cancer (NSCLC) patients undergoing radiotherapy. The

results demonstrated that radiomics features from the 6-mm

peritumoral region exhibited optimal prognostic value (C-

index=0.63), whereas deep learning (DL) features extracted by

3D-SE-ResNet significantly outperformed conventional radiomics

features (C-index=0.74 vs. 0.63). The combined model achieved a

C-index of 0.73 in the test set and an AUC of 0.86 for 3-year OS

prediction, outperforming the conventional TNM staging system

(AUC≈0.65) (26, 27) and validating the efficacy of the

multidimensional feature fusion strategy. These findings provide a

novel framework for individualized prognostic assessment in

NSCLC radiotherapy.

The aggressive nature of NSCLC leads to destruction of adjacent

lung structures, leading to the infiltration of vasculo-lymphatic
TABLE 2 Clinical characteristics of all patients.

Characteristics
Training set
(n=203)

Test set
(n=100)

P value

Age
69

(63–77)
66

(57–72)
0.01

Sex 0.09

Male 144(70.9%) 80(80.0%)

Female 59(29.1%) 20(20.0%)

Histology 0.03

Adenocarcinoma 51(25.1%) 42(42.0%)

Squamous 152(74.9%) 58(58.0%)

T Stage 0.30

1 37(18.2%) 20(20.0%)

2 77(37.9%) 32(32.0%)

3 32(15.8%) 24(24.0%)

4 57(28.1%) 24(24.0%)

N Stage 0.12

0 81(39.9%) 26(26.0%)

1 16(7.9%) 10(10.0%)

2 65(32.0%) 37(37.0%)

3 39(19.2%) 27(27.0%)

4 2(1.0%) 0(0%)

M Stage 0.10

0 202(99.5%) 98(98.0%)

1 0(0.0%) 2(2.0%)

3 1(0.5%) 0(0%)

Overall Stage 0.22

I 34(16.7%) 14(14.0%)

II 31(15.3%) 13(13.0%)

IIIA 58(28.6%) 28(28.0%)

IIIB 80(39.4%) 45(45.0%)

Survival Time (days)
493

(252–1217)
786

(509–1024)
0.03
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cancer at tumor margins (28). This complex tumor–host interface is

often overlooked in traditional intratumoral radiomics (29). Liu

et al. (30) demonstrated that peritumoral regions within 3–9 mm

from the tumor boundary contain biological information relevant

to lung cancer heterogeneity, suggesting that bidirectional tumor–

host interactions at the interface critically influence prognosis.

Through systematic evaluation of peritumoral regions at varying

extents (3/6/9 mm), we identified the 6-mm peritumoral zone as

optimal for balancing microenvironmental information capture and

noise reduction (C-index=0.63), with further performance

improvement when this zone was combined with intratumoral

features (C-index=0.65). These findings indicate that peritumoral

regions provide complementary information to intratumoral areas,

supporting the hypothesis that peritumoral regions serve as

pathways for tumor invasion (12, 15). Compared with single-
Frontiers in Oncology 07
center studies (31), our multicenter validation confirms the

generalizability of peritumoral radiomics, suggesting its

clinical applicability.

3D CNNs enable precise spatial characterization of tumors

through the integration of continuous cross-sectional information

(32, 33). Wang et al. demonstrated the superior performance of 3D

DL features over 2D methods in predicting occult lymph node

metastasis in patients with laryngeal squamous cell carcinoma

(AUC = 0.89 vs 0.86) (21). However, tumor heterogeneity leads

to significant variations in prognostic contributions from different

feature channels, and conventional CNNs lack the ability to

prioritize critical features. To address this limitation, we

innovatively integrated the SE module into the 3D ResNet

framework. The SE module compresses spatial dimensions via

global average pooling and learns channelwise weights through

fully connected layers. This process achieves adaptive recalibration

of feature maps, enhancing the expression of prognosis-relevant

information while suppressing redundant signals (34). Ablation

experiments demonstrated the critical role of the SE module: the

3D-SE-ResNet model exhibited a 13.8% improvement in the C-

index (0.74 vs. 0.65) compared to the baseline 3D-ResNet,

highlighting its ability to resolve spatial heterogeneity through

attention-driven feature calibration.

The hierarchical representation capability of deep neural

networks enables 3D-SE-ResNet to capture complex tumor–host

interface patterns that are challenging to quantify with traditional

handcrafted features, corroborating prior studies highlighting deep

learning’s advantages in high-dimensional feature representation

(35, 36). The combined model achieved increased predictive

accuracy by synergistically integrating intratumoral/peritumoral

radiomics information with DL-derived spatial hierarchical

features, transcending the limitations of single-prediction

modalities. PCA revealed multidimensional feature contributions:

PC1 demonstrated balanced contributions from intratumoral/

peritumoral radiomics features and deep learning features,

indicating synergistic integration among the three feature classes.

PC2 was dominated by DL features, reflecting the significant

representational power of 3D CNNs in capturing macroscale
TABLE 3 Comparison of C-index (95%CI) for intratumoral/peritumoral
radiomics signatures with different expansion distances.

Signatures Training set Test set

Rad
0.63

(0.58-0.68)
0.61

(0.48-0.68)

Rad_3mm
0.61

(0.57-0.65)
0.61

(0.49-0.68)

Rad_6mm
0.63

(0.58-0.67)
0.62

(0.49-0.69)

Rad_9mm
0.61

(0.57-0.65)
0.59

(0.46-0.66)

Rad+Rad_3mm
0.64

(0.60-0.69)
0.63

(0.52-0.70)

Rad+Rad_6mm
0.65

(0.60-0.69)
0.64

(0.53-0.70)

Rad+Rad_9mm
0.64

(0.59-0.69)
0.62

(0.51-0.71)
Rad: Intratumoral radiomics signature. Rad_3mm, Rad_6mm, Rad_9mm: Peritumoral
radiomics signatures with 3 mm, 6 mm, and 9 mm expansion distances, respectively.
FIGURE 3

Intratumoral (A) and 6-mm peritumoral (B) radiomics features and coefficients.
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tumor spatial heterogeneity (37). The performance of the

peritumoral radiomics features was greatest for PC3, which is

consistent with the findings from the radiomics analysis in the

optimal 6 mm peritumoral region. This synergy underscores the

unique value of multidimensional integration in decoding

tumor complexity.
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In this study, the difference in median survival time between the

training and test sets may be partially attributed to the gradual

adoption of precise radiotherapy technologies such as image-guided

radiotherapy during the multicenter data collection period.

Although we controlled confounding factors through uniform

inclusion criteria, the retrospective design inherently limits the

elimination of selection bias. Notably, prolonged survival itself
FIGURE 4

ROC curves of the 3D-SE-ResNet (A, B) and 3D ResNet (C, D) DL signatures on training and test sets.
FIGURE 5

PCA factor loading heatmap.
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may reflect therapeutic advancements rather than model prediction

bias, providing unique insights into model robustness evaluation

within evolving technological contexts. The drop in the combined

model’s C-index from the training set (0.77) to the test set (0.73) is a

typical manifestation of model generalization across distinct

datasets. The training and test sets originate from different

medical centers, leading to inevitable discrepancies in patient
Frontiers in Oncology 09
demographics, treatment details, and data distribution patterns.

Despite this decline, the test set C-index of 0.73 still denotes

sat is factory predict ive performance. To enhance the

generalization capability, three key countermeasures were

implemented: (1) Integration of L2 regularization (l=1e-4) with

dropout layers (rate=0.4) in the DL framework to prevent

overfitting to short-term survival signals; (2) PCA-based feature
TABLE 4 AUC (95%CI) of intratumoral/peritumoral radiomics signatures, deep learning signatures, and combined model for 1-, 2-, and 3-year OS in
patients.

Models AUC Training set Test set P value

Rad

1-year
0.68

(0.61-0.75)
0.64

(0.50-0.78)
0.03

2-year
0.69

(0.61-0.76)
0.64

(0.52-0.75)
0.02

3-year
0.76

(0.68-0.83)
0.66

(0.50-0.81)
<0.01

Rad_6mm

1-year
0.70

(0.63-0.77)
0.64

(0.50-0.79)
0.01

2-year
0.71

(0.63-0.77)
0.71

(0.60-0.82)
0.2

3-year
0.71

(0.63-0.79)
0.67

(0.53-0.80)
0.02

DL

1-year
0.80

(0.74-0.85)
0.77

(0.66-0.88)
0.5

2-year
0.88

(0.83-0.92)
0.69

(0.58-0.80)
0.05

3-year
0.92

(0.88-0.96)
0.68

(0.55-0.82)
< 0.01

Combined Model

1-year
0.86

(0.81-0.90)
0.80

(0.69-0.91)
—

2-year
0.90

(0.86-0.94)
0.78

(0.68-0.88)
—

3-year
0.95

(0.92-0.97)
0.86

(0.77-0.94)
—

Boldface values indicate the best predictive performance.
The P values from the DeLong test compare individual signatures with the Combined Model in the test set.
FIGURE 6

ROC curves of the Combined model in the training set (A), and test set (B).
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fusion preserving 95% variance to effectively mitigate multisource

data noise; and (3) bootstrap calibration validation demonstrating

strong consistency between the predicted probabilities and observed

survival rates in the test set. Importantly, the model maintained

stable discriminative performance (C-index=0.73) and significant

risk stratification capacity (log-rank P < 0.001) in the test set,

indicating its tolerance to moderate prognostic distribution shifts.

The combined model demonstrated stable risk stratification

capabilities across multicenter datasets, enabling individualized

prognostic assessments during RT planning for NSCLC patients.

Subgroup analyses (by gender, age, histologic subtype, and overall

stage) further validated the model’s potential for personalized risk

assessment. For example, in the <65 years and ≥65 years subgroups,

both the training and test sets exhibited strong risk stratification

capacity with consistent HR trends (training set: 7.28 vs. 3.88; test

set: 3.37 vs. 5.94). Similarly, in adenocarcinoma and squamous cell

carcinoma subgroups, the model maintained stable discriminative

power (training set: 4.88 vs. 7.18; test set: 2.94 vs. 5.07), with

statistically significant survival differences observed in all

subgroups. These findings confirm that despite minor differences

between cohorts, the model retains stable prognostic utility,

supporting its potential for cross-population clinical application.

Risk-based stratification identifies candidates who may benefit from
Frontiers in Oncology 10
high-dose irradiation, whereas quantitative analysis of peritumoral

radiomics features aids in precisely delineating the boundaries of

the clinical target volume (CTV).

However, several limitations still exist: (1) retrospective design

risks selection bias, necessitating prospective validation; (2) unclear

biological basis of the 6-mm extension needs histopathological

correlation; (3) due to the lack of detailed records on whether

each patient received chemoradiotherapy or radiotherapy alone, we

were unable to analyze the potential impact of these two treatment

modalities on the study results. Future studies should integrate

multi-omics data to unravel imaging–microenvironment molecular

correlations, incorporate dosiomics to explore dose–response

relationships, and collect detailed records of treatment modalities

(e.g., radiotherapy alone vs. chemoradiotherapy) to clarify their

impact on outcomes. Additionally, developing explainability tools

to demystify model decisions will enhance clinical credibility.
Conclusion

In conclusion, our multicenter-validated model, which

integrates intratumoral, 6-mm peritumoral radiomics, and 3D DL

features, significantly improves survival prediction in NSCLC
FIGURE 7

Calibration curves of the combined model in the training set (A) and test set (B).
FIGURE 8

Kaplan-Meier survival curves of the combined model in the training set (A), and test set (B).
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FIGURE 9

Kaplan-Meier survival curves of the combined model stratified by gender in the training set (A, B) and test set (C, D).
FIGURE 10

Kaplan-Meier survival curves of the combined model stratified by age in the training set (A, B) and test set (C, D).
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FIGURE 11

Kaplan-Meier survival curves of the combined model stratified by histologic subtype in the training set (A, B) and test set (C, D).
FIGURE 12

Kaplan-Meier survival curves of the combined model stratified by overall stage in the training set (A, B) and test set (C, D).
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patients receiving radiotherapy. Future efforts will focus on

prospective validation and mechanistic exploration of the model’s

biological foundations.
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