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Background: Prognostic assessment of non-small cell lung cancer (NSCLC)
relies on TNM staging, yet tumor heterogeneity limits its accuracy. This study
aimed to develop a model for improving the prediction of overall survival (OS) in
NSCLC patients receiving radiotherapy, which integrated intratumoral/
peritumoral radiomics features and 3D deep learning (DL) features.

Methods: A total of 303 NSCLC patients from three centers were retrospectively
enrolled. Radiomics features were extracted from intratumoral and 3/6/9 mm
peritumoral regions on CT scans. A network named 3D-SE-ResNet was
proposed to extract DL features. Lasso-Cox and principal component analysis
(PCA) were used to integrate multidimensional features to establish a combined
model. Performance was evaluated via the concordance index (C-index) and
area under the curve (AUC). Survival differences were visualized through Kaplan—
Meier curves.

Results: The 6 mm expansion peritumoral radiomics features analysis showed
the best performance (C-index: 0.63). The DL features outperformed the
radiomics features (C-index: 0.74 vs 0.63). The combined model achieved the
highest accuracy (C-index: 0.77/0.73 across datasets). K—M analysis confirmed
significant survival differences (log-rank P < 0.001).

Conclusion: The combined model integrates intratumoral/peritumoral
radiomics features and 3D DL features and effectively predicts the OS of
NSCLC patients, offering a novel tool for personalized radiotherapy strategies.
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Introduction

Non-small cell lung cancer (NSCLC) is a leading cause of
cancer-related mortality worldwide, accounting for 80%-85% of
all lung cancer cases (1-3). Radiotherapy (RT) plays a pivotal role in
the therapeutic management of NSCLC patients. However, the
current 5-year survival rate remains below 30% (4-6),
highlighting the urgent need for precise prognostic stratification
to optimize RT strategies and adjuvant therapeutic decisions.

The conventional TNM staging system has limited predictive
accuracy because of its inability to capture the heterogeneity of the
tumor microenvironment (7, 8). Radiological assessment is limited
in quantifying tumor information because of its heavy reliance on
subjective experience. Radiomics has shown substantial potential in
tumor prognosis prediction (9-11). Accumulated evidence
indicates that the peritumoral lung parenchyma, a key pathway
for tumor dissemination, is closely linked to recurrence and poor
prognosis (12-14). Peritumoral radiomics, which quantifies
heterogeneity in surrounding regions, has been shown to
effectively capture microenvironmental dynamics and enhance
prognostic predictions (15-17). Nevertheless, the optimal
expansion distance of peritumoral regions of interest (ROIs)
remains controversial across studies, which may hinder their
clinical generalizability (18-20).

The integration of artificial intelligence (AI) with radiomics
offers a novel direction for prognostic modeling. Compared with
conventional 2D convolutional neural networks (CNNs), 3D CNNs
can more comprehensively capture three-dimensional spatial
heterogeneity and have demonstrated superiority in tasks such as
pulmonary nodule classification (21-23). However, limitations
exist, including overfitting risks due to limited medical imaging
datasets and a shortage of networks optimized for survival analysis.
We propose a novel network architecture named 3D-SE-ResNet,
which embeds a squeeze-and-excitation (SE) module into the 3D
ResNet framework to achieve adaptive feature channel calibration.
Furthermore, this study establishes a novel paradigm for
personalized prognosis by synergistically integrating intratumoral/
peritumoral radiomics features with 3D deep learning (DL) features
through a principal component analysis (PCA)-driven
fusion strategy.

This study aimed to construct a multicenter-validated
combined model for predicting overall survival (OS) in NSCLC
patients undergoing RT by integrating intratumoral/peritumoral
radiomics features and 3D DL features. These advancements aim to

Abbreviations: AUC, area under the curve; CI, confidence interval; C-index,
concordance index; CNNs, convolutional neural networks; CT, computed
tomography; CTV, clinical target volume; DL, deep learning; GAP, global
average pooling; GTV, gross tumor volume; HR, hazard ratio; Lasso, least
absolute shrinkage and selection operator; LoG, Laplacian of Gaussian;
NSCLC, non-small cell lung cancer; OS, overall survival; PCA, principal
component analysis; ROI, region of interest; RT, radiotherapy; SE, squeeze-

and-excitation.
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provide a robust tool for optimizing individualized
radiotherapy strategies.

Materials and methods
Patients data

This multicenter retrospective study included 303 non-small
cell lung cancer (NSCLC) patients from three centers. The training
set included 203 adenocarcinoma and squamous cell carcinoma
patients from the publicly available MAASTRO Clinic dataset (24),
with the study dates (from the metadata file) ranging from
November 2004 to January 2014. The test set included 100
histologically confirmed adenocarcinoma or squamous cell
carcinoma patients enrolled between January 2016 and August
2021 (68 from the Seventh Medical Center of Chinese PLA
General Hospital and 32 from Shandong Provincial Hospital
Affiliated with Shandong First Medical University), all of whom
met the following criteria.

The inclusion criteria were as follows: (1) histologically verified
NSCLC (adenocarcinoma or squamous cell carcinoma); (2) aged >18
years; (3) received radiotherapy or chemoradiotherapy; (4) available
radiotherapy planning CT scans; and (5) complete clinical records. The
exclusion criteria included the following: (1) the presence of other
primary malignancies; (2) poorly defined tumor boundaries; and (3)
loss to follow-up.

The protocol was conducted in compliance with the Declaration
of Helsinki and has been approved by the Ethics Committee of the
Seventh Medical Center of Chinese PLA General Hospital (No.
§2025-030-01) and the Ethics Committee of Shandong First
Medical University (No. SB-KJCX2101). Owing to the
retrospective nature of the study and the use of anonymized data,
written informed consent was waived. The study workflow is shown
in Figure 1.

Treatment and follow-up

In the training set, patients with stage N2/N3 and T4 disease
were required to first receive 3 cycles of induction chemotherapy
with gemcitabine combined with cisplatin or carboplatin, and
radiotherapy was initiated at least 14 days after the completion of
chemotherapy. All radiotherapy was performed in accordance with
the principles that mean lung dose (MLD)< 19 Gy and the
maximum spinal cord dose < 54 Gy, with a maximum radiation
dose of 79.2 Gy. Among these patients, a fractionation schedule of
1.8 Gy per fraction (twice daily) was adopted for those undergoing
radical radiotherapy with a minimum of 8 h between the two
fractions. Three dimensional conformal radiotherapy (3D-CRT) or
intensity modulated radiotherapy (IMRT) techniques were used.
For patients undergoing concurrent chemoradiotherapy, 2 cycles of
chemotherapy were completed first, followed by irradiation of 45
Gy at 1.5 Gy per fraction (twice daily); thereafter, the fractionation
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Study design and workflow: DL, deep learning; LoG, Laplacian of Gaussian; PCA, principal component analysis; ROI, regions of interest; SE, Squeeze-

and-Excitation.

schedule was adjusted to 2.0 Gy per fraction (once daily) for a boost
irradiation of 6-24 Gy.

All patients in the test set underwent definitive radiotherapy
(RT) or chemoradiotherapy. The RT target volume covered the
primary lesion and involved lymph nodes, with a conventional
fractionation schedule: 2 Gy per fraction, five fractions per week,
and a total dose of 50-60 Gy. RT techniques were implemented
according to the clinical routines of the participating centers: the
Seventh Medical Center of Chinese PLA General Hospital adopted
intensity-modulated radiotherapy (IMRT) or volumetric modulated
arc therapy (VMAT), while Shandong Provincial Hospital used
IMRT. For VMAT, two full arcs were used; for IMRT, 5-7 coplanar
fields were used. For patients undergoing chemoradiotherapy,
platinum-based dual-drug combination regimens were mainly
adopted: etoposide combined with cisplatin (EP regimen) was
preferred for patients with squamous cell carcinoma; pemetrexed
combined with cisplatin or carboplatin (PC regimen) was
recommended for patients with non-squamous cell carcinoma; in
addition, paclitaxel combined with carboplatin was also an
alternative regimen for cisplatin-intolerant patients.

The baseline clinical characteristics included sex, age, histologic
subtype, TNM stage, and overall stage. The study’s major outcome
measure was OS, which was calculated from the commencement of
RT to either mortality occurrence or censoring at the final follow-up
(August 2024). Patients in the test set were followed every 3 months
during the initial postdiagnosis year and every 6-12 months
thereafter, with a minimum follow-up of 36 months. Survival
outcomes for the training set were derived from the publicly
available dataset (24).
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Image acquisition and preprocessing

RT planning CT scans were performed on Philips and Siemens
large-bore simulation scanners, covering the thoracic region with a
tube voltage of 120 kV, slice thickness of 2-5 mm, and a
reconstruction matrix of 512x512. To mitigate variability from
multicenter imaging protocols, CT images were preprocessed as
follows: DICOM files were converted to NIFTI format, followed by
isotropic resampling with B-spline interpolation to standardize the
voxel dimensions to 1x1x1 mm®.

ROI segmentation and radiomics feature
extraction

The intratumoral region of interest (ROI) was defined as the
gross tumor volume (GTV) by an experienced radiation oncologist
(working for over 20 years). To evaluate the prognostic impact of
peritumoral regions, three concentric peritumoral expansions (3/6/
9 mm) were generated via SimpleITK (v 2.3.1). Radiomics features
were extracted using PyRadiomics (v 3.1) with the following
parameters: intensity normalization enabled and a bin width of
25 for histogram discretization. A total of 1316 radiomics features
were extracted from each ROI, encompassing five categories: first-
order statistics (n=18), shape-based features (n=14), texture features
(n=75), wavelet-filtered features (n=744), and Laplacian of
Gaussian (LoG)-filtered features (n=465, with sigma values set to
[1.0, 2.0, 3.0, 4.0, 5.0]).
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Deep learning network establishment

The 3D-SE-ResNet architecture was systematically adapted
from ResNetl8 to accommodate 3D survival analysis tasks. As
illustrated in Figure 2, the network comprises three core
components: (1) a backbone module containing an initial 3D
convolutional layer (kernel size=3x3x3, stride=2) for spatial
downsampling and preliminary feature extraction, which is
followed by a 3D max-pooling layer (kernel size = 3x3x3, stride

= 2) to further reduce spatial dimensions. (2) Four sequential
residual blocks with a progressively increasing number of filters
(64, 128, 256, 512). Each residual block contains two 3D
convolutional basic units, both utilizing 3x3x3 kernels combined
with batch normalization and ReLU activation, and employs skip
connections to mitigate the gradient vanishing problem. The first
unit’s convolutional layer in the first residual block acts directly on
the input, while the second unit’s convolutional layer follows a “BN
+ReLU+convolution” architecture; both units use a convolution
stride of 1. In subsequent residual blocks, the first unit’s convolution
uses a stride of 2, and the second unit uses a stride of 1, with both
units adopting the “BN+ReLU+convolution” architecture for their
convolutional layers. (3) A squeeze-and-excitation (SE) module
integrated after each residual block to implement the channel
attention mechanisms.

The SE module performs feature recalibration through three
steps (with a compression ratio of 64): (1) Spatial compression:
Generating channel-wise statistics via global average pooling
(GAP), transforming each 3D feature map (HxWxDxC, where C
is the number of channels) into a 1D vector (1x1x1xC). (2)
Channel dependency modeling: Establishing inter-channel
dependencies through two fully connected layers. The first fully
connected layer reduces the dimension to C/64 with ReLU
activation, and the second restores the dimension to C with
sigmoid activation, generating channel weights (range: 0-1). (3)
Feature map rescaling: Adaptive enhancement of prognosis-
relevant channels and suppression of irrelevant signals via
element-wise multiplication between the original feature maps
and the learned channel weights. The network terminates with

10.3389/fonc.2025.1669200

fully connected layers (512—512—256—128 units), dropout
(rate=0.4), and L2 regularization (A=1e-4). The output layer uses
tanh activation for survival prediction. Ablation experiments were
conducted to validate the contribution of the SE module.

Deep learning network training and feature
extraction

The model training encompassed three phases: preprocessing,
augmentation, and optimization. Intratumoral ROIs were resized to
64x64x64 via linear interpolation and normalized via Z score
transformation. To increase data diversity, seven types of 3D
augmentations were implemented, including contrast adjustment,
brightness scaling, gamma correction, Gaussian noise addition,
blurring, 3D mirroring, and spatial rotation, with the technical
specifications provided in Table 1. Network optimization employs
the Cox negative partial likelihood loss function (25), which is
optimized via the Adam optimizer with an initial learning rate of
1x10™%, exponentially decayed by a factor of 0.96 every 1000 steps,
and a batch size of 32. Training proceeded for 100 epochs with early
stopping triggered if the validation loss plateaued for 15 consecutive
epochs. The feature vectors (512-dimensional) were extracted from
the GAP layer post training. All the implementations utilized
TensorFlow 2.7 on an NVIDIA GeForce RTX 4070 Ti GPU with
CUDA 11.2 acceleration.

Feature selection and model development

The feature selection procedures were restricted to the training
set. For radiomics and deep learning features, a three-step process
was applied: (1) Z score normalization to standardize feature scales;
(2) univariate cox analysis (P < 0.05) to identify survival-associated
features; and (3) least absolute shrinkage and selection operator
(Lasso) Cox regression with standard 10-fold cross-validation to
retain nonzero coefficients. The feature selection workflow is
illustrated in Figure 1. A radiomics/deep learning signature was
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FIGURE 2

3D-SE-ResNet framework diagram: BN, batch normalization; Conv, convolution layer; FC, fully connected layer; GAP, global average pooling layer;

RB, residual block.
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TABLE 1 Technical details of 3D data augmentation.

Augmentation type Parameter settings = Probability
Contrast Adjustment Multiplier range (1.0-1.75) 15%
Bright Multiplicati

"5 ness iplicative Scaling factor (0.7-1.5) 15%
Adjustment
Gamma Correction v range (0.5-2.0) 15%
Gaussian Noise Variance range (0-0.05) 15%
Gaussian Blur G range (0.5-1.5) 15%

Random flipping along X/Y,
3D Mirroring andom flipping along X/Y/ 30%
Z axes

3D Spatial Rotation Rotation (0-360°) around 30%

Z-axis

derived via a linear combination of selected features and
their coefficients.

Principal component analysis (PCA) was performed on the
integrated intratumoral/peritumoral radiomics and deep learning
features, retaining components accounting for > 95% of the
cumulative variance. Factor loading heatmaps were used to
visualize the contribution of each feature to the principal
components. Within the training set, the dimensionality-
reduced features were integrated to construct the combined
predictive model.

Model validation and evaluation

Model discrimination was assessed via Harrell's concordance
index (C-index) and area under the curve (AUC) from receiver
operating characteristic curve (ROC) analysis. Calibration curves
(bootstrap resampling: 1000 iterations) were used to evaluate the
agreement between the predicted and observed survival
probabilities. Patients were stratified into low/high-risk subgroups
through the median risk score in the training set to determine the
optimal cutoff value.

To further evaluate the model’s utility in personalized risk
stratification, subgroup analyses were conducted. Specifically, we
stratified patients by overall stage (Stage I - II vs. Stage III),
histologic subtype (adenocarcinoma vs. squamous cell
carcinoma), gender (male vs. female), and age (> 65 years vs. <
65 years) in both the training and test sets. For each subgroup,
survival differences between cohorts were analyzed via the Kaplan-
Meier method with log - rank tests, and the corresponding Kaplan-
Meier curves were plotted.

Statistical analysis

Statistical computations were conducted with R v4.4.0 and
Python 3.9. Categorical variables were evaluated via Fisher’s exact
test or the chi-square test; for continuous variables, normality was
first determined using the Shapiro-Wilk test, with the independent t
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test applied for normally distributed variables and the Mann-
Whitney U test for non-normally distributed variables. DeLong’s
test was used to compare differences in AUC values between the
single signature and combined models. Subgroup analyses stratified
by clinical characteristics (tumor stage, histological type, age, and
gender) were performed in both the training and testing sets; for
survival-related outcomes, the log-rank test was employed to
compare survival differences between subgroups. All hypothesis
tests were two-tailed with a significance threshold set at 0=0.05.

Results
Patient cohort characteristics

A total of 303 non-small cell lung cancer (NSCLC) patients
from three centers were included in this study. The baseline clinical
characteristics of all patients are listed in Table 2.

Radiomics feature analysis

From the intratumoral and peritumoral regions (3 mm, 6 mm,
and 9 mm expansions), 1316 radiomics features were extracted.
Univariate cox regression identified 214 significant intratumoral
radiomics features and 83, 88, and 125 peritumoral radiomics
features, respectively. Subsequent Lasso-Cox analysis further
refined these features to 12 intratumoral and 9, 10, and 10
peritumoral key radiomics features. To explore the synergistic
effects of the intratumoral and peritumoral regions, combined
radiomics signatures were generated by integrating selected
radiomics features from both regions. Predictive performance
varied significantly across peritumoral expansion distances and
their combinations (Table 3). Among the standalone peritumoral
radiomics signatures, the 6-mm expansion radiomics signature
achieved the highest C-index (0.63, 95% CI: 0.58-0.67), whereas
the combined Rad+Rad_6 mm radiomics signature further
improved the C-index (0.65, 95% CI: 0.60-0.69); thus, this
radiomics signature was selected as the standardized peritumoral
region. The names and corresponding coefficients of all features
within the Rad + Rad_6 mm radiomics signature are presented
in Figure 3.

Deep learning feature analysis

Among 512 deep learning (DL) features extracted from 3D-SE-
ResNet, 11 key prognostic features were retained after univariate
cox and Lasso-Cox screening. Compared with the intratumoral and
6-mm peritumoral radiomics signatures, the DL signature showed a
trend of improved discriminative performance, with a C-index of
0.74 (95% CI: 0.70-0.77) in the training set and 0.66 (95% CI: 0.58-
0.73) in the test set. Ablation experiments confirmed the critical role
of the SE module: its integration yielded a 13.8% performance gain
in the 3D-ResNet model (C-index: 0.74 vs. 0.65), indicating that the
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TABLE 2 Clinical characteristics of all patients.

Characteristics Tr(ar:r:;\gss)et ;I;]e:’igg’; P value
Age (63-77) (57-72) 001
Sex 0.09
Male 144(70.9%) 80(80.0%)
Female 59(29.1%) 20(20.0%)
Histology 0.03
Adenocarcinoma 51(25.1%) 42(42.0%)
Squamous 152(74.9%) 58(58.0%)
T Stage 0.30
1 37(18.2%) 20(20.0%)
2 77(37.9%) 32(32.0%)
3 32(15.8%) 24(24.0%)
4 57(28.1%) 24(24.0%)
N Stage 0.12
0 81(39.9%) 26(26.0%)
1 16(7.9%) 10(10.0%)
2 65(32.0%) 37(37.0%)
3 39(19.2%) 27(27.0%)
4 2(1.0%) 0(0%)
M Stage 0.10
0 202(99.5%) 98(98.0%)
1 0(0.0%) 2(2.0%)
3 1(0.5%) 0(0%)
Overall Stage 0.22
I 34(16.7%) 14(14.0%)
il 31(15.3%) 13(13.0%)
IIIA 58(28.6%) 28(28.0%)
I11B 80(39.4%) 45(45.0%)
4
Survival Time (days) (252_913217) (5097_816024) 0.03

SE module effectively enhances the extraction of prognosis-related
features. As shown in Figure 4, the AUC values of the 3D-SE-
ResNet DL signature for predicting 1-, 2-, and 3-year overall
survival were higher than those of the baseline model at
all timepoints.

Combined model development and
validation

Principal component analysis (PCA) was applied to integrate
intratumoral radiomics, 6-mm peritumoral radiomics, and DL
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features, with the distribution of feature contributions across
principal components visualized in Figure 5. The combined
model, which integrates PCA-reduced features, achieved C-index
values of 0.77 (95% CI: 0.75-0.81) in the training set and 0.73 (0.72-
0.86) in the test set, outperforming individual signatures. ROC
analysis revealed AUCs of 0.86 (95% CI: 0.81-0.90), 0.90 (0.86-
0.94), and 0.95 (0.92-0.97) for predicting 1-, 2-, and 3-year OS,
respectively (Table 4), with the corresponding ROC curves
illustrated in Figure 6.

Risk stratification and survival analysis

Calibration analyses revealed high concordance between the
predicted and observed survival probabilities (Figure 7). Patients
were stratified into high-risk and low-risk groups by applying a risk
threshold (cutoff value = 1.14), which was derived from the
combined model’s median risk score. The high-risk group had a
significantly poorer prognosis compared to the low-risk group in
both datasets: the hazard ratio (HR) for the training set was 5.39
(95% CI: 3.83-7.59), and for the test set was 4.48 (95% CI: 2.54—
7.91). Kaplan-Meier analysis further confirmed significant survival
differences between the two risk groups (log-rank P < 0.0001 for
both datasets; Figure 8).

To comprehensively evaluate the personalized risk stratification
ability of the combined model, subgroup analyses were performed
within clinically relevant strata. The model demonstrated consistent
risk discrimination capabilities across gender subgroups (Figure 9),
age subgroups (Figure 10), histologic subtype subgroups
(Figure 11), and overall stage subgroups (Figure 12). Statistically
significant survival differences were observed between high - and
low - risk groups in both the training and test sets (log - rank test, P
< 0.05), validating its robustness across patient populations with
diverse clinical characteristics.

Discussion

This study developed a multicenter-validated combined model
that integrates intratumoral/peritumoral radiomics features and 3D
deep learning features to predict overall survival (OS) in non-small
cell lung cancer (NSCLC) patients undergoing radiotherapy. The
results demonstrated that radiomics features from the 6-mm
peritumoral region exhibited optimal prognostic value (C-
index=0.63), whereas deep learning (DL) features extracted by
3D-SE-ResNet significantly outperformed conventional radiomics
features (C-index=0.74 vs. 0.63). The combined model achieved a
C-index of 0.73 in the test set and an AUC of 0.86 for 3-year OS
prediction, outperforming the conventional TNM staging system
(AUC=0.65) (26, 27) and validating the efficacy of the
multidimensional feature fusion strategy. These findings provide a
novel framework for individualized prognostic assessment in
NSCLC radiotherapy.

The aggressive nature of NSCLC leads to destruction of adjacent
lung structures, leading to the infiltration of vasculo-lymphatic
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TABLE 3 Comparison of C-index (95%Cl) for intratumoral/peritumoral
radiomics signatures with different expansion distances.

Signatures Training set Test set
0.63 0.61
Rad
& (0.58-0.68) (0.48-0.68)
61 61
Rad_3mm 06 0.6
(0.57-0.65) (0.49-0.68)
0.63 0.62
Rad_6mm
(0.58-0.67) (0.49-0.69)
0.61 0.59
Rad_9mm
(0.57-0.65) (0.46-0.66)
64 .
Rad+Rad_3mm 06 0.63
(0.60-0.69) (0.52-0.70)
0.65 0.64
Rad+Rad_6mm
(0.60-0.69) (0.53-0.70)
0.64 0.62
Rad+Rad_9mm
(0.59-0.69) (0.51-0.71)

Rad: Intratumoral radiomics signature. Rad_3mm, Rad_6mm, Rad_9mm: Peritumoral
radiomics signatures with 3 mm, 6 mm, and 9 mm expansion distances, respectively.

cancer at tumor margins (28). This complex tumor-host interface is
often overlooked in traditional intratumoral radiomics (29). Liu
et al. (30) demonstrated that peritumoral regions within 3-9 mm
from the tumor boundary contain biological information relevant
to lung cancer heterogeneity, suggesting that bidirectional tumor-
host interactions at the interface critically influence prognosis.
Through systematic evaluation of peritumoral regions at varying
extents (3/6/9 mm), we identified the 6-mm peritumoral zone as
optimal for balancing microenvironmental information capture and
noise reduction (C-index=0.63), with further performance
improvement when this zone was combined with intratumoral
features (C-index=0.65). These findings indicate that peritumoral
regions provide complementary information to intratumoral areas,
supporting the hypothesis that peritumoral regions serve as
pathways for tumor invasion (12, 15). Compared with single-

Intratumoral Radiomics Features and Coefficients
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center studies (31), our multicenter validation confirms the
generalizability of peritumoral radiomics, suggesting its
clinical applicability.

3D CNNs enable precise spatial characterization of tumors
through the integration of continuous cross-sectional information
(32, 33). Wang et al. demonstrated the superior performance of 3D
DL features over 2D methods in predicting occult lymph node
metastasis in patients with laryngeal squamous cell carcinoma
(AUC = 0.89 vs 0.86) (21). However, tumor heterogeneity leads
to significant variations in prognostic contributions from different
feature channels, and conventional CNNs lack the ability to
prioritize critical features. To address this limitation, we
innovatively integrated the SE module into the 3D ResNet
framework. The SE module compresses spatial dimensions via
global average pooling and learns channelwise weights through
fully connected layers. This process achieves adaptive recalibration
of feature maps, enhancing the expression of prognosis-relevant
information while suppressing redundant signals (34). Ablation
experiments demonstrated the critical role of the SE module: the
3D-SE-ResNet model exhibited a 13.8% improvement in the C-
index (0.74 vs. 0.65) compared to the baseline 3D-ResNet,
highlighting its ability to resolve spatial heterogeneity through
attention-driven feature calibration.

The hierarchical representation capability of deep neural
networks enables 3D-SE-ResNet to capture complex tumor-host
interface patterns that are challenging to quantify with traditional
handcrafted features, corroborating prior studies highlighting deep
learning’s advantages in high-dimensional feature representation
(35, 36). The combined model achieved increased predictive
accuracy by synergistically integrating intratumoral/peritumoral
radiomics information with DL-derived spatial hierarchical
features, transcending the limitations of single-prediction
modalities. PCA revealed multidimensional feature contributions:
PC1 demonstrated balanced contributions from intratumoral/
peritumoral radiomics features and deep learning features,
indicating synergistic integration among the three feature classes.
PC2 was dominated by DL features, reflecting the significant
representational power of 3D CNNs in capturing macroscale

6mm Peritumoral Radiomics Features and Coefficients
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ROC curves of the 3D-SE-ResNet (A, B) and 3D ResNet (C, D) DL signatures on training and test sets.

tumor spatial heterogeneity (37). The performance of the
peritumoral radiomics features was greatest for PC3, which is
consistent with the findings from the radiomics analysis in the
optimal 6 mm peritumoral region. This synergy underscores the
unique value of multidimensional integration in decoding
tumor complexity.
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In this study, the difference in median survival time between the
training and test sets may be partially attributed to the gradual
adoption of precise radiotherapy technologies such as image-guided
radiotherapy during the multicenter data collection period.
Although we controlled confounding factors through uniform
inclusion criteria, the retrospective design inherently limits the
elimination of selection bias. Notably, prolonged survival itself
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TABLE 4 AUC (95%Cl) of intratumoral/peritumoral radiomics signatures, deep learning signatures, and combined model for 1-, 2-, and 3-year OS in

patients.
Models AUC Training set Test set P value
0.68 0.64
1- 0.03
year (0.61-0.75) (0.50-0.78)
6 0.64
Rad 2-year 069 6 0.02
(0.61-0.76) (0.52-0.75)
3-year 0-76 066 <0.01
¥ (0.68-0.83) (0.50-0.81) '
1-year 0-70 0-64 0.01
¥ (0.63-0.77) (0.50-0.79) '
Rad_6mm 2-year 071 071 0.2
(0.63-0.77) (0.60-0.82)
071 0.67
3- 0.02
year (0.63-0.79) (0.53-0.80)
e 0.80 0.77 os
¥ (0.74-0.85) (0.66-0.88) :
0.88 0.69
DL 2- 0.05
year (0.83-0.92) (0.58-0.80)
3-year 0-92 068 <0.01
4 (0.88-0.96) (0.55-0.82) :
vear 0.86 0.80
¥ (0.81-0.90) (0.69-0.91)
0.90 0.78
Combined Model 2-year —
(0.86-0.94) (0.68-0.88)
s ear 0.95 0.86
¥ (0.92-0.97) (0.77-0.94)

Boldface values indicate the best predictive performance.

The P values from the DeLong test compare individual signatures with the Combined Model in the test set.

may reflect therapeutic advancements rather than model prediction
bias, providing unique insights into model robustness evaluation
within evolving technological contexts. The drop in the combined
model’s C-index from the training set (0.77) to the test set (0.73) is a
typical manifestation of model generalization across distinct
datasets. The training and test sets originate from different
medical centers, leading to inevitable discrepancies in patient
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FIGURE 6
ROC curves of the Combined model in the training set (A), and test set (B).
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demographics, treatment details, and data distribution patterns.
Despite this decline, the test set C-index of 0.73 still denotes
satisfactory predictive performance. To enhance the
generalization capability, three key countermeasures were
implemented: (1) Integration of L2 regularization (A=1e-4) with
dropout layers (rate=0.4) in the DL framework to prevent
overfitting to short-term survival signals; (2) PCA-based feature
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fusion preserving 95% variance to effectively mitigate multisource
data noise; and (3) bootstrap calibration validation demonstrating
strong consistency between the predicted probabilities and observed
survival rates in the test set. Importantly, the model maintained
stable discriminative performance (C-index=0.73) and significant
risk stratification capacity (log-rank P < 0.001) in the test set,
indicating its tolerance to moderate prognostic distribution shifts.

The combined model demonstrated stable risk stratification
capabilities across multicenter datasets, enabling individualized
prognostic assessments during RT planning for NSCLC patients.
Subgroup analyses (by gender, age, histologic subtype, and overall
stage) further validated the model’s potential for personalized risk
assessment. For example, in the <65 years and >65 years subgroups,
both the training and test sets exhibited strong risk stratification
capacity with consistent HR trends (training set: 7.28 vs. 3.88; test
set: 3.37 vs. 5.94). Similarly, in adenocarcinoma and squamous cell
carcinoma subgroups, the model maintained stable discriminative
power (training set: 4.88 vs. 7.18; test set: 2.94 vs. 5.07), with
statistically significant survival differences observed in all
subgroups. These findings confirm that despite minor differences
between cohorts, the model retains stable prognostic utility,
supporting its potential for cross-population clinical application.
Risk-based stratification identifies candidates who may benefit from

Training set Kaplan-Meier survival curves

Strata High Risk =+ Low Risk

Low Risk (n=102, Median=1172 days)

50 B e

Log'—rank E
p <10.0001 ;

Survival Probability

[ 1000 3000 4000

Survival Time (days)
Number at risk
101 2 1 1 0
owRisk{_102 60 27 8 2
0 1000 3000

Strata

2000
Survival Time (days)
(A)

FIGURE 8

high-dose irradiation, whereas quantitative analysis of peritumoral
radiomics features aids in precisely delineating the boundaries of
the clinical target volume (CTV).

However, several limitations still exist: (1) retrospective design
risks selection bias, necessitating prospective validation; (2) unclear
biological basis of the 6-mm extension needs histopathological
correlation; (3) due to the lack of detailed records on whether
each patient received chemoradiotherapy or radiotherapy alone, we
were unable to analyze the potential impact of these two treatment
modalities on the study results. Future studies should integrate
multi-omics data to unravel imaging-microenvironment molecular
correlations, incorporate dosiomics to explore dose-response
relationships, and collect detailed records of treatment modalities
(e.g., radiotherapy alone vs. chemoradiotherapy) to clarify their
impact on outcomes. Additionally, developing explainability tools
to demystify model decisions will enhance clinical credibility.

Conclusion

In conclusion, our multicenter-validated model, which
integrates intratumoral, 6-mm peritumoral radiomics, and 3D DL
features, significantly improves survival prediction in NSCLC

Test set Kaplan—-Meier survival curves
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Kaplan-Meier survival curves of the combined model stratified by histologic subtype in the training set (A, B) and test set (C, D).
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Kaplan-Meier survival curves of the combined model stratified by overall stage in the training set (A, B) and test set (C, D).
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patients receiving radiotherapy. Future efforts will focus on
prospective validation and mechanistic exploration of the model’s
biological foundations.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding authors.

Ethics statement

This study was approved by the Ethics Committees of the
Seventh Medical Center of Chinese PLA General Hospital (No.
§2025-030-01) and Shandong First Medical University (No. SB-
KJCX2101). The studies were conducted in accordance with the
local legislation and institutional requirements. Written informed
consent for participation was not required from the participants or
the participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements.

Author contributions

YL: Conceptualization, Methodology, Software, Visualization,
Writing — original draft. YP: Validation, Investigation, Writing -
original draft. QW: Conceptualization, Methodology, Writing -
review & editing. HJ: Investigation, Writing - review & editing. NL:
Investigation, Writing - review & editing. DC: Investigation,
Writing - review & editing. YY: Data Curation, Writing -
original draft. YG: Data Curation, Writing - original draft. HZ:
Data Curation, Writing - review & editing. YS: Investigation,
Project administration, Resources, Writing - review & editing. JQ:
Investigation, Project administration, Resources, Writing — review

References

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer ]
Clin. (2022) 72:7-33. doi: 10.3322/caac.21708

2. Bray F, Laversanne M, Sung H, Ferlay ], Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer ] Clin. (2024) 74:229-63. doi: 10.3322/
caac.21834

3. Chen P, Liu Y, Wen Y, Zhou C. Non-small cell lung cancer in China. Cancer
Commun (Lond). (2022) 42:937-70. doi: 10.1002/cac2.12359

4. Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status and
future directions. Respirology. (2020) 25:61-71. doi: 10.1111/resp.13870

5. Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, et al.
Long-term results of NRG oncology RTOG 0617: standard- versus high-dose
chemoradiotherapy with or without cetuximab for unresectable stage III non-small-
cell lung cancer. J Clin Oncol. (2020) 38:706-14. doi: 10.1200/JCO.19.01162

6. Riely GJ, Wood DE, Ettinger DS, Aisner DL, Akerley W, Bauman JR, et al. Non-
small cell lung cancer, version 4.2024, NCCN clinical practice guidelines in oncology. J
Natl Compr Canc Netw. (2024) 22:249-74. doi: 10.6004/jnccn.2204.0023

Frontiers in Oncology

10.3389/fonc.2025.1669200

& editing. FZ: Conceptualization, Investigation, Methodology,
Project administration, Supervision, Validation, Funding
acquisition, Writing — review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

7. Relli V, Trerotola M, Guerra E, Alberti S. Abandoning the notion of non-small
cell lung cancer. Trends Mol Med. (2019) 25:585-94. doi: 10.1016/
j.molmed.2019.04.012

8. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WEE,
et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage
groupings in the forthcoming (Eighth) edition of the TNM classification for lung
cancer. ] Thorac Oncol. (2016) 11:39-51. doi: 10.1016/j.jth0.2015.09.009

9. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RGPM,
Granton P, et al. Radiomics: extracting more information from medical images using
advanced feature analysis. Eur J Cancer. (2012) 48:441-6. doi: 10.1016/
j.€jca2011.11.036

10. Zhao M, Kluge K, Papp L, Grahovac M, Yang S, Jiang C, et al. Multi-lesion
radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk
profiling in patients with lung adenocarcinoma. Eur Radiol. (2022) 32:7056-67.
doi: 10.1007/500330-022-08999-7

11. Zhang X, Lu B, Yang X, Lan D, Lin S, Zhou Z, et al. Prognostic analysis and risk
stratification of lung adenocarcinoma undergoing EGFR-TKI therapy with time-serial

frontiersin.org


https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1002/cac2.12359
https://doi.org/10.1111/resp.13870
https://doi.org/10.1200/JCO.19.01162
https://doi.org/10.6004/jnccn.2204.0023
https://doi.org/10.1016/j.molmed.2019.04.012
https://doi.org/10.1016/j.molmed.2019.04.012
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1007/s00330-022-08999-7
https://doi.org/10.3389/fonc.2025.1669200
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Liu et al.

CT-based radiomics signature. Eur Radiol. (2023) 33:825-35. doi: 10.1007/s00330-022-
09123-5

12. Kadota K, Nitadori J-I, Sima CS, Ujiie H, Rizk NP, Jones DR, et al. Tumor Spread
through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and
Location of Recurrences after Limited Resection for Small Stage I Lung
Adenocarcinomas. | Thorac Oncol. (2015) 10:806-14. doi: 10.1097/
JT0.0000000000000486

13. Onozato ML, Kovach AE, Yeap BY, Morales-Oyarvide V, Klepeis VE,
Tammireddy S, et al. Tumor islands in resected early-stage lung adenocarcinomas
are associated with unique clinicopathologic and molecular characteristics and worse
prognosis. Am J Surg Pathol. (2013) 37:287-94. doi: 10.1097/PAS.0b013e31826885fb

14. Uruga H, Fujii T, Fujimori S, Kohno T, Kishi K. Semiquantitative assessment of
tumor spread through air spaces (STAS) in early-stage lung adenocarcinomas. J Thorac
Oncol. (2017) 12:1046-51. doi: 10.1016/j.jtho.2017.03.019

15. Khorrami M, Khunger M, Zagouras A, Patil P, Thawani R, Bera K, et al.
Combination of peri- and intratumoral radiomic features on baseline CT scans predicts
response to chemotherapy in lung adenocarcinoma. Radiol Artif Intell. (2019) 1:
€180012. doi: 10.1148/ryai.2019180012

16. Chen Q, Shao J, Xue T, Peng H, Li M, Duan S, et al. Intratumoral and
peritumoral radiomics nomograms for the preoperative prediction of
lymphovascular invasion and overall survival in non-small cell lung cancer. Eur
Radiol. (2023) 33:947-58. doi: 10.1007/s00330-022-09109-3

17. Wu L, Lou X, Kong N, Xu M, Gao C. Can quantitative peritumoral CT radiomics
features predict the prognosis of patients with non-small cell lung cancer? A systematic
review. Eur Radiol. (2023) 33:2105-17. doi: 10.1007/s00330-022-09174-8

18. Lin P, Xie W, Li Y, Zhang C, Wu H, Wan H, et al. Intratumoral and peritumoral
radiomics of MRIs predicts pathologic complete response to neoadjuvant
chemoimmunotherapy in patients with head and neck squamous cell carcinoma. J
Immunother Cancer. (2024) 12:¢009616. doi: 10.1136/jitc-2024-009616

19. Xiao ML, Fu L, Wei Y, Liu AE, Cheng JJ, Ma FH, et al. Intratumoral and
peritumoral MRI radiomics nomogram for predicting parametrial invasion in patients
with early-stage cervical adenocarcinoma and adenosquamous carcinoma. Eur Radiol.
(2024) 34:852-62. doi: 10.1007/s00330-023-10042-2

20. Bao X, Peng Q, Bian D, Ni J, Zhou S, Zhang P, et al. Short-term intra- and peri-
tumoral spatiotemporal CT radiomics for predicting major pathological response to
neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Eur Radiol. (2025),
35:1-13. doi: 10.1007/s00330-025-11563-8

21. Wang W, Liang H, Zhang Z, Xu C, Wei D, Li W, et al. Comparing three-
dimensional and two-dimensional deep-learning, radiomics, and fusion models for
predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based
on CT imaging: a multicentre, retrospective, diagnostic study. EClinicalMedicine.
(2024) 67:102385. doi: 10.1016/j.eclinm.2023.102385

22. Nie D, Lu J, Zhang H, Adeli E, Wang J, Yu Z, et al. Multi-channel 3D deep
feature learning for survival time prediction of brain tumor patients using multi-modal
neuroimages. Sci Rep. (2019) 9:1103. doi: 10.1038/541598-018-37387-9

23. Shen T, Hou R, Ye X, Li X, Xiong J, Zhang Q, et al. Predicting Malignancy and

invasiveness of pulmonary subsolid nodules on CT images using deep learning. Front
Oncol. (2021) 11:700158. doi: 10.3389/fonc.2021.700158

24. Aerts HHWL, Wee L, Rios Velazquez E, Leijenaar RTH, Parmar C, Grossmann P,
et al. Data from NSCLC-radiomics. Nat Commun (2019) 5:4006. doi: 10.7937/K9/
TCIA.2015.PFOM9REI

Frontiers in Oncology

14

10.3389/fonc.2025.1669200

25. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv:
personalized treatment recommender system using a Cox proportional hazards deep
neural network. BMC Med Res Methodol. (2018) 18:24. doi: 10.1186/s12874-018-0482-
1

26. Hindocha S, Charlton TG, Linton-Reid K, Hunter B, Chan C, Ahmed M, et al. A
comparison of machine learning methods for predicting recurrence and death after
curative-intent radiotherapy for non-small cell lung cancer: Development and
validation of multivariable clinical prediction models. EBioMedicine. (2022)
77:103911. doi: 10.1016/j.ebiom.2022.103911

27. Zhang L, Xu C, Zhang X, Wang J, Jiang H, Chen J, et al. A novel analytical
approach for outcome prediction in newly diagnosed NSCLC based on [18F]FDG PET/
CT metabolic parameters, inflammatory markers, and clinical variables. Eur Radiol.
(2023) 33:1757-68. doi: 10.1007/s00330-022-09150-2

28. Saijo T, Ishii G, Ochiai A, Hasebe T, Yoshida J, Nishimura M, et al. Evaluation
of extratumoral lymphatic permeation in non-small cell lung cancer as a means of
predicting outcome. Lung Cancer. (2007) 55:61-6. doi: 10.1016/
j-lungcan.2006.09.027

29. Pérez-Morales J, Tunali I, Stringfield O, Eschrich SA, Balagurunathan Y, Gillies
RJ, et al. Peritumoral and intratumoral radiomic features predict survival outcomes
among patients diagnosed in lung cancer screening. Sci Rep. (2020) 10:10528.
doi: 10.1038/s41598-020-67378-8

30. Liu K, Li K, Wu T, Liang M, Zhong Y, Yu X, et al. Improving the accuracy of
prognosis for clinical stage I solid lung adenocarcinoma by radiomics models covering
tumor per se and peritumoral changes on CT. Eur Radiol. (2022) 32:1065-77.
doi: 10.1007/s00330-021-08194-0

31. Chang R, Qi S, Wu Y, Yue Y, Zhang X, Qian W. Nomograms integrating CT
radiomic and deep learning signatures to predict overall survival and progression-free
survival in NSCLC patients treated with chemotherapy. Cancer Imaging. (2023) 23:101.
doi: 10.1186/540644-023-00620-4

32. Bathla G, Dhruba DD, Liu Y, Le NH, Soni N, Zhang H, et al. Differentiation
between glioblastoma and metastatic disease on conventional MRI imaging using 3D-
convolutional neural networks: model development and validation. Acad Radiol. (2024)
31:2041-9. doi: 10.1016/j.acra.2023.10.044

33. Zhao X, Zhou B, Luo Y, Chen L, Zhu L, Chang S, et al. CT-based deep learning
model for predicting hospital discharge outcome in spontaneous intracerebral
hemorrhage. Eur Radiol. (2024) 34:4417-26. doi: 10.1007/s00330-023-10505-6

34. Hu], Shen L, Albanie S, Sun G, Wu E. Squeeze-and-excitation networks. IEEE
Trans Pattern Anal Mach Intell. (2020) 42:2011-23. doi: 10.1109/
TPAMI.2019.2913372

35. Schon F, Kieslich A, Nebelung H, Riediger C, Hoffmann R-T, Zwanenburg A,
et al. Comparative analysis of radiomics and deep-learning algorithms for survival
prediction in hepatocellular carcinoma. Sci Rep. (2024) 14:590. doi: 10.1038/s41598-
023-50451-3

36. Liu Y, Wang Y, Hu X, Wang X, Xue L, Pang Q, et al. Multimodality deep
learning radiomics predicts pathological response after neoadjuvant
chemoradiotherapy for esophageal squamous cell carcinoma. Insights Imaging.
(2024) 15:277. doi: 10.1186/s13244-024-01851-0

37. Huang B, Sollee ], Luo Y-H, Reddy A, Zhong Z, Wu J, et al. Prediction of lung
Malignancy progression and survival with machine learning based on pre-
treatment FDG-PET/CT. EBioMedicine. (2022) 82:104127. doi: 10.1016/
j.ebiom.2022.104127

frontiersin.org


https://doi.org/10.1007/s00330-022-09123-5
https://doi.org/10.1007/s00330-022-09123-5
https://doi.org/10.1097/JTO.0000000000000486
https://doi.org/10.1097/JTO.0000000000000486
https://doi.org/10.1097/PAS.0b013e31826885fb
https://doi.org/10.1016/j.jtho.2017.03.019
https://doi.org/10.1148/ryai.2019180012
https://doi.org/10.1007/s00330-022-09109-3
https://doi.org/10.1007/s00330-022-09174-8
https://doi.org/10.1136/jitc-2024-009616
https://doi.org/10.1007/s00330-023-10042-2
https://doi.org/10.1007/s00330-025-11563-8
https://doi.org/10.1016/j.eclinm.2023.102385
https://doi.org/10.1038/s41598-018-37387-9
https://doi.org/10.3389/fonc.2021.700158
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1016/j.ebiom.2022.103911
https://doi.org/10.1007/s00330-022-09150-2
https://doi.org/10.1016/j.lungcan.2006.09.027
https://doi.org/10.1016/j.lungcan.2006.09.027
https://doi.org/10.1038/s41598-020-67378-8
https://doi.org/10.1007/s00330-021-08194-0
https://doi.org/10.1186/s40644-023-00620-4
https://doi.org/10.1016/j.acra.2023.10.044
https://doi.org/10.1007/s00330-023-10505-6
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1038/s41598-023-50451-3
https://doi.org/10.1038/s41598-023-50451-3
https://doi.org/10.1186/s13244-024-01851-0
https://doi.org/10.1016/j.ebiom.2022.104127
https://doi.org/10.1016/j.ebiom.2022.104127
https://doi.org/10.3389/fonc.2025.1669200
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Integration of intratumoral/peritumoral radiomics and deep learning for predicting overall survival in non-small cell lung cancer patients: a multicenter study
	Introduction
	Materials and methods
	Patients data
	Treatment and follow-up
	Image acquisition and preprocessing
	ROI segmentation and radiomics feature extraction
	Deep learning network establishment
	Deep learning network training and feature extraction
	Feature selection and model development
	Model validation and evaluation
	Statistical analysis

	Results
	Patient cohort characteristics
	Radiomics feature analysis
	Deep learning feature analysis
	Combined model development and validation
	Risk stratification and survival analysis

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


